WO2011060605A1 - 将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法 - Google Patents

将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法 Download PDF

Info

Publication number
WO2011060605A1
WO2011060605A1 PCT/CN2010/000704 CN2010000704W WO2011060605A1 WO 2011060605 A1 WO2011060605 A1 WO 2011060605A1 CN 2010000704 W CN2010000704 W CN 2010000704W WO 2011060605 A1 WO2011060605 A1 WO 2011060605A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
circuit
double
sided
hole
Prior art date
Application number
PCT/CN2010/000704
Other languages
English (en)
French (fr)
Inventor
王定锋
张平
Original Assignee
Wang Dingfeng
Zhang Joepeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010201509872U external-priority patent/CN201813610U/zh
Application filed by Wang Dingfeng, Zhang Joepeen filed Critical Wang Dingfeng
Publication of WO2011060605A1 publication Critical patent/WO2011060605A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of printed wiring boards, and more particularly to a double-sided circuit board with components, such as a double-sided flexible circuit board (FPC) or a rigid wiring board, and a new method of interconnecting the same, for example, directly passing the component feet through SMT Reflow soldering is a two-sided circuit board construction formed by soldering a solder joint on the inner solder joint and the top via solder joint at the half hole position.
  • the present invention also discloses a non-chemically formed via hole that does not require drilling and copper plating, thereby making it easier to fabricate a continuous full roll of double-sided ribbon strip circuit board. Background technique
  • a mechanical via hole or a laser drilling method is generally used to drill a via hole on a copper clad plate, and then an electroless copper plating process is used to make a double-sided flexible printed circuit board.
  • the inner wall of the through hole forms a conductive layer.
  • a blind hole is formed by laser drilling first, and then a copper thick through hole conduction process is increased by black hole or electroless plating. This method causes serious pollution to the environment due to the need for electroplating and chemical plating.
  • the conventional double-sided printed circuit that does not require copper-plated copper-plated double-sided conduction usually adopts carbon oil filling or silver slurry filling to form a conduction mode, which has obvious disadvantages.
  • the cost of carbon oil filling is low, but due to carbon
  • the oil resistance is large and the conductivity is poor; while the silver paste is well conductive, but the price of the silver paste is very expensive and is not suitable for mass production.
  • the mechanical drilling machine and the laser drilling machine in the traditional manufacturing process are expensive, the drilling speed is slow, and the production efficiency is low.
  • the mechanical drilling machine is a flat drilling, its table top is about 635 X 762mm, so the largest board that can be produced is about 635 x 762mm, and it can't produce more than 762mm board.
  • LED lights With the increasingly urgent need for ultra-long circuit boards larger than 762mm, even more than 100 meters to confirm this The length, so the traditional drilling method to make through holes is increasingly unable to meet the needs of technological development.
  • the three-body communication is realized by directly soldering the top layer line and the bottom layer line at the position of the hole by the component foot through the solder paste. Therefore, its electrical connectivity is better, and it is more suitable for circuit structures with higher electrical density.
  • component is to be understood in the broadest sense of the application, including all types of electronic components, electrical components or other types of components for use in circuits.
  • SMT surface mount
  • solder fillet or pin type components such as various SMT type components, bracket (ie, pinned) type components, various high power devices, and the like, including LEDs.
  • component foot encompasses various terms such as solder fillets, pins, legs, and/or any structure or portion that can be used to effect conductive communication, and thus they are sometimes used interchangeably.
  • circuit board and circuit board are used interchangeably throughout this application.
  • present invention has been described in connection with SMT reflow soldering techniques, those skilled in the art will appreciate that the present invention is obviously not limited thereto. Other types of welding of reflow soldering are implemented, and the scope of the invention is therefore only defined by the appended claims.
  • the present invention is directed to directly soldering the component legs through the SMT to the lines or pads on the double-sided circuit to turn on both sides of the double-sided circuit board. Since the board simultaneously solders the component legs, the top layer line, and the bottom line at the same point, it is turned on. Better sex and more reliable electrical performance.
