WO2017006452A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2017006452A1
WO2017006452A1 PCT/JP2015/069604 JP2015069604W WO2017006452A1 WO 2017006452 A1 WO2017006452 A1 WO 2017006452A1 JP 2015069604 W JP2015069604 W JP 2015069604W WO 2017006452 A1 WO2017006452 A1 WO 2017006452A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
oil concentration
control device
gas refrigerant
Prior art date
Application number
PCT/JP2015/069604
Other languages
English (en)
French (fr)
Inventor
利徳 大手
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15871308.1A priority Critical patent/EP3136010B1/en
Priority to PCT/JP2015/069604 priority patent/WO2017006452A1/ja
Priority to US15/559,628 priority patent/US10598413B2/en
Priority to JP2017527027A priority patent/JP6309169B2/ja
Priority to CN201610169164.6A priority patent/CN106338160B/zh
Priority to CN201620228411.0U priority patent/CN205580036U/zh
Publication of WO2017006452A1 publication Critical patent/WO2017006452A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner that ensures the oil concentration of a compressor under the condition of thermo-off.
  • Refrigerator oil is sealed inside the compressor of the air conditioner to lubricate the drive unit such as the motor shaft.
  • the drive unit such as the motor shaft.
  • the refrigerating machine oil is mixed with the refrigerant and diluted. If the operation is continued for a long time at a low oil concentration, the motor shaft or the like becomes insufficiently lubricated, which may cause wear or seizure and cause problems.
  • the compressor is warmed, and the refrigerant mixed in the refrigeration oil is evaporated and discharged, so that the oil concentration necessary for operation is ensured.
  • the compressor repeatedly stops and restarts before the oil concentration is secured under conditions where the thermostat is frequently turned off, such as when the ambient temperature inside the air-conditioned room is close to the set temperature of the air conditioner. In this case, repeated operation is continued with a low oil concentration, and as a result, the motor shaft of the compressor may be worn or seized, leading to failure.
  • This invention is for solving the said subject, and is providing the air conditioning apparatus which ensures the oil density
  • An air conditioner controls a refrigerant circuit in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected so that the refrigerant circulates in a refrigerant pipe, and an operating state of the compressor.
  • a control device wherein the control device estimates an oil concentration inside the compressor from a temperature of the discharge gas refrigerant of the compressor and a pressure of the discharge gas refrigerant of the compressor, and the oil concentration is an oil concentration. When the temperature is below the reference value, the compressor continues to operate even if the thermo-off condition is satisfied.
  • the control device continues the operation of the compressor even if the thermo-off condition is satisfied.
  • the compressor is heated and the refrigerant mixed in the refrigerating machine oil evaporates to ensure the degree of superheat of the discharged gas refrigerant. Therefore, under the condition that the thermo-off condition is frequently satisfied, the ON / OFF operation is not repeatedly performed for a long time while the low oil concentration is poorly lubricated. Therefore, the oil concentration of the compressor can be ensured under the situation where the thermo-off condition is satisfied. For this reason, the reliability of a compressor can be improved.
  • FIG. 1 is an overall configuration diagram showing an air conditioner 1 according to Embodiment 1 of the present invention.
  • the refrigerant circulates in the refrigerant pipe 7 through the compressor 2, the four-way valve 3, the indoor heat exchanger 4, the expansion valve 5, the outdoor heat exchanger 6, and an accumulator (not shown).
  • the refrigerant circuit 8 connected in this way is provided.
  • the refrigerant circuit 8 includes a bypass pipe 9 that connects the refrigerant pipe 7 on the discharge side of the compressor 2 and the refrigerant pipe 7 on the suction side of the compressor 2, and a bypass valve 10 provided in the middle of the bypass pipe 9. It is equipped with.
  • the air conditioner 1 includes an indoor unit 11 and an outdoor unit 12.
  • the indoor unit 11 of the air conditioner 1 includes an indoor heat exchanger 4, a blower 13 that blows indoor air to the indoor heat exchanger 4, and an expansion valve 5.
  • the indoor heat exchanger 4 is composed of, for example, a plate heat exchanger.
  • the expansion valve 5 depressurizes the high-pressure refrigerant into a low-pressure two-phase refrigerant.
  • the indoor unit 11 of the air conditioning apparatus 1 includes an indoor temperature sensor 14 that detects the indoor temperature.
  • the outdoor unit 12 of the air conditioner 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 6, and a blower 15 that blows outside air to the outdoor heat exchanger 6.
  • the compressor 2 is composed of an inverter compressor or the like whose capacity can be controlled, and sucks low-pressure low-pressure gas refrigerant, compresses it, and discharges it into a high-temperature high-pressure gas refrigerant state.
  • Refrigerating machine oil is enclosed in the compressor 2 in order to lubricate a drive unit such as a motor shaft. Refrigerant oil dissolves in the refrigeration oil.
  • the four-way valve 3 switches the refrigerant flow path through the refrigerant circuit 8 between the cooling operation and the heating operation.
  • the outdoor heat exchanger 6 is composed of, for example, a plate fin heat exchanger, and causes the refrigerant to evaporate by exchanging heat between the refrigerant and the outside air.
