WO2011058726A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2011058726A1
WO2011058726A1 PCT/JP2010/006534 JP2010006534W WO2011058726A1 WO 2011058726 A1 WO2011058726 A1 WO 2011058726A1 JP 2010006534 W JP2010006534 W JP 2010006534W WO 2011058726 A1 WO2011058726 A1 WO 2011058726A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
temperature
heating
amount
Prior art date
Application number
PCT/JP2010/006534
Other languages
English (en)
French (fr)
Inventor
加藤 央平
齊藤 信
尚季 湧田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080051025.4A priority Critical patent/CN102597659B/zh
Priority to US13/504,321 priority patent/US9528733B2/en
Priority to EP10829690.6A priority patent/EP2500675B1/en
Priority to AU2010317326A priority patent/AU2010317326B2/en
Priority to ES10829690T priority patent/ES2869850T3/es
Publication of WO2011058726A1 publication Critical patent/WO2011058726A1/ja
Priority to HK12110855.9A priority patent/HK1170019A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor

Definitions

  • the present invention relates to an air conditioner equipped with a compressor, and particularly relates to control of means for heating the compressor during its operation stop.
  • refrigerant may accumulate in the compressor while the apparatus is stopped.
  • the lubricating oil in the compressor is mixed with the concentration of the lubricating oil because the refrigerant accumulated in the compressor melts. Viscosity decreases.
  • the compressor is started in this state, lubricating oil having a low viscosity is supplied to the rotating shaft and the compression unit of the compressor, and there is a risk of seizing due to poor lubrication.
  • the liquid level of the lubricating oil in the compressor rises due to the melting of the refrigerant, the starting load of the compressor increases, which is regarded as an overcurrent when the air conditioner starts, and the air conditioner cannot be started. .
  • the compressor is heated. Is to implement.
  • the refrigerant state of the compressor is estimated using the compressor discharge temperature detected by the temperature detection means installed in the air conditioner and the compressor discharge pressure detected by the pressure detection means, and it is necessary to heat the compressor.
  • a control method is disclosed that suppresses the amount of electric power consumed to prevent refrigerant stagnation in the compressor by stopping the heating to the compressor when it is determined that heating to the compressor is unnecessary. (For example, refer to Patent Document 2).
  • the refrigerant saturation temperature is converted from the compressor discharge pressure, and when the compressor discharge temperature is equal to or lower than the refrigerant saturation temperature, it is determined that the refrigerant is liquefied and accumulated, and the compressor is heated. It is.
  • the gas refrigerant in the compressor needs to be condensed.
  • the condensation of the refrigerant occurs due to a temperature difference between the compressor shell and the refrigerant, for example, when the temperature of the shell covering the compressor is lower than the refrigerant temperature in the compressor.
  • the compressor shell temperature is higher than the refrigerant temperature, the refrigerant does not condense, so there is no need to heat the compressor.
  • Patent Document 1 even if only the outside air temperature representing the refrigerant temperature is considered, the refrigerant does not condense if the temperature of the compressor shell is higher than the outside air temperature, so that the refrigerant does not accumulate in the compressor. Regardless, there is a problem that the compressor is heated and wasteful power is consumed.
  • Patent Document 2 the liquefaction of the refrigerant is determined based on the refrigerant saturation temperature converted from the discharge temperature and the discharge pressure, and the compressor is heated despite the high concentration of the lubricating oil. There is a problem of consuming.
  • the present invention has been made to solve the above-described problems, and appropriately determines the state in which the refrigerant is accumulated in the compressor, and suppresses power consumption when the air conditioner is stopped.
  • the purpose is to obtain a harmony machine.
  • An air conditioner includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are sequentially connected in an annular manner by a refrigerant pipe, and compressor heating means for heating the compressor.
  • a compressor temperature detecting means for detecting a surface temperature of the compressor (hereinafter referred to as a compressor temperature), a refrigerant temperature detecting means for detecting a refrigerant temperature in the compressor, and the compressor by the compressor heating means.
  • a control device that controls a heating operation of the compressor, wherein the control device calculates a change rate of the compressor temperature per predetermined time (hereinafter referred to as a compressor temperature change rate) based on the compressor temperature.
  • the rate of change of the refrigerant temperature per predetermined time (hereinafter referred to as the rate of change of the refrigerant temperature) is calculated based on the refrigerant temperature, and the rate of change of the compressor temperature is the temperature of the refrigerant when the compressor is stopped. From the rate of change If so, characterized in that it does not implement the heating operation of the compressor by the compressor heating means.
  • the air conditioner when the compressor temperature change rate is larger than the refrigerant temperature change rate when the compressor is stopped, all the liquid refrigerant contained in the lubricating oil in the compressor is vaporized. Since the heating operation of the compressor is terminated, it is possible to prevent the compressor from being heated even though all of the liquid refrigerant contained in the lubricating oil in the compressor is vaporized. It is possible to suppress power consumption during stoppage, that is, consumption of standby power.
  • FIG. 1 is an overall configuration diagram of an air conditioner 50 according to an embodiment of the present invention. It is an internal block diagram of the compressor 1 in the air conditioner 50 which concerns on Embodiment 1 of this invention. It is a figure which shows the historical change of the compressor temperature of the compressor 1 in the stop in the air conditioner 50 which concerns on Embodiment 1 of this invention, the refrigerant temperature in the compressor 1, and a liquid refrigerant
  • FIG. It is a figure which shows the historical change of the compressor temperature of the compressor 1 in the stop in the air conditioner 50 which concerns on Embodiment 2 of this invention, the amount of liquid refrigerant in the compressor 1, and the viscosity of the lubricating oil 100.
  • FIG. It is a figure which shows the refrigerant
  • DELTA coolant temperature change amount
  • FIG. 3 is a diagram showing the dissolution characteristics of a refrigerant in lubricating oil 100.
  • FIG. 1 is an overall configuration diagram of an air conditioner 50 according to an embodiment of the present invention.
  • the air conditioner 50 includes an outdoor unit 51 and an indoor unit 52, and includes a refrigerant circuit 40 that is a refrigerant circulation circuit that circulates through the outdoor unit 51 and the indoor unit 52. .
  • the refrigerant circuit 40 includes an outdoor refrigerant circuit 41 that is a heat source side refrigerant circuit included in the outdoor unit 51, an indoor refrigerant circuit 42 that is a use side refrigerant circuit included in the indoor unit 52, and the outdoor refrigerant circuit 41 and the indoor refrigerant circuit 42. It is comprised by the liquid side connection piping 6 and the gas side connection piping 7 to connect.
  • the outdoor refrigerant circuit 41 includes at least a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, a liquid side closing valve 8, a gas side closing valve 9, and a refrigerant pipe that connects them. Yes.
  • the gas side closing valve 9, the four-way valve 2, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the liquid side closing valve 8 are connected by refrigerant piping in this order.
  • a pressure sensor 25 that detects the refrigerant pressure is installed in a refrigerant pipe connected to the refrigerant suction portion of the compressor 1.
  • the outdoor heat exchanger 3 and the pressure sensor 25 correspond to the “heat source side heat exchanger” and the “refrigerant pressure detection means” in the present invention, respectively.
  • the compressor 1 compresses the sucked gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the compressor 1 includes a compressor heating unit 10 that heats the compressor 1, a surface temperature of the compressor 1, that is, a compressor temperature sensor 21 that detects the compressor temperature, and a refrigerant temperature in the compressor 1.
  • a refrigerant temperature sensor 22 to be detected is installed.
  • the compressor heating unit 10, the compressor temperature sensor 21, and the refrigerant temperature sensor 22 correspond to “compressor heating means”, “compressor temperature detection means”, and “refrigerant temperature detection means” in the present invention, respectively.
  • the four-way valve 2 switches the refrigerant flow path in the refrigerant circuit 40 depending on whether the air conditioner 50 operates as a cooling device or a heating device.
  • the four-way valve 2 includes the gas side closing valve 9, the four-way valve 2, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the liquid side closing.
  • the refrigerant path is switched so that the refrigerant flows in the order of the valves 8.
  • the four-way valve 2 includes the liquid side closing valve 8, the expansion valve 4, the outdoor heat exchanger 3, the four-way valve 2, the compressor 1, the four-way valve 2, and the gas.
  • the refrigerant path is switched so that the refrigerant flows in the order of the side closing valve 9.
  • route of the refrigerant circuit 40 for example, when using an air conditioner only for a cooling device or a heating device, it is good also as a structure which is not provided with the four-way valve 2.
  • the outdoor heat exchanger 3 is, for example, a fin-and-tube heat exchanger, and performs heat exchange between the circulating refrigerant and the outside air.
  • An outdoor fan 11 for promoting heat exchange is installed in the vicinity of the outdoor heat exchanger 3.
  • the expansion valve 4 decompresses the refrigerant that has flowed in, and makes the refrigerant easily vaporize in the outdoor heat exchanger 3 or the indoor heat exchanger 5 described later.
  • the liquid side shutoff valve 8 and the gas side shutoff valve 9 open or close the refrigerant path, but are in an open state after the air conditioner 50 is installed.
  • the liquid side closing valve 8 is connected to the liquid side connecting pipe 6, and the gas side closing valve 9 is connected to the gas side connecting pipe 7.
  • the outdoor unit 51 includes a control device 31 in addition to the outdoor refrigerant circuit 41 described above.
  • the control device 31 includes a calculation device 32, and the compressor heating unit 10, the compressor temperature sensor 21, the refrigerant temperature sensor 22, and the pressure sensor 25 are connected to the control device 31. Further, the control device 31 controls the operation of the air conditioner 50 based on the detection values of the compressor temperature sensor 21, the refrigerant temperature sensor 22, and the pressure sensor 25, and the heating operation by the compressor heating unit 10 as described later. To control.