  • Another advantage of the present invention is that since the component solder fillet is soldered, for example, soldered, while being soldered, for example, soldered, and both the top and bottom layer wiring pads are connected, thereby achieving two layers.
  • the interconnection of the circuit layers is turned on, so that the number of process steps is reduced, the process cycle is shortened, and the cost is correspondingly reduced, and the quality of the circuit board is more reliable.
  • a component leg is directly soldered to a top layer solder joint and an underlying circuit solder joint through a half hole position on the double-sided wiring board, and the component leg, the top layer circuit and the bottom layer circuit are soldered at one point.
  • the double-sided circuit board that realizes conduction together includes: providing a double-sided circuit board formed with a hole, wherein the circuit board includes a top circuit layer, a bottom circuit layer, and a combination between the top circuit layer and the bottom circuit layer Insulating layer, the hole passes through the top layer of the top layer layer pad and the insulating layer but does not pass through the underlying wiring layer; a portion of the component is soldered to, for example, a pad of the top layer layer, and simultaneously soldered at the hole location On the underlying circuit layer, the interconnection between the top layer and the bottom layer is achieved.
  • a hollow hole is formed in the center or one side of the pad of the top layer layer hole position, and the underlying line copper is exposed, and the exposed pad of the top line needs to maintain a certain width. .
  • the component is soldered. After the solder paste is reflowed by SMT, one solder fillet of the component is simultaneously soldered to the top layer circuit layer, preferably the shaped pad and the bottom exposed copper, so that the solder quality and the guide can be ensured. Pass reliability.
  • the method further includes applying a solder paste on the pads of the top layer circuit layer and the underlying wiring layer at the hole locations before soldering; thereafter, directly soldering the component legs of the component to The pad of the top layer circuit layer and the underlying circuit layer at the hole location, thereby achieving interconnection conduction between the top layer circuit layer and the bottom circuit layer through the component pins while soldering the components.
  • the double-sided circuit board is a double-sided copper clad laminate in which a top layer circuit layer and a bottom layer circuit layer are both copper circuit layers, and the applied solder paste is applied by, for example, stencil printing.
  • the soldering is SMT reflow soldering.
  • the top layer circuit layer and the insulating film layer are removed by opening a hollow window to the top layer circuit layer, thereby forming a groove-shaped structure of the hole.
  • the pad on the side of the top line hole is reserved.
  • the double-sided circuit board is a double-sided flexible circuit board or a double-sided rigid circuit board.
  • the invention provides a method for directly soldering a component foot to a top layer solder joint and an underlying circuit solder joint through a half hole position on the double-sided circuit board, thereby realizing the component foot, the top layer circuit and the bottom layer circuit to be soldered at one point.
  • a double-sided wiring board that is electrically connected together, comprising: a top wiring layer; an insulating film layer; a bottom wiring layer; and a hole disposed in the double-sided wiring board; wherein the top wiring layer is bonded to the insulating film On one side of the layer, and the bottom wiring layer is adhered to the opposite side of the insulating film layer; the hole passes through the top wiring layer and the insulating film layer; and the component leg is soldered to the top wiring layer by solder paste Simultaneous soldering of the pads is performed on the underlying wiring layer at the location of the holes, thereby enabling interconnection of the top wiring layer and the underlying wiring layer. This ensures the quality of the weld and the reliability of the conduction.
  • the double-sided wiring board is a double-sided flexible circuit board or a rigid wiring board; and is applied on a pad of the top layer circuit layer and an underlying wiring layer at the hole position Solder paste; and, the component legs of the component are correspondingly soldered to the pads of the top layer circuit layer and the underlying wiring layer at the hole locations by reflow soldering.
  • the component is a surface mount (SMT) type component which is mounted by SMT and soldered to the double-sided wiring board by SMT reflow soldering.
  • SMT surface mount
  • the present invention also discloses an LED lamp strip comprising a double-sided wiring board with components as described above and an element mounted thereon.