  • the outdoor unit 12 of the air conditioner 1 has a temperature sensor 16 for detecting the temperature of the discharge gas refrigerant of the compressor 2 and the pressure of the discharge gas refrigerant of the compressor 2 on the surface of the compressor 2 or the discharge pipe. And a pressure sensor 17 for detection.
  • the outdoor unit 12 of the air conditioner 1 includes a control unit 18 that controls the air conditioner 1 such as driving an actuator including the compressor 2, the fans 13 and 15, the bypass valve 10, and the four-way valve 3.
  • Detection signals from the indoor temperature sensor 14, the temperature sensor 16, and the pressure sensor 17 are input to the control device 18.
  • the control device 18 is constituted by a microcomputer or a DSP (Digital Signal Processor).
  • the control device 18 acquires the room temperature from the room temperature sensor 14, stops the operation of the compressor 2 when the room temperature approaches the set temperature, and performs a thermo-off in which only the blower 13 blows air.
  • control apparatus 18 acquires the temperature of the discharge gas refrigerant of the compressor 2 from the temperature sensor 16, acquires the pressure of the discharge gas refrigerant of the compressor 2 from the pressure sensor 17, and the compressor 2 based on these acquired values. And the opening and closing of the bypass valve 10 are controlled. Therefore, the control device 18 stores a program corresponding to the flowchart of FIG. 2, and stores a map of FIG.
  • the control device 18 switches the four-way valve 3 to the cooling operation, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure gas refrigerant and flows into the outdoor heat exchanger 6 through the four-way valve 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 6 is radiated by exchanging heat with outdoor air that passes through the outdoor heat exchanger 6, and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 6 is decompressed by the expansion valve 5, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 4.
  • the gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 4 is heat-exchanged with the indoor air passing through the indoor heat exchanger 4, and cools the indoor air to become a low-temperature and low-pressure gas refrigerant and sucked into the compressor 2. Is done.
  • the control device 18 switches the four-way valve 3 to the heating operation, the refrigerant is compressed by the compressor 2 to become a high-temperature and high-pressure gas refrigerant in the same manner as described above, and the indoor heat exchanger 4 is passed through the four-way valve 3. Flow into.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 4 is heat-exchanged with indoor air that passes through the indoor heat exchanger 4, and warms the indoor air to become high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 4 is decompressed by the expansion valve 5, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 6.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 6 is heat-exchanged with outdoor air that passes through the outdoor heat exchanger 6 and is sucked into the compressor 2 as a low-temperature and low-pressure gas refrigerant.
  • FIG. 2 is a flowchart showing compressor control of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a relationship between the degree of superheat of the gas refrigerant and the refrigerator oil concentration according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing the relationship between the temperature and pressure of the ether-based refrigerating machine oil and the R410A refrigerant according to Embodiment 1 of the present invention.
  • the compressor control of the air conditioner 1 will be described with reference to FIGS.
  • the control device 18 determines whether or not the thermo-off condition is satisfied in step S1.
  • the thermo-off condition is satisfied when the room temperature acquired from the room temperature sensor 14 approaches the set temperature.
  • the thermo-off normally, the operation of the compressor 2 is stopped and only the blower 13 blows air.
  • the following control is performed. If the thermo-off condition is satisfied in step S1, the process proceeds to step S2. If the thermo-off condition is not satisfied in step S1, this routine is terminated.
  • step S2 the control device 18 calculates the degree of superheat of the discharged gas refrigerant.
  • the degree of superheat of the discharge gas refrigerant is calculated as follows. First, the pressure of the discharge gas refrigerant is acquired from the pressure sensor 17, and the saturation pressure is read as temperature in the pressure temperature table. Next, the temperature of the discharge gas refrigerant is acquired from the temperature sensor 16, and the degree of superheat, which is the difference from the read temperature, is obtained.
  • step S3 the control device 18 estimates the oil concentration inside the compressor 2 from the degree of superheat calculated in step S2.
  • FIG. 3 shows an example of the correlation between the degree of superheat of the R410A refrigerant and the concentration of the ether-based refrigerator oil. The correlation shown in FIG. 3 is created based on the physical property data shown in FIG.
  • step S4 the control device 18 determines whether or not the oil concentration inside the compressor 2 estimated in step S3 is below the oil concentration reference value. Specifically, the control device 18 determines whether or not the oil concentration is less than about 70% shown in FIG. 3 that is necessary to satisfactorily lubricate the drive unit of the compressor 2. When the oil concentration is lower than the oil concentration reference value in step S4, the process proceeds to step S5. When the oil concentration is equal to or higher than the oil concentration reference value in step S4, the process proceeds to step S7.
  • step S5 the control device 18 continues the operation of the compressor 2. At the same time, the control device 18 opens the bypass valve 10.
  • the control device 18 continues the operation of the compressor 2 by the process of step S5, so that the compressor 2 is warmed and the oil concentration is increased, so that the lubricity of the drive unit of the compressor 2 can be improved.
  • step S5 the process proceeds to step S6.
  • step S6 the control device 18 determines whether or not 10 minutes have elapsed since the operation of the compressor 2 was continued. Delaying the thermo-off and continuing the operation of the compressor 2 may cause the room to become too cold or too warm, resulting in a decrease in comfort. For this reason, the operation duration time of the compressor 2 has an upper limit of a certain time such as up to 10 minutes. If 10 minutes have passed in step S6, the process proceeds to step S7. If 10 minutes have not elapsed in step S6, the process returns to step S5.
