WO2011060600A1 - 带元件的双面电路板及其互连导通方法 - Google Patents

带元件的双面电路板及其互连导通方法 Download PDF

Info

Publication number
WO2011060600A1
WO2011060600A1 PCT/CN2010/000073 CN2010000073W WO2011060600A1 WO 2011060600 A1 WO2011060600 A1 WO 2011060600A1 CN 2010000073 W CN2010000073 W CN 2010000073W WO 2011060600 A1 WO2011060600 A1 WO 2011060600A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
double
circuit
sided
hole
Prior art date
Application number
PCT/CN2010/000073
Other languages
English (en)
French (fr)
Inventor
王定锋
张平
Original Assignee
Wang Dingfeng
Zhang Ping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43084364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011060600(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wang Dingfeng, Zhang Ping filed Critical Wang Dingfeng
Publication of WO2011060600A1 publication Critical patent/WO2011060600A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4084Through-connections; Vertical interconnect access [VIA] connections by deforming at least one of the conductive layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/094Array of pads or lands differing from one another, e.g. in size, pitch, thickness; Using different connections on the pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Double-sided circuit board with components and interconnection and conduction method thereof Double-sided circuit board with components and interconnection and conduction method thereof
  • the present invention relates to the field of printed wiring boards, and in particular to a new method of interconnecting and conducting, for example, a double-sided flexible wiring board (FPC) or a rigid wiring board, for example, directly soldering a component leg through SMT on another surface circuit to make a double-sided The circuit on both sides of the board is turned on.
  • the present invention also discloses a non-chemically formed via hole that does not require drilling and copper plating, which is more convenient for making a continuous full roll of double-sided ribbon strip circuit board. Background technique
  • a mechanical via hole or a laser drilling method is generally used to drill a via hole on a copper clad plate, and then an electroless copper plating process is used to make a double-sided flexible printed circuit board.
  • the inner wall of the through hole forms a conductive layer.
  • a blind hole is formed by laser drilling first, and then a copper thick through hole conduction process is increased by black hole or electroless plating. This method causes serious pollution to the environment due to the need for electroplating and chemical plating.
  • the conventional double-sided printed circuit that does not require copper-plated copper-plated double-sided conduction usually adopts carbon oil filling or silver slurry filling to form a conduction mode, which has obvious disadvantages.
  • the cost of carbon oil filling is low, but due to carbon
  • the oil resistance is large and the conductivity is poor; while the silver paste is well conductive, but the price of the silver paste is very expensive and is not suitable for mass production.
  • the mechanical drilling machine and the laser drilling machine in the traditional manufacturing process are expensive, the drilling speed is slow, and the production efficiency is low.
  • the mechanical drilling machine is a flat drilling, the table top is about 635 x 762mm, so the largest board that can be produced is about 635 ⁇ 762mm, which can not produce more than 762mm board, and with the continuous development of the LED industry today, LED lights
  • the traditional drilling method to make through holes is increasingly unable to meet the needs of technological development.
  • a large number of phenolic tree branches and wood fiber bottom plates are consumed during mechanical drilling, and the laser drilling machine vaporizes the insulating polymer resin of the printed circuit board after high temperature burning.
  • component foot encompasses various terms such as solder fillet, pins, legs, etc. of the component and/or any structure or portion that can be used to achieve conductive communication.
  • circuit board and circuit board are used interchangeably throughout this application.
  • present invention has been described in connection with SMT reflow soldering techniques, those skilled in the art will appreciate that the present invention is obviously not limited to other types of soldering of reflow soldering, and thus the scope of the present invention is only by the appended claims. limited.
  • circuit board that directly reflows a component leg through an SMT on another surface circuit to turn on both sides of the double-sided circuit board.
  • This type of circuit board manufacturing method reduces chemical treatment processes such as copper copper plating and reduces wastewater discharge.
  • the process of the invention not only reduces the production cost, but also improves the reliability and quality of the process and the final product, greatly improves the production efficiency, and importantly, the process can be realized.
  • the continuous uninterrupted production of the circuit board has revolutionized the length limitation of printed circuit boards, and this process reduces the consumption of polymer contaminants caused by drilling, and reduces the copper plating process, reducing the number of lines.
  • the chemical wastewater discharge in the board making process is environmentally friendly, and can basically avoid and eliminate the environmental pollution problems caused by existing drilling, copper sinking and copper plating processes.
  • the traditional carbon oil, silver paste filling method to make the conduction line The method of the road is better than that of the method, and the production cost is low.
  • Another advantage of the present invention is that the process steps are reduced, the process cycle is shortened, and the cost is correspondingly reduced, and the circuit board is reduced due to the interconnection of the two circuit layers being realized while connecting (e.g., soldering) the components.
  • the quality is more reliable.
  • a method for achieving interconnection conduction by a component of a double-sided wiring board comprising: providing a double-sided wiring board formed with a hole, wherein the wiring board includes a top layer circuit layer, a bottom layer a wiring layer and an insulating film layer bonded between the top wiring layer and the bottom wiring layer, the holes passing through the top wiring layer and the insulating film layer but not through the underlying wiring layer; soldering a part of the component on the top wiring layer And soldering another portion of the component to the underlying wiring layer at the location of the hole to achieve electrical conduction between the top wiring layer and the underlying wiring layer.
  • the bottom layer of the hole position can be topped to be flush with or nearly flush with the top circuit layer, and then component soldering is performed, thereby ensuring soldering quality and conduction. Reliability.