  • the present invention also provides a method for interconnecting a top layer circuit layer and an underlying circuit layer by means of an element for a double-sided circuit board, comprising: providing a double-sided circuit board formed with a hole, wherein the circuit board Including a top layer circuit layer, a bottom layer circuit layer, and an insulating film layer combined between the top layer circuit layer and the bottom circuit layer, the hole is a half hole, the half hole Pass through the top layer and the insulating film layer but not through the underlying wiring layer; place one solder fillet of the component in the half hole position while soldering the solder joint in the bottom layer of the half hole position (also sometimes referred to as "pad” in this application) ) and the solder joint on the top hole side.
  • the method further includes the steps of: providing a solder joint at the edge of the top layer that needs to be turned on, and soldering the two sides of the circuit through the solder paste at the solder joint position, and soldering the component The feet are also welded together.
  • the method further comprises: applying a tin on the hole side solder joint of the top layer layer and the inner solder joint in the bottom layer at the half hole position before soldering Paste; then, the component legs of the component are directly corresponding; 1 is wetted on the hole edge solder joint of the top layer circuit layer and the solder joints in the bottom circuit layer in the hole, thereby soldering the components while The interconnection between the top line layer and the bottom line layer is achieved by the component pins, and is turned on with the components.
  • a double-sided wiring board soldered on a top line and a bottom line comprising: a top wiring layer; an insulating layer; a bottom wiring layer; and a half hole disposed in the double-sided wiring board; wherein the top wiring layer is coupled On one side of the insulating layer, and the bottom wiring layer is bonded to the other side opposite to the insulating layer; and the hole passes through the top wiring layer, the insulating layer; a part of the component is fixed to the top layer wiring layer solder joint by soldering Above, and a solder fillet of the component is soldered to the top hole edge solder joint and the bottom ground solder joint through the half hole.
  • the double-sided wiring board is a double-sided flexible wiring board or a rigid wiring board; and the hole-side top wiring layer is formed with solder joints.
  • the present invention by using a circuit board that directly turns the element legs through the SMT reflow soldering on the other side circuit to turn on both sides of the double-sided circuit board, not only by integrating the steps of the SMT bonding element with the soldering steps
  • the process steps are saved, and the process can make the components; 1: the early connection quality can be relied on, and the conduction of the double-sided lines is also highly reliable.
  • the insulating layer used in the present invention may be one of polyimide (PI), polyester (PET), epoxy fiberglass cloth, thermosetting adhesive layer, or the like, or a combination of two or more types, heat
  • the solid adhesive may be an acrylic adhesive, or an epoxy adhesive, or a glass fiber prepreg (PP) having a small amount of glue.
  • a single-sided copper clad laminate is disclosed, and a copper-free insulating surface is coated with a thermosetting adhesive layer and punched by a mold, and another layer of copper is thermally pressed to form a groove-shaped hole structure.
  • the bottom of the groove is the bottom exposed copper surface; the circuit conduction is through SMT reflow soldering, the component legs are directly soldered to the top layer circuit layer pad and the bottom circuit layer bottom copper to form a circuit conduction.
  • the single-sided copper clad laminate can be a flexible circuit copper clad laminate (FCCL) or a rigid circuit copper clad laminate (CCL).
  • FCCL flexible circuit copper clad laminate
  • CCL rigid circuit copper clad laminate
  • the groove-shaped hole structure may be a pit shape of any shape such as a circular pit, a square pit or a rectangular pit.
  • the present invention also discloses that a copper clad laminate having such a W-groove structure is used to fabricate a circuit board by a conventional wiring board.
  • soldering at the foot of the SMT component is performed by soldering the component leg directly to the pad of the top circuit layer while soldering together with the underlying wiring layer of the other layer, thereby realizing the upper and lower layers.
  • the conduction of the line is performed by soldering the component leg directly to the pad of the top circuit layer while soldering together with the underlying wiring layer of the other layer, thereby realizing the upper and lower layers.
  • the groove-shaped hole is formed by punching a thermosetting glue with a single-sided copper clad plate, punching the hole with a mold, and then compounding with another layer of copper foil.