  • step S7 the control device 18 stops the operation of the compressor 2. At the same time, the control device 18 closes the bypass valve 10. After the process of step S7, this routine ends.
  • FIG. FIG. 5 is a flowchart showing compressor control of the air-conditioning apparatus 1 according to Embodiment 2 of the present invention.
  • the duplicate description described in the first embodiment is omitted. From the correlation of FIG. 3, if the superheat degree is 10 ° C. or higher, the oil concentration is considered to exceed about 70%. For this reason, the control device 18 may decide to continue the operation using the degree of superheat of 10 ° C. or more directly as a determination index without converting the degree of superheat into the oil concentration. Thereby, the calculation process in the control apparatus 18 can be simplified.
  • step S4a the control device 18 determines whether or not the degree of superheat calculated in step S2 is below the oil concentration reference value. Specifically, the control device 18 determines whether or not the degree of superheat is below 10 ° C. When the degree of superheat is less than 10 ° C., the oil concentration necessary to satisfactorily lubricate the drive unit of the compressor 2 corresponds to about 70% shown in FIG.
  • step S5 the process proceeds to step S5.
  • step S7 it is the same as that of Embodiment 1.
  • the control device 18 estimates the oil concentration inside the compressor 2 from the temperature of the discharge gas refrigerant of the compressor 2 and the pressure of the discharge gas refrigerant of the compressor 2, and the oil concentration Is below the oil concentration reference value, the operation of the compressor 2 is continued even if the thermo-off condition is satisfied.
  • the compressor 2 is heated, and the refrigerant mixed in the refrigerating machine oil evaporates to ensure the degree of superheat of the discharged gas refrigerant. Therefore, under the condition that the thermo-off condition is frequently satisfied, the ON / OFF operation is not repeatedly performed for a long time while the low oil concentration is poorly lubricated. Therefore, the oil concentration of the compressor 2 can be ensured under the situation where the thermo-off condition is satisfied. For this reason, the reliability of the compressor 2 can be improved.
  • the control device 18 continues the operation of the compressor 2 even if the thermo-off condition is satisfied, and opens the bypass valve 10 to limit the operation capacity. According to this configuration, when the thermo-off condition is satisfied and the operation of the compressor 2 is continued, the air-conditioning capability of the air conditioner 1 can be reduced to suppress over-cooling or over-warming.
  • the control device 18 calculates the superheat degree of the discharge gas refrigerant from the temperature of the discharge gas refrigerant of the compressor 2 and the pressure of the discharge gas refrigerant of the compressor 2, and calculates the oil concentration and the superheat degree of the discharge gas refrigerant of the compressor 2.