  • the control device 31 is configured to energize the motor unit 62 in the compressor 1 described later in an open phase state while the air conditioner 50 is stopped, that is, while the compressor 1 is stopped.
  • the motor part 62 energized in the open phase state does not rotate, and Joule heat is generated by the current flowing through the coil, and the compressor 1 can be heated. That is, when the air conditioner 50 is stopped, the electric motor unit 62 serves as the compressor heating unit 10 described above.
  • the compressor heating part 10 is not restricted to the structure which is the electric motor part 62, It is good also as what is an electric heater provided separately.
  • the indoor refrigerant circuit 42 is constituted by at least the indoor heat exchanger 5 and the refrigerant pipe connecting the above-mentioned gas side connection pipe 7 and liquid side connection pipe 6 and the indoor heat exchanger 5.
  • the indoor heat exchanger 5 corresponds to the “use side heat exchanger” in the present invention.
  • the indoor heat exchanger 5 is, for example, a fin-and-tube heat exchanger, and performs heat exchange between the circulating refrigerant and room air.
  • An indoor fan 12 for promoting heat exchange is installed in the vicinity of the indoor heat exchanger 5.
  • FIG. 2 is an internal configuration diagram of the compressor 1 in the air conditioner 50 according to Embodiment 1 of the present invention.
  • the compressor 1 is, for example, a hermetic compressor, and performs a refrigerant compressing operation on at least a compressor shell 61 that is an outer shell of the compressor 1 and a compressor 63 that will be described later.
  • the suction part 66 is configured to suck the refrigerant.
  • the compressor shell 61 is provided with a compressor temperature sensor 21 for detecting the surface temperature thereof.
  • the compressor 1 is supplied to the compressor 63 and the rotating shaft 64 inside the compressor 1 and used for lubricating operation.
  • the lubricating oil 100 is stored.
  • the electric motor unit 62 is composed of a three-phase electric motor, and is supplied with electric power through an inverter (not shown).
  • an inverter not shown.
  • the refrigerant sucked from the suction part 66 is sucked into the compression part 63 and then compressed.
  • the refrigerant compressed by the compression unit 63 is once discharged into the compressor shell 61 and discharged from the discharge unit 65. At this time, the inside of the compressor 1 is at a high pressure.
  • FIG. 3 is a diagram illustrating changes in the compressor temperature of the compressor 1 that is stopped, the refrigerant temperature in the compressor 1, and the liquid refrigerant amount in the air conditioner 50 according to Embodiment 1 of the present invention. is there.
  • the refrigerant in the refrigerant circuit 40 condenses and accumulates at the lowest temperature among the constituent elements. For this reason, if the temperature of the compressor 1 is lower than the temperature of the refrigerant, the refrigerant may accumulate in the compressor 1.
  • the refrigerant condenses and accumulates in the compressor 1, the refrigerant dissolves into the lubricating oil 100, so that the concentration of the lubricating oil 100 decreases and the viscosity also decreases.
  • the compressor 1 is started in this state, the low-viscosity lubricating oil 100 is supplied to the compression unit 63 and the rotating shaft 64, and there is a risk of seizing due to poor lubrication.
  • the control device 31 controls the compressor heating unit 10 to heat the compressor 1, whereby the lubricating oil in the compressor 1 is heated.
  • the amount of refrigerant dissolved in the lubricating oil 100 is reduced by the evaporation of the liquid refrigerant dissolved in 100, and a decrease in the concentration of the lubricating oil 100 can be suppressed.
  • FIG. 3 shows the compressor temperature, the refrigerant temperature, and the liquid refrigerant amount when the compressor 1 in which the liquid refrigerant is accumulated is heated by the compressor heating unit 10 while the air conditioner 50 is stopped.
  • the refrigerant temperature is constant here, assuming that the outside air temperature has not changed.
  • the state I indicates a state from when the compressor 1 starts to be heated by the compressor heating unit 10 until all of the liquid refrigerant in the lubricating oil 100 is vaporized.
  • the state II has shown the state after all the liquid refrigerant
  • the compressor temperature sensor The compressor temperature detected by 21 hardly changes.
  • the amount of heat supplied by the compressor heating unit 10 contributes to an increase in the compressor temperature, so that the compressor temperature is predetermined as shown in FIG. It increases with the slope of. That is, the control device 31 can determine whether or not liquid refrigerant is accumulated in the compressor 1 based on the change rate of the compressor temperature during a predetermined time.
  • FIG. 4 is a flowchart showing a heating control operation of the compressor 1 in the air conditioner 50 according to Embodiment 1 of the present invention.
  • control device 31 After the air conditioner 50 is stopped, the control device 31 energizes the electric motor unit 62 in a phase-losing state to operate as the compressor heating unit 10 to heat the compressor 1.
  • the control device 31 receives the compressor temperature detected by the compressor temperature sensor 21 and the refrigerant temperature detected by the refrigerant temperature sensor 22.
  • the arithmetic device 32 in the control device 31 calculates the compressor temperature change rate Rc1 at a predetermined time based on the received compressor temperature and the refrigerant temperature change rate Rr1 at a predetermined time based on the received refrigerant temperature.
  • the control device 31 determines the magnitude of the compressor temperature change rate Rc1 and the refrigerant temperature change rate Rr1 calculated by the arithmetic device 32. As a result of the determination, if the compressor temperature change rate Rc1 is larger than the refrigerant temperature change rate Rr1, the process proceeds to step S15. Otherwise, the process returns to step S11.
  • step S14 when the controller 31 determines in step S14 in FIG. 4 that the compressor temperature change rate Rc1 is larger than the refrigerant temperature change rate Rr1, the heating operation of the compressor 1 is terminated.
  • the present invention is not limited to this, and when the compressor temperature is higher than the refrigerant temperature, refrigerant stagnation does not occur in the compressor 1, and therefore, in step S14, the controller 31 changes the compressor temperature change rate Rc1. Instead of determining whether or not the refrigerant temperature is higher than the refrigerant temperature change rate Rr1, or in addition to determining whether or not the compressor temperature is higher than the refrigerant temperature, the compressor temperature is higher than the refrigerant temperature. When it is high, the compressor 1 may not be heated by the compressor heating unit 10.
  • the pressure in the refrigerant circuit 40 is the same (equal pressure) everywhere.
  • the refrigerant circuit 40 is a closed circuit, and if liquid refrigerant is present in the circuit, the refrigerant pressure detected by the pressure sensor 25 becomes the saturation pressure, and the saturation pressure Px is equal to the saturation temperature Tx as shown in FIG. Can be converted to Since the refrigerant temperature in the refrigerant circuit 40 is the saturation temperature, a value obtained by converting the saturation pressure of the refrigerant detected by the pressure sensor 25 into the saturation temperature is used as the refrigerant temperature while the compressor 1 is stopped. be able to.
  • a value obtained by converting the saturation pressure of the refrigerant detected by the pressure sensor 25 provided in the refrigerant circuit 40 into a saturation temperature may be used as the refrigerant temperature when the compressor 1 is stopped.
  • the heating control of the compressor 1 can be performed with a simple configuration that does not require the refrigerant temperature sensor 22.
  • the outdoor heat exchanger 3 is a heat exchanger that exchanges heat between the refrigerant and the outside air, and thus has a large surface area in contact with the outside air.
  • the outdoor heat exchanger 3 is usually composed of a member made of a metal having a relatively high thermal conductivity such as aluminum or copper, and its heat capacity is relatively small. For this reason, when the outside air temperature changes, the temperature of the outdoor heat exchanger 3 also changes almost simultaneously. That is, since the temperature of the outdoor heat exchanger 3 becomes substantially the same value as the outside air temperature, it can be used as the refrigerant temperature while the compressor 1 is stopped.
  • the compressor 1 has a temperature detected by an outside air temperature sensor (not shown) that is installed in a general air conditioner and detects at least one of the ambient temperature and the surface temperature of the outdoor heat exchanger 3. Since it is not necessary to directly detect the refrigerant temperature in the compressor 1 by using it as the refrigerant temperature in the compressor 1 during the stop, the heating control of the compressor 1 is performed with a simple configuration that does not require the refrigerant temperature sensor 22. Can be implemented.
  • the lubricating oil 100 stays in the compressor 1 as described above. Even when the lubricating oil 100 is heated by the compressor heating unit 10, if the refrigerant is dissolved in the lubricating oil 100, the influence of the vaporization of the refrigerant in the lubricating oil and the specific heat of the lubricating oil 100 causes the The temperature is lower than the surface temperature of the compressor 1 higher than the oil level of the lubricating oil 100, but substantially matches the surface temperature of the compressor 1 lower than the oil level. Conversely, when all the refrigerant in the lubricating oil 100 is vaporized, the temperature of the lubricating oil 100 substantially matches the surface temperature of the compressor 1 higher than the oil level of the lubricating oil 100.
  • the compressor temperature sensor 21 may be installed at a position lower than the oil level of the lubricating oil 100 in the compressor 1, particularly on the shell bottom surface of the compressor 1. By doing so, the compressor temperature sensor 21 can detect the temperature of the lubricating oil 100 at substantially the same temperature, and the compressor temperature can be regarded as the temperature of the lubricating oil 100. It can be confirmed reliably whether the refrigerant
  • the pressure sensor 25 is provided in the refrigerant circuit 40 so that a value equal to or close to the pressure in the compressor 1, that is, the compressor shell portion 61 can be detected. is set up.
  • the inside of the shell of the compressor 1 differs depending on the type of the compressor.
  • the pressure in the compressor 1 called a high-pressure shell type is close to the discharge pressure
  • the pressure in the compressor 1 called a low-pressure shell type is the suction pressure. close.
  • the configuration is not limited to the installation configuration of the pressure sensor 25 shown in FIG. By doing in this way, the exact pressure in the compressor 1 can be detected according to the kind of the compressor 1.