  • thermoset is an acrylate or epoxy type thermoset.
  • the above copper foil is a ductile pure copper foil or alloy copper having a thickness of 0.012-0.5 mm.
  • the above-mentioned double-sided printed wiring board having a groove-shaped hole structure is characterized in that the through hole is not bored and copper-plated, and copper plating is performed to realize conduction of the wiring layer.
  • the through hole is punched out by a through hole.
  • the copper foil at the pad position of the top circuit layer of the double-sided circuit The position of the solder joint that needs to communicate with the bottom layer is hollowed out to remove the top layer of copper and the insulating layer, so that the solder pads and the exposed top layer line pads and the exposed bottom layer circuit copper are directly in contact with each other, and the solder paste is printed by SMT, and the reflow soldering is turned on.
  • the underlying circuit is interconnected by the component pins and the top layer circuitry.
  • the groove-shaped aperture type double-sided printed wiring board is characterized in that the through hole can be continuously die-cut to form a printed wiring board having a length of 1 m or more.
  • the groove-shaped aperture type double-sided printed wiring board is a double-sided flexible printed wiring board.
  • the circuit layer is a copper foil.
  • the pressing is performed by means of an adhesive.
  • a solder fillet is soldered to the solder joint on the underlayer and the top via solder joint at the half hole position, and the solder paste is cured by reflow soldering to achieve conductive communication.
  • such a double-sided printed wiring board is used for making
  • such a double-sided printed wiring board is a continuous full-length long circuit board.
  • punching with a die is carried out by means of continuous punching or continuous pressing.
  • the device is directly reflowed by SMT on the other side of the circuit to electrically connect both sides of the double-sided circuit board, characterized in that the method no longer uses chemical processing to make the hole Turn on.
  • a flexible wiring board (FPC) fabricated by the novel method of interconnect conduction of the present invention is suitable for use in an element of an LED strip to conduct a double-sided circuit of a flexible wiring board.
  • Figure 1 is a partial cross-sectional view showing a double-sided printed wiring board of the related art, showing a through hole formed by a conventional wiring board which has been subjected to conductive electroless copper plating;
  • Figure 2 shows the construction of a single-sided copper clad laminate
  • Figure 3 shows the structure after attaching the thermosetting adhesive to the single-sided copper clad insulation layer;
  • Figure 4 shows the structure of punching out the via holes by punching the mold;
  • Figure 5 shows the pure copper a foil is formed by lamination and bonding lamination to form a double-sided copper clad laminate;
  • Figure 6 shows the construction of a double-sided wiring board without a solder mask
  • Figure 7 shows a double-panel configuration when there is no soldering element and the solder mask has been overmolded, where it is seen that there is a hole (preferably a "half hole” in the present application), the top layer has an intermediate opening
  • the pads sometimes referred to as "solder joints” in this application
  • the holes pass through the insulating layer to expose the underlying copper layer of the line.
  • Figure 8 shows that after SMT printing solder paste, the components are soldered to the corresponding pads by reflow soldering, wherein the tin connected to the component pads is also soldered to the pads of the top layer and the copper layer of the underlying wiring layer.
  • a solder fillet of the component is simultaneously soldered to the solder joint of the solder joint and the top hole edge in the bottom half of the half hole position in the half hole position, thereby realizing the configuration in which the double-sided circuit is conductive.
  • Figure 9 shows the finished product rendering after SMT soldering.
  • the present invention will now be described in more detail with respect to a double-sided flexible printed wiring board as a specific embodiment.
  • Those skilled in the art should understand that these embodiments are merely illustrative of specific embodiments of the invention, and the invention and its scope of protection are not limited.
  • the material of the wiring layer includes not only pure copper but also other copper alloys or other metals or alloys.
  • the thickness of the rolled copper foil 5 as shown in Fig. 2 is preferably 12.5-35 ⁇ m, and the adhesive is adhesive.
  • a coating and drying production apparatus may be used to apply a liquid thermosetting adhesive to a copper-clad insulating layer of a single-sided copper clad laminate.