  • the oil concentration is estimated based on the predetermined correlation shown in FIG. 3 and the calculated degree of superheat. According to this configuration, the oil concentration in the compressor 2 can be estimated from the temperature of the discharge gas refrigerant of the compressor 2 and the pressure of the discharge gas refrigerant.
  • the control device 18 calculates the superheat degree of the discharge gas refrigerant from the temperature of the discharge gas refrigerant of the compressor 2 and the pressure of the discharge gas refrigerant of the compressor 2, and the calculated superheat degree corresponds to the oil concentration reference value.
  • the temperature is below the reference value, the compressor 2 is kept running even if the thermo-off condition is satisfied. According to this configuration, the calculation process in the control device 18 can be simplified.
  • the control device 18 sets an upper limit on the time for which the operation of the compressor 2 is continued even if the thermo-off condition is satisfied. According to this configuration, when the thermo-off condition is satisfied and the operation of the compressor 2 is continued, it is possible to suppress over-cooling or over-warming due to the continued operation of the air conditioner 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

サーモオフ条件が成立する状況下で、圧縮機の油濃度を確保する。圧縮機、室内熱交換器、膨張弁および室外熱交換器を冷媒配管にて冷媒が循環するように接続した冷媒回路と、圧縮機の運転状態を制御する制御装置と、を備え、制御装置は、圧縮機の吐出ガス冷媒の温度および吐出ガス冷媒の圧力から圧縮機の内部の油濃度を推測し、油濃度が油濃度基準値を下回る場合に、サーモオフ条件が成立しても圧縮機の運転を継続させる。

Description

空気調和装置
 本発明は、サーモオフする状況下で圧縮機の油濃度を確保する空気調和装置に関するものである。
 空気調和装置の圧縮機内部にはモータ軸などの駆動部を潤滑するため、冷凍機油が封入されている。圧縮機の起動時に湿り蒸気状態の冷媒を吸入するような場合あるいは停止中に冷媒が冷凍機油に溶け込む寝込み状態になった場合に、冷凍機油が冷媒と混ざって希釈されてしまう。油濃度の低い状態で長時間運転を続けると、モータ軸などが潤滑不十分となり、摩耗あるいは焼き付けを起こし不具合を発生させる可能性がある。通常は起動後しばらく運転すると圧縮機が温まり、冷凍機油に混ざっている冷媒が蒸発して排出されるため、運転に必要な油濃度は確保される。
 圧縮機内の冷凍機油の濃度を検出し、その濃度に応じて圧縮機の運転を適性に制御する技術が知られている(たとえば、特許文献1参照)。
特開2010-38503号公報
 しかしながら、空調している室内側の周囲温度と空気調和装置の設定温度とが近い場合など、頻繁にサーモオフする条件下では油濃度が確保される前に、圧縮機が停止と再起動を繰り返す。この場合には、低い油濃度のまま繰り返し運転を継続することになり、その結果、圧縮機のモータ軸などが摩耗や焼き付けを起こして故障に至る可能性がある。
 本発明は、上記課題を解決するためのものであり、サーモオフ条件が成立する状況下で、圧縮機の油濃度を確保する空気調和装置を提供することにある。
 本発明に係る空気調和装置は、圧縮機、室内熱交換器、膨張弁および室外熱交換器を冷媒配管にて冷媒が循環するように接続した冷媒回路と、前記圧縮機の運転状態を制御する制御装置と、を備え、前記制御装置は、前記圧縮機の吐出ガス冷媒の温度および前記圧縮機の吐出ガス冷媒の圧力から前記圧縮機の内部の油濃度を推測し、前記油濃度が油濃度基準値を下回る場合に、サーモオフ条件が成立しても前記圧縮機の運転を継続させるものである。
 本発明に係る空気調和装置によれば、制御装置は、サーモオフ条件が成立しても圧縮機の運転を継続させる。これにより、圧縮機が加熱され、冷凍機油に混ざり込んだ冷媒が蒸発して吐出ガス冷媒の過熱度が確保される。よって、頻繁にサーモオフ条件が成立する状況下で、潤滑の悪い低油濃度の状態となったまま、長時間繰り返しオン/オフ運転することがない。したがって、サーモオフ条件が成立する状況下で、圧縮機の油濃度を確保することができる。このため、圧縮機の信頼性を向上させることができる。
本発明の実施の形態1に係る空気調和装置を示す全体構成図である。 本発明の実施の形態1に係る空気調和装置の圧縮機制御を示すフローチャートである。 本発明の実施の形態1に係るガス冷媒の過熱度と冷凍機油濃度との関係を示す図である。 本発明の実施の形態1に係るエーテル系冷凍機油とR410A冷媒との温度および圧力の関係を示す図である。 本発明の実施の形態2に係る空気調和装置の圧縮機制御を示すフローチャートである。
 以下、図面に基づいて本発明の実施の形態について説明する。
 なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
 さらに、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置1を示す全体構成図である。
 空気調和装置1は、圧縮機2と、四方弁3と、室内熱交換器4と、膨張弁5と、室外熱交換器6と、図示しないアキュムレータと、を冷媒配管7にて冷媒が循環するように接続した冷媒回路8を備えている。
 また、冷媒回路8は、圧縮機2の吐出側の冷媒配管7と圧縮機2の吸込側の冷媒配管7とを接続したバイパス管9と、バイパス管9の途中に設けられたバイパス弁10と、を備えている。
 空気調和装置1は、室内機11と室外機12とを備えている。
 空気調和装置1の室内機11は、室内熱交換器4と、室内熱交換器4に室内空気を送風する送風機13と、膨張弁5と、を有する。
 室内熱交換器4は、たとえばプレート式熱交換器で構成される。
