WO2011060628A1 - Fondant à plusieurs composants de qualité technique et sa préparation - Google Patents

Fondant à plusieurs composants de qualité technique et sa préparation Download PDF

Info

Publication number
WO2011060628A1
WO2011060628A1 PCT/CN2010/070197 CN2010070197W WO2011060628A1 WO 2011060628 A1 WO2011060628 A1 WO 2011060628A1 CN 2010070197 W CN2010070197 W CN 2010070197W WO 2011060628 A1 WO2011060628 A1 WO 2011060628A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
parts
flux
tungsten
iron
Prior art date
Application number
PCT/CN2010/070197
Other languages
English (en)
Chinese (zh)
Inventor
荣金相
Original Assignee
Rong Jinxiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rong Jinxiang filed Critical Rong Jinxiang
Publication of WO2011060628A1 publication Critical patent/WO2011060628A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a multi-component flux for carbon and sulfur content analysis of a metal or non-metal sample in a high-frequency infrared carbon-sulfur analyzer and a preparation method thereof.
  • the combustion method When analyzing the carbon and sulfur contents of metallurgical materials, non-ferrous metals, ferroalloys and rare earths, the combustion method is often used for measurement.
  • the method uses a high-frequency induction furnace as a heating source, and uses ceramic crucible as a container for burning samples; in order to effectively detect carbon and sulfur in the sample to be tested in high-purity oxygen, it is necessary to add assistance. A flux that helps the sample melt.
  • the uniformity of the proportioning effect is poor, not only the amount of dust generated during combustion is relatively large, but also affects the melting effect;
  • the addition of ternary or trivalent fluxes by hand is added in multiple times, and the cumulative error of the addition amount is large, which also adversely affects the accuracy of carbon and sulfur analysis.
  • the technical problem to be solved by the present invention is to provide a technical ratio multi-flux and a preparation method thereof according to the defects of the prior art, and the multi-flux is composed of three or more kinds of flux materials, uniformity and meltability.
  • the multi-flux is composed of three or more kinds of flux materials, uniformity and meltability.
  • it can be added at one time, the amount of addition is small, and the dust generated by combustion is less, thereby significantly improving the accuracy of carbon and sulfur analysis; and the preparation method can optimize the preparation of the multi-component flux.
  • the technical composition of the multicomponent flux is composed of: tungsten (W) 1.5-2 parts, iron (Fe) 0.3-1 part, tin (Sn) 0.1-0.3 parts; vanadium pentoxide (V 2 O 5 ) 0.1 0.5 parts, and powder metallurgy porous material composed of tungsten and iron The matrix, tin and vanadium pentoxide are present in the pores of the porous material matrix by melt infiltration.
  • the granules of 20 mesh and 40 mesh granules are uniformly mixed with 20 mesh-60 mesh tin particles, 60 mesh-300 mesh vanadium pentoxide, and the tin particles used are 0.1-0.3 parts by weight.
  • the vanadium pentoxide is 0.1-0.5 parts by weight; then calcined at 800 ° C and 1100 ° C to melt and infiltrate the tin particles and vanadium pentoxide into the pores of the sintered pellets, thereby obtaining a flux.
  • the 20 mesh-40 mesh multi-flux refers to a multi-flux that passes through a 20 mesh sieve (20 mesh sieve) and is a 40 mesh sieve.
  • the resulting flux can be bottled, sealed, and used.
  • the second technical solution of the present invention is that the technical composition of the multi-component flux is composed of: tungsten (W) 1.5-2 parts, iron (Fe) 0.3-1 part, copper (Cu) 0.1-0.5 parts; Also, a matrix of powder metallurgy porous material is composed of tungsten and iron, and copper is present in the pores of the porous material matrix by melt penetration.
  • the method for preparing the multi-component flux of the second aspect of the present invention is:
  • the resulting flux can be bottled, sealed, and ready for use.
  • the present invention is a technical ratio multi-flux and a preparation method thereof.
  • the multi-flux is composed of three or more kinds of flux materials, has good uniformity and meltability, can be added at one time, and the amount of addition is small, and combustion is generated.
  • the dust is relatively small, which significantly improves the accuracy of carbon and sulfur analysis.
  • Example 1 Technical composition