  • the copper-clad sheet of the structure shown in Fig. 3 was punched with copper on the surface of the Ningbo Ou Tai CH1-25 25-ton punching machine with a through-hole mold prepared in advance by the engineering department according to the customer's circuit design data.
  • a structure in which a through hole is formed through the top copper foil 5, the adhesive 4, the insulating film 3, and the thermosetting film 2 as shown in FIG. 4 is obtained.
  • the structure shown in Fig. 5 was formed by press-fitting with pure copper foil 1 through a BURKLEN LAMV multilayer vacuum laminator at 120-160 ° C, a pressure of 15-20 kg/cm 2 , and a pressing time of 80-120 min.
  • circuit board production circuit board production
  • FIG. 7 Although specifically indicated, several pads of the top copper wiring layer 5 have been shown in FIG. 7, for example, 2 to 3 pads of the uppermost layer constructed as in FIG. In addition, FIG.
  • the SMT soldering component a conventional SMT soldering process is employed, at the pad position of the wiring board shown in FIG. 7 (ie, including a plurality of pads of the top copper wiring layer 5, pads of the top wiring layer hole side, and a bottom).
  • the pad of the copper circuit layer 1 is printed with solder paste 6 by printing (for example, stencil printing), and then the component 7 is attached to the above-mentioned circuit board via an automatic mounter, and reflow soldered, 5 segments of 275 degrees.
  • the solder paste at the location of the pad (or solder joint) is cured, resulting in a structure as shown in Figure 8, where the hole (or "half hole,") already has tin that is filled and cured by printing. Paste 6.
  • soldering legs on both sides of the component are soldered to the two wiring layers, respectively, wherein one soldering leg of the component is soldered to the top wiring layer 5, and the other soldering leg of the component is not only connected
  • a solder fillet of the component is soldered simultaneously at the half-hole location Solder joints in the bottom layer of the bottom hole And the solder joints on the edge of the top layer of the circuit layer), thereby achieving the circuit interconnection between the top layer and the bottom layer, and at the same time, due to the "double insurance" feature of the solder, the possibility of the component foot being separated from the pad is reduced.
  • Sex which greatly improves the reliability of the welding and improves the quality of the product.
  • Figure 9 shows the effect of the finished product after SMT welding.
  • SMT component can also be used to achieve solder turn-on, and are not limited to the solder fillet portion of the component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连 导通方法 技术领域
本发明涉及印刷线路板的领域, 具体涉及带元件的双面电路板, 例如双面柔性线路板 ( FPC ) 或者刚性线路板, 以及其互连导通新方 法, 例如, 直接将元件脚通过 SMT 回流焊接将元件一; ^脚在半孔位 置同时焊接在底层内焊点上和顶层孔边焊点上而形成的双面电路板 构造。 本发明还披露了无需采用钻孔和无需沉铜镀铜的非化学方式形 成导通孔, 从而更加便利于制作连续整卷的双面灯带线路板。 背景技术
在传统的双面线路板的制造工艺中, 一般均采用机械钻孔或者是 激光钻孔的方式在覆铜板上钻出线路过孔, 然后通过化学镀铜工艺来 使双面柔性印刷线路板上的通孔内壁形成导电层, 传统盲孔型线路板 的生产工艺中, 采用先激光钻孔形成盲孔, 然后通过黑孔化或化学镀 后再电镀增加铜厚的通孔导电化处理工艺。 此方法由于需要电镀和化 学镀, 对环境造成严重污染。
而传统的无需沉铜镀铜的双面印刷线路两面导通通常采用的碳 油灌孔或银浆灌孔形成导通方式, 均有其明显的缺点, 碳油灌孔成本 低, 但是由于碳油电阻大, 导电效果差; 而银浆灌孔导电效果好, 但 银浆的价格非常的昂贵, 不适合大量生产。
同时, 传统的制作工艺中机械钻孔机和激光钻孔机, 造价昂贵, 钻孔速度慢, 生产效率低。 并且由于机械钻孔机是平面钻孔, 其台面 为 635 X 762mm左右, 因此能生产的最大板为 635 x 762mm左右, 不 能生产大于 762mm的板, 而随着现今 LED行业的不断发展, LED灯 带越来越迫切需要大于 762mm的超长线路板, 甚至达到 100米以上 确 认 本 的长度, 因此传统的钻孔方式制作导通孔越来越无法满足科技发展的 . 需要。 而且机械钻孔时还会消耗大量的酚醛树脂盖板和木质纤维底 板, 激光钻孔机在高温灼烧后将印刷线路板的绝缘高分子树脂气化排 到空气中, 不利于环境保护。
而在例如本申请人之前申请的中国专利申请 200910224495.5 中
(该专利申请通过引用而整体结合于本申请中) , 元件脚直接穿透绝 缘层与底层线路层通过锡膏 SMT焊接在一起, 形成元件同底层线路 导通互连的方式, 前专利申请中所述的此种焊接方式由于元件脚是与 底层线路焊接一起, 仅仅只是实现了同底层线路的电气连接。
而本发明利用元件脚通过锡膏直接将顶层线路和底层线路在孔 的位置上焊接在一起实现三体连通。 因此, 其电气连通性能更好, 更 加适合电气密度更高的电路结构。 发明内容
在详细描述本发明之前, 本领域技术人员应当理解, "元件" 在 本申请中应作最宽泛涵义上的理解, 即包括所有类型的用于电路的电 子元器件、 电气元件或者其它类型的元件, 例如表面贴装(SMT )型 的元件, 带焊脚或插脚的元件如各种 SMT型元件、 支架 (即带插脚 的)型的元件、 各种大功率器件等等, 包括 LED。 因此, 用语 "元件 脚" 涵括了元件的焊脚、 插脚、 支脚等各种用语和 /或任何可用于实现 导电连通的结构或者部分, 因此有时候它们会互换地使用。
此外, 用语 "线路板,, 和 "电路板" 在本申请可以互换地使用。 尽管本发明结合 SMT回流焊技术对本发明进行了描述, 但是本 领域技术人员应当理解, 本发明显然可以不限于回流焊的其它类型的 焊接来实施, 因此本发明的范围仅由所附权利要求来限定。
根据本发明, 涉及直接将元件脚通过 SMT回流焊接在两面电路 上的线路或焊盘上, 使双面电路板两面电路导通。 由于此电路板同时 将元件脚、 顶层线路和底层线路同时焊接在同一个点上, 所以其导通 性更好, 电气性能更可靠。
本发明的另一优点还在于, 由于在连接(例如焊接)元件时, 元 件焊脚通过焊接, 例如锡焊接, 而同时与顶层和底层这两层线路焊盘 均相连接, 从而实现了两层线路层的互连导通, 因此工艺步骤减少, 工艺周期缩短, 并且成本也相应地降低, 且线路板质量更加可靠。
根据本发明, 提供了把一个元件脚通过双面线路板上的一个半孔 位置直接焊接在顶层电路焊点和底层电路焊点上, 实现元件脚、 顶层 电路和底层电路三者在一个点焊接一起实现导通的双面线路板, 包 括: 提供形成有孔的双面线路板, 其中, 所述线路板包括顶层线路层、 底层线路层以及结合在所述顶层线路层与底层线路层之间的绝缘层, 所述孔穿过顶层线路层焊盘中心和绝缘层但不穿通底层线路层; 将元 件的一部分焊接在顶层线路层的例如焊盘上, 并且同时焊接在所述孔 位置处的底层线路层上, 从而实现顶层线路层与底层线路层的互连导 通。
当然, 根据本发明的一优选实施例, 顶层线路层孔位置的焊盘中 心或一侧开一个镂空的孔, 将底层线路铜棵露出来, 同时顶层线路棵 露的焊盘需要保留一定的宽度。 然后再进行元件焊接, 锡膏经 SMT 回流焊后将元件的一个焊脚同时与顶层线路层优选为一定形状的焊 盘和底层棵露的铜 焊接连接在一起, 这样更可以保证焊接质量和导 通的可靠性。
所述方法还包括, 在进行焊接之前, 在所述顶层线路层的焊盘上 以及所述孔位置处的底层线路层上施加锡膏; 之后, 直接将所述元件 的元件脚对应地焊接在所述顶层线路层的焊盘以及所述孔位置处的 底层线路层上, 从而在焊接好元件的同时通过元件脚来实现顶层线路 层与底层线路层的互连导通。
根据本发明的另一优选实施例, 所述双面线路板是顶层线路层和 底层线路层均为铜线路层的双面覆铜板, 所述的施加锡膏是通过例如 钢网印刷方式施加的, 所述焊接是 SMT回流焊。 根据本发明的另一优选实施例, 在所述孔的位置, 通过对所述顶 层线路层开镂空窗口来去除所述顶层线路层及绝缘膜层, 从而形成孔 的凹槽形结构。 但保留顶层线路孔边的焊盘。
根据本发明的另一优选实施例, 所述双面线路板是双面柔性线路 板或者双面刚性线路板。