 膨張弁5は、高圧冷媒を減圧させて低圧二相冷媒にする。
 また、空気調和装置1の室内機11は、室内温度を検出する室内温度センサ14を有する。
 空気調和装置1の室外機12は、圧縮機2と、四方弁3と、室外熱交換器6と、室外熱交換器6に外気を送風する送風機15と、を有する。
 圧縮機2は、容量制御可能なインバータ圧縮機などで構成され、低温低圧ガス冷媒を吸引し、圧縮して高温高圧ガス冷媒の状態にして吐出する。圧縮機2の内部にはモータ軸などの駆動部を潤滑するため、冷凍機油が封入されている。冷凍機油には、冷媒が溶け込む。
 四方弁3は、冷房運転と暖房運転とで冷媒回路8を流通する冷媒の流通経路を切り替える。
 室外熱交換器6は、たとえばプレートフィン式熱交換器などで構成され、冷媒と外気とで熱交換させて冷媒を蒸発させる。
 また、空気調和装置1の室外機12は、圧縮機2の表面または吐出配管には、圧縮機2の吐出ガス冷媒の温度を検出する温度センサ16と、圧縮機2の吐出ガス冷媒の圧力を検出する圧力センサ17と、を有する。
 空気調和装置1の室外機12は、圧縮機2と送風機13、15とバイパス弁10と四方弁3とを含むアクチュエーターの駆動をなどの空気調和装置1の制御を担う制御装置18を有する。制御装置18には、室内温度センサ14、温度センサ16および圧力センサ17の検出信号が入力される。
 制御装置18は、マイクロコンピュータまたはDSP(Digital Signal Processor)などで構成される。
 制御装置18は、室内温度センサ14から室内温度を取得し、室内温度が設定温度に近づくと圧縮機2の運転を停止し、送風機13の送風のみを実施するサーモオフを実施する。
 また、制御装置18は、温度センサ16から圧縮機2の吐出ガス冷媒の温度を取得し、圧力センサ17から圧縮機2の吐出ガス冷媒の圧力を取得し、これらの取得値に基づき圧縮機2の運転およびバイパス弁10の開閉を制御する。このため、制御装置18には、図2のフローチャートに対応したプログラムが記憶され、図3のマップが記憶されている。
 次に、空気調和装置1の冷房運転時の動作例について説明する。制御装置18によって四方弁3が冷房運転に切り替えられた場合には、冷媒が圧縮機2により圧縮されて高温高圧のガス冷媒となり、四方弁3を介して室外熱交換器6に流入する。室外熱交換器6に流入した高温高圧のガス冷媒は、室外熱交換器6を通過する室外空気と熱交換して放熱され、高圧の液冷媒となって流出する。室外熱交換器6から流出した高圧の液冷媒は、膨張弁5で減圧され、低圧の気液二相の冷媒となり、室内熱交換器4に流入する。室内熱交換器4に流入した気液二相の冷媒は、室内熱交換器4を通過する室内空気と熱交換され、室内空気を冷却して低温低圧のガス冷媒となって圧縮機2に吸入される。
 次に、空気調和装置1の暖房運転時の動作例について説明する。制御装置18によって四方弁3が暖房運転に切り替えられた場合には、冷媒は、上記と同様に圧縮機2により圧縮されて高温高圧のガス冷媒となり、四方弁3を介して室内熱交換器4に流入する。室内熱交換器4に流入した高温高圧のガス冷媒は、室内熱交換器4を通過する室内空気と熱交換され、室内空気を暖めて高圧の液冷媒となる。室内熱交換器4から流出した高圧の液冷媒は、膨張弁5で減圧され、低圧の気液二相の冷媒となり、室外熱交換器6に流入する。室外熱交換器6に流入した低圧の気液二相の冷媒は、室外熱交換器6を通過する室外空気と熱交換され、低温低圧のガス冷媒となって圧縮機2に吸入される。
 図2は、本発明の実施の形態1に係る空気調和装置1の圧縮機制御を示すフローチャートである。図3は、本発明の実施の形態1に係るガス冷媒の過熱度と冷凍機油濃度との関係を示す図である。図4は、本発明の実施の形態1に係るエーテル系冷凍機油とR410A冷媒の温度および圧力の関係を示す図である。
 図2~図4に基づいて空気調和装置1の圧縮機制御を説明する。
 制御装置18は、ステップS1にてサーモオフ条件が成立するか否かを判断する。
 サーモオフ条件は、室内温度センサ14から取得した室内温度が設定温度に近づいたときに、条件成立となる。サーモオフが実施されると、通常は、圧縮機2の運転を停止し、送風機13の送風のみを実施する。しかし、実施の形態1では、以下の制御を実施する。
 ステップS1にてサーモオフ条件が成立する場合には、ステップS2に移行する。ステップS1にてサーモオフ条件が成立しない場合には、本ルーチンを終了する。
 制御装置18は、ステップS2では、吐出ガス冷媒の過熱度を算出する。
 吐出ガス冷媒の過熱度は、以下のようにして算出する。まず、圧力センサ17から吐出ガス冷媒の圧力を取得し、その飽和圧力を圧力温度表で温度に読み替える。次に、温度センサ16から吐出ガス冷媒の温度を取得し、読み替えた温度との差である過熱度を求める。
 制御装置18は、ステップS3では、ステップS2にて算出した過熱度から圧縮機2の内部の油濃度を推測する。
 吐出ガス冷媒の過熱度と油濃度には、図3のような相関関係があり、過熱度が高い程、冷凍機油に溶け込む冷媒は蒸発して圧縮機2の内部の油濃度が増加する。
 ここで、図3は、R410A冷媒の過熱度とエーテル系冷凍機油の濃度の相関関係の一例を示している。図3の相関関係は、図4の物性データを元にして作成されている。
 制御装置18は、ステップS4では、ステップS3にて推測した圧縮機2の内部の油濃度が油濃度基準値を下回るか否かを判断する。
 具体的には、制御装置18は、油濃度が圧縮機2の駆動部を良好に潤滑するのに必要な図3に示す70%程度を下回るか否かを判断する。
 ステップS4にて油濃度が油濃度基準値を下回る場合には、ステップS5に移行する。ステップS4にて油濃度が油濃度基準値以上になる場合には、ステップS7に移行する。
 制御装置18は、ステップS5では、圧縮機2の運転を継続させる。制御装置18は、同時に、バイパス弁10を開く。
 室内側の周囲温度と空気調和装置1の設定温度が近い場合は、サーモオフとサーモオンとを繰り返す可能性が高い。そのような状況では、圧縮機2内の油濃度が十分確保できない状態で断続的に運転することになる。そして、その状態が長時間続いた場合は、圧縮機2の駆動部を劣化あるいは破損させる可能性がある。制御装置18は、ステップS5の処理により圧縮機2の運転を継続させることで、圧縮機2が暖まって油濃度が上がるため、圧縮機2の駆動部の潤滑性を向上させることができる。
 また、サーモオフ条件の成立時に、圧縮機2の運転を継続すると同時に、冷媒回路8のバイパス弁10を開き、冷媒回路8の運転容量制限を行うことで、空調能力を落とし、冷え過ぎあるいは暖まり過ぎを抑える。
 ステップS5の処理の後、ステップS6に移行する。
 制御装置18は、ステップS6では、圧縮機2の運転を継続させてから10分経過したか否かを判断する。
 サーモオフを遅らせて圧縮機2の運転を継続することは、室内が冷え過ぎあるいは暖まり過ぎの状態になり、快適性が悪化する懸念がある。このため、圧縮機2の運転継続時間には、10分までといった一定時間の上限を設けている。
 ステップS6にて10分経過した場合には、ステップS7に移行する。ステップS6にて10分未経過の場合には、ステップS5に戻る。
 制御装置18は、ステップS7では、圧縮機2の運転を停止させる。制御装置18は、同時に、バイパス弁10を閉じる。
 ステップS7の処理の後、本ルーチンを終了する。
実施の形態2.