  • the method further includes applying a solder paste on the pads of the top layer circuit layer and the underlying wiring layer at the hole locations before soldering; thereafter, directly soldering the component legs of the component to The pad of the top layer circuit layer and the underlying circuit layer at the hole location, thereby achieving interconnection conduction between the top layer circuit layer and the bottom circuit layer through the component pins while soldering the components.
  • the double-sided circuit board is a double-sided copper clad laminate in which the top layer circuit layer and the bottom layer circuit layer are both copper circuit layers, and the applied solder paste is applied by screen printing.
  • the soldering is SMT reflow soldering.
  • the top layer circuit layer and the insulating film layer are removed by opening a hollow window to the top layer circuit layer, thereby forming a groove-shaped structure of the hole.
  • the underlying circuit layer at the location of the holes is topped to be flush or nearly flush with the top circuit layer by die pressing.
  • the double-sided circuit board is a double-sided flexible circuit Board or rigid circuit board.
  • the present invention also provides a double-sided wiring board with components, comprising: a top wiring layer; a first adhesive layer; an insulating film layer; a second adhesive layer; a bottom wiring layer; and a double circuit board disposed in the double-sided wiring board a hole; wherein the top wiring layer is bonded to one side of the insulating film layer via the first adhesive layer, and the bottom wiring layer is bonded to the other surface opposite to the insulating film layer via the second adhesive layer; a top wiring layer, a first adhesive layer, an insulating film layer, and a second adhesive layer; and, a portion of the element is fixed to the top wiring layer by soldering, and another portion of the component is fixed at the hole position by soldering On the underlying circuit layer, the interconnection between the top layer and the bottom layer is achieved.
  • the underlying wiring layer at the hole position can be formed to be flush with or nearly flush with the top circuit layer, and then component soldering is performed, thereby ensuring reliable soldering quality and conduction. Sex.
  • the double-sided wiring board is a double-sided flexible circuit board or a rigid wiring board; and is applied on a pad of the top layer circuit layer and an underlying wiring layer at the hole position Solder paste; and, the component legs of the component are correspondingly soldered to the pads of the top layer circuit layer and the underlying wiring layer at the hole locations by reflow soldering.
  • the component is a surface mount (SMT) type component which is mounted by SMT and soldered to the double-sided wiring board by SMT reflow soldering.
  • SMT surface mount
  • the present invention also discloses an LED lamp strip comprising a double-sided wiring board with components as described above and an element mounted thereon.
  • the present invention by using a circuit board that directly turns the element legs through the SMT reflow soldering on the other side circuit to turn on both sides of the double-sided circuit board, not only by integrating the steps of the SMT bonding element with the soldering steps The process steps are saved, and the process can make the soldering quality of the components reliable, and the conduction of the double-sided lines is also highly reliable.
  • the adhesive layer used in the present invention may be a thermosetting adhesive layer, the thermosetting adhesive is an acrylic adhesive, or an epoxy adhesive, or a glass fiber prepreg (PP) having a small amount of glue.
  • a single-sided copper clad laminate is disclosed, and a copper-free insulating surface is coated with a thermosetting adhesive layer and punched by a mold, and another layer of copper is thermally pressed to form a groove-shaped hole structure.
  • the bottom of the groove is the exposed copper surface of the bottom layer; then the bottom of the groove is topped to the same or nearly flush with the top copper surface by means of die pressing; the circuit conduction is directly through the SMT reflow soldering of the component legs.
  • the bottom copper is soldered together to form a circuit conductive.
  • the single-sided copper clad laminate can be a flexible circuit copper clad laminate (FCCL) or a rigid circuit copper clad laminate (CCL).
  • FCCL flexible circuit copper clad laminate
  • CCL rigid circuit copper clad laminate
  • the groove-shaped hole structure may be a square pit or a rectangular pit.
  • the invention also discloses that after the circuit board is formed by the conventional circuit board by using the copper-clad board of the groove-shaped structure, the bottom of the hole is pressed by the die to be flush with the copper of the upper layer or nearly flush.
  • soldering at the foot of the SMT component is to directly connect the component legs to another layer of circuitry, thereby enabling conduction of the upper and lower layers.
  • the groove-shaped hole is formed by punching a thermosetting glue with a single-sided copper clad plate, punching the hole with a mold, and then compounding with another layer of copper foil.
  • thermoset is an acrylate or epoxy type thermoset.
  • the above copper foil is a ductile pure copper foil or alloy copper having a thickness of 0.012-0.5 mm.
  • the grooved bottom copper top is flush or nearly flush with the top copper surface, and the component legs are soldered directly to the back surface by solder paste reflow when SMT soldering is achieved.
  • the above-mentioned double-sided printed wiring board having a groove-shaped hole structure is characterized in that the through hole is not bored and copper-plated, and copper plating is performed to realize conduction of the wiring layer.
  • the through hole is punched out by a through hole.
  • a solder joint bit that communicates with the bottom layer is required at the top layer of the double-sided circuit
  • the hollowing out of the top layer of copper and the insulating layer allows the solder fillet to directly contact the underlying circuit copper.
  • the solder paste is printed by SMT, and the reflow soldering is turned on to interconnect the underlying circuit through the component pin and the top layer circuit.
  • the groove-shaped hole needs to be stamped to form the copper protrusion of the groove-shaped hole bottom to the groove-shaped hole opening, which is flush with or close to the top copper.
  • the above-mentioned recessed type double-sided printed wiring board is characterized in that the through hole can be continuously die-cut to form a printed wiring board having a length of 1 m or more.
  • the above-mentioned recessed type double-sided printed wiring board is a double-sided flexible printed wiring board.
  • the circuit layer is a copper foil.
  • the pressing is performed by bonding with an adhesive.