本发明提供了一种把一个元件脚通过双面线路板上的一个半孔 位置直接焊接在顶层电路焊点和底层电路焊点上, 实现元件脚、 顶层 电路和底层电路三者在一个点焊接一起实现导通的双面线路板, 包 括: 顶部线路层; ; 绝缘膜层; 底部线路层; 和设置在所述双面线路 板中的孔; 其中, 所述顶部线路层粘合在绝缘膜层的一面上, 并且所 述底部线路层粘合在绝缘膜层相反的另一面上; 所述孔穿过顶部线路 层和绝缘膜层; 并且所述元件脚通过锡膏焊接在顶层线路层的焊盘的 同时焊接固定在所述孔位置处的底层线路层上, 从而实现顶层线路层 与底层线路层的互连导通。 这样更可以保证焊接质量和导通的可靠 性。
根据本发明的另一优选实施例, 所述双面线路板是双面柔性线路 板或者刚性线路板; 在所述顶层线路层的焊盘上以及所述孔位置处的 底层线路层上施加有锡膏; 并且, 所述元件的元件脚通过回流焊对应 地焊接在所述顶层线路层的焊盘以及所述孔位置处的底层线路层上。
根据本发明的另一优选实施例, 所述元件是表面贴装( SMT )型 元件, 所述元件通过 SMT的方式安装并通过 SMT回流焊焊接在所述 双面线路板上。
本发明还披露了一种 LED灯带, 包括如上所述的带元件的双面 线路板以及安装于其上的元件。
本发明还提供了一种用于双面线路板的通过元件来实现顶层线 路层与底层线路层互连导通的方法, 包括: 提供形成有孔的双面线路 板, 其中, 所述线路板包括顶层线路层、 底层线路层以及结合在所述 顶层线路层与底层线路层之间的绝缘膜层, 所述的孔为半孔, 此半孔 穿过顶层线路层和绝缘膜层但不穿通底层线路层; 将元件的一焊脚在 半孔位置, 同时焊接在半孔位置底层内焊点 (在本申请中有时也称为 "焊盘" ) 和顶层孔边的焊点上。
根据本发明的一优选实施例, 该方法还包括步骤: 提供在顶层需 要导通的孔边设有焊点, 在焊点位置, 通过锡膏将两面电路导通的同 时, 将元件的一个焊脚也焊接导通在一起。
根据本发明的另一优选实施例, 所述方法还包括: 在进行焊 之 前, 在所述顶层线路层的孔边焊点上以及所述半孔位置处的底层里的 内焊点上施加锡膏; 之后, 直接将所述元件的元件脚对应地; 1旱接在所 述顶层线路层的孔边焊点以及所述孔里的底层线路层内焊点上, 从而 在焊接好元件的同时通过元件脚来实现顶层线路层与底层线路层的 互连导通, 并和元件导通。 焊接在顶层线路和底层线路上的双面线路板, 包括: 顶部线路层; 绝 缘层; 底部线路层; 和设置在所述双面线路板中的半孔; 其中, 所述 顶部线路层经由结合在绝缘层的一面上, 并且所述底部线路层结合在 绝缘层相反的另一面上; 并且所述孔穿过顶部线路层、 绝缘层; 所述 元件的一部分通过焊接固定在顶层线路层焊点上, 并且所述元件的一 个焊脚通过半孔同时焊接在顶层孔边焊点上和底层内焊点上。
根据本发明的另一优选实施例, 所述双面线路板是双面柔性线路 板或者刚性线路板; 并且所述孔边顶层线路层形成有焊点。
更具体而言, 根据本发明, 通过采用直接将元件脚通过 SMT回 流焊接在另一面电路上使双面电路板两面电路导通的电路板, 不仅通 过将 SMT贴元件的步骤与焊接步骤整合起来而节省了工艺步骤, 而 且这种工艺可使得元件的; 1:早接质量可.靠, 且双面线路的导通也具有很 高的可靠性。
本发明中使用的绝缘层可以是聚酰亚胺 (PI ) 、 聚酯 (PET ) 、 环氧玻纤布、 热固胶粘剂层等等中的一种或者是 2种以上的组合, 热 固胶粘剂可以是丙烯酸胶粘剂, 或者环氧胶粘剂, 也可以是流胶量小 的玻纤半固化片 (PP ) 。
根据本发明的一方面, 披露了一种先将单面覆铜板, 无铜绝缘面 覆上热固胶粘剂层用模具冲孔后, 热压覆合上另一层铜即形成凹槽形 孔结构, 凹槽底部为底层棵露铜面; 电路导通是通过 SMT 回流焊使 元件脚直接和顶层线路层的焊盘、 底层线路层底铜焊接在一起形成电 路导通。
单面覆铜板可以是柔性电路覆铜板(FCCL ) , 也可以是刚性电 路覆铜板( CCL ) 。
凹槽形孔结构可以是圓形坑、 方形坑或者矩形坑等任何形状的坑 状。
本发明还披露了用这种 W槽形结构的覆铜板通过常规线路板制 作方式完成电路板制作。
根据本发明的一个重要特征, 披露了在 SMT元件脚的焊接是将 元件脚直接焊接在顶层线路层的焊盘上, 同时与另一层的底层线路层 线路焊接在一起, 从而实现上下两层线路的导通。
根据本发明的一优选实施例, 上述凹槽形孔是用单面覆铜板覆热 固胶后用模具沖孔, 然后和另一层铜箔复合而成。
根据本发明的一个优选实施例, 上述热固胶是丙烯酸酯类的或者 是环氧类型的热固胶。
根据本发明的一个优选实施例, 上述的铜箔是具有延展性的纯铜 箔或者是合金铜, 厚度为 0.012-0.5mm厚。
根据本发明的一个优选实施例, 上述的凹槽形孔结构的双面印刷 线路板, 其特征在于, 所述通孔不经过钻孔成孔和沉铜、 镀铜实现线 路层导通。
根据本发明的一个优选实施例, 上述通孔是采用模具将通孔沖 出。
根据一种实施方式, 在双面电路的顶层线路层的焊盘位置的铜箔 需要和底层连通的焊点位置镂空去除顶层铜及绝缘层使焊脚和棵露 的顶层线路的焊盘及镂空棵露出的底层电路铜直接接触, 通过 SMT 印刷锡膏, 回流焊接导通, 实现底层电路通过元件脚和顶层电路的互 连。
根据本发明的一个优选实施例, 上述的凹槽形孔型双面印刷线路 板, 其特征在于, 所述通孔可以连续冲切来制作长度在 1米以上的印 刷线路板。
根据本发明的一个优选实施例, 上述凹槽形孔型双面印刷线路板 为双面柔性印刷线路板。
根据本发明的另一优选实施例, 上述线路层为铜箔。
根据本发明的一种优选实施例, 压合是采用粘合剂进行粘合。 4艮据本发明的另一优选实施例, 将元件一焊脚在半孔位置同时焊 接在底层内焊点上和顶层孔边焊点上, 经回流焊后锡膏固化来实现导 电连通。
根据本发明的另一优选实施例, 此种双面印刷线路板用于制作
LED灯带。
根据本发明的另一优选实施例, 此种双面印刷线路板是连续整卷 的长线路板。
根据本发明的另一优选实施例, 用模具沖孔是通过连续沖孔方式 或连续压的方式进行的。
根据本发明的另一优选实施例, 所述的直接将元件脚通过 SMT 回流焊接在另一面电路上使双面电路板两面电路导通, 其特征在于所 述的方法不再使用化学处理使孔导通。
根据本发明的另一优选实施例, 用本发明的互连导通的新方法制 作的柔性线路板( FPC )适用于 LED灯带中的元件来导通柔性线路板 的双面电路。
此方法尤其适用于 LED灯带柔性电路板。 此方法简单, 成本低, 制作过程无需采用化学沉镀铜实现导通两面电路, 故十分环保。 在以下对附图和具体实施方式的描述中, 将阐述本发明的一个或 多个实施例的细节。 从这些描述、 附图以及权利要求中, 可以清楚本 发明的其它特征、 目的和优点。 附图说明
图 1是相关技术的双面印刷线路板的局部截面图, 显示了已完成 导电化化学镀铜处理的传统线路板制作的通孔;
图 2显示了单面覆铜板的构造;
图 3显示了将热固性粘结胶贴附在单面覆铜板绝缘层后的构造; 图 4显示了通过模具冲孔的方式, 将导通孔冲切出来的构造; 图 5显示了将纯铜箔通过压合与粘结层压合在一起而形成双面覆 铜板的构造;
图 6显示了没有压覆阻焊膜的双面线路板的构造;
图 7显示了没有焊接元件时, 并且已经压覆了阻焊膜时的双面板 构造, 其中可见具有孔(在本申请中优选为 "半孔" ) 的位置上, 顶 层线路具有中间开孔的焊盘 (在本申请中有时也称为 "焊点" ) , 而 孔穿过绝缘层棵露出底层的线路铜层。
图 8显示了经过 SMT印刷锡膏后, 经回流焊将元件焊接在相应 的焊盘上, 其中, 与元件脚相连接的锡同时也同顶层线路的焊盘和底 层线路层的铜相焊接在一起, 具体而言, 将元件的一焊脚在半孔位置 同时焊接在半孔位置底层内焊点和顶层孔边的焊点上, 从而实现双面 电路导通的构造。
图 9显示了经过 SMT焊接后的成品效果图。 具体实施方式
下面将以双面柔性印刷线路板为具体实施例来对本发明进行更 详细的描述。 本领域技术人员应当理解, 这些实施方式仅仅列举了一 些本发明的具体实施例, 对本发明及其保护范围无任何限制。 例如, 尽管以下结合铜箔来描述了实施例, 但是, 线路层的材料不仅包含纯 铜, 而且还可以是其它的铜合金或者其它金属或合金。 一、 基板的制作
将如图 2所示的成卷的铜箔 5厚度优选为 12.5-35微米、 粘结胶
4厚度优选为 12.5-25微米、 绝缘膜 3厚度优选为 12.5-25微米的单面 柔性覆铜板, 在 hakut mach 630压膜机上, 以 120-150°C , 压力为 5- 8 kg/cm2速度为 0.8-1.0 m/min的速度, 与热固胶膜 2压覆在一起,从 而形成如图 3所示的结构。
或者, 也可采用涂敷烘干生产设备, 将液态的热固型胶涂敷在单 面覆铜板无铜面绝缘层上。 二、 1HJ槽形孔的制作
将图 3所示结构的覆铜板材,经宁波欧泰 CH1-25型 25吨沖床上, 用提前由工程部根据客户线路设计资料制作的通孔模具, 以铜面向上 进行沖孔。 得到如图 4所示的穿过顶层铜箔 5、 粘结胶 4、 绝缘膜 3 和热固胶膜 2而形成通孔的构造。接着经 BURKLEN LAMV多层真空 压合机以 120-160 °C , 压力为 15- 20kg/cm2, 压合时间为 80-120min, 与纯铜箔 1压合在一起形成图 5所示结构。 三、 线路板制作
接着用常规的线路板制作方法, 经压干膜, 图形转移, 曝光, 显 影, 蚀刻 (如图 6所示) , 贴覆盖膜 8、 9 , 压合, 文字, OSP, 成 型, 即得到了未导通的成品线路板, 如图 7所示的构造。 如图 7所示, 尽管具体标示, 图 7中已经显示了顶铜线路层 5的若干焊盘, 例如, 如图 7中构造的最上层的 2 - 3个焊盘。 此外, 图 7还显示了一个成 形的未导通的凹槽形孔及凹槽孔顶层线路处的优选为环形的焊盘, 但 是这种顶层线路的凹槽形孔以及焊盘显然可以根据需要设置任意多 小_ 由于以上步骤是印刷线路板的传统工艺, 属于业内技术人员所熟 知, 在此就不在细述。 四、 SMT将元件脚直接焊接在另一层线路上
在 SMT焊接元件时, 采用传统的 SMT焊接工艺, 在图 7所示的 线路板的焊盘位置 (即, 包括顶铜线路层 5的若干焊盘、 顶面线路层 孔边的焊盘、 底铜线路层 1的焊盘) , 用印刷 (例如钢网印刷) 而印 上锡膏 6, 然后经自动贴片机将元件 7贴附在上述的线路板上, 经回 流焊, 5段 275度固化后, 焊盘 (或称为焊点)位置的锡膏固化, 得 到如图 8所示的结构, 其中孔(或者称为 "半孔,, ) 中已经有通过印 刷方式填充并固化的锡膏 6。 由此, 将元件的两侧元件焊脚分别同这 两层线路层焊接在一起,其中元件的一个焊脚焊接在顶层线路层 5上, 并且将元件的另一焊脚不仅悍接在顶层线路层 5的凹槽形孔位置的焊 盘环上而且还焊接在该孔位置的底层线路层上 (即, 具体而言, 将元 件的一焊脚在该半孔位置同时焊接在该半孔位置底层线路层内焊点 和顶层线路层孔边的焊点上) , 从而实现顶层线路层与底层线路层的 电路互连导通, 同时由于这种焊接的 "双保险" 特点, 降低了元件脚 与焊盘脱离的可能性, 因此大大提高了焊接的可靠性, 改善了产品质 量。 图 9显示了经过 SMT焊接后的成品效果图。
当然, SMT元件的其它合适部分也可用于实现焊接导通, 而不仅 限于元件的焊脚部分。
由于上述的 SMT工艺属于传统的元器件贴附工艺, 属于业内技 术人员所熟知, 在此就不再细述。
本领域技术人员显然可以理解, 本发明的双面电路导通方法及构 造同样适用于刚性电路板(或称为硬板) , 在此就不再赘述。
以上结合附图将以双面柔性印刷线路板为具体实施例对本发明 进行了详细的描述。 但是, 本领域技术人员应当理解, 以上所述仅仅 是举例说明和描述一些具体实施方式, 对本发明的范围, 尤其是权利 要求的范围, 并不具有任何限制。 本发明的范围由所附权利要求来限 定。