  • the composition of the multipart flux is: tungsten (W) 1.5 parts, iron (Fe) 0.5 parts, tin (Sn) 0.1 parts; vanadium pentoxide (V 2 0 5 ) 0.2 parts, And a powder metallurgy porous material matrix composed of tungsten and iron, and tin and vanadium pentoxide are present in the pores of the porous material matrix by melt penetration. .
  • Example 2 Technical ratio
  • the composition of the multicomponent flux is: 1.7 parts of tungsten (W), 0.7 parts of iron (Fe), 0.15 parts of tin (Sn), 0.3 parts of vanadium pentoxide, and consists of tungsten and iron.
  • the powder metallurgy porous material matrix, tin and vanadium pentoxide are present in the pores of the porous material matrix by melt infiltration. .
  • Example 3 Technical composition
  • the composition of the multipart flux is: tungsten (W) 1.8 parts, iron (Fe)
  • Example 4 Technical composition
  • the composition of the multipart flux is: tungsten (W) 1.5 parts, iron (Fe) 0.3 parts, copper (Cu) 0.2 parts; and, a matrix of powder metallurgy porous material composed of tungsten and iron, copper is melted and infiltrated and present in the pores of the porous material matrix.
  • Example 5 Technical ratio
  • the composition of the multicomponent flux is: tungsten (W) 1.7 parts, iron (Fe) 0.4 parts, copper (Cu) 0.3 parts; and powder metallurgy porous material matrix composed of tungsten and iron, copper It is present in the pores of the porous material matrix by melt infiltration.
  • Example 6 Technical composition
  • the composition of the multiparticulate flux is: tungsten (W) 1.8 parts, iron (Fe) 0.5 parts, copper (Cu) 0.5 parts; and, consisting of tungsten and iron powder metallurgy porous material matrix, Copper is present in the pores of the porous material matrix by melt infiltration.
  • the parts by weight are multiples of grams or grams; when the unit of weight is gram, the sum of the amounts of the technical ratio elements is the amount of one analysis.
  • Embodiment 7 A method of preparing the multi-component flux of Example 3, comprising:
  • the pure tungsten powder and the pure iron powder are uniformly mixed according to the weight fraction, and then press-formed and sintered to obtain a sintered body having a certain porosity; the porosity is such that the weight of the tin is The granules and vanadium pentoxide can be completely infiltrated into the sinter pellets described later as criteria.
  • Embodiment 8 A method of preparing the multi-component flux of Example 6, comprising:
  • the pure tungsten powder and the pure iron powder are uniformly mixed according to the weight fraction, and then press-formed and sintered to obtain a sintered body having a certain porosity; the porosity is such that the weight of the copper is
  • the granules can be completely infiltrated into the sinter pellets described later as criteria.
  • crushing and sieving the sinter taking a granulated granule of a size of 20 mesh to 40 mesh;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention porte sur un fondant à plusieurs composants pour l'analyse de teneurs en carbone et en soufre dans des échantillons métalliques ou non métalliques, ainsi que sur son procédé de préparation. Un fondant à plusieurs composants est composé (en partie en poids) : de 1,5 à 2 parties de tungstène (W), de 0,3 à 1 partie de fer (Fe), de 0,1 à 0,3 partie d'étain (Sn), de 0,1 à 0,5 partie de V2O5; et un autre fondant à plusieurs composants est composé (en partie en poids) : de 1,5 à 2 parties de tungstène (W), de 0,3 à 1 partie de fer (Fe), de 0,1 à 1 partie de cuivre (Cu), la matrice de matière poreuse métallurgique en poudre étant constituée de tungstène et de fer, et l'étain ou le cuivre peut être fondu, peut pénétrer dans les trous de la matrice poreuse et rester dans celle-ci. Les fondants à plusieurs composants présentent de bonnes caractéristiques en termes d'uniformité et de fusibilité et peuvent être ajoutés en une fois avec une moindre possibilité d'erreur en ce qui concerne la quantité de l'ajout et avec moins de poussière de poudre produite par la cuisson, ce qui améliore considérablement la précision de l'analyse du carbone et du soufre.
PCT/CN2010/070197 2009-11-23 2010-01-15 Fondant à plusieurs composants de qualité technique et sa préparation WO2011060628A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910044800.2 2009-11-23
CN2009100448002A CN101718650B (zh) 2009-11-23 2009-11-23 技术配比多元助熔剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2011060628A1 true WO2011060628A1 (fr) 2011-05-26