  • Embodiment 2 FIG. In this Embodiment, it demonstrates centering on the point which is different from the air conditioner 50 which concerns on Embodiment 1.
  • FIG. The configuration of the air conditioner 50 according to the present embodiment is the same as the configuration of the air conditioner 50 according to the first embodiment.
  • FIG. 6 shows changes in the compressor temperature of the compressor 1 that is stopped, the amount of liquid refrigerant in the compressor 1, and the viscosity of the lubricating oil 100 in the air conditioner 50 according to Embodiment 2 of the present invention.
  • FIG. 6 when the control device 31 heats the compressor 1 by the compressor heating unit 10 while the air conditioner 50 is stopped, the amount of liquid refrigerant dissolved in the lubricating oil 100 in the compressor 1. Vaporizes and decreases.
  • the concentration of the lubricating oil 100 in the compressor 1 increases due to the vaporization of the liquid refrigerant, and the viscosity (hereinafter referred to as the lubricating oil viscosity) increases accordingly.
  • the liquid refrigerant amount Mrmax the refrigerant amount indicated by the point P1 in FIG.
  • the allowable liquid refrigerant amount that can ensure the lubricating oil viscosity so that no malfunction occurs in the compressor 1 is determined, It is sufficient that the refrigerant amount is equal to or less than the allowable liquid refrigerant amount Mrmax, and it is not necessary to heat the compressor 1 until the lubricating oil 100 in the compressor 1 has no liquid refrigerant amount (state II). At this time, the concentration of the lubricating oil 100 in the case of the allowable liquid refrigerant amount Mrmax is hereinafter referred to as a critical lubricating oil viscosity (viscosity indicated by a point P2 in FIG. 6). That is, if the amount of liquid refrigerant dissolved in the lubricating oil 100 in the compressor 1 can be estimated, the amount of heating to the compressor 1 can be suppressed to a minimum.
  • a critical lubricating oil viscosity viscosity indicated by a point P2 in FIG. 6
  • FIG. 7 is a diagram showing temporal changes in the refrigerant temperature and the compressor temperature of the compressor 1 in the air conditioner 50 according to Embodiment 2 of the present invention.
  • a phenomenon in which the liquid refrigerant stagnate while the compressor 1 is stopped will be described with reference to FIG.
  • the outside air temperature changes periodically, and the refrigerant temperature when the compressor 1 is stopped also changes with the outside air temperature change. At this time, the change in the compressor temperature varies depending on the heat capacity of the compressor 1.
  • the compressor temperature follows the refrigerant temperature with a delay due to the heat capacity of the compressor 1, and the compressor 1 with a small heat capacity (for example, the light compressor 1) easily follows the refrigerant temperature change and has a large heat capacity. 1 (for example, heavy compressor 1) hardly follows changes in the refrigerant temperature, and the difference between the refrigerant temperature and the compressor 1 temperature widens.
  • the compressor temperature is lower than the refrigerant temperature, condensation of the gas refrigerant occurs in the compressor 1 and the liquid refrigerant stagnates in the compressor 1. For example, when the refrigerant temperature changes as shown in FIG.
  • the liquid refrigerant stagnates inside, but the refrigerant temperature ⁇ compressor temperature in the elapsed time after the point P 3, and the refrigerant does not stagnate in the compressor 1.
  • the compressor 1 has a large heat capacity
  • the refrigerant temperature is greater than the compressor temperature in the elapsed time before the point P4, and the liquid refrigerant stagnates in the compressor 1, but in the elapsed time after the point P4.
  • the refrigerant temperature is lower than the compressor temperature, and the refrigerant does not stagnate in the compressor 1.
  • A is the heat transfer area where the compressor 1 and the refrigerant in the compressor 1 exchange heat
  • K indicates the heat transfer rate between the compressor 1 and the refrigerant in the compressor 1.
  • the refrigerant latent heat dH is a value determined by the physical properties of the refrigerant.
  • F is a fixed value and is a value obtained by dividing the product of the heat transfer area A and the heat transfer rate K by the refrigerant latent heat dH.
  • the type of the compressor 1 is a high-pressure shell type
  • the liquid refrigerant amount at the time of stop is the initial liquid refrigerant amount
  • this initial liquid refrigerant amount is the liquid refrigerant amount Mr1
  • the liquid refrigerant amount Mr1 is The compressor 1 is 0 because there is no liquid refrigerant because of the high temperature and pressure.
  • the amount of liquid refrigerant that stagnates in the compressor 1 is proportional to the time during which the compressor temperature Ts is lower than the refrigerant temperature Tr (Ts ⁇ Tr) and the temperature difference thereof, and is estimated from the above equation (4). It becomes possible.
  • FIG. 8 is a diagram illustrating the amount of liquid refrigerant Mr that stagnates in the compressor 1 with respect to the refrigerant temperature change amount ⁇ Tr. As shown in FIG. 7, the compressor temperature change due to the refrigerant temperature change varies depending on the heat capacity of the compressor 1, and the compressor 1 having a larger heat capacity has a larger difference between the compressor temperature and the refrigerant temperature. The amount of liquid refrigerant Mr.
  • the compressor temperature is lower than the refrigerant temperature, that is, the time during which the liquid refrigerant stagnates in the compressor 1 lasts longer. Therefore, as shown in FIG.
  • the refrigerant amount Mr increases. That is, it is possible to estimate the liquid refrigerant amount Mr that stagnates into the corresponding compressor 1 by grasping the relationship between the refrigerant temperature change amount ⁇ Tr and the liquid refrigerant amount Mr that stagnates in the compressor 1 in advance.
  • the amount of liquid refrigerant in the lubricating oil 100 in the compressor 1. Mr can be adjusted to a predetermined amount. For example, when the heating amount Qh is constant, the heating time dTh can be determined so that the above equation (5) is established. As shown in FIG. 9, the heating time dTh increases as the amount of liquid refrigerant Mr to be evaporated increases.
  • FIG. 10 is a flowchart showing the heating control operation of the compressor 1 in the air conditioner 50 according to Embodiment 2 of the present invention.
  • the control device 31 receives the compressor temperature Ts detected by the compressor temperature sensor 21 and the refrigerant temperature Tr detected by the refrigerant temperature sensor 22. Then, the calculation device 32 in the control device 31 counts the elapsed time dT in which Ts ⁇ Tr.
  • the computing device 32 in the control device 31 calculates the liquid refrigerant amount Mr from the above equation (4) based on the compressor temperature Ts, the refrigerant temperature Tr, and the elapsed time dT.
  • the control device 31 compares the liquid refrigerant amount Mr with the allowable liquid refrigerant amount Mrmax in the compressor 1. As a result of this comparison, when it is determined that the liquid refrigerant amount Mr is less than or equal to the allowable liquid refrigerant amount Mrmax, it is determined that heating by the compressor heating unit 10 to the compressor 1 is unnecessary because the concentration of the lubricating oil 100 is high. Return to step S21. On the other hand, when it is determined that the liquid refrigerant amount Mr is larger than the allowable liquid refrigerant amount Mrmax, it is determined that the concentration of the lubricating oil 100 is low and the compressor 1 needs to be heated by the compressor heating unit 10, and step S25 is performed. Proceed to
  • the control device 31 energizes the motor unit 62 in an open phase state and heats the compressor 1 by the compressor heating unit 10. At this time, the heating amount Qh to the compressor 1 by the compressor heating unit 10 is assumed to be fixed.
  • the calculation device 32 in the control device 31 calculates the above formula (5) based on the liquid refrigerant amount Mr calculated in step S23, the target liquid refrigerant amount Mr *, the heating amount Qh, and the refrigerant latent heat dH. To determine the heating time dTh.
  • the control device 31 counts the elapsed heating time after the compressor heating unit 10 starts heating the compressor 1, and determines whether or not the elapsed heating time exceeds the heating time dTh. As a result of the determination, if the elapsed heating time is equal to or shorter than the heating time dTh, it is determined that the heating operation for the compressor 1 by the compressor heating unit 10 needs to be continued, and the process returns to step S25. On the other hand, when the elapsed heating time exceeds the heating time dTh, it is determined that the heating operation to the compressor 1 by the compressor heating unit 10 is not necessary, and the process proceeds to step S28.
  • step S25 and step S26 it is assumed that the heating amount Qh is fixed, and the heating time dTh is determined from the equation (5).
  • the operation is not limited to this, and the heating time dTh is fixed.
  • the heating amount Qh may be determined from the equation (5), and the compressor 1 may be heated by the heating amount Qh for a heating time dTh that is a fixed value.
  • the liquid refrigerant stagnates in the compressor 1 when the compressor temperature Ts is lower than the refrigerant temperature Tr, that is, when the liquid refrigerant is accumulated in the compressor 1. Since the controller 1 determines that the heating of the compressor 1 is necessary and the air conditioner 50 is stopped, the controller 31 performs the heating operation of the compressor 1 by the compressor heating unit 10. Can be prevented from accumulating.
  • the operation of estimating the liquid refrigerant amount Mr from the compressor temperature Ts detected by the compressor temperature sensor 21 and the refrigerant temperature Tr detected by the refrigerant temperature sensor 22 is performed.
  • the present invention is not limited thereto, and may be an operation for estimating the liquid refrigerant amount based on the compressor temperature detected by the compressor temperature sensor 21 and the refrigerant pressure detected by the pressure sensor 25 as described below.
  • FIG. 11 is a diagram showing the dissolution characteristics of the refrigerant with respect to the lubricating oil 100. From the dissolution characteristics shown in FIG.
  • the concentration of the lubricating oil 100 in the compressor 1 is detected by the compressor temperature sensor 21 and detected by the compressor temperature that can be regarded as the lubricating oil temperature, and the pressure sensor 25. This can be estimated based on the refrigerant pressure. Then, the amount of liquid refrigerant can be estimated from the amount of the lubricating oil 100 in the compressor 1 and the estimated concentration of the lubricating oil 100. Moreover, it is good also as operation
  • the present invention can also be applied to a refrigeration apparatus provided with means for heating the compressor during stoppage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機に冷媒が溜まり込んでいる状態を適切に判断し、空気調和機の停止中における電力消費を抑制する空気調和機を得る。 制御装置31は、圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きいと判定した場合、圧縮機1内の潤滑油100に含まれる液冷媒が全て気化したと判断し、電動機部62への通電を停止させ、圧縮機1の加熱動作を終了する。