Claims

权 利 要 求 书
1. 一种用于双面线路板的通过元件来实现顶层线路层与底层线 路层互连导通的方法, 包括:
提供形成有孔的双面线路板,其中,所述线路板包括顶层线路层、 底层线路层以及结合在所述顶层线路层与底层线路层之间的绝缘膜 层, 所述的孔为半孔, 此半孔穿过顶层线路层和绝缘膜层但不穿通底 层线路层;
将元件的一焊脚在半孔位置, 同时焊接在半孔位置底层内焊点和 顶层孔边的焊点上。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述方法还包括 以下步骤:
提供在顶层需要导通的孔边设有焊点, 在焊点位置, 通过锡膏将 两面电路导通的同时, 将元件的一个焊脚也焊接导通在一起。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还 包括:
在进行焊接之前, 在所述顶层线路层的孔边焊点上以及所述半孔 位置处的底层里的内焊点上施加锡膏;
之后, 直接将所述元件的元件脚对应地焊接在所述顶层线路层的 孔边焊点以及所述孔里的底层线路层内焊点上, 从而在焊接好元件的 同时通过元件脚来实现顶层线路层与底层线路层的互连导通, 并和元 件导通。
4. 根据权利要求 1 - 3中任一项所述的方法, 其特征在于, 所述 双面线路板是顶层线路层和底层线路层均为金属线路层的双面板, 所 述的施加锡膏是通过印刷方式施加的, 所述焊接是 SMT回流焊。
5. 根据权利要求 1 - 4中任一项所述的方法, 其特征在于, 在形 成所述半孔的位置, 通过孔边保留焊点、 孔底棵露的金属焊点的 槽 结构。
6. 根据上述权利要求 1 - 5中任一项所述的方法, 其特征在于, 所述双面线路板是双面柔性线路板或刚性线路板。
7. 根据上述权利要求 1 - 6中任一项所述的方法, 其特征在于, 所述双面线路板是顶层线路层和底层线路层均为铜线路层的双面覆 铜板, 所述的施加锡膏是通过例如钢网印刷方式施加的。
8. 根据上述权利要求 1 - 7中任一项所述的方法, 其特征在于, 在所述孔的位置, 通过对所述顶层线路层开镂空窗口来去除所述顶层 线路层及绝缘膜层而形成孔的凹槽形结构, 同时保留顶层线路孔边的 焊盘。
9. 一种把元件的一个元件脚通过双面线路板上的一个半孔位置 直接焊接在顶层电路焊点和底层电路焊点上, 实现元件脚、 顶层电路 和底层电路三者在一个点悍接一起实现导通的双面线路板, 包括: 顶部线路层;
绝缘层;
底部线路层; 和
设置在双面线路板中的半孔;
其中, 所述顶部线路层经由结合在绝缘层的一面上, 并且所述底 部线路层结合在绝缘层相反的另一面上; 并且
所述半孔穿过顶部线路层、 绝缘层;
所述元件的一部分通过焊接固定在顶层线路层焊点上, 并且所述 元件的一个焊脚通过所述半孔同时焊接在顶层孔边焊点上和底层内 焊点上。
10. 根据权利要求 9所述的双面线路板, 其特征在于, 所述双面 线路板是双面柔性线路板或刚性线路板, 并且所述半孔是非金属化 孔。
11. 根据权利要求 9 - 10中任一项所述的双面线路板, 其特征在 于, 所述元件是表面贴装( SMT )型元件, 所述元件 SMT安装并 SMT 回流焊焊接在所述双面线路板上。
12. 根据权利要求 9 - 1 1中任一项所述的双面线路板, 其特征在 于, 顶层需要导通的孔边设有焊点, 元件的一个焊脚在焊点位置通过 锡膏将两面电路导通的同时也焊接在一起。
13. 根据权利要求 9 - 12中任一项所述的双面线路板, 其特征在 于, 所述双面线路板是顶层线路层和底层线路层均为金属线路层的双 面板。
14. 根据权利要求 9 - 13中任一项所述的双面线路板, 其特征在 于, 所述半孔是 槽形孔的结构。
15. 根据权利要求 9 _ 14中任一项所述的双面线路板, 其特征在 于, 所述凹槽形孔结构是圆形坑、 方形坑或矩形坑的形状。
16. 根据权利要求 9 - 15中任一项所述的双面线路板, 其特征在 于, 在形成所述半孔的位置, 通过孔边保留焊点、 孔底棵露的金属焊 点的凹槽结构。
17. 根据权利要求 9 - 16中任一项所述的双面线路板, 其特征在 于, 所述双面线路板是长度在 0.5米以上、 优选在 1米以上的双面柔 性线路板。
18. 一种 LED灯带, 包括根据上述权利要求 9 - 17中任一项所 述的双面线路板, 以及安装于其上的元件。
19. 一种带元件的双面线路板, 包括:
顶部线路层;
绝缘层;
底部线路层; 和
设置在所述双面线路板中的半孔;
其中, 所述顶部线路层经由结合在绝缘层的一面上, 并且所述底 部线路层结合在绝缘层相反的另一面上; 并且
所述半孔穿过顶部线路层、 绝缘层;
所述元件的一部分通过焊接固定在顶层线路层焊点上, 并且所述 元件的一个焊脚通过半孔同时悍接在顶层孔边焊点上和底层内焊点 上。
20. 根据权利要求 19所述的带元件的双面线路板, 其特征在于, 所述双面线路板是双面柔性线路板或者刚性线路板;
所述孔边顶层线路层形成有焊点。
21. 根据上述权利要求 19 - 20 中任一项所述的带元件的双面线 路板, 其特征在于, 所述元件是表面贴装(SMT )型元件, 所述元件 通过 SMT的方式安装并通过 SMT回流焊焊接在所述双面线路板上。
22. —种 LED灯带, 包括根据权利要求 19 - 21中任一项所述的 带元件的双面线路板以及安装于其上的元件。
PCT/CN2010/000704 2009-11-17 2010-05-19 将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法 WO2011060605A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910224495.5 2009-11-17
CN200910224495 2009-11-17
CN201020150987.2 2010-03-31
CN2010201509872U CN201813610U (zh) 2010-03-31 2010-03-31 双面电路板和led灯带