 図5は、本発明の実施の形態2に係る空気調和装置1の圧縮機制御を示すフローチャートである。
 なお、実施の形態2では、実施の形態1で説明した重複する説明を省略する。
 図3の相関関係から過熱度が10℃以上であれば、油濃度が70%程度を上回ると考えられる。このことから、制御装置18では、過熱度を油濃度に変換することなく、直接過熱度の10℃以上を判断指標として運転継続を決めてもよい。これにより、制御装置18内での計算処理を簡略化することができる。
 制御装置18は、ステップS2の処理の後、ステップS4aに移行する。
 制御装置18は、ステップS4aでは、ステップS2にて算出した過熱度が油濃度基準値を下回るか否かを判断する。
 具体的には、制御装置18は、過熱度が10℃を下回るか否かを判断する。過熱度が10℃を下回る場合には、圧縮機2の駆動部を良好に潤滑するのに必要な油濃度であると図3に示す70%程度に相当する。
 ステップS4aにて過熱度が過熱度基準値を下回る場合には、ステップS5に移行する。ステップS4aにて過熱度が過熱度基準値以上になる場合には、ステップS7に移行する。
 以下、実施の形態1と同様である。
 以上の実施の形態1、2によると、制御装置18は、圧縮機2の吐出ガス冷媒の温度および圧縮機2の吐出ガス冷媒の圧力から圧縮機2の内部の油濃度を推測し、油濃度が油濃度基準値を下回る場合に、サーモオフ条件が成立しても圧縮機2の運転を継続させる。この構成によると、圧縮機2が加熱され、冷凍機油に混ざり込んだ冷媒が蒸発して吐出ガス冷媒の過熱度が確保される。よって、頻繁にサーモオフ条件が成立する状況下で、潤滑の悪い低油濃度の状態となったまま、長時間繰り返しオン/オフ運転することがない。したがって、サーモオフ条件が成立する状況下で、圧縮機2の油濃度を確保することができる。このため、圧縮機2の信頼性を向上させることができる。
 制御装置18は、油濃度が油濃度基準値を下回る場合に、サーモオフ条件が成立しても圧縮機2の運転を継続させると共に、バイパス弁10を開き運転容量制限を行う。この構成によると、サーモオフ条件の成立時であって圧縮機2の運転を継続させる場合に、空気調和装置1の空調能力を落とし、冷え過ぎあるいは暖まり過ぎを抑えることができる。
 制御装置18は、圧縮機2の吐出ガス冷媒の温度および圧縮機2の吐出ガス冷媒の圧力から吐出ガス冷媒の過熱度を算出し、油濃度と圧縮機2の吐出ガス冷媒の過熱度との予め定められた図3に示す相関関係と、算出された過熱度と、に基づき油濃度を推測する。この構成によると、圧縮機2内の油濃度を圧縮機2の吐出ガス冷媒の温度および吐出ガス冷媒の圧力から推測することができる。
 制御装置18は、圧縮機2の吐出ガス冷媒の温度および圧縮機2の吐出ガス冷媒の圧力から吐出ガス冷媒の過熱度を算出し、算出された過熱度が油濃度基準値に対応する過熱度基準値を下回る場合に、サーモオフ条件が成立しても圧縮機2の運転を継続させる。この構成によると、制御装置18内での計算処理を簡略化することができる。
 制御装置18は、サーモオフ条件が成立しても圧縮機2の運転を継続させる時間に上限を設けた。この構成によると、サーモオフ条件の成立時であって圧縮機2の運転を継続させた場合に、空気調和装置1の運転が継続することによる冷え過ぎあるいは暖まり過ぎを抑えることができる。
 1 空気調和装置、2 圧縮機、3 四方弁、4 室内熱交換器、5 膨張弁、6 室外熱交換器、7 冷媒配管、8 冷媒回路、9 バイパス管、10 バイパス弁、11 室内機、12 室外機、13 送風機、14 室内温度センサ、15 送風機、16 温度センサ、17 圧力センサ、18 制御装置。

Claims (5)

  1.  圧縮機、室内熱交換器、膨張弁および室外熱交換器を冷媒配管にて冷媒が循環するように接続した冷媒回路と、
     前記圧縮機の運転状態を制御する制御装置と、
    を備え、
     前記制御装置は、前記圧縮機の吐出ガス冷媒の温度および前記圧縮機の吐出ガス冷媒の圧力から前記圧縮機の内部の油濃度を推測し、前記油濃度が油濃度基準値を下回る場合に、サーモオフ条件が成立しても前記圧縮機の運転を継続させる空気調和装置。
  2.  前記圧縮機の吐出側の冷媒配管と前記圧縮機の吸込側の冷媒配管とを接続したバイパス管と、
     前記バイパス管の途中に設けられたバイパス弁と、
    を備え、
     前記制御装置は、前記油濃度が前記油濃度基準値を下回る場合に、サーモオフ条件が成立しても前記圧縮機の運転を継続させると共に、前記バイパス弁を開き運転容量制限を行う請求項1に記載の空気調和装置。
  3.  前記制御装置は、前記圧縮機の吐出ガス冷媒の温度および前記圧縮機の吐出ガス冷媒の圧力から吐出ガス冷媒の過熱度を算出し、前記油濃度と前記圧縮機の吐出ガス冷媒の前記過熱度との予め定められた相関関係と、算出された前記過熱度と、に基づき前記油濃度を推測する請求項1または2に記載の空気調和装置。
  4.  前記制御装置は、前記圧縮機の吐出ガス冷媒の温度および前記圧縮機の吐出ガス冷媒の圧力から吐出ガス冷媒の過熱度を算出し、算出された前記過熱度が前記油濃度基準値に対応する過熱度基準値を下回る場合に、サーモオフ条件が成立しても前記圧縮機の運転を継続させる請求項1~3のいずれか1項に記載の空気調和装置。
  5.  前記制御装置は、前記サーモオフ条件が成立しても前記圧縮機の運転を継続させる時間に上限を設けた請求項1~4のいずれか1項に記載の空気調和装置。
PCT/JP2015/069604 2015-07-08 2015-07-08 空気調和装置 WO2017006452A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15871308.1A EP3136010B1 (en) 2015-07-08 2015-07-08 Air-conditioning device
PCT/JP2015/069604 WO2017006452A1 (ja) 2015-07-08 2015-07-08 空気調和装置
US15/559,628 US10598413B2 (en) 2015-07-08 2015-07-08 Air-conditioning apparatus
JP2017527027A JP6309169B2 (ja) 2015-07-08 2015-07-08 空気調和装置
CN201610169164.6A CN106338160B (zh) 2015-07-08 2016-03-23 空调装置
CN201620228411.0U CN205580036U (zh) 2015-07-08 2016-03-23 空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069604 WO2017006452A1 (ja) 2015-07-08 2015-07-08 空気調和装置

Publications (1)