Description

空気調和機
 本発明は、圧縮機を備えた空気調和機に係るものであり、特に、その運転停止中の圧縮機を加熱する手段の制御に関するものである。
 空気調和機等の冷凍サイクルを搭載する装置においては、その装置が停止している間に圧縮機へ冷媒が溜まり込むことがある。例えば、空気調和機のように、その構成要素である熱交換器が屋外に設置されている場合、圧縮機内の潤滑油は、圧縮機に溜まり込んだ冷媒が溶け込むことで潤滑油濃度と一緒に粘度が低下する。この状態で圧縮機を起動すると、粘度の低い潤滑油が圧縮機の回転軸及び圧縮部へ供給され、潤滑不良によって焼き付く危険がある。また、冷媒が溶け込むことによって圧縮機内の潤滑油の液面が上昇すると、圧縮機の起動負荷が増加し、空気調和機の起動時において過電流とみなされ、空気調和機が起動できない不具合が生じる。
 これらの問題を解決する方法として、停止中の圧縮機を加熱し、圧縮機における冷媒寝込みを抑制する方法がある。圧縮機を加熱する方法としては、圧縮機に巻きつけた電気ヒーターへ通電する方法、又は、圧縮機に設置される電動機のコイルへ高周波数の低電圧を印加し、電動機を回転させずにコイルで発生するジュール熱によって加熱する方法がある。
 つまり、上記の方法では、停止中に圧縮機へ冷媒が溜まり込むのを防止するために圧縮機を加熱するので、空気調和機の停止中でも電力が消費されることになる。この問題の対策として、空気調和装置に設置された温度検出手段で検出した外気温度を用いて圧縮機の加熱要否を判断し、圧縮機への加熱が不要と判断された場合は圧縮機への加熱を停止することで、圧縮機への冷媒寝込み防止に消費される電力量を抑制する制御方法が開示されている(例えば、特許文献1参照)。具体的には、外気温度が圧縮機へ冷媒が溜まり込む可能性のある所定の温度以下であり、かつ、圧縮機が運転していないと想定できる所定の温度以下の場合に、圧縮機の加熱を実施するものである。
 また、空気調和機に設置された温度検出手段で検出した圧縮機吐出温度と、圧力検出手段で検出した圧縮機吐出圧力とを用いて圧縮機の冷媒状態を推定し、圧縮機の加熱の要否を判断し、圧縮機への加熱が不要と判断された場合は圧縮機への加熱を停止することで、圧縮機への冷媒寝込み防止に消費される電力量を抑制する制御方法が開示されている(例えば、特許文献2参照)。具体的には、圧縮機吐出圧力から冷媒飽和温度を換算し、圧縮機吐出温度が冷媒飽和温度以下の場合に冷媒が液化して溜まり込んでいると判断し、圧縮機の加熱を実施するものである。
特開2000-292014号公報 特開平9-113039号公報
 ここで、圧縮機に冷媒が溜まり込むためには、圧縮機内のガス冷媒が凝縮する必要がある。そして、冷媒の凝縮は、例えば圧縮機を覆っているシェルの温度が圧縮機内の冷媒温度よりも低い場合に、圧縮機シェルと冷媒との温度差によって起こる。逆に、圧縮機シェル温度が冷媒温度よりも高ければ冷媒の凝縮は起こらないので、圧縮機を加熱する必要はない。
 しかしながら、特許文献1においては、冷媒温度を代表する外気温度だけを考慮しても、圧縮機シェルの温度が外気温度よりも高ければ冷媒は凝縮しないため、圧縮機に冷媒が溜まり込まないにも関わらず圧縮機を加熱してしまい、無駄な電力を消費するという問題点がある。
 また、先に圧縮機に冷媒が溜まり込むと、潤滑油濃度及び粘度が低下し、圧縮機の軸が焼き付く危険があると述べたが、実際に圧縮機の回転軸又は圧縮部が焼き付くには潤滑油濃度が所定値まで低下する必要がある。つまり、潤滑油濃度が高く、溜まり込む冷媒が所定値以下であれば、圧縮機が焼き付く状態にはならない。
 しかしながら、特許文献2においては、吐出温度及び吐出圧力から換算した冷媒飽和温度によって冷媒の液化を判断しており、潤滑油濃度が高いにも関わらず圧縮機を加熱してしまい、やはり無駄な電力を消費するという問題点がある。
 本発明は、上記のような問題点を解消するためになされたものであり、圧縮機に冷媒が溜まり込んでいる状態を適切に判断し、空気調和機の停止中における電力消費を抑制する空気調和機を得ることを目的とする。
 本発明に係る空気調和機は、圧縮機、熱源側熱交換器、膨張弁及び利用側熱交換器が冷媒配管によって順に環状に接続された冷媒回路と、前記圧縮機を加熱する圧縮機加熱手段と、前記圧縮機の表面温度(以下、圧縮機温度という)を検出する圧縮機温度検出手段と、前記圧縮機内の冷媒温度を検出する冷媒温度検出手段と、前記圧縮機加熱手段による前記圧縮機への加熱動作を制御する制御装置と、を備え、前記制御装置は、前記圧縮機温度に基づいて所定時間あたりの前記圧縮機温度の変化率(以下、圧縮機温度変化率という)を算出し、前記冷媒温度に基づいて所定時間あたりの前記冷媒温度の変化率(以下、冷媒温度変化率という)を算出し、前記圧縮機が停止中の状態において、前記圧縮機温度変化率が前記冷媒温度変化率よりも大きい場合、前記圧縮機加熱手段による前記圧縮機の加熱動作を実施させないことを特徴とする。
 本発明に係る空気調和機によれば、圧縮機が停止中の状態において、圧縮機温度変化率が冷媒温度変化率よりも大きい場合、圧縮機内の潤滑油に含まれる液冷媒が全て気化したと判断して、圧縮機の加熱動作を終了させるので、圧縮機内の潤滑油に含まれる液冷媒が全て気化しているにも関わらず、圧縮機を加熱してしまうことを防止でき、空気調和機の停止中における電力、すなわち、待機電力の消費を抑制することができる。
本発明の実施の形態に係る空気調和機50の全体構成図である。 本発明の実施の形態1に係る空気調和機50における圧縮機1の内部構成図である。 本発明の実施の形態1に係る空気調和機50における停止中の圧縮機1の圧縮機温度、圧縮機1内の冷媒温度、及び、液冷媒量の経示変化を示す図である。 本発明の実施の形態1に係る空気調和機50における圧縮機1の加熱制御動作を示すフローチャートである。 飽和圧力と飽和温度との関係を示すグラフである。 本発明の実施の形態2に係る空気調和機50における停止中の圧縮機1の圧縮機温度、圧縮機1内の液冷媒量、及び、潤滑油100の粘度の経示変化を示す図である。 本発明の実施の形態2に係る空気調和機50における圧縮機1の冷媒温度と圧縮機温度の経時変化を示す図である。 冷媒温度変化量ΔTrに対する圧縮機1内で寝込む液冷媒量Mrを示す図である。 圧縮機1を加熱した場合における加熱時間dThと蒸発する液冷媒量Mrとの関係を示す図である。 本発明の実施の形態2に係る空気調和機50における圧縮機1の加熱制御動作を示すフローチャートである。 潤滑油100に対する冷媒の溶解特性を示す図である。
実施の形態1.
(空気調和機50の全体構成)
 図1は、本発明の実施の形態に係る空気調和機50の全体構成図である。
 図1で示されるように、空気調和機50は、室外機51及び室内機52を備えており、この室外機51及び室内機52を循環する冷媒の流通回路である冷媒回路40を備えている。
 冷媒回路40は、室外機51が備える熱源側冷媒回路である室外冷媒回路41、室内機52が備える利用側冷媒回路である室内冷媒回路42、並びに、この室外冷媒回路41及び室内冷媒回路42を接続する液側接続配管6及びガス側接続配管7によって構成されている。
 室外冷媒回路41は、少なくとも、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、液側閉鎖弁8及びガス側閉鎖弁9、並びに、これらを接続する冷媒配管によって構成されている。この室外冷媒回路41においては、ガス側閉鎖弁9、四方弁2、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、そして、液側閉鎖弁8の順で冷媒配管によって接続されている。この室外冷媒回路41のうち圧縮機1の冷媒の吸入部に接続されている冷媒配管に、冷媒圧力を検出する圧力センサー25が設置されている。
 なお、室外熱交換器3及び圧力センサー25は、それぞれ本発明における「熱源側熱交換器」及び「冷媒圧力検出手段」に相当する。
 圧縮機1は、吸入したガス冷媒を圧縮し高温高圧のガス冷媒として吐出するものである。この圧縮機1には、圧縮機1を加熱する圧縮機加熱部10、圧縮機1の表面温度、すなわち、圧縮機温度を検出する圧縮機温度センサー21、及び、圧縮機1内の冷媒温度を検出する冷媒温度センサー22が設置されている。
 なお、圧縮機加熱部10、圧縮機温度センサー21及び冷媒温度センサー22は、それぞれ本発明における「圧縮機加熱手段」、「圧縮機温度検出手段」及び「冷媒温度検出手段」に相当する。
 四方弁2は、空気調和機50が冷房装置として動作する場合と暖房装置として動作する場合とによって、冷媒回路40における冷媒の流通経路を切り替えるものである。空気調和機50が冷房装置として動作する場合、四方弁2は、ガス側閉鎖弁9、四方弁2、圧縮機1、四方弁2、室外熱交換器3、膨張弁4、そして、液側閉鎖弁8の順に冷媒が流通するように冷媒経路を切り替える。一方、空気調和機50が暖房装置として動作する場合、四方弁2は、液側閉鎖弁8、膨張弁4、室外熱交換器3、四方弁2、圧縮機1、四方弁2、そして、ガス側閉鎖弁9の順に冷媒が流通するように冷媒経路を切り替える。
 なお、空気調和機が、例えば冷房装置専用又は暖房装置専用として用いる場合等、冷媒回路40の経路を切り替える必要がない場合は、四方弁2は備えられない構成としてもよい。
 室外熱交換器3は、例えば、フィンアンドチューブ型の熱交換器であり、流通する冷媒と外気との熱交換を実施する。また、室外熱交換器3の近傍に、熱交換を促進するための室外ファン11が設置されている。
 膨張弁4は、流入してきた冷媒を減圧し、室外熱交換器3、又は、後述する室内熱交換器5において冷媒が気化しやすい状態にするものである。
 液側閉鎖弁8及びガス側閉鎖弁9は、冷媒経路を開放又は閉鎖するものであるが、空気調和機50の設置後は、それぞれ開放状態となっている。また、液側閉鎖弁8には、前述の液側接続配管6が接続されており、ガス側閉鎖弁9には、前述のガス側接続配管7が接続されている。
 室外機51は、上記の室外冷媒回路41に加えて、制御装置31を備えている。
 制御装置31は、演算装置32を備えており、また、この制御装置31には前述した圧縮機加熱部10、圧縮機温度センサー21、冷媒温度センサー22及び圧力センサー25が接続されている。また、制御装置31は、圧縮機温度センサー21、冷媒温度センサー22及び圧力センサー25の検出値に基づいて、空気調和機50の運転制御、及び、後述するような圧縮機加熱部10による加熱動作を制御する。また、制御装置31は、空気調和機50が停止中、すなわち、圧縮機1の停止中に、後述する圧縮機1における電動機部62へ欠相状態で通電するように構成されている。具体的には、欠相状態で通電された電動機部62は回転せず、コイルへ電流が流れることでジュール熱が発生し、圧縮機1を加熱することができる。つまり、空気調和機50の停止中は、電動機部62が前述の圧縮機加熱部10となる。
 なお、圧縮機加熱部10は、電動機部62である構成に限られるものではなく、別途備えられる電気ヒーターであるものとしてもよい。
 室内冷媒回路42は、少なくとも、室内熱交換器5、並びに、前述のガス側接続配管7及び液側接続配管6とこの室内熱交換器5を接続する冷媒配管によって構成されている。
 なお、室内熱交換器5は、本発明における「利用側熱交換器」に相当する。
 室内熱交換器5は、例えば、フィンアンドチューブ型の熱交換器であり、流通する冷媒と室内空気との熱交換を実施する。また、室内熱交換器5の近傍に、熱交換を促進するための室内ファン12が設置されている。