  • the conduction of the wiring layer directly solders the component legs to another layer of copper foil when soldering the components, and the solder paste is cured by reflow soldering to achieve electrical conduction.
  • such a double-sided printed wiring board is used to fabricate LED strips.
  • such a double-sided printed wiring board is a continuous full-length long circuit board.
  • the punching and bulging of the die are carried out by means of continuous punching or continuous pressing.
  • the device is directly reflowed by SMT on the other side of the circuit to electrically connect both sides of the double-sided circuit board, characterized in that the method no longer uses chemical processing to make the hole Turn on.
  • a flexible wiring board (FPC) fabricated using the novel method of interconnect conduction of the present invention is suitable for use in an element of an LED strip to conduct a double-sided circuit of a flexible wiring board.
  • This method is especially suitable for LED strips with flexible circuit boards.
  • This method has a single tube and low cost, and the manufacturing process does not need to use electroless copper plating to realize the conduction of the two-sided circuit, so it is very environmentally friendly.
  • Figure 1 is a partial cross-sectional view showing a double-sided printed wiring board of the related art, showing a through hole formed by a conventional wiring board which has been subjected to conductive electroless copper plating;
  • Figure 2 shows the construction of a single-sided copper clad laminate
  • Figure 3 shows the structure after attaching the thermosetting adhesive to the single-sided copper clad insulation layer;
  • Figure 4 shows the structure of punching out the via holes by punching the mold;
  • Figure 5 shows the pure copper a foil is formed by lamination and bonding lamination to form a double-sided copper clad laminate;
  • Figure 6 shows the construction of a double-sided circuit board in which a line pattern is produced
  • Figure 7 shows a configuration in which a pure copper foil of a groove-shaped hole bottom is punched to the same or nearly flush with the groove-shaped opening of the top circuit layer by, for example, a convex top mold;
  • Figure 8 shows the construction of the double-sided circuit conduction by reflow soldering the components to the corresponding pads after SMT printing.
  • FIG. 9 shows a process step of omitting the copper foil at the bottom of the hole up on the basis of the double-sided circuit board having the line pattern shown in FIG. 6, and directly printing the solder paste in the hole, for example, by reflow soldering.
  • the two ends of the component are respectively soldered on the corresponding circuit board to realize the structure in which the double-sided circuit is turned on.
  • the present invention will now be described in more detail with respect to a double-sided flexible printed wiring board as a specific embodiment.
  • Those skilled in the art should understand that these embodiments are merely illustrative of specific embodiments of the invention, and the invention and its scope of protection are not limited.
  • the material of the wiring layer includes not only pure copper but also other copper alloys or other metals or alloys.
  • the thickness of the rolled copper foil 5 as shown in Fig. 2 is preferably 12.5-35 ⁇ m, and the adhesive is adhesive.
  • a coating and drying production apparatus may be used to apply a liquid thermosetting adhesive to a copper-clad insulating layer of a single-sided copper clad laminate. Second, the production of grooved holes
  • the copper-clad sheet of the structure shown in Fig. 3 was punched with copper on the surface of the Ningbo Ou Tai CH1-25 25-ton punching machine with a through-hole mold prepared in advance by the engineering department according to the customer's circuit design data.
  • a structure in which a through hole is formed through the top copper foil 5, the adhesive 4, the insulating film 3, and the thermosetting film 2 as shown in FIG. 4 is obtained.
  • the structure shown in Fig. 5 was formed by press-fitting with pure copper foil 1 through a BURKLEN LAMV multilayer vacuum laminator at 120-160 ° C, a pressure of 15-20 kg/cm 2 , and a pressing time of 80-120 min.
  • BURKLEN LAMV multilayer vacuum laminator at 120-160 ° C, a pressure of 15-20 kg/cm 2 , and a pressing time of 80-120 min.
  • a non-conducting finished circuit board is obtained.
  • Fig. 6 although specifically indicated, several pads of the top copper wiring layer 5 have been shown in Fig. 6, for example, 2 - 3 pads of the uppermost layer constructed as in Fig. 6.
  • Fig. 6 also shows a formed non-conducting groove-shaped hole, but it is obvious that such a groove-shaped hole can be provided in any number as needed.
  • the completed circuit board passes through the Ningbo Ou Tai CH1-25 25-ton punch press, and adopts the top hole mold which is prepared in advance by the engineering department according to the customer's circuit design data, and adopts, for example, pipe position positioning to make the bottom copper of the groove-shaped hole.
  • the circuit layer 1 is topped to a position flush with or nearly flush with the top copper surface 5, resulting in a configuration as shown in Fig. 7, to facilitate solder paste reflow soldering connections for subsequent SMT soldering of the components.
  • Fig. 7 it has been shown that the bottom copper 1 of the groove-shaped hole position is topped to a position flush or nearly flush with the top copper surface 5, thereby forming a bottom copper line that will be turned on with the component, for example by soldering.
  • a conventional SMT soldering process is employed, in the pad position of the wiring board shown in FIG. 7 (ie, including a plurality of pads of the top copper wiring layer 5 and pads of the bottom copper wiring layer 1).
  • Screen printing (such as stencil printing) is printed with solder paste 6, and then the component 7 is attached to the above-mentioned circuit board through an automatic mounter, and after reflow soldering, 5 stages of 275 degree curing, the pad position of the tin
  • the paste is cured to obtain a structure as shown in Fig. 8, whereby the solder joints on both sides of the component are soldered together with the two wiring layers, and the circuit connection of the two wiring layers is realized at the same time.
  • SMT component can also be used to achieve solder turn-on, and are not limited to the solder fillet portion of the component.
  • the bottom copper 1 with the groove-shaped hole position shown in FIG. 7 is omitted to the top copper surface. 5 the steps are flush or nearly flush, and after printing the solder paste directly in the groove-shaped hole, after the process such as reflow soldering and curing, the two ends of the component are respectively soldered on the corresponding circuit board to realize double-sided
  • the circuit is turned on, as shown in Figure 9. This can further shorten the process; It will be apparent to those skilled in the art that the double-sided circuit conducting method and configuration of the present invention are equally applicable to rigid circuit boards (or hard boards) and will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

带元件的双面电路板及其互连导通方法 技术领域
本发明涉及印刷线路板的领域, 具体涉及例如双面柔性线路板 ( FPC )或者刚性线路板的互连导通新方法, 例如, 直接将元件脚通 过 SMT 回流焊接在另一面电路上使双面电路板两面电路导通。 本发 明还披露了无需采用钻孔和无需沉铜镀铜的非化学方式形成导通孔, 此方法更加便利于制作连续整卷的双面灯带线路板。 背景技术
在传统的双面线路板的制造工艺中, 一般均采用机械钻孔或者是 激光钻孔的方式在覆铜板上钻出线路过孔, 然后通过化学镀铜工艺来 使双面柔性印刷线路板上的通孔内壁形成导电层, 传统盲孔型线路板 的生产工艺中, 采用先激光钻孔形成盲孔, 然后通过黑孔化或化学镀 后再电镀增加铜厚的通孔导电化处理工艺。 此方法由于需要电镀和化 学镀, 对环境造成严重污染。
而传统的无需沉铜镀铜的双面印刷线路两面导通通常采用的碳 油灌孔或银浆灌孔形成导通方式, 均有其明显的缺点, 碳油灌孔成本 低, 但是由于碳油电阻大, 导电效果差; 而银浆灌孔导电效果好, 但 银浆的价格非常的昂贵, 不适合大量生产。
同时, 传统的制作工艺中机械钻孔机和激光钻孔机, 造价昂贵, 钻孔速度慢, 生产效率低。 并且由于机械钻孔机是平面钻孔, 其台面 为 635 x 762mm左右, 因此能生产的最大板为 635 χ 762mm左右, 不 能生产大于 762mm的板, 而随着现今 LED行业的不断发展, LED灯 带越来越迫切需要大于 762mm的超长线路板, 甚至达到 100米以上 的长度, 因此传统的钻孔方式制作导通孔越来越无法满足科技发展的 需要。 而且机械钻孔时还会消耗大量的酚醛树枝盖板和木质纤维底 板, 激光钻孔机在高温灼烧后将印刷线路板的绝缘高分子树脂气化排
确认本 到空气中, 不利于环境保护。
因此, 需要一种能够提高生产效率,速度快,可以实现连续生产, 而且便宜的工艺替代现有的钻孔成孔方式, 及为了响应国家对于节能 减排的号召, 减少化学方式制作工艺, 以便能够克服上述工艺的缺陷 和不足, 并且能够消除钻孔物料对环境的污染问题。 发明内容
在详细描述本发明之前, 本领域技术人员应当理解, "元件,, 在 本申请中应作最宽泛涵义上的理解, 即包括所有类型的用于电路的电 子元器件、 电气元件或者其它类型的元件, 例如表面贴装(SMT )型 的元件, 带焊脚或插脚的元件如各种 SMT型各色元件、 支架(即带 插脚的)型的各色元件、 各种大功率器件等等。 因此, 用语 "元件脚" 涵括了元件的焊脚、插脚、 支脚等各种用语和 /或任何可用于实现导电 连通的结构或者部分。
此外, 用语 "线路板" 和 "电路板" 在本申请可以互换地使用。 尽管本发明结合 SMT回流焊技术对本发明进行了描述, 但是本 领域技术人员应当理解, 本发明显然可以不限于回流焊的其它类型的 焊接来实施, 因此本发明的范围仅由所附权利要求来限定。
根据本发明, 涉及直接将元件脚通过 SMT回流焊接在另一面电 路上使双面电路板两面电路导通的电路板。 此类电路板制作方法减少 沉铜镀铜等化学处理工艺, 减少废水排放。 与传统的工艺和印刷线路 板构造相比, 本发明的工艺不仅降低了生产成本, 提高了工艺过程和 最终产品的可靠性和质量, 大大提高了生产效率, 而且重要的是, 此 工艺可以实现线路板的连续不间断的生产, 从而引发印刷线路板制作 长度限制的革命, 并且这种工艺减少了钻孔带来的高分子污染物的消 耗, 和减少沉铜镀铜工序制作, 减少了线路板制作工艺中的化学废水 排放, 是环保的, 能够基本上避免和消除现有钻孔、 沉铜、 镀铜工艺 所带来的环境污染问题。 而和传统的碳油、 银浆灌孔方式制作导通线 路的方法比, 其导电性能好, 生产成本低。
本发明的另一优点还在于, 由于在连接(例如焊接)元件的同时 实现了两层线路层的互连导通, 因此工艺步骤减少, 工艺周期缩短, 并且成本也相应地降低, 且线路板质量更加可靠。
根据本发明,提供了一种用于双面线路板的通过元件来实现互连 导通的方法, 包括: 提供形成有孔的双面线路板, 其中, 所述线路板 包括顶层线路层、 底层线路层以及结合在所述顶层线路层与底层线路 层之间的绝缘膜层, 所述孔穿过顶层线路层和绝缘膜层但不穿通底层 线路层; 将元件的一部分焊接在顶层线路层上, 并且将元件的另一部 分焊接在所述孔位置处的底层线路层上, 从而实现顶层线路层与底层 线路层的互连导通。
当然, 根据本发明的一优选实施例, 可以先将所述孔位置的底层 线路层顶至与顶层线路层相齐或接近平齐, 然后再进行元件焊接, 这 样更可以保证焊接质量和导通的可靠性。
所述方法还包括, 在进行焊接之前, 在所述顶层线路层的焊盘上 以及所述孔位置处的底层线路层上施加锡膏; 之后, 直接将所述元件 的元件脚对应地焊接在所述顶层线路层的焊盘以及所述孔位置处的 底层线路层上, 从而在焊接好元件的同时通过元件脚来实现顶层线路 层与底层线路层的互连导通。
根据本发明的另一优选实施例, 所述双面线路板是顶层线路层和 底层线路层均为铜线路层的双面覆铜板, 所述的施加锡膏是通过丝网 印刷方式施加的, 所述焊接是 SMT回流焊。
根据本发明的另一优选实施例, 在所述孔的位置, 通过对所述顶 层线路层开镂空窗口来去除所述顶层线路层及绝缘膜层, 从而形成孔 的凹槽形结构。
根据本发明的另一优选实施例, 所述孔位置处的底层线路层通过 模具顶压而被顶至与顶层线路层相齐或接近平齐。
根据本发明的另一优选实施例, 所述双面线路板是双面柔性线路 板或者刚性线路板。
本发明还提供了一种带元件的双面线路板, 包括: 顶部线路层; 第一胶粘剂层; 绝缘膜层; 第二胶粘剂层; 底部线路层; 和设置在所 述双面线路板中的孔; 其中, 所述顶部线路层经由第一胶粘剂层结合 在绝缘膜层的一面上, 并且所述底部线路层经由第二胶粘剂层结合在 绝缘膜层相反的另一面上; 所述孔穿过顶部线路层、 第一胶粘剂层、 绝缘膜层和第二胶粘剂层; 并且, 所述元件的一部分通过焊接固定在 顶层线路层上, 并且所述元件的另一部分通过焊接固定在所述孔位置 处的底层线路层上, 从而实现顶层线路层与底层线路层的互连导通。
当然, 根据本发明的一优选实施例, 所述孔位置的底层线路层可 成形为与顶层线路层相齐或接近平齐, 然后再进行元件焊接, 这样更 可以保证焊接质量和导通的可靠性。
根据本发明的另一优选实施例, 所述双面线路板是双面柔性线路 板或者刚性线路板; 在所述顶层线路层的焊盘上以及所述孔位置处的 底层线路层上施加有锡膏; 并且, 所述元件的元件脚通过回流焊对应 地焊接在所述顶层线路层的焊盘以及所述孔位置处的底层线路层上。
>据本发明的另一优选实施例, 所述元件是表面贴装(SMT )型 元件, 所述元件通过 SMT的方式安装并通过 SMT回流焊焊接在所述 双面线路板上。
本发明还披露了一种 LED灯带, 包括如上所述的带元件的双面 线路板以及安装于其上的元件。
更具体而言, 根据本发明, 通过采用直接将元件脚通过 SMT回 流焊接在另一面电路上使双面电路板两面电路导通的电路板, 不仅通 过将 SMT贴元件的步骤与焊接步骤整合起来而节省了工艺步骤, 而 且这种工艺可使得元件的焊接质量可靠, 且双面线路的导通也具有很 高的可靠性。
本发明中使用的胶粘剂层可以是热固胶粘剂层, 热固胶粘剂是丙 烯酸胶粘剂,或者环氧胶粘剂,或者是流胶量小的玻纤半固化片( PP )。 根据本发明的一方面, 披露了一种先将单面覆铜板, 无铜绝缘面 覆上热固胶粘剂层用模具冲孔后 , 热压覆合上另一层铜即形成凹槽形 孔结构, 凹槽底部为底层棵露铜面; 然后再采用模具顶压的方式, 将 凹槽底铜顶至与顶铜面相齐或接近平齐; 电路导通是通过 SMT 回流 焊使元件脚直接和底铜焊接在一起形成电路导通。
单面覆铜板可以是柔性电路覆铜板(FCCL ) , 也可以是刚性电 路覆铜板 ( CCL ) 。
凹槽形孔结构可以是方形坑或者矩形坑。
本发明还披露了用这种凹槽形结构的覆铜板通过常规线路板制 作方式完成电路板制作后, 用模具冲压使孔位底铜顶压至和上层面铜 相齐或者接近平齐。
根据本发明的一个重要特征, 披露了在 SMT元件脚的焊接是将 元件脚直接悍接在另一层的线路上, 从而实现上下两层线路的导通。
根据本发明的一优选实施例, 上述凹槽形孔是用单面覆铜板覆热 固胶后用模具冲孔, 然后和另一层铜箔复合而成。
根据本发明的一个优选实施例, 上述热固胶是丙烯酸酯类的或者 是环氧类型的热固胶。
根据本发明的一个优选实施例, 上述的铜箔是具有延展性的纯铜 箔或者是合金铜, 厚度为 0.012-0.5mm厚。
>据本发明的一个优选实施例, 上述的凹槽形孔底铜顶至与顶铜 面相齐或接近平齐, 达成 SMT焊接时元件脚用锡膏回流焊直接同背 面电路连接。
根据本发明的一个优选实施例, 上述的凹槽形孔结构的双面印刷 线路板, 其特征在于, 所述通孔不经过钻孔成孔和沉铜、 镀铜实现线 路层导通。
根据本发明的一个优选实施例, 上述通孔是采用模具将通孔冲 出。
根据一种实施方式, 在双面电路的顶层需要和底层连通的焊点位 置镂空去除顶层铜及绝缘层使焊脚和底层电路铜直接接触,通过 SMT 印刷锡膏, 回流焊接导通, 实现底层电路通过元件脚和顶层电路的互 连。
根据本发明的一个优选实施例, 上述凹槽形孔需要采用凸点模具 用冲压的方式将凹槽形孔孔底的铜凸顶至凹槽形孔孔口, 与顶层铜相 齐或接近平齐。
根据本发明的一个优选实施例, 上述的凹孔型双面印刷线路板, 其特征在于, 所述通孔可以连续冲切来制作长度在 1米以上的印刷线 路板。
根据本发明的一个优选实施例, 上述凹孔型双面印刷线路板为双 面柔性印刷线路板。
根据本发明的另一优选实施例 , 上述线路层为铜箔。
根据本发明的一种优选实施例, 压合是釆用粘合剂进行粘合。 根据本发明的另一优选实施例, 线路层的导通在焊接元件时直接 将元件脚焊接在另一层线路铜箔上, 经回流焊后锡膏固化来实现导电 连通。
根据本发明的另一优选实施例, 此种双面印刷线路板用于制作 LED灯带。
根据本发明的另一优选实施例, 此种双面印刷线路板是连续整卷 的长线路板。
根据本发明的另一优选实施例, 用模具沖孔和凸顶是通过连续冲 孔方式或连续压的方式进行的。
根据本发明的另一优选实施例, 所述的直接将元件脚通过 SMT 回流焊接在另一面电路上使双面电路板两面电路导通, 其特征在于所 述的方法不再使用化学处理使孔导通。
根据本发明的另一优选实施例, 用本发明的互连导通的新方法制 作的柔性线路板(FPC )适用于 LED灯带中的元件来导通柔性线路板 的双面电路。 此方法尤其适用于 LED灯带柔性电路板。 此方法筒单, 成本低, 制作过程无需采用化学沉镀铜实现导通两面电路, 故十分环保。
在以下对附图和具体实施方式的描述中, 将阐述本发明的一个或 多个实施例的细节。 从这些描述、 附图以及权利要求中, 可以清楚本 发明的其它特征、 目的和优点。 附图说明
图 1是相关技术的双面印刷线路板的局部截面图, 显示了已完成 导电化化学镀铜处理的传统线路板制作的通孔;
图 2显示了单面覆铜板的构造;
图 3显示了将热固性粘结胶贴附在单面覆铜板绝缘层后的构造; 图 4显示了通过模具沖孔的方式, 将导通孔沖切出来的构造; 图 5显示了将纯铜箔通过压合与粘结层压合在一起而形成双面覆 铜板的构造;
图 6显示了制作出线路图形的双面线路板的构造;
图 7显示了利用例如凸顶模具将凹槽形孔底的纯铜箔通过冲压方 式顶至与顶层线路层的凹槽形孔口相齐或接近平齐的构造; 并且
图 8显示了经过 SMT印刷锡膏后, 经回流焊将元件焊接在相应 的焊盘上实现双面电路导通的构造。
图 9显示了在图 6所示的具有线路图形的双面线路板的基础上, 省略将孔底的铜箔向上顶的工艺步骤, 而直接在该孔内印刷锡膏后经 过例如回流焊将元件的两端分别焊接在对应的线路板上实现双面电 路导通的构造。 具体实施方式
下面将以双面柔性印刷线路板为具体实施例来对本发明进行更 详细的描述。 本领域技术人员应当理解, 这些实施方式仅仅列举了一 些本发明的具体实施例, 对本发明及其保护范围无任何限制。 例如, 尽管以下结合铜箔来描述了实施例, 但是, 线路层的材料不仅包含纯 铜, 而且还可以是其它的铜合金或者其它金属或合金。 一、 基板的制作
将如图 2所示的成卷的铜箔 5厚度优选为 12.5-35微米、 粘结胶
4厚度优选为 12.5-25微米、 绝缘膜 3厚度优选为 12.5-25微米的单面 柔性覆铜板, 在 hakut mach 630压膜机上, 以 120-150°C, 压力为 5- 8 kg/cm2速度为 0.8-1.0 m/min的速度,与热固胶膜 2压覆在一起,从 而形成如图 3所示的结构。
或者, 也可采用涂敷烘干生产设备, 将液态的热固型胶涂敷在单 面覆铜板无铜面绝缘层上。 二、 凹槽形孔的制作
将图 3所示结构的覆铜板材,经宁波欧泰 CH1-25型 25吨冲床上, 用提前由工程部根据客户线路设计资料制作的通孔模具, 以铜面向上 进行冲孔。 得到如图 4所示的穿过顶层铜箔 5、 粘结胶 4、 绝缘膜 3 和热固胶膜 2而形成通孔的构造。接着经 BURKLEN LAMV多层真空 压合机以 120-160 °C, 压力为 15-20kg/cm2, 压合时间为 80-120min, 与纯铜箔 1压合在一起形成图 5所示结构。 三、 线路的其它制作
接着用常规的线路板制作方法, 经压干膜, 图形转移, 曝光, 显 影, 蚀刻, 贴覆盖膜 8、 9 , 压合, 文字, OSP, 成型, 即得到了未 导通的成品线路板, 如图 6所示的构造。如图 6所示, 尽管具体标示, 图 6中已经显示了顶铜线路层 5的若干焊盘, 例如, 如图 6中构造的 最上层的 2 - 3个焊盘。 此外, 图 6还显示了一个成形的未导通的凹 槽形孔, 但是这种凹槽形孔显然可以根据需要设置任意多个。
由于以上步骤是印刷线路板的传统工艺, 属于业内技术人员所熟 ^p , ^jt匕 田:^。 四、 沖压模顶孔
经完成的线路板,通过宁波欧泰 CH1-25型 25吨冲床,采用提前 由工程部根据客户线路设计资料制作的顶孔模具, 采用例如管位定位 的方式, 将凹槽形孔的底铜线路层 1顶至与顶铜面 5相齐或接近平齐 的位置, 得到如图 7所示的构造, 以便于后续 SMT焊接元件时, 锡 膏回流焊接连接。 在图 7中, 已经显示了凹槽形孔位置的底铜 1被顶 至与顶铜面 5相齐或接近平齐的位置, 从而形成了将与元件例如通过 焊接来导通的底铜线路层 1的焊盘。 五、 SMT将元件脚直接焊接在另一层线路上
在 SMT焊接元件时, 采用传统的 SMT焊接工艺, 在图 7所示的 线路板的焊盘位置(即, 包括顶铜线路层 5的若干焊盘和底铜线路层 1 的焊盘) , 用丝网印刷 (例如钢网印刷) 而印上锡膏 6, 然后经自 动贴片机将元件 7贴附在上述的线路板上, 经回流焊, 5段 275度固 化后, 焊盘位置的锡膏固化, 得到如图 8所示的结构, 以此, 将元件 的两侧元件焊脚分别同这两层线路层焊接在一起, 同时实现两面线路 层的电路连通。
当然, SMT元件的其它合适部分也可用于实现焊接导通, 而不仅 限于元件的焊脚部分。
由于上述的 SMT工艺属于传统的元器件贴附工艺, 属于业内技 术人员所熟知, 在此就不再细述。
当然, 作为另一实施方案, 也可以在图 6所示的具有线路图形的 双面线路板的基础上, 省略图 7所示的将凹槽形孔位置的底铜 1顶至 与顶铜面 5相齐或接近平齐的步骤, 而直接在该凹槽形孔内印刷锡膏 后经过例如回流焊、 固化等工艺流程之后, 将元件的两端分别焊接在 对应的线路板上实现双面电路导通, 如图 9所示。 这样就可以进一步 缩短工艺;^程。 本领域技术人员显然可以理解, 本发明的双面电路导通方法及构 造同样适用于刚性电路板(或称为硬板) , 在此就不再赘述。
以上结合附图将以双面柔性印刷线路板为具体实施例对本发明 进行了详细的描述。 但是, 本领域技术人员应当理解, 以上所述仅仅 是举例说明和描述一些具体实施方式, 对本发明的范围, 尤其是权利 要求的范围, 并不具有任何限制。 本发明的范围由所附权利要求来限 定。

Claims

权利要求
1. 一种用于双面线路板的通过元件实现互连导通的方法, 包括: 提供形成有孔的双面线路板,其中,所述线路板包括顶层线路层、 层, 所述孔穿过顶层线路层和绝缘膜层但不穿通底层线路层;
将元件的一部分焊接在顶层线路层上, 并且将元件的另一部分焊 接在所述孔位置的底层线路层上, 从而实现顶层线路层与底层线路层 的互连导通。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述方法还包括 以下步骤:
在所述提供形成有孔的双面线路板的步骤之后,将所述孔位置的 底层线路层顶至与顶层线路层相齐或接近平
Figure imgf000013_0001
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还 包括:
在进行焊接之前, 在所述顶层线路层的焊盘上以及所述孔位置处 的底层线路层上施加锡膏; 焊盘以及所述孔位置处的底层线路层上, 从而在焊接好元件的同时通 过元件脚来实现顶层线路层与底层线路层的互连导通。
4. 根据权利要求 1 - 3中任一项所述的方法, 其特征在于, 所述 双面线路板是顶层线路层和底层线路层均为铜线路层的双面覆铜板, 所述的施加锡膏是通过丝网印刷方式施加的, 所述焊接是 SMT 回流 焊。
5. 根据权利要求 1 - 4中任一项所述的方法, 其特征在于, 在形 成所述孔的位置, 通过对所述顶层线路层开镂空窗口来去除所述顶层 线路层及绝缘膜层, 从而形成孔的凹槽形结构。
6. 根据上述权利要求 1 - 5中任一项所述的方法, 其特征在于, 所述双面线路板是双面柔性线路板或刚性线路板。
7. 一种带元件的双面线路板, 包括:
顶部线路层;
第一胶粘剂层;
绝缘膜层;
第二胶粘剂层;
底部线路层; 和
设置在所述双面线路板中的孔;
其中, 所述顶部线路层经由第一胶粘剂层结合在绝缘膜层的一面 上, 并且所述底部线路层经由第二胶粘剂层结合在绝缘膜层相反的另 一面上; 并且
所述孔穿过顶部线路层、 第一胶粘剂层、 绝缘膜层和第二胶粘剂 层;
所述元件的一部分通过焊接固定在顶层线路层上, 并且所述元件 的另一部分通过焊接固定在所述孔位置的底层线路层上, 从而实现顶 层线路层与底层线路层的互连导通。
8. 根据权利要求 7所述的带元件的双面线路板, 其特征在于, 所述双面线路板是双面柔性线路板或者刚性线路板;
所述孔位置的底层线路层成形为与顶层线路层相齐或接近平齐; 在所述顶层线路层的焊盘上以及所述孔位置处的成形为与顶层 线路层相齐或接近平齐的底层线路层上施加有锡膏;
所述元件的元件脚通过回流焊对应地焊接在所述顶层线路层的 焊盘以及所述孔位置处的底层线路层上。
9.根据上述权利要求 7 - 8中任一项所述的带元件的双面线路板, 其特征在于,所述元件是表面贴装( SMT )型元件,所述元件通过 SMT 的方式安装并通过 SMT回流焊焊接在所述双面线路板上。
10. 一种 LED灯带, 包括根据权利要求 7 - 9中任一项所述的带 元件的双面线路板以及安装于其上的元件。
PCT/CN2010/000073 2009-11-17 2010-01-18 带元件的双面电路板及其互连导通方法 WO2011060600A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910224495.5 2009-11-17
CN200920273552.4 2009-11-17
CN200920273552 2009-11-17
CN200910224495 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011060600A1 true WO2011060600A1 (zh) 2011-05-26

Family

ID=43084364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000073 WO2011060600A1 (zh) 2009-11-17 2010-01-18 带元件的双面电路板及其互连导通方法

Country Status (2)

Country Link
CN (2) CN201639856U (zh)
WO (1) WO2011060600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3119168B1 (en) * 2015-07-17 2021-12-01 Goodrich Lighting Systems GmbH Aircraft led light unit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201639856U (zh) * 2009-11-17 2010-11-17 王定锋 带元件的双面电路板
CN103022333B (zh) * 2012-12-14 2016-04-27 厦门市三安光电科技有限公司 一种led芯粒的固晶方法
FR3006551B1 (fr) * 2013-05-30 2016-12-09 Linxens Holding Procede de fabrication d'un circuit imprime, circuit imprime obtenu par ce procede et module electronique comportant un tel circuit imprime
CN104064848A (zh) * 2014-05-26 2014-09-24 普尔思(苏州)无线通讯产品有限公司 一种激光镭射天线及其制备方法
CN104582270B (zh) * 2014-12-05 2018-04-27 广东明路电力电子有限公司 金属层积连接电路的制备方法
CN107219678B (zh) * 2016-03-22 2020-01-24 群创光电股份有限公司 显示模块
MX2018013731A (es) * 2016-05-11 2019-08-01 Flex Automotive Gmbh Montaje de circuitos electricos y metodo para la fabricacion del mismo.
US20180020547A1 (en) * 2016-07-13 2018-01-18 Alcatel-Lucent Canada Inc. Underlying recessed component placement
CN107072044B (zh) * 2017-06-05 2024-04-12 广东顺德施瑞科技有限公司 一种双面柔性线路板
CN113950204B (zh) * 2020-07-16 2024-04-12 深南电路股份有限公司 一种预制电路板的制造方法及预制电路板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722160A (en) * 1994-10-28 1998-03-03 Hitachi, Ltd. Packaging method of BGA type electronic component
CN1202794A (zh) * 1997-06-03 1998-12-23 国际商业机器公司 具有一级和二级通孔的电路板
CN1832658A (zh) * 2005-03-10 2006-09-13 3M创新有限公司 一种双层金属的柔性印刷电路板及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100493302C (zh) * 2004-07-14 2009-05-27 燿华电子股份有限公司 模块化电路板制造方法
JP4591723B2 (ja) * 2008-04-22 2010-12-01 Tdk株式会社 回路基板
CN201639856U (zh) * 2009-11-17 2010-11-17 王定锋 带元件的双面电路板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722160A (en) * 1994-10-28 1998-03-03 Hitachi, Ltd. Packaging method of BGA type electronic component
CN1202794A (zh) * 1997-06-03 1998-12-23 国际商业机器公司 具有一级和二级通孔的电路板
CN1832658A (zh) * 2005-03-10 2006-09-13 3M创新有限公司 一种双层金属的柔性印刷电路板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3119168B1 (en) * 2015-07-17 2021-12-01 Goodrich Lighting Systems GmbH Aircraft led light unit

Also Published As

Publication number Publication date
CN201639856U (zh) 2010-11-17
CN102065645A (zh) 2011-05-18
CN102065645B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011060600A1 (zh) 带元件的双面电路板及其互连导通方法
CN101572992B (zh) 连续的双面柔性印刷线路板及led灯带
CN201813610U (zh) 双面电路板和led灯带
TWI294757B (en) Circuit board with a through hole wire, and forming method thereof
US8302299B2 (en) Method of manufacturing a multilayer printed circuit board with a built-in electronic device
WO2011060604A1 (zh) 双面线路板及其互连导通方法
CN107249252B (zh) 一种印制电路板的制作方法及印制电路板
CN201383900Y (zh) 盲孔型线路板
WO2012009838A1 (zh) 采用并置的导线制作单面电路板的方法
WO2012009841A1 (zh) 用热固胶膜粘接并置的扁平导线制作单面电路板
CN201928518U (zh) 采用间接粘附或吸附并置扁平导线制作的双面线路板
CN201491372U (zh) 直接在散热器上制作线路板及电子元件的模组
CN104378931A (zh) 一种pcb中金属化沉孔的制作方法
CN102883524A (zh) 双面线路板互连导通导热方法及基于该方法的双面线路板
CN201383901Y (zh) 埋孔型线路板
CN201781677U (zh) 带有扁平电源线的电路板
WO2012009842A1 (zh) 用转载胶膜和并置的扁平导线制作单面电路板的方法
CN1665376A (zh) 高精度银浆孔化多层碳膜表面贴装板生产工艺
CN102365006A (zh) 多层电路板加工方法
CN202178915U (zh) 盲孔型双面导热线路板
CN201860515U (zh) 焊接连接导通的双面led电路板及组件
CN201616952U (zh) 双面线路板
WO2011060605A1 (zh) 将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法
CN202310269U (zh) 多层电路板
CN203167427U (zh) 纸基材金属化孔碳膜板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831016

Country of ref document: EP

Kind code of ref document: A1