Family

ID=42433256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070197 WO2011060628A1 (fr) 2009-11-23 2010-01-15 Fondant à plusieurs composants de qualité technique et sa préparation

Country Status (2)

Country Link
CN (1) CN101718650B (fr)
WO (1) WO2011060628A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063602B (zh) * 2012-12-15 2015-04-01 马鞍山钢铁股份有限公司 一种碳化硅脱氧剂中游离碳及碳化硅的测定方法
CN103196863B (zh) * 2013-03-21 2015-12-02 内蒙古包钢钢联股份有限公司 异标校正红外吸收法测定铁合金中碳和硫的含量的方法
CN103245633B (zh) * 2013-05-16 2015-11-18 内蒙古包钢钢联股份有限公司 异标校正红外吸收法测定稀土铝合金中碳和硫含量的方法
CN104062254B (zh) * 2013-06-14 2016-09-28 攀钢集团攀枝花钢铁研究院有限公司 一种测定白云石中硫含量的方法
CN109725105A (zh) * 2019-01-31 2019-05-07 内蒙古通威高纯晶硅有限公司 一种检测硅粉中碳含量的检测装置及其检测方法
CN113189295A (zh) * 2020-11-10 2021-07-30 中国航发北京航空材料研究院 一种含硫标准物质及其制备方法和应用
CN113219148A (zh) * 2020-11-10 2021-08-06 中国航发北京航空材料研究院 一种含碳标准物质及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065100A (zh) * 1992-05-11 1992-10-07 冶金工业部钢铁研究总院 钨锡助熔剂及其制造方法
CN1122373A (zh) * 1994-05-03 1996-05-15 冶金工业部钢铁研究总院 钨铁助熔剂及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101086477A (zh) * 2007-07-16 2007-12-12 株洲冶炼集团股份有限公司 一种测定有色冶炼物料中碳含量的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065100A (zh) * 1992-05-11 1992-10-07 冶金工业部钢铁研究总院 钨锡助熔剂及其制造方法
CN1122373A (zh) * 1994-05-03 1996-05-15 冶金工业部钢铁研究总院 钨铁助熔剂及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANG, SHAOHENG: "Metallurgical analysis Material Selection and Preparation of the Accelerators for Carbon and Sulphur Analysis", vol. 11, no. 3, 1991, pages 34 - 36 *
WEI, XUJIAN ET AL.: "Physical Testing and Chemical Analysis(Part B:Chemical Analysis)", BLANK VALUES OF PORCELAIN CRUCIBLES FOR DETERMINING CARBON, SULPHUR CONTENTS BY HIGH-FREQUENCY INDUCTION COMBUSTION- INFRARED SPECTRAL ANALYSIS, vol. 44, no. 5, 2008, pages 470 - 473 *
YU, QING ET AL.: "Metal Mine, Measurement of Sulfur in Chromium Ores and Concentrates by I High Frequency Combustion Infrared-Adsorption Method", 2007, pages 74 - 75 *

Also Published As

Publication number Publication date
CN101718650B (zh) 2012-07-25
CN101718650A (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
WO2011060628A1 (fr) Fondant à plusieurs composants de qualité technique et sa préparation
CN103658668A (zh) 一种铁基预合金粉的制备方法
CN102274966A (zh) 用于无熔化地制备具有其它添加成分的金属制品的方法
CN103252597A (zh) 一种热固化衬垫焊剂及其制备方法
CN102706860A (zh) 一种铑含量的化学分析方法
CN107904474A (zh) 一种钼钴硼三元硼化物基金属陶瓷材料及其制备方法
CN105728714A (zh) 银-金属氧化物电触头材料的制备方法、装置以及应用
CN101070570A (zh) 钛合金中稀土和硼元素的混合加入方法
CN109490351B (zh) 一种铁矿粉液相流动性的检测方法
CN100999018A (zh) 铝-原位硼化钛复合粉末
Wu et al. Melt absorbability of iron ore nuclei and its influence on suitable liquid content of sintered body
Li et al. Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanium magnetite ore
JP4887611B2 (ja) 焼結鉱の製造方法および造粒粒子
Zhang et al. Reactive synthesis of porous FeAlCr intermetallics with enhanced mechanical property and oxidation resistance by introducing yttrium borides
CN204842969U (zh) 银-金属氧化物电触头材料的制备装置以及应用
CN1884202A (zh) 一种方镁石-碳化硅-碳复合材料及其制备方法
JP5073554B2 (ja) 鉄系焼結部材接合用ろう材および鉄系焼結部材の接合方法
CN106636540B (zh) 一种氧化锰和氧化钼同时直接合金化的电炉炼钢工艺
CN108385035A (zh) 采用预熔精炼渣炉外精炼14Cr1Mo合金钢的方法
Ming et al. Research on new type materials preparation for magnesium production by Silicothermic process
CN109916763A (zh) 一种采用火试金分析金元素含量的方法
CN113834709A (zh) 铋试金富集地质样品中贵金属的等离子体质谱/光谱测定方法
CN109553400A (zh) 一种铸造用烧结陶粒及其制备方法
Tranell et al. Reduction kinetics of manganese oxide from HC FeMn slags
Sui et al. Wetting of molten cerium on typical carbon materials (graphite, CVD-diamond and NWCNT) and molten Cu–Ce alloys on graphite at 950° C

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831044

Country of ref document: EP

Kind code of ref document: A1