(圧縮機1の内部構成及び動作)
 図2は、本発明の実施の形態1に係る空気調和機50における圧縮機1の内部構成図である。
 図2で示されるように、圧縮機1は、例えば、全密閉式圧縮機であり、少なくとも、圧縮機1の外殻である圧縮機シェル部61、後述する圧縮部63に冷媒の圧縮動作をさせる電動機部62、冷媒を圧縮する圧縮部63、電動機部62の回転動作に伴って回転する回転軸64、圧縮部63から圧縮されたガス冷媒を吐出する吐出部65、及び、圧縮部63に冷媒を吸入する吸入部66によって構成されている。また、圧縮機シェル部61にはその表面温度を検出する圧縮機温度センサー21が設置されており、圧縮機1の内部には、圧縮部63及び回転軸64に供給され動作の潤滑に利用される潤滑油100が貯留されている。
 電動機部62は、三相電動機によって構成されており、インバーター(図示せず)を通じて電力が供給される。このインバーターの出力周波数が変化すると、電動機部62の回転数が変化して、圧縮部63の圧縮容量が変化する。
 吸入部66から吸入された冷媒は、圧縮部63へ吸引後、圧縮される。この圧縮部63で圧縮された冷媒は、一度、圧縮機シェル部61内部に放出され、吐出部65から吐出される。このとき、圧縮機1内部は高圧となっている。
(圧縮機1の加熱動作における状態量の経示変化)
 図3は、本発明の実施の形態1に係る空気調和機50における停止中の圧縮機1の圧縮機温度、圧縮機1内の冷媒温度、及び、液冷媒量の経示変化を示す図である。
 空気調和機50が停止中、冷媒回路40における冷媒は、その構成要素のうち一番温度が低い部分で凝縮して溜まり込む。このため、圧縮機1の温度が冷媒の温度よりも低ければ、圧縮機1に冷媒が溜まり込む可能性がある。圧縮機1内で冷媒が凝縮して溜まると、潤滑油100へ冷媒が溶け込むことで潤滑油100の濃度が低下し、粘度も低下する。この状態で圧縮機1を起動すると、粘度の低い潤滑油100が圧縮部63及び回転軸64へ供給され、潤滑不良によって焼き付く危険がある。また、冷媒が溜まり込むことによって圧縮機1内の潤滑油100の液面が上昇すると、圧縮機1の起動負荷が増加し、空気調和機50の起動時に過電流とみなされ、空気調和機50が起動できない不具合が生じる。
 そこで、空気調和機50が停止中、すなわち、圧縮機1の停止中に、制御装置31が、圧縮機加熱部10を制御して圧縮機1を加熱することで、圧縮機1内の潤滑油100に溶け込んだ液冷媒の蒸発により潤滑油100に溶け込んでいる冷媒量が減少し、潤滑油100の濃度低下を抑制できる。
 ここで、図3は、空気調和機50が停止中に、液冷媒が溜まっている圧縮機1が圧縮機加熱部10によって加熱された場合の圧縮機温度、冷媒温度、及び、液冷媒量の経時変化を示したものであるが、ここでは、外気温度が変化していないとして、冷媒温度は一定としている。図3で示されるように、状態Iは、圧縮機1が圧縮機加熱部10によって加熱され始めてから、潤滑油100中の液冷媒の全てが気化されるまでの状態を示している。そして、状態IIは、潤滑油100中の液冷媒の全てが気化された後の状態を示している。
 状態Iにおいては、圧縮機1内の潤滑油100に液冷媒が溶け込んでおり、圧縮機加熱部10によって供給される熱量のほとんどは、その液冷媒の気化に寄与されるため、圧縮機温度センサー21によって検出される圧縮機温度はほとんど変化しない。しかし、液冷媒が全て気化して状態IIになると、圧縮機加熱部10によって供給される熱量は、圧縮機温度の上昇に寄与されるため、図3で示されるように、圧縮機温度は所定の傾きで増加する。つまり、制御装置31は、所定時間における圧縮機温度の変化率によって、圧縮機1内に液冷媒が溜まっているか否かを判断することができる。
(圧縮機1の加熱制御動作)
 図4は、本発明の実施の形態1に係る空気調和機50における圧縮機1の加熱制御動作を示すフローチャートである。
(S11)
 制御装置31は、空気調和機50が停止した後、電動機部62を欠相状態で通電させて圧縮機加熱部10として動作させ、圧縮機1を加熱させる。
(S12)
 制御装置31は、圧縮機温度センサー21によって検出された圧縮機温度、及び、冷媒温度センサー22によって検出された冷媒温度を受信する。
(S13)
 制御装置31における演算装置32は、受信した圧縮機温度に基づいて所定時間における圧縮機温度変化率Rc1、及び、受信した冷媒温度に基づいて所定時間における冷媒温度変化率Rr1を算出する。
(S14)
 制御装置31は、演算装置32によって算出された圧縮機温度変化率Rc1及び冷媒温度変化率Rr1の大小を判定する。その判定の結果、圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きい場合、ステップS15へ進む。そうでない場合、ステップS11へ戻る。
(S15)
 制御装置31は、圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きいと判定した場合、圧縮機1内の潤滑油100に含まれる液冷媒が全て気化したと判断し、電動機部62への通電を停止させ、圧縮機1の加熱動作を終了する。
(実施の形態1の効果)
 以上の動作のように、制御装置31が圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きいと判定した場合、圧縮機1内の潤滑油100に含まれる液冷媒が全て気化したと判断して、圧縮機1の加熱動作を終了させるので、圧縮機1内の潤滑油100に含まれる液冷媒が全て気化しているにも関わらず、圧縮機1を加熱してしまうことを防止でき、空気調和機50の停止中における電力、すなわち、待機電力の消費を抑制することができる。
 なお、上記の動作においては、図4におけるステップS14において、制御装置31が圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きいと判定した場合、圧縮機1の加熱動作を終了させるものとしているが、これに限定されるものではなく、圧縮機温度が冷媒温度よりも高い場合は、圧縮機1において冷媒寝込みは発生しないことから、ステップS14において、制御装置31が圧縮機温度変化率Rc1が冷媒温度変化率Rr1よりも大きいか否かを判定することに代えて、又は、それに加えて、圧縮機温度が冷媒温度よりも大きいか否かを判定し、圧縮機温度が冷媒温度よりも高い場合は、圧縮機加熱部10によって圧縮機1の加熱を実施しないようにするものとしてもよい。このようにすることで、圧縮機温度変化率Rc1又は冷媒温度変化率Rr1が小さく誤検知しやすい場合でも、圧縮機1内の冷媒が凝縮しない条件であるにも関わらず圧縮機1を加熱する動作を防止でき、空気調和機50の停止中における電力、すなわち、待機電力の消費を抑制することができる。
 また、本実施の形態においては、圧縮機1が停止中の場合、冷媒回路40の圧力はどこも同じとなる(均圧)。そして、冷媒回路40は閉回路であり、回路中に液冷媒が存在すれば、圧力センサー25によって検出された冷媒圧力は飽和圧力となり、図5で示されるように、飽和圧力Pxは飽和温度Txに換算できる。そして、冷媒回路40内の冷媒温度は飽和温度となっていることから、圧縮機1が停止中は、圧力センサー25によって検出された冷媒の飽和圧力を飽和温度に換算した値を冷媒温度として用いることができる。このとき、冷媒回路40に設けられた圧力センサー25によって検出された冷媒の飽和圧力を飽和温度に換算した値を、圧縮機1が停止中における冷媒温度として用いるものとしてもよく、このようにすることで、圧縮機1内の冷媒温度を直接検出する必要はないため、冷媒温度センサー22を不要とした簡素な構成によって圧縮機1の加熱制御を実施することができる。
 また、本実施の形態においては、室外熱交換器3は、冷媒を外気と熱交換させる熱交換器であるため、外気と接触する表面の面積が大きい。また、室外熱交換器3は、例えばアルミニウム又は銅等の熱伝導率が比較的高い金属からなる部材で構成されているのが通常であり、その熱容量が比較的小さい。このため、外気温度が変化すると、室外熱交換器3の温度もほとんど同時に変化する。つまり、室外熱交換器3の温度は、外気温と概ね同じ値となることから、圧縮機1が停止中は冷媒温度として用いることができる。したがって、一般的な空気調和機に既設であり、周囲温度及び室外熱交換器3の表面温度の少なくとも一つを検出する外気温度センサー(図示せず)によって検出される温度を、圧縮機1が停止中における圧縮機1内の冷媒温度として用いることにより、圧縮機1内の冷媒温度を直接検出する必要はないため、冷媒温度センサー22を不要とした簡素な構成によって圧縮機1の加熱制御を実施することができる。
 また、本実施の形態においては、前述したように圧縮機1内には潤滑油100が滞留している。圧縮機加熱部10によって潤滑油100が加熱されても、潤滑油100に冷媒が溶けている場合は、潤滑油中の冷媒の気化、及び、潤滑油100の比熱の影響によって、潤滑油100の温度は潤滑油100の油面より高い圧縮機1の表面温度よりも低いが、油面より低い圧縮機1の表面温度とほぼ一致する。逆に、潤滑油100中の冷媒が全て気化した場合、潤滑油100の温度が潤滑油100の油面よりも高い圧縮機1の表面温度とほぼ一致する。このとき、圧縮機温度センサー21を圧縮機1内の潤滑油100の油面よりも低い位置、特に、圧縮機1のシェル底表面に設置するものとしてもよい。このようにすることで、圧縮機温度センサー21によって、潤滑油100の温度をほぼ同一の温度を検出することができ、圧縮機温度を潤滑油100の温度とみなすことができるので、潤滑油100内の冷媒が気化したか否かを確実に確認することができる。
 さらに、本実施の形態においては、図1で示されるように、圧力センサー25が圧縮機1内、すなわち、圧縮機シェル部61内の圧力と同等又は近い値が検出できるように冷媒回路40に設置されている。ここで、圧縮機1のシェル内部は圧縮機の種類によって異なり、例えば高圧シェルタイプと呼ばれる圧縮機1内の圧力は吐出圧力に近く、低圧シェルタイプと呼ばれる圧縮機1内の圧力は吸入圧力に近い。つまり、図1で示される圧力センサー25の設置構成に限定せず、圧縮機1の吸入口及び吐出口側の双方に冷媒配管に圧力センサーを備える構成としてもよい。このようにすることによって、圧縮機1の種類に応じて圧縮機1内の正確な圧力を検出することができる。
実施の形態2.
 本実施の形態においては、実施の形態1に係る空気調和機50と相違する点を中心に説明する。
 本実施の形態に係る空気調和機50の構成は、実施の形態1に係る空気調和機50の構成と同様である。
(圧縮機1の加熱動作における状態量の経示変化)
 図6は、本発明の実施の形態2に係る空気調和機50における停止中の圧縮機1の圧縮機温度、圧縮機1内の液冷媒量、及び、潤滑油100の粘度の経示変化を示す図である。
 図6で示されるように、空気調和機50が停止中において、制御装置31が、圧縮機加熱部10によって圧縮機1を加熱させると、圧縮機1内の潤滑油100に溶け込んだ液冷媒量は気化して減少する。すると、液冷媒の気化によって圧縮機1内の潤滑油100の濃度が上昇し、それに伴い粘度(以下、潤滑油粘度という)も上昇する。ここで、圧縮機1において不具合が発生しないための潤滑油粘度を確保できる液冷媒量Mrmax(図6において点P1で示される冷媒量で、以下、許容液冷媒量という)が決まっている場合、この許容液冷媒量Mrmax以下の冷媒量となっていればよく、圧縮機1内の潤滑油100に液冷媒量が無い状態(状態II)となるまで圧縮機1を加熱する必要はない。このとき、許容液冷媒量Mrmaxとなっている場合の潤滑油100の濃度を、以下、限界潤滑油粘度(図6において点P2で示される粘度)という。つまり、圧縮機1内の潤滑油100に溶け込んでいる液冷媒量を推定することができれば、圧縮機1への加熱量を最小限に抑制することができる。