Publication Number Publication Date
WO2017006452A1 true WO2017006452A1 (ja) 2017-01-12

Family

ID=56866823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069604 WO2017006452A1 (ja) 2015-07-08 2015-07-08 空気調和装置

Country Status (5)

Country Link
US (1) US10598413B2 (ja)
EP (1) EP3136010B1 (ja)
JP (1) JP6309169B2 (ja)
CN (2) CN205580036U (ja)
WO (1) WO2017006452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179137A1 (ja) * 2017-03-29 2018-10-04 三菱電機株式会社 空気調和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598413B2 (en) * 2015-07-08 2020-03-24 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2017145826A1 (ja) * 2016-02-24 2018-12-13 Agc株式会社 冷凍サイクル装置
CN107300272A (zh) * 2017-06-13 2017-10-27 珠海格力电器股份有限公司 冷凝机组及具有其的空调器
WO2019245675A1 (en) * 2018-06-22 2019-12-26 Carrier Corporation Oil control system and method for hvac system
JP7417368B2 (ja) * 2019-05-27 2024-01-18 シャープ株式会社 空気調和機
US11821663B2 (en) 2020-07-22 2023-11-21 Purdue Research Foundation In-situ oil circulation ratio measurement system for vapor compression cycle systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251353A (ja) * 1984-05-28 1985-12-12 株式会社東芝 空気調和機の運転制御方法
JPH06337174A (ja) * 1993-05-28 1994-12-06 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2010038503A (ja) 2008-08-08 2010-02-18 Fujitsu General Ltd 冷凍サイクル装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492209A (en) * 1981-06-05 1985-01-08 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas recirculation system
JP3360327B2 (ja) 1992-10-15 2002-12-24 三菱電機株式会社 空気調和装置
US5369958A (en) * 1992-10-15 1994-12-06 Mitsubishi Denki Kabushiki Kaisha Air conditioner
US5761914A (en) * 1997-02-18 1998-06-09 American Standard Inc. Oil return from evaporator to compressor in a refrigeration system
US5884494A (en) * 1997-09-05 1999-03-23 American Standard Inc. Oil flow protection scheme
DE19828061C1 (de) * 1998-06-24 1999-12-23 Danfoss As Verfahren zur Regelung der Temperatur eines Kühlmöbels und Temperaturregelvorrichtung für ein Kühlmöbel
US6578373B1 (en) * 2000-09-21 2003-06-17 William J. Barbier Rate of change detector for refrigerant floodback
JP4378176B2 (ja) * 2002-04-08 2009-12-02 ダイキン工業株式会社 冷凍装置
US20050103035A1 (en) * 2003-11-19 2005-05-19 Massachusetts Institute Of Technology Oil circulation observer for HVAC systems
JP3864989B1 (ja) * 2005-07-29 2007-01-10 ダイキン工業株式会社 冷凍装置
KR100878819B1 (ko) * 2007-03-02 2009-01-14 엘지전자 주식회사 공기조화기 및 그 제어방법
JP2009085156A (ja) * 2007-10-02 2009-04-23 Hitachi Appliances Inc 冷凍装置用のスクリュー圧縮機
KR20090041846A (ko) * 2007-10-25 2009-04-29 엘지전자 주식회사 공기 조화기
FR2942656B1 (fr) * 2009-02-27 2013-04-12 Danfoss Commercial Compressors Dispositif de separation de lubrifiant d'un melange lubrifiant-gaz frigorigene
AU2010225946B2 (en) * 2009-03-19 2013-03-07 Daikin Industries, Ltd. Air conditioning apparatus
JP2011102674A (ja) 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機
KR101166621B1 (ko) * 2009-12-24 2012-07-18 엘지전자 주식회사 공기 조화기 및 그의 제어방법
JP5484930B2 (ja) * 2010-01-25 2014-05-07 三菱重工業株式会社 空気調和機