Publications (1)

Publication Number Publication Date
WO2011060605A1 true WO2011060605A1 (zh) 2011-05-26

Family

ID=44059195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000704 WO2011060605A1 (zh) 2009-11-17 2010-05-19 将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法

Country Status (1)

Country Link
WO (1) WO2011060605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985155A1 (fr) * 2011-12-22 2013-06-28 Valeo Vision Circuit imprime, notamment pour dispositif optique a led pour vehicule automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198653A (zh) * 1997-05-06 1998-11-11 华通电脑股份有限公司 化学蚀刻形成盲孔的多层电路板制法
US6303881B1 (en) * 1998-03-20 2001-10-16 Viasystems, Inc. Via connector and method of making same
CN1722939A (zh) * 2004-07-14 2006-01-18 燿华电子股份有限公司 模块化电路板制造方法
CN1946270A (zh) * 2005-10-03 2007-04-11 日本Cmk株式会社 印制线路板、多层印制线路板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198653A (zh) * 1997-05-06 1998-11-11 华通电脑股份有限公司 化学蚀刻形成盲孔的多层电路板制法
US6303881B1 (en) * 1998-03-20 2001-10-16 Viasystems, Inc. Via connector and method of making same
CN1722939A (zh) * 2004-07-14 2006-01-18 燿华电子股份有限公司 模块化电路板制造方法
CN1946270A (zh) * 2005-10-03 2007-04-11 日本Cmk株式会社 印制线路板、多层印制线路板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985155A1 (fr) * 2011-12-22 2013-06-28 Valeo Vision Circuit imprime, notamment pour dispositif optique a led pour vehicule automobile

Similar Documents

Publication Publication Date Title
WO2011060600A1 (zh) 带元件的双面电路板及其互连导通方法
US8302299B2 (en) Method of manufacturing a multilayer printed circuit board with a built-in electronic device
CN101572992B (zh) 连续的双面柔性印刷线路板及led灯带
CN201813610U (zh) 双面电路板和led灯带
WO2011060604A1 (zh) 双面线路板及其互连导通方法
JP2010232249A (ja) 多層プリント配線板とその製造方法
WO2012009841A1 (zh) 用热固胶膜粘接并置的扁平导线制作单面电路板
CN202026521U (zh) 带散热金属的电路板
WO2012009842A1 (zh) 用转载胶膜和并置的扁平导线制作单面电路板的方法
KR100716809B1 (ko) 이방전도성필름을 이용한 인쇄회로기판 및 그 제조방법
CN201781677U (zh) 带有扁平电源线的电路板
WO2011060605A1 (zh) 将元件脚同时焊接在顶层线路和底层线路上的双面电路板及其互连导通方法
JPH0774466A (ja) 印刷配線板の製造方法
CN201860515U (zh) 焊接连接导通的双面led电路板及组件
WO2021057311A1 (zh) 一种间断分层的柔性叠层线路板灯带及制作方法
KR100733814B1 (ko) 인쇄회로기판 제조방법
JP2007115954A (ja) 多層プリント配線基板及びその製造方法
JP2005039136A (ja) 回路基板および回路基板の接続方法
JP4351939B2 (ja) 多層配線基板及びその製造方法
JP2004072125A (ja) 印刷配線板の製造方法および印刷配線板
JP2004228322A (ja) 多層フレキシブル配線板の製造方法
JP4968616B2 (ja) 多層プリント配線板の製造方法
TWI389619B (zh) 多層電路板製作方法
JP2006324282A (ja) 多層プリント配線板及びその製造方法
CN114143963A (zh) 一种双层焊接电路硬板及制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831021

Country of ref document: EP

Kind code of ref document: A1