(圧縮機1が停止中に液冷媒が寝込む条件)
 図7は、本発明の実施の形態2に係る空気調和機50における圧縮機1の冷媒温度と圧縮機温度の経時変化を示す図である。図7を参照しながら、圧縮機1が停止中に液冷媒が寝込む現象について説明する。
 外気温度は周期的に変化し、圧縮機1が停止中の冷媒温度も外気温度変化に伴い変化するが、このとき、圧縮機温度の変化は圧縮機1の熱容量によって追従性が異なる。圧縮機温度は圧縮機1の熱容量の影響で冷媒温度に対して遅れて追従し、熱容量が小さい圧縮機1(例えば、軽い圧縮機1)は冷媒温度変化に追従しやすく、熱容量が大きい圧縮機1(例えば、重い圧縮機1)は冷媒温度変化に追従しにくく冷媒温度と圧縮機1温度の差が広がる。そして、圧縮機温度が冷媒温度よりも低いときに、圧縮機1内でガス冷媒の凝縮が起こり、圧縮機1内で液冷媒が寝込む。例えば、図7で示されるように冷媒温度が変化するものとし、圧縮機1が熱容量が小さいものである場合、点P3より前の経過時間においては、冷媒温度>圧縮機温度となり、圧縮機1内で液冷媒が寝込むが、点P3以降の経過時間においては、冷媒温度<圧縮機温度となり、圧縮機1内で冷媒は寝込まない。一方、圧縮機1が熱容量が大きいものである場合、点P4より前の経過時間においては、冷媒温度>圧縮機温度となり、圧縮機1内で液冷媒が寝込むが、点P4以降の経過時間においては、冷媒温度<圧縮機温度となり、圧縮機1内で冷媒は寝込まない。
(潤滑油100における液冷媒量の算出方法)
 次に、圧縮機1内の潤滑油100に溶け込んだ液冷媒量Mrと、圧縮機1内の冷媒温度Tr及び圧縮機1の圧縮機温度Tsとの関係について説明する。ここで、圧縮機1に冷媒が寝込む場合を想定し、圧縮機温度Tsは冷媒温度Trよりも小さい状態であると仮定する。
 圧縮機1内の冷媒と圧縮機1との熱交換量Qr、冷媒温度Tr及び圧縮機温度Tsの関係は下記の式(1)によって表される。
 Qr=A・K・(Tr-Ts)                   (1)
 ここで、Aは圧縮機1と圧縮機1内の冷媒とが熱交換する伝熱面積であり、Kは圧縮機1と圧縮機1内の冷媒との熱通過率を示す。
 一方、圧縮機温度Tsと冷媒温度Trとの温度差によって圧縮機1内の冷媒が凝縮することから、熱交換量Qrと時間変化dtにおける潤滑油100の液冷媒量変化dMrとの関係は、冷媒潜熱をdHとすると、下記の式(2)で表される。
 Qr=dMr・dH/dt                   (2)
 ここで、冷媒潜熱dHは、冷媒の物性によって定まる値である。
 上記の式(1)及び式(2)より、時間変化dtにおける液冷媒量変化dMr、冷媒温度Tr及び圧縮機温度Tsの関係は、下記の式(3)で表される。
 dMr/dt=F・(Tr-Ts)                 (3)
 Ts<Trの状態が、ある時刻T1(このときの液冷媒量をMr1とする)から時刻T2(このときの液冷媒量をMr2とする)まで続いたとすると、圧縮機1に寝込んだ液冷媒量Mr(=M2-M1)は上記の式(3)より、下記の式(4)で表される。
 Mr=Mr2-Mr1=∫F・(Tr-Ts)・dt         (4)
 ここで、Fは固定値であり、伝熱面積Aと熱通過率Kとの積を冷媒潜熱dHで除した値である。また、圧縮機1の種類が高圧シェルタイプである場合、停止時の液冷媒量を初期液冷媒量とし、この初期液冷媒量を液冷媒量Mr1とすると、液冷媒量Mr1は、停止直前の圧縮機1は高温高圧のため液冷媒が存在しないので0となる。つまり、圧縮機1内に寝込む液冷媒量は、圧縮機温度Tsが冷媒温度Trよりも低くなる(Ts<Tr)状態の時間及びその温度差に比例し、上記の式(4)から推定することが可能となる。
 なお、上記の説明のように、圧縮機1に寝込む液冷媒量Mrを上記の式(4)から推定するものとしているが、これに限定されるものではなく、例えば、以下のように推定するものとしてもよい。
 図8は、冷媒温度変化量ΔTrに対する圧縮機1内で寝込む液冷媒量Mrを示す図である。図7で示されたように、冷媒温度変化に伴う圧縮機温度変化は圧縮機1の熱容量によって異なり、熱容量が大きい圧縮機1ほど圧縮機温度と冷媒温度との差が大きくなるため、圧縮機1に寝込む液冷媒量Mrが多くなる。そして、冷媒温度変化量ΔTrが大きいほど、圧縮機温度が冷媒温度よりも低い状態、つまり圧縮機1内に液冷媒が寝込む時間が長く続くため、図8に示すように圧縮機1に寝込む液冷媒量Mrが多くなる。つまり、予め冷媒温度変化量ΔTrと圧縮機1内に寝込む液冷媒量Mrとの関係を把握することで、該当する圧縮機1内に寝込む液冷媒量Mrを推定することが可能となる。
(圧縮機加熱部10による加熱量Qh及び加熱時間dThの算出方法)
 一方、圧縮機1内の液冷媒量Mr2が液冷媒量Mr1へ変化(全て気化させる場合であればMr1=0)するために必要な熱量は、圧縮機加熱部10の加熱量Qh及び加熱時間dThを用いて、下記の式(5)で表される。
 Qh・dTh=(Mr2-Mr1)・dH           (5)
 上記のように、冷媒潜熱dHの値は冷媒の物性で決まることから、圧縮機加熱部10の加熱量Qh及び加熱時間dThを操作することによって、圧縮機1内の潤滑油100における液冷媒量Mrを所定量に調整することができる。例えば、加熱量Qhが一定の場合、上記の式(5)が成立するように加熱時間dThを定めることができる。そして、図9で示されるように、加熱時間dThは、蒸発させる液冷媒量Mrが多いほど長くなる。
(圧縮機1の加熱制御)
 図10は、本発明の実施の形態2に係る空気調和機50における圧縮機1の加熱制御動作を示すフローチャートである。
(S21)
 制御装置31は、空気調和機50が停止中において、電動機部62に通電させず、圧縮機加熱部10によって圧縮機1を加熱させていないものとする。
(S22)
 制御装置31は、圧縮機温度センサー21によって検出された圧縮機温度Ts、及び、冷媒温度センサー22によって検出された冷媒温度Trを受信する。そして、制御装置31における演算装置32は、Ts<Trの状態である経過時間dTをカウントする。
(S23)
 制御装置31における演算装置32は、圧縮機温度Ts、冷媒温度Tr及び経過時間dTに基づいて、上記の式(4)から液冷媒量Mrを算出する。
(S24)
 制御装置31は、液冷媒量Mrと、圧縮機1内の許容液冷媒量Mrmaxとを比較する。この比較の結果、液冷媒量Mrが許容液冷媒量Mrmax以下であると判定した場合、潤滑油100の濃度が高いことから、圧縮機1への圧縮機加熱部10による加熱は不要と判断し、ステップS21へ戻る。一方、液冷媒量Mrが許容液冷媒量Mrmaxよりも大きいと判定した場合、潤滑油100の濃度が低く、圧縮機1への圧縮機加熱部10による加熱が必要であると判断し、ステップS25へ進む。
(S25)
 制御装置31は、電動機部62を欠相状態で通電させて圧縮機加熱部10によって圧縮機1を加熱させる。このとき、圧縮機加熱部10による圧縮機1への加熱量Qhは固定であるものとする。
(S26)
 制御装置31における演算装置32は、ステップS23において算出して推定した液冷媒量Mr、目標とする液冷媒量Mr*、加熱量Qh、及び、冷媒潜熱dHに基づいて、上記の式(5)から加熱時間dThを決定する。
(S27)
 制御装置31は、圧縮機加熱部10によって圧縮機1の加熱し始めてからの加熱経過時間をカウントし、その加熱経過時間が加熱時間dThを超えたか否かを判定する。この判定の結果、加熱経過時間が加熱時間dTh以下である場合、圧縮機加熱部10による圧縮機1への加熱動作の継続が必要であると判断し、ステップS25へ戻る。一方、加熱経過時間が加熱時間dThを超えた場合、圧縮機加熱部10による圧縮機1への加熱動作は必要ないと判断し、ステップS28へ進む。
(S28)
 制御装置31は、電動機部62への通電を停止させ、圧縮機1の加熱動作を終了する。
 なお、ステップS25及びステップS26において、加熱量Qhは固定であるものとして、式(5)から加熱時間dThを決定する動作としたが、これに限定されるものではなく、加熱時間dThを固定であるものとして、式(5)から加熱量Qhを決定し、その加熱量Qhによって、固定値である加熱時間dThだけ、圧縮機1を加熱する動作としてもよい。
(実施の形態2の効果)
 以上の動作のように、圧縮機加熱部10の加熱量Qh、又は、加熱時間dThを調整して圧縮機1への加熱動作を制御することによって、圧縮機1内の潤滑油100に溶け込んだ液冷媒量が少なくなり、圧縮機1の加熱がこれ以上必要ないにも関わらず圧縮機1を加熱するような動作を防止することができ、空気調和機50の停止中における電力、つまり、待機電力の消費を抑制することができる。
 また、本実施の形態においては、圧縮機1内に液冷媒が寝込むのは圧縮機温度Tsが冷媒温度Trよりも低い条件の場合、すなわち、圧縮機1内に液冷媒が溜まる条件において、圧縮機1への加熱が必要と判断し、空気調和機50が停止中において、制御装置31によって圧縮機加熱部10による圧縮機1の加熱動作が実施されているので、圧縮機1内において液冷媒が溜まり込むことを抑制することができる。
 なお、本実施の形態においては、圧縮機温度センサー21によって検出された圧縮機温度Ts、及び、冷媒温度センサー22によって検出された冷媒温度Trによって液冷媒量Mrを推定する動作としているが、これに限られるものではなく、以下に説明するような、圧縮機温度センサー21によって検出された圧縮機温度、及び、圧力センサー25によって検出される冷媒圧力によって液冷媒量を推定する動作としてもよい。
 図11は、潤滑油100に対する冷媒の溶解特性を示す図である。この図11で示される溶解特性から、圧縮機1内の潤滑油100の濃度は、圧縮機温度センサー21によって検出され、潤滑油温度とみなすことができる圧縮機温度、及び、圧力センサー25によって検出された冷媒圧力に基づいて推定することができる。そして、圧縮機1内の潤滑油100の量、及び、上記の推定した潤滑油100の濃度から、液冷媒量を推定することができる。
 また、この推定した液冷媒量に基づいて、上記のステップS23で算出した液冷媒量を補正する動作としてもよく、この場合、圧縮機1内の液冷媒量を精度よく推定することができ、これによって、制御装置31は、圧縮機加熱部10による圧縮機1の加熱動作を精度よく制御することができる。
 本発明の活用例として、停止中に圧縮機を加熱する手段を備えた冷凍装置についても適用することができる。
 1 圧縮機、2 四方弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器、6 液側接続配管、7 ガス側接続配管、8 液側閉鎖弁、9 ガス側閉鎖弁、10 圧縮機加熱部、11 室外ファン、12 室内ファン、21 圧縮機温度センサー、22 冷媒温度センサー、25 圧力センサー、31 制御装置、32 演算装置、40 冷媒回路、41 室外冷媒回路、42 室内冷媒回路、50 空気調和機、51 室外機、52 室内機、61 圧縮機シェル部、62 電動機部、63 圧縮部、64 回転軸、65 吐出部、66 吸入部、100 潤滑油。

Claims (11)

  1.  圧縮機、熱源側熱交換器、膨張弁及び利用側熱交換器が冷媒配管によって順に環状に接続された冷媒回路と、
     前記圧縮機が停止中の状態において前記圧縮機を加熱する圧縮機加熱手段と、
     前記圧縮機の表面温度(以下、圧縮機温度という)を検出する圧縮機温度検出手段と、
     前記圧縮機内の冷媒温度を検出する冷媒温度検出手段と、
     前記圧縮機加熱手段による前記圧縮機への加熱動作を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記圧縮機温度に基づいて所定時間あたりの前記圧縮機温度の変化率(以下、圧縮機温度変化率という)を算出し、
     前記冷媒温度に基づいて所定時間あたりの前記冷媒温度の変化率(以下、冷媒温度変化率という)を算出し、
     前記圧縮機が停止中の状態において、前記圧縮機温度変化率が前記冷媒温度変化率よりも大きい場合、前記圧縮機加熱手段による前記圧縮機の加熱動作を実施させない
     ことを特徴とする空気調和機。
  2.  圧縮機、熱源側熱交換器、膨張弁及び利用側熱交換器が冷媒配管によって順に環状に接続された冷媒回路と、
     前記圧縮機が停止中の状態において前記圧縮機を加熱する圧縮機加熱手段と、
     前記圧縮機の表面温度(以下、圧縮機温度という)を検出する圧縮機温度検出手段と、
     前記圧縮機内の冷媒温度を検出する冷媒温度検出手段と、
     前記圧縮機加熱手段による前記圧縮機への加熱動作を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記圧縮機温度が前記冷媒温度よりも小さい場合に、前記圧縮機温度及び前記冷媒温度に基づいて前記圧縮機内の液冷媒の量(以下、液冷媒量という)を推定し、
     前記圧縮機が停止中の状態において、推定した前記液冷媒量に基づいて前記圧縮機加熱手段による前記圧縮機の加熱動作を制御する
     ことを特徴とする空気調和機。
  3.  圧縮機、熱源側熱交換器、膨張弁及び利用側熱交換器が冷媒配管によって順に管状に接続された冷媒回路と、
     前記圧縮機が停止中の状態において前記圧縮機を加熱する圧縮機加熱手段と、
     前記圧縮機内の冷媒温度を検出する冷媒温度検出手段と、
     前記圧縮機加熱手段による前記圧縮機への加熱動作を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記冷媒温度の変化量に基づいて前記圧縮機内の液冷媒の量(以下、液冷媒量という)を推定し、
     前記圧縮機が停止中の状態において、推定した前記液冷媒量に基づいて前記圧縮機加熱手段による前記圧縮機の加熱動作を制御する
     ことを特徴とする空気調和機。
  4.  前記圧縮機内の冷媒圧力を検出する冷媒圧力検出手段を備え、
     前記液冷媒は、前記圧縮機内に貯留されている潤滑油に溶け込んでおり、
     前記制御装置は、
     前記潤滑油に対する前記液冷媒の溶解特性、前記圧縮機温度、及び、前記冷媒圧力に基づいて、推定した前記液冷媒量に対して補正をし、最終的に前記液冷媒量を推定する
     ことを特徴とする請求項2記載の空気調和機。
  5.  前記制御装置は、
     前記圧縮機の液冷媒量が、推定した前記液冷媒量から、前記圧縮機の正常動作を確保するために許容しうる液冷媒量である許容液冷媒量以下になるように、前記圧縮機加熱手段による前記圧縮機の加熱動作を制御する
     ことを特徴とする請求項2~請求項4のいずれかに記載の空気調和機。
  6.  前記制御装置は、
     前記圧縮機加熱手段による所定の加熱量によって、前記圧縮機の液冷媒量が前記許容液冷媒量以下とするために必要な加熱時間を算出し、
     前記圧縮機加熱手段によって前記圧縮機の加熱動作を前記加熱時間だけ実施させる
     ことを特徴とする請求項5記載の空気調和機。
  7.  前記制御装置は、
     前記圧縮機加熱手段による所定の加熱時間によって、前記圧縮機の液冷媒量が前記許容液冷媒量以下とするために必要な加熱量を算出し、
     前記圧縮機加熱手段によって前記圧縮機の加熱動作を前記加熱量で前記加熱時間だけ実施させる
     ことを特徴とする請求項5記載の空気調和機。
  8.  前記制御装置は、前記圧縮機温度が前記冷媒温度よりも大きい場合、前記圧縮機加熱手段による前記圧縮機の加熱動作を実施させない
     ことを特徴とする請求項1、請求項2又は請求項4記載の空気調和機。
  9.  前記冷媒温度検出手段に代えて、前記熱源側熱交換器の周囲の温度及びその表面温度の少なくとも一つを検出する外気温度検出手段を備え、
     前記冷媒温度は、前記外気温度検出手段によって検出された温度とする
     ことを特徴とする請求項1~請求項8のいずれかに記載の空気調和機。
  10.  前記圧縮機温度検出手段は、前記圧縮機内に貯留されている潤滑油の液面よりも低い位置に設置された
     ことを特徴とする請求項1、請求項2、請求項4又は請求項8記載の空気調和機。
  11.  該冷媒温度検出手段に代えて、前記圧縮機内の冷媒圧力を検出する冷媒圧力検出手段を備え、
     前記制御装置は、
     前記冷媒温度検出手段によって検出された前記冷媒温度に代えて、前記冷媒圧力から換算した冷媒温度を利用して、前記圧縮機加熱手段による前記圧縮機の加熱動作を制御する
     ことを特徴とする請求項1記載の空気調和機。
PCT/JP2010/006534 2009-11-11 2010-11-08 空気調和機 WO2011058726A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080051025.4A CN102597659B (zh) 2009-11-11 2010-11-08 空调机
US13/504,321 US9528733B2 (en) 2009-11-11 2010-11-08 Air-conditioning apparatus
EP10829690.6A EP2500675B1 (en) 2009-11-11 2010-11-08 Air conditioner
AU2010317326A AU2010317326B2 (en) 2009-11-11 2010-11-08 Air conditioner
ES10829690T ES2869850T3 (es) 2009-11-11 2010-11-08 Acondicionador de aire
HK12110855.9A HK1170019A1 (en) 2009-11-11 2012-10-30 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-257800 2009-11-11
JP2009257800A JP2011102674A (ja) 2009-11-11 2009-11-11 空気調和機

Publications (1)

Publication Number Publication Date
WO2011058726A1 true WO2011058726A1 (ja) 2011-05-19

Family

ID=43991395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006534 WO2011058726A1 (ja) 2009-11-11 2010-11-08 空気調和機

Country Status (8)

Country Link
US (1) US9528733B2 (ja)
EP (1) EP2500675B1 (ja)
JP (1) JP2011102674A (ja)
CN (1) CN102597659B (ja)
AU (1) AU2010317326B2 (ja)
ES (1) ES2869850T3 (ja)
HK (1) HK1170019A1 (ja)
WO (1) WO2011058726A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019850A1 (de) * 2012-07-31 2014-02-06 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit verdunstungsschale
CN104321596A (zh) * 2012-06-20 2015-01-28 三菱电机株式会社 热泵装置、空调机和制冷机

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240392B2 (ja) * 2011-09-30 2013-07-17 ダイキン工業株式会社 冷凍装置
AU2011377665B2 (en) * 2011-09-30 2015-12-24 Mitsubishi Electric Corporation Heat pump device, heat pump system, and inverter control method
JP5611179B2 (ja) * 2011-11-28 2014-10-22 三菱電機株式会社 空気調和装置
WO2013081132A1 (ja) * 2011-11-30 2013-06-06 株式会社サムスン横浜研究所 空気調和機
CN103988030B (zh) * 2011-12-14 2017-07-11 三菱电机株式会社 热泵装置、具有热泵装置的空调机、热泵热水器、冰箱和制冷机
JP5921712B2 (ja) * 2012-11-22 2016-05-24 三菱電機株式会社 空気調和機及びその運転制御方法
CN102996413A (zh) * 2012-12-12 2013-03-27 广州松下空调器有限公司 空调的压缩机加热控制方法
CN103089598B (zh) * 2013-01-27 2015-06-10 宁波奥克斯空调有限公司 空调压缩机的控制方法
DE102013101502A1 (de) * 2013-02-14 2014-08-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Luftversorgungsanlage mit elektronischem Umrichter
JP5803958B2 (ja) * 2013-03-08 2015-11-04 ダイキン工業株式会社 冷凍装置
DE102013008268B4 (de) 2013-05-15 2023-06-07 Stiebel Eltron Gmbh & Co. Kg Kompressionskältemaschine
JP5959500B2 (ja) * 2013-12-27 2016-08-02 三菱電機株式会社 空気調和機及び空気調和機の制御方法
JP6476810B2 (ja) * 2014-12-10 2019-03-06 ダイキン工業株式会社 圧縮機の予熱装置
WO2017006452A1 (ja) * 2015-07-08 2017-01-12 三菱電機株式会社 空気調和装置
CN105466095B (zh) * 2016-01-25 2018-04-20 珠海格力电器股份有限公司 低温制冷空调机组电加热控制方法、装置和系统
CN113531803A (zh) * 2021-06-22 2021-10-22 青岛海尔空调器有限总公司 用于空调器保温棉预热的方法及装置、空调器和空调系统
CN114383334B (zh) * 2022-01-21 2023-09-22 珠海格力节能环保制冷技术研究中心有限公司 冷媒循环系统控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294772A (ja) * 1985-10-18 1987-05-01 株式会社ボッシュオートモーティブ システム 冷媒圧縮機の制御方法および装置
JPS6296791A (ja) * 1985-10-23 1987-05-06 Mitsubishi Electric Corp 冷媒圧縮機
JPH0618103A (ja) * 1992-06-30 1994-01-25 Toshiba Corp 空気調和機
JPH0828987A (ja) * 1994-07-20 1996-02-02 Daikin Ind Ltd 圧縮機の液冷媒排出装置
JPH09113039A (ja) 1995-10-16 1997-05-02 Matsushita Refrig Co Ltd 圧縮機の加熱装置
JP2000292014A (ja) 1999-04-05 2000-10-20 Mitsubishi Electric Corp 空気調和機用圧縮機の駆動制御装置および空気調和機用圧縮機の冷媒寝込み防止制御方法
JP2001073952A (ja) * 1999-09-03 2001-03-21 Yamaha Motor Co Ltd 圧縮機の加熱装置
JP2004028503A (ja) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd 車両輸送用冷凍装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
WO2008018381A1 (fr) * 2006-08-11 2008-02-14 Daikin Industries, Ltd. Mécanisme de réfrigération

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175913A (en) * 1935-12-18 1939-10-10 Nash Kelvinator Corp Motor-compressor unit for refrigerating apparatus
US3705499A (en) * 1971-09-23 1972-12-12 Carrier Corp Oil dilution control
JPS61276663A (ja) 1985-05-31 1986-12-06 松下電器産業株式会社 空気調和機の圧縮機予熱制御装置
JPH01300149A (ja) 1988-05-25 1989-12-04 Mitsubishi Electric Corp 空気調和機の制御装置
US5661982A (en) * 1989-05-01 1997-09-02 Samsung Electronics Co., Ltd. Electronic refrigerant compressor for a cooling system
US5012652A (en) * 1990-09-21 1991-05-07 Carrier Corporation Crankcase heater control for hermetic refrigerant compressors
JPH05172409A (ja) 1991-12-25 1993-07-09 Toshiba Corp 冷凍サイクル
US5371364A (en) * 1993-02-18 1994-12-06 Thermo King Corporation Practical implementations for ion mobility sensor
JP3138357B2 (ja) * 1993-04-19 2001-02-26 シャープ株式会社 洗濯機
JPH08261571A (ja) 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd 圧縮式冷凍装置の起動方法
JPH11294877A (ja) 1998-04-08 1999-10-29 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた冷凍サイクル装置
US7060192B2 (en) * 2002-05-09 2006-06-13 Lifescan, Inc. Methods of fabricating physiological sample collection devices
CN100432580C (zh) * 2004-11-29 2008-11-12 乐金电子(天津)电器有限公司 一拖多空调器的压缩机循环系统
JP4548189B2 (ja) * 2005-04-11 2010-09-22 アイシン精機株式会社 開放型コンプレッサにおける温度制御方法及び装置
JP4111246B2 (ja) 2006-08-11 2008-07-02 ダイキン工業株式会社 冷凍装置
CN101240942A (zh) * 2007-02-06 2008-08-13 惠州市思想科技有限公司 低温性能优异的高效节能热泵空调热水器
EP2215365B1 (en) * 2007-10-31 2017-01-18 Johnson Controls Technology Company Control system
TWI376474B (en) * 2009-02-02 2012-11-11 Ind Tech Res Inst System and method for real time monitoring and control of compressor oil return
US9664424B2 (en) * 2010-11-17 2017-05-30 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
JP5264871B2 (ja) * 2010-12-09 2013-08-14 三菱電機株式会社 空気調和機
US9482454B2 (en) * 2014-05-16 2016-11-01 Lennox Industries Inc. Compressor operation management in air conditioners

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294772A (ja) * 1985-10-18 1987-05-01 株式会社ボッシュオートモーティブ システム 冷媒圧縮機の制御方法および装置
JPS6296791A (ja) * 1985-10-23 1987-05-06 Mitsubishi Electric Corp 冷媒圧縮機
JPH0618103A (ja) * 1992-06-30 1994-01-25 Toshiba Corp 空気調和機
JPH0828987A (ja) * 1994-07-20 1996-02-02 Daikin Ind Ltd 圧縮機の液冷媒排出装置
JPH09113039A (ja) 1995-10-16 1997-05-02 Matsushita Refrig Co Ltd 圧縮機の加熱装置
JP2000292014A (ja) 1999-04-05 2000-10-20 Mitsubishi Electric Corp 空気調和機用圧縮機の駆動制御装置および空気調和機用圧縮機の冷媒寝込み防止制御方法
JP2001073952A (ja) * 1999-09-03 2001-03-21 Yamaha Motor Co Ltd 圧縮機の加熱装置
JP2004028503A (ja) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd 車両輸送用冷凍装置
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
WO2008018381A1 (fr) * 2006-08-11 2008-02-14 Daikin Industries, Ltd. Mécanisme de réfrigération

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321596A (zh) * 2012-06-20 2015-01-28 三菱电机株式会社 热泵装置、空调机和制冷机
WO2014019850A1 (de) * 2012-07-31 2014-02-06 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit verdunstungsschale
CN104508409A (zh) * 2012-07-31 2015-04-08 Bsh博世和西门子家用电器有限公司 具有蒸发壳的制冷器具
CN104508409B (zh) * 2012-07-31 2016-09-07 Bsh家用电器有限公司 具有蒸发壳的制冷器具

Also Published As

Publication number Publication date
EP2500675A4 (en) 2018-03-28
EP2500675B1 (en) 2021-04-14
US20120210742A1 (en) 2012-08-23
US9528733B2 (en) 2016-12-27
HK1170019A1 (en) 2013-02-15
AU2010317326A1 (en) 2012-05-31
CN102597659B (zh) 2015-01-07
AU2010317326B2 (en) 2013-02-14
ES2869850T3 (es) 2021-10-26
JP2011102674A (ja) 2011-05-26
CN102597659A (zh) 2012-07-18
EP2500675A1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2011058726A1 (ja) 空気調和機
JP5264871B2 (ja) 空気調和機
JP5734306B2 (ja) 空気調和機
KR101044128B1 (ko) 냉동장치
JP5404110B2 (ja) 空気調和装置
JP3988779B2 (ja) 冷凍装置
JP4158820B2 (ja) 電力量制御装置
JP4111246B2 (ja) 冷凍装置
JP2014031982A (ja) 二元冷凍装置
JP2010276276A (ja) 空気調和装置
WO2018138796A9 (ja) 冷凍サイクル装置
JP2016041987A (ja) 圧縮機/ポンプ切換式の冷却装置
JP5697580B2 (ja) 空気調和機
JP2011007482A (ja) 空気調和装置
US20220307746A1 (en) Method for managing a heat pump operating with a low environmental impact operating fluid
WO2018198220A1 (ja) 冷凍装置
JP2012117727A (ja) 空気調和装置
JP2009250140A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051025.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504321

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010317326

Country of ref document: AU

Ref document number: 2010829690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4199/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010317326

Country of ref document: AU

Date of ref document: 20101108

Kind code of ref document: A