KR101746587B1 (ko) * 2010-09-29 2017-06-14 삼성전자주식회사 냉장고
JP2012189240A (ja) * 2011-03-09 2012-10-04 Mitsubishi Electric Corp 空気調和機
JP5240392B2 (ja) * 2011-09-30 2013-07-17 ダイキン工業株式会社 冷凍装置
EP2801769A4 (en) * 2011-12-27 2015-12-02 Mitsubishi Electric Corp AIR CONDITIONER
CN103574991B (zh) * 2012-08-02 2015-12-02 珠海格力电器股份有限公司 多压缩机系统回油控制方法
CN103673398B (zh) * 2012-09-07 2015-12-16 珠海格力电器股份有限公司 压缩机回油系统及压缩机的回油状态检测方法
EP2959239B1 (en) * 2013-02-20 2020-10-21 Carrier Corporation Oil management for heating, ventilation and air conditioning system
JP5803958B2 (ja) * 2013-03-08 2015-11-04 ダイキン工業株式会社 冷凍装置
CN104344621B (zh) * 2013-08-05 2017-02-15 广东美的暖通设备有限公司 制冷系统的回油控制方法和装置
JP5790729B2 (ja) * 2013-09-30 2015-10-07 ダイキン工業株式会社 空調システム及びその制御方法
JP6091399B2 (ja) * 2013-10-17 2017-03-08 三菱電機株式会社 空気調和装置
JP5984784B2 (ja) * 2013-11-19 2016-09-06 三菱電機株式会社 温冷水空調システム
JP6368180B2 (ja) * 2014-07-10 2018-08-01 サンデンホールディングス株式会社 車両用空調装置
KR101635553B1 (ko) * 2014-10-30 2016-07-01 엘지전자 주식회사 압축기 및 그 오일자가 진단방법
JP6028816B2 (ja) * 2015-01-30 2016-11-24 ダイキン工業株式会社 空気調和装置
US10598413B2 (en) * 2015-07-08 2020-03-24 Mitsubishi Electric Corporation Air-conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251353A (ja) * 1984-05-28 1985-12-12 株式会社東芝 空気調和機の運転制御方法
JPH06337174A (ja) * 1993-05-28 1994-12-06 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2010038503A (ja) 2008-08-08 2010-02-18 Fujitsu General Ltd 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179137A1 (ja) * 2017-03-29 2018-10-04 三菱電機株式会社 空気調和装置
JPWO2018179137A1 (ja) * 2017-03-29 2019-11-07 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
US20180073786A1 (en) 2018-03-15
US10598413B2 (en) 2020-03-24
CN205580036U (zh) 2016-09-14
CN106338160B (zh) 2018-11-13
EP3136010A1 (en) 2017-03-01
EP3136010B1 (en) 2018-10-10
JP6309169B2 (ja) 2018-04-11
EP3136010A4 (en) 2017-03-29
JPWO2017006452A1 (ja) 2017-09-21
CN106338160A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6309169B2 (ja) 空気調和装置
US8117859B2 (en) Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
JP5982017B2 (ja) 二元冷凍サイクル装置
US11536502B2 (en) Refrigerant cycle apparatus
JP4738237B2 (ja) 空気調和装置
JP2010175189A (ja) 空気調和機
JP2014169802A (ja) 空気調和装置
JP2010175190A (ja) 空気調和機
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JP2006300374A (ja) 空気調和機
JP2011007379A (ja) 空気調和装置
JP3941817B2 (ja) 空気調和機
EP3228954A2 (en) Cooling apparatus
WO2015060384A1 (ja) 冷凍装置
JP2007051824A (ja) 空気調和装置
JP6758506B2 (ja) 空気調和装置
JP2014070830A (ja) 冷凍装置
US9796398B2 (en) Air-conditioning apparatus and railway vehicle air-conditioning apparatus
JP5517891B2 (ja) 空気調和装置
KR102390900B1 (ko) 멀티형 공기조화기 및 그의 제어방법
JP2017116154A (ja) 空気調和装置
JP6551437B2 (ja) 空調機
JP2010139122A (ja) 空気調和装置
WO2018193498A1 (ja) 冷凍サイクル装置
EP3290827A1 (en) Defrosting without reversing refrigerant cycle

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015871308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015871308

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527027

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE