WO2013081132A1 - 空気調和機 - Google Patents
空気調和機 Download PDFInfo
- Publication number
- WO2013081132A1 WO2013081132A1 PCT/JP2012/081163 JP2012081163W WO2013081132A1 WO 2013081132 A1 WO2013081132 A1 WO 2013081132A1 JP 2012081163 W JP2012081163 W JP 2012081163W WO 2013081132 A1 WO2013081132 A1 WO 2013081132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- normal
- temperature difference
- target
- temperature
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/76—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/60—Energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
Definitions
- the present invention relates to an air conditioner having a function of reducing power consumption.
- an air conditioner having a so-called demand control function for reducing the power consumption so that the power consumption consumed by the air conditioner does not exceed a predetermined threshold is known.
- a method of adjusting the opening degree of the expansion valve in accordance with an external demand command is already known.
- this method has the effect of reducing power consumption by controlling the amount of refrigerant circulating in the air conditioning cycle, it cannot be adjusted to the optimal air conditioning cycle corresponding to the air conditioning load, so the power saving effect is limited. It has become a thing.
- Patent Document 2 As another conventional demand control method, another method (see Patent Document 2) in which the rotation speed of a compressor is adjusted according to an external demand command is already known. Although this method can reduce the amount of refrigerant circulating in the air conditioning cycle and improve the COP by increasing the efficiency of the air conditioning cycle, it cannot be adjusted to the optimal air conditioning cycle corresponding to the air conditioning load. Is limited.
- the air conditioner may be operated at a cooling / heating condensation temperature that impairs the comfort of the user environment.
- the conventional demand control described above is to reduce the performance of the air conditioner uniformly when the power consumption of the air conditioner exceeds a certain threshold value. Even if the situation is not impaired, even if the power consumption does not exceed a certain threshold, the air conditioner's performance is maintained without being degraded, or the comfort of most users is impaired. However, if the power consumption exceeds a certain threshold, the air conditioner's performance may be reduced, and there is insufficient consideration for the user environment. It was hard to say that it was a balance.
- the present invention has been made in view of the above-described problems, and an object thereof is to provide an air conditioner capable of achieving both user comfort and power saving.
- the air conditioner of the present invention is an air conditioner provided with an indoor unit and an outdoor unit, and includes an average room temperature detection mechanism that detects an average room temperature in a room in which the indoor unit is disposed, and is accommodated in the outdoor unit.
- Compressor control for controlling the compressor so that the pressure of the refrigerant discharged from the compressor and the pressure of the refrigerant sucked into the compressor becomes a pressure set as a target value
- a normal target pressure storage unit that stores a normal target pressure linked to an outside air temperature and an air conditioning load in the room, and is set as a target value during normal control in the compressor control unit
- a normal temperature difference calculation unit that calculates a temperature difference between a normal saturation temperature corresponding to a target pressure and the average room temperature as a normal temperature difference, and a power consumption reduction target for power consumption during normal control in the air conditioner
- a power-saving temperature difference calculation unit that calculates a power-saving temperature difference obtained by reducing the normal temperature difference based on a quantity, and the compressor control unit is based
- the power-saving target pressure which is the saturation pressure corresponding to the power-saving saturation temperature calculated as described above, is changed to a target value, and the compressor is controlled.
- the greater the normal temperature difference (the temperature difference between the normal saturation temperature corresponding to the normal target pressure and the average room temperature) is, the more the user is satisfied with comfort, the capacity of the air conditioner is wasted. Focusing on the usage, the normal temperature difference is reduced based on the power consumption reduction target amount according to the size of the normal temperature difference, and the normal temperature difference is reduced, and the power saving based on the power saving temperature difference is reduced.
- the power-saving effect is reduced compared to the conventional demand control that reduces the capacity of the air conditioner only when the power consumption of the air conditioner exceeds a certain threshold.
- the effect that the target pressure at the time of power saving can be set within a range in which the user's comfort can be maintained can be exhibited while securing the constant. As a result, it is possible to save power without impairing comfort, and to achieve both user comfort and power saving.
- the power saving temperature difference calculation unit multiplies the normal temperature difference by a power saving coefficient based on the power consumption reduction target amount. It is preferable to calculate the difference.
- the power consumption reduction target amount is set according to the user's operation. It is preferable to provide a changeable power consumption reduction target amount changing unit.
- the compressor control unit subtracts a predetermined value from the average room temperature during the cooling operation of the air conditioner.
- the power saving saturation temperature setting unit is within a range of 3 ° C to 10 ° C. It is preferable that a predetermined value can be set as the value.
- the larger the normal temperature difference (the temperature difference between the normal saturation temperature corresponding to the normal target pressure and the average room temperature) is, the more the user is satisfied with the comfort. Focusing on the wasteful use of the capacity of the harmonic machine, the normal temperature difference is reduced based on the power consumption reduction target amount according to the size of the normal temperature difference, and the normal temperature difference is reduced.
- FIG. 1 shows a refrigerant circuit of an air conditioner of the present invention.
- the air conditioner 1 includes an indoor unit 100 and an outdoor unit 101.
- the air conditioner 1 of the present embodiment is an air conditioner that targets a wide indoor space such as an office in a building, and includes an outdoor unit 101 and a plurality of indoors that are distributed in each region of the room.
- FIG. 1 illustrates only a representative indoor unit 100 among a plurality of indoor units.
- the indoor unit 100 includes a room temperature sensor 2 that can detect the room temperature in the room, an indoor heat exchanger 3, and a remote controller 4 that can control the indoor unit 100 according to a user's operation.
- the outdoor unit 101 includes a compressor 5, a four-way switching valve 6, an outdoor fan 7, an outdoor heat exchanger 8, an expansion valve 9, and an outdoor temperature sensor 10 that can detect the outdoor temperature.
- the outdoor unit 101 has an outdoor unit casing 101a, in which a compressor 5, an outdoor fan 7, an outdoor heat exchanger 8, an electrical component box 11, and the like are accommodated.
- the electrical component box 11 accommodates a control board or the like with a built-in control unit 12 that can control the rotation speed of the compressor 5 and the opening degree of the expansion valve 9 based on detection information from each temperature sensor.
- the cooling operation can be realized by switching the four-way switching valve 6 to the dotted line position shown in the figure, and the heating operation can be realized by switching to the solid line position shown in the figure.
- FIG. 2 shows the configuration of the control unit 12.
- the control unit 12 is provided with a control mechanism for achieving both user comfort and energy saving, which is an object of the present invention.
- a pressure storage unit 14 a normal temperature difference calculation unit 15, a power saving temperature difference calculation unit 16, a power consumption reduction target amount change unit 17, and a compressor control unit 18 are included.
- the average room temperature detection mechanism 13 inputs the capacity (air conditioning load) Icn in the indoor unit 100 installed in the room and the room temperature Tin detected by the room temperature sensor 2 into the following calculation formula (1). It is configured to detect a weighted average (average room temperature) Tia of Tin.
- the symbol “n” in “capacity Icn” and “room temperature Tin”, which are components of the following calculation formula (1), indicates the identification number of each indoor unit distributed in each indoor region. For this reason, the average room temperature detection mechanism 13 can detect the weighted average Tia of the room temperature Tin according to the capacity Icn of the area that each indoor unit is in charge of based on the following calculation formula (1).
- the normal target pressure storage unit 14 is composed of, for example, an electrically rewritable EEPROM or flash memory, and stores the normal target pressure set as a target value during normal control in the compressor control unit 18. It is comprised as follows.
- the normal target pressure means a pressure that is linked to the outside air temperature detected by the outside air temperature sensor 10 and the indoor capacity Icn.
- the normal target suction pressure Pto is used as the heating operation.
- the normal target discharge pressure Pto is sometimes used for normal control in the compressor control unit 18.
- the normal temperature difference calculation unit 15 uses the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) stored in the normal target pressure storage unit 14 in advance as a normal saturation temperature (normal target suction pressure saturation temperature Tto / normal target).
- the discharge pressure saturation temperature Tto) is converted. Conversion here is realizable using the following refrigerant
- the normal temperature difference calculation unit 15 calculates the normal target suction pressure saturation temperature Tto and the weighted average Tia detected by the average room temperature detection mechanism 13 in the following calculation formula (3). By inputting, a normal temperature difference ⁇ To is calculated. Similarly, during the heating operation, the normal temperature difference calculation unit 15 inputs the normal target discharge pressure saturation temperature Tto and the weighted average Tia into the following calculation formula (4), thereby calculating the normal temperature difference ⁇ To. It is configured to calculate.
- the power-saving temperature difference calculation unit 16 sets a target demand amount (power consumption reduction target amount) Dm that is preset for power consumption during normal control in the air conditioner 1 to the following calculation formula (5):
- a target demand amount (power consumption reduction target amount) Dm that is preset for power consumption during normal control in the air conditioner 1
- a demand temperature difference (temperature difference during power saving) ⁇ Td obtained by reducing the normal temperature difference ⁇ To is calculated. It is.
- the power consumption reduction target amount changing unit 17 is configured to be able to change the target demand amount Dm according to the operation of the remote controller 4 by the user.
- the minimum value of the power saving coefficient is set to a value that does not impair the comfort of the user environment in accordance with the evaluation of comfort. For example, when it is desired to ensure comfort, it is 0. .5.
- the maximum value of the power saving coefficient is set according to the variation in which the reduction of the power consumption is allowed. For example, when the variation of about 10% is allowed, it is set to 1.1.
- the compressor control unit 18 adjusts the pressure of the refrigerant sucked into the compressor 5 during the cooling operation or the pressure of the refrigerant discharged from the compressor 5 during the heating operation to a pressure set as a target value.
- the compressor 5 is configured to be controlled.
- the compressor control unit 18 adds the weighted average Tia detected by the average room temperature detection mechanism 13 and the demand temperature difference ⁇ Td calculated by the power saving temperature difference calculation unit 16 to the following calculation formula (6). , The demand saturation temperature (power-saving saturation temperature) Ttd is calculated. Similarly, during the heating operation, the compressor control unit 18 inputs the weighted average Tia and the demand temperature difference ⁇ Td into the following calculation formula (7), so that the demand saturation temperature (power saving saturation temperature) is obtained. ) Ttd is calculated.
- the compressor control unit 18 is configured to calculate the power saving target pressure by inputting the demand saturation temperature Ttd into the following calculation formula (8).
- the power saving target pressure here is used for demand control in the compressor control unit 18 as a power saving target suction pressure Ptd during cooling operation and as a power saving target discharge pressure Ptd during heating operation.
- the compressor control unit 18 changes the target value from the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) to the power saving target pressure (power saving target suction pressure Ptd / power saving target discharge pressure Ptd). It changes and it is comprised so that the compressor 5 may be controlled.
- the compressor control unit 18 sets a value obtained by subtracting a predetermined value from the weighted average Tia during the cooling operation as an upper limit value of the demand saturation temperature Ttd, and during the heating operation, a value obtained by adding the predetermined value to the weighted average Tia during demand saturation.
- a power-saving saturation temperature setting unit 19 that can be set to the lower limit value of the temperature Ttd is provided.
- the power-saving saturation temperature setting unit 19 can set the demand temperature difference ⁇ Td, which is the temperature difference between the weighted average Tia and the demand saturation temperature Ttd, to the predetermined value during the cooling operation.
- the power-saving saturation temperature setting unit 19 can set the demand temperature difference ⁇ Td, which is the temperature difference between the demand saturation temperature Ttd and the weighted average Tia, to the predetermined value during the heating operation.
- the predetermined value here is sufficient if the temperature difference between the air and the refrigerant becomes less than 3 ° C., the heat exchange in the indoor unit 100 becomes difficult, or the temperature difference between the air and the refrigerant becomes 10 ° C. or more. Heat exchange is possible, and it can be set to a value within the range of 3 ° C. to 10 ° C. in order to avoid a situation where the power saving effect is reduced when the temperature is set to 10 ° C. or higher.
- the upper limit value of the demand saturation temperature Ttd is set to 22 ° C.
- the lower limit value of the demand saturation temperature Ttd is set to 25 ° C.
- FIG. 3 is a flowchart showing an example of the demand control operation during the cooling operation.
- a preset target demand amount (power consumption reduction target amount) Dm is recognized.
- step S2 the normal target suction pressure (normal target pressure) Pto stored in advance in the normal target pressure storage unit 14 is recognized.
- step S3 the normal target suction pressure Pto is converted into a normal target suction pressure saturation temperature (normal saturation temperature) Tto based on the refrigerant physical property formula (2).
- step S4 the capacity (cooling load) Icn in the indoor unit 100 installed in the room and the room temperature Tin in the room are recognized.
- step S5 a weighted average (average room temperature) Tia of the room temperature Tin is calculated based on the calculation formula (1).
- step S6 the normal temperature difference ⁇ To is calculated based on the calculation formula (3).
- step S7 a demand temperature difference (temperature difference during power saving) ⁇ Td is calculated based on the calculation formula (5).
- step S8 the demand saturation temperature (saturation temperature during power saving) Ttd is calculated based on the calculation formula (6).
- step S9 the power saving target suction pressure Ptd is calculated based on the calculation formula (8).
- step S10 the target value in the compressor control unit 18 is changed from the normal target suction pressure Pto to the power saving target suction pressure Ptd.
- step S11 the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature are recognized.
- step S12 a change amount that can change the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature by inputting the demand saturation temperature Ttd and the normal target saturation temperature Tto into the following calculation formula (9). Tc is calculated.
- step S14 the upper limit value Teuo and the change amount Tc are input to the following calculation formula (10), and the lower limit value Tedo and the change amount Tc are input to the following calculation formula (11).
- the upper limit demand value Teud and the lower limit demand value Tedd of the target evaporation temperature are respectively calculated.
- step S14 after the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature are changed to the upper limit demand value Teud and the lower limit demand value Tedd, respectively, the process returns to step S1.
- FIG. 4 is a flowchart illustrating an example of a demand control operation during heating operation.
- the steps S201 to S210 (excluding steps S206 and S208) in the control operation here are the same as the steps S1 to S10 (excluding steps S6 and S8) in the cooling operation in this order, but are compressed.
- the difference is that the target value in the machine control unit 18 is changed from the normal target discharge pressure Pto to the power saving target discharge pressure Ptd.
- step S201 a preset target demand amount (power consumption reduction target amount) Dm is recognized.
- step S202 the normal target discharge pressure (normal target pressure) Pto stored in advance in the normal target pressure storage unit 14 is recognized.
- step S203 the normal target discharge pressure Pto is converted into a normal target discharge pressure saturation temperature (normal saturation temperature) Tto based on the refrigerant physical property formula (2).
- step S204 the capacity (heating load) Icn in the indoor unit 100 installed indoors and the room temperature Tin in the room are recognized.
- step S205 a weighted average (average room temperature) Tia of the room temperature Tin is calculated based on the calculation formula (1).
- step S206 the normal temperature difference ⁇ To is calculated based on the calculation formula (4).
- step S207 a demand temperature difference (temperature difference during power saving) ⁇ Td is calculated based on the calculation formula (5).
- step S208 the demand saturation temperature (saturation temperature during power saving) Ttd is calculated based on the calculation formula (7).
- step S209 the power saving target discharge pressure Ptd is calculated based on the calculation formula (8).
- step S210 the target value in the compressor control unit 18 is changed from the normal target discharge pressure Pto to the power-saving target discharge pressure Ptd. Thereafter, the process again proceeds to step S201.
- the normal temperature difference ⁇ To (the temperature difference between the weighted average Tia shown in FIG. 5 (a-1) and the normal target suction pressure saturation temperature Tto, or the normal target discharge shown in FIG. 5 (b-1).
- the normal temperature difference ⁇ To is reduced based on the target demand amount Dm according to the magnitude of the normal temperature difference ⁇ To to calculate the demand temperature difference ⁇ Td.
- the optimum power-saving target suction pressure Ptd / power-saving target discharge pressure Ptd can be calculated based on the target demand amount Dm of the external command according to the operation of the remote controller 4 by the user.
- the optimum power saving target suction pressure Ptd / power saving target discharge pressure Ptd corresponding to the air conditioning load in the room can be obtained, so that the maximum power saving is possible.
- the suction pressure can be set higher than the conventional demand control. More specifically, when the suction pressure can be set higher by 0.06 Mpa, the power saving effect can be improved by about 6% compared with the conventional demand control.
- the compressor control unit 18 sets the target value during the normal control, and the normal target pressure (normal target suction pressure Pto / normal) linked to the outside air temperature and the indoor air conditioning load. Since the target discharge pressure Pto) is used as a reference, it is possible to always ensure a power saving effect against changes in user environmental conditions. For example, when demand control is performed during the cooling operation, the suction pressure can be changed according to a change in the outside air temperature. More specifically, when the outside air temperature decreases by 1 ° C., the power saving effect can be improved by about 2% compared to the conventional demand control.
- the value of the target demand amount Dm is set to a value such as 50, 60, 70, 80, 90, 100 according to the operation of the remote controller 4 by the user.
- a value obtained by subtracting a predetermined value from the weighted average Tia is set as the upper limit value of the demand saturation temperature Ttd
- a value obtained by adding the predetermined value to the weighted average Tia Since the lower limit value of the saturation temperature Ttd can be set, it is possible to prevent a lack of cooling / heating capacity due to insufficient capacity of the indoor heat exchanger 3. For example, when demand control is performed during cooling operation, when the demand saturation temperature is raised by 1 ° C. by setting the lower limit of the demand saturation temperature Ttd, it is possible to prevent a cooling capacity decrease of about 5% compared to the conventional demand control. it can.
- the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C., so that the temperature difference between the air and the refrigerant, which is predicted to occur in the conventional demand control, is insufficient.
- the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C., so that the temperature difference between the air and the refrigerant, which is predicted to occur in the conventional demand control, is insufficient.
- the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C.
- the compressor control unit 18 inputs the demand saturation temperature Ttd to the calculation formula (8), thereby acquiring the power saving target suction pressure Ptd / power saving target discharge pressure Ptd.
- the present invention is not limited to this, and based on the output of the suction / discharge pipe thermistor for detecting the suction / discharge refrigerant temperature in the suction pipe / discharge pipe of the compressor 5, the target suction pressure during power saving Ptd / power saving target discharge pressure Ptd may be acquired.
- the compressor control unit 18 can acquire the normal target suction pressure Pto / normal target discharge pressure Pto based on the output of the suction / discharge pipe thermistor.
- the compressor control unit 18 is based on the command command value from the control unit 12 side, and the power saving target suction pressure Ptd / power saving target discharge pressure Ptd, or the normal target suction pressure Pto / normal target discharge pressure. Pto can be acquired.
- the normal temperature difference calculation unit 15 uses the refrigerant physical property formula (2) to change the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) to the normal saturation temperature (normal target suction).
- the normal target pressure normal target suction pressure Pto / normal target discharge pressure Pto
- the normal target pressure may be converted into a normal saturation temperature (normal target suction pressure saturation temperature Tto / normal target discharge pressure saturation temperature Tto).
- the normal target pressure normal target suction pressure Pto / normal target discharge pressure Pto
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
2 室温センサ
3 室内熱交換器
4 リモコン
5 圧縮機
6 四路切換弁
7 室外ファン
8 室外熱交換器
9 膨張弁
10 外気温度センサ
11 電装品箱
12 制御部
13 平均室温検知機構
14 通常目標圧力記憶部
15 通常温度差算出部
16 省電力時温度差算出部
17 電力消費削減目標量変更部
18 圧縮機制御部
19 省電力時飽和温度設定部
100 室内機
101 室外機
101a 室外機ケーシング
[空気調和機1の全体構成]
図1は、本発明の空気調和機の冷媒回路を示している。図に示すように、空気調和機1は、室内機100と室外機101とを備えている。ここで、本実施形態の空気調和機1は、ビル内のオフィス等の広い室内空間を対象とした空気調和機であって、室外機101と、室内の各領域に分散配置された複数の室内機とからなる空気調和機を想定したものであるが、図1では説明の便宜上、複数の室内機のうち、代表する室内機100のみを図示している。
空気調和機1では、四路切換弁6を図示の点線位置に切り換えることで、冷房運転が実現可能であり、図示の実線位置に切り換えることで、暖房運転が実現可能となっている。
図2は、制御部12の構成を示している。制御部12は、本発明の目的とされる利用者の快適性と省エネルギーとの両立を図るための制御機構を備えたものであって、図に示すように、平均室温検知機構13、通常目標圧力記憶部14、通常温度差算出部15、省電力時温度差算出部16、電力消費削減目標量変更部17、及び、圧縮機制御部18を有している。
以下では、図3及び図4を参照しながら、冷房運転時及び暖房運転時における各デマンド制御動作の一例について説明する。なお、図3及び図4に示す各動作は、制御部12が、ROMに格納されたプログラムを実行することによって実現可能である。
図3は、冷房運転時におけるデマンド制御動作の一例を示したフローチャートである。この制御動作では、まず、ステップS1において、予め設定された目標デマンド量(電力消費削減目標量)Dmが認識される。
図4は、暖房運転時におけるデマンド制御動作の一例を示したフローチャートである。ここでの制御動作における各ステップS201~S210(ステップS206,S208を除く)は、上記の冷房運転時における各ステップS1~S10(ステップS6,S8を除く)と順に同様のものであるが、圧縮機制御部18における目標値を通常目標吐出圧力Ptoから省電力時目標吐出圧力Ptdに変更することを目的とした点で相違するものである。
上記構成によれば、通常温度差ΔTo(図5(a-1)に示す加重平均Tiaと通常目標吸入圧力飽和温度Ttoとの温度差、又は、図5(b-1)に示す通常目標吐出圧力飽和温度Ttoと加重平均Tiaとの温度差)が大きいほど利用者が快適性に満足した状況で空気調和機1の能力が無駄に使用されていることに着目し、図5(a-2)又は図5(b-2)に示すように、通常温度差ΔToの大きさに応じて目標デマンド量Dmに基づいた通常温度差ΔToの縮小を行ってデマンド温度差ΔTdを算出するとともに、該デマンド温度差ΔTdに基づいた省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを目標値として圧縮機5を制御することで、空気調和機の消費電力が一定の閾値を超えた場合のみ空気調和機の能力を低下させる従来のデマンド制御と比べて省電力効果を常時確保しつつ、省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを利用者の快適性の維持が可能な範囲に設定できるという効果を発揮することができる。その結果、快適性を損なわずに省電力が可能となり、利用者の快適性と省電力との両立を図ることができる。
空気調和機1が設置されている物件の用途又は利用者の要求に対して、デマンド制御の強弱が調整可能となる。従って、従来のデマンド制御で発生が予測される、快適性の低下や省電力効果の不足による、利用者からのクレームを防止することができる。
Claims (5)
- 室内機及び室外機を備えた空気調和機であって、
前記室内機が配置された室内における平均室温を検知する平均室温検知機構と、
前記室外機に収容された圧縮機と、
前記圧縮機から吐出される冷媒の圧力、又は、当該圧縮機に吸入される冷媒の圧力が目標値として設定された圧力となるように前記圧縮機を制御する圧縮機制御部と、
前記圧縮機制御部において通常制御時に目標値として設定されるものであり、外気温度と、前記室内における空調負荷とに連動した通常目標圧力を記憶する通常目標圧力記憶部と、
前記通常目標圧力に対応した通常飽和温度と、前記平均室温との温度差を通常温度差として算出する通常温度差算出部と、
前記空気調和機における通常制御時の消費電力に対する電力消費削減目標量に基づいて、前記通常温度差を縮小した省電力時温度差を算出する省電力時温度差算出部とを備え、
前記圧縮機制御部が、前記平均室温及び前記省電力時温度差に基づいて算出される省電力時飽和温度に対応する飽和圧力である省電力時目標圧力を目標値に変更して、前記圧縮機を制御するように構成されたことを特徴とする空気調和機。 - 前記省電力時温度差算出部が、
前記電力消費削減目標量に基づく省電力係数を前記通常温度差に乗じることによって前記省電力時温度差を算出することを特徴とする請求項1に記載の空気調和機。 - 利用者の操作に応じて前記電力消費削減目標量を変更可能な電力消費削減目標量変更部を備えたことを特徴とする請求項1に記載の空気調和機。
- 前記圧縮機制御部が、
前記空気調和機の冷房運転時には、前記平均室温から所定値を減算した値を前記省電力時飽和温度の上限値に設定し、前記空気調和機の暖房運転時には、前記平均室温に所定値を加算した値を前記省電力時飽和温度の下限値に設定可能な省電力時飽和温度設定部を備えたことを特徴とする請求項1に記載の空気調和機。 - 前記省電力時飽和温度設定部が、
3℃乃至10℃の範囲内の値に所定値を設定可能であることを特徴とする請求項4に記載の空気調和機。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES12853680.2T ES2664520T3 (es) | 2011-11-30 | 2012-11-30 | Acondicionador de aire |
EP12853680.2A EP2787299B1 (en) | 2011-11-30 | 2012-11-30 | Air conditioner |
KR1020147013178A KR101992139B1 (ko) | 2011-11-30 | 2012-11-30 | 공기조화기 |
CN201280068543.6A CN104272033B (zh) | 2011-11-30 | 2012-11-30 | 空调 |
US14/361,937 US9631829B2 (en) | 2011-11-30 | 2012-11-30 | Air conditioner |
JP2013547246A JP6092119B2 (ja) | 2011-11-30 | 2012-11-30 | 空気調和機 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011262298 | 2011-11-30 | ||
JP2011-262298 | 2011-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013081132A1 true WO2013081132A1 (ja) | 2013-06-06 |
Family
ID=48535579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081163 WO2013081132A1 (ja) | 2011-11-30 | 2012-11-30 | 空気調和機 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9631829B2 (ja) |
EP (1) | EP2787299B1 (ja) |
JP (1) | JP6092119B2 (ja) |
KR (1) | KR101992139B1 (ja) |
CN (1) | CN104272033B (ja) |
ES (1) | ES2664520T3 (ja) |
WO (1) | WO2013081132A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292422A (zh) * | 2013-06-17 | 2013-09-11 | 南京天加空调设备有限公司 | 直流变频多联机制冷运行吸气压力控制方法 |
CN104791944A (zh) * | 2014-01-21 | 2015-07-22 | 广东美的暖通设备有限公司 | 空调系统及其控制方法、空调系统的室外机 |
CN104930590A (zh) * | 2014-03-18 | 2015-09-23 | 三星电子株式会社 | 空调器及其控制方法 |
WO2018047264A1 (ja) * | 2016-09-08 | 2018-03-15 | 三菱電機株式会社 | 冷凍サイクル装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104204997A (zh) * | 2012-03-30 | 2014-12-10 | 富士通株式会社 | 信息处理装置、控制方法以及程序 |
CN103727627B (zh) * | 2012-10-11 | 2016-10-05 | 财团法人车辆研究测试中心 | 适用于冷/暖空调系统的智能型恒温控制方法与装置 |
JP5780280B2 (ja) * | 2013-09-30 | 2015-09-16 | ダイキン工業株式会社 | 空調システム及びその制御方法 |
US10619952B2 (en) | 2014-10-13 | 2020-04-14 | Guentner Gmbh & Co. Kg | Method for operating a heat exchanger system and heat exchanger system |
KR102346627B1 (ko) * | 2015-09-30 | 2022-01-05 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
DE102017204122B4 (de) | 2017-03-13 | 2020-07-16 | Audi Ag | Verfahren zum Betreiben eines Kältemittelkreislaufs für eine Fahrzeugklimaanlage |
CN107726554B (zh) * | 2017-09-19 | 2020-01-17 | 青岛海尔空调电子有限公司 | 一种多联机舒适度均衡控制方法及系统 |
JP7153864B2 (ja) * | 2018-07-30 | 2022-10-17 | パナソニックIpマネジメント株式会社 | 空気調和装置 |
CN110857806B (zh) * | 2018-08-24 | 2022-07-22 | 广东松下环境系统有限公司 | 送风装置的控制方法及应用其的送风装置 |
CN109028494B (zh) * | 2018-09-18 | 2020-09-18 | 青岛海尔空调电子有限公司 | 空调冷媒流量控制的方法、装置及计算机存储介质 |
JP6885497B2 (ja) * | 2019-06-21 | 2021-06-16 | ダイキン工業株式会社 | 情報処理方法、情報処理装置、及びプログラム |
CN112460839B (zh) * | 2020-10-09 | 2022-04-01 | 国网浙江省电力有限公司湖州供电公司 | 一种基于用户舒适度的地源热泵的控制方法及系统 |
US12050034B2 (en) * | 2022-08-29 | 2024-07-30 | Johnson Controls Tyco IP Holdings LLP | System and method for operating a compressor of an energy efficient heat pump |
CN115597180B (zh) * | 2022-09-30 | 2024-06-04 | 珠海格力电器股份有限公司 | 一种空调器的控制方法、控制装置、介质及空调器 |
CN117200551B (zh) * | 2023-11-07 | 2024-03-15 | 深圳市力生美半导体股份有限公司 | 开关电源的温度控制方法和开关电源 |
CN118066644B (zh) * | 2024-04-18 | 2024-07-26 | 宁波奥克斯电气股份有限公司 | 一种空调保护的控制方法、装置、空调器及介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190455A (ja) | 1993-12-28 | 1995-07-28 | Mitsubishi Electric Corp | 冷凍・空調システム |
JP2006329468A (ja) * | 2005-05-24 | 2006-12-07 | Daikin Ind Ltd | 空調システム |
JP2007255832A (ja) * | 2006-03-24 | 2007-10-04 | Daikin Ind Ltd | 空調システム |
JP2011007422A (ja) | 2009-06-25 | 2011-01-13 | Hitachi Appliances Inc | 空気調和機 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638851B2 (ja) * | 1973-08-25 | 1981-09-09 | ||
US4633672A (en) * | 1985-02-19 | 1987-01-06 | Margaux Controls, Inc. | Unequal compressor refrigeration control system |
JP3213422B2 (ja) * | 1993-02-02 | 2001-10-02 | 三洋電機株式会社 | 空気調和装置及びこの空気調和装置等が設けられた建物の消費電力の制御装置 |
JP3265803B2 (ja) * | 1994-03-18 | 2002-03-18 | 株式会社日立製作所 | 多室空気調和機及びその制御方法 |
JPH09266630A (ja) * | 1996-03-27 | 1997-10-07 | Chubu Electric Power Co Inc | 電力抑制制御装置、空気調和装置 |
KR19990042964A (ko) * | 1997-11-28 | 1999-06-15 | 윤종용 | 공기조화기의 난방제어장치 및 그 방법 |
JPH11325539A (ja) * | 1998-05-14 | 1999-11-26 | Matsushita Electric Ind Co Ltd | 空気調和機のデマンド制御方法 |
US6637222B2 (en) * | 2000-06-07 | 2003-10-28 | Samsung Electronics Co., Ltd. | System for controlling starting of air conditioner and control method thereof |
JP2003013863A (ja) * | 2001-06-29 | 2003-01-15 | Toyota Industries Corp | 容量可変型圧縮機の容量制御装置 |
KR100484869B1 (ko) * | 2003-01-13 | 2005-04-22 | 엘지전자 주식회사 | 히트펌프 시스템의 운전제어방법 |
US7918655B2 (en) * | 2004-04-30 | 2011-04-05 | Computer Process Controls, Inc. | Fixed and variable compressor system capacity control |
US7424343B2 (en) * | 2004-08-11 | 2008-09-09 | Lawrence Kates | Method and apparatus for load reduction in an electric power system |
JP4268931B2 (ja) * | 2004-12-30 | 2009-05-27 | 中山エンジニヤリング株式会社 | 冷蔵・冷凍設備及びその制御方法 |
US7890215B2 (en) * | 2006-12-22 | 2011-02-15 | Duncan Scot M | Optimized control system for cooling systems |
JP4899979B2 (ja) * | 2007-03-27 | 2012-03-21 | パナソニック電工株式会社 | 空調制御システム |
US8485789B2 (en) * | 2007-05-18 | 2013-07-16 | Emerson Climate Technologies, Inc. | Capacity modulated scroll compressor system and method |
CN101688701B (zh) * | 2007-07-18 | 2011-08-17 | 三菱电机株式会社 | 冷冻循环装置及其运转控制方法 |
JP2009041856A (ja) * | 2007-08-09 | 2009-02-26 | Hitachi Ltd | 空調制御システム |
AU2008288065B2 (en) * | 2007-08-10 | 2011-08-04 | Daikin Industries, Ltd. | Monitoring system for air conditioner |
WO2010050007A1 (ja) * | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | 空気調和装置 |
JP5213966B2 (ja) * | 2008-11-25 | 2013-06-19 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP5751742B2 (ja) * | 2009-02-27 | 2015-07-22 | 三菱重工業株式会社 | 空気調和設備の遠隔管理システム、遠隔管理装置、制御装置 |
CN102597660B (zh) * | 2009-10-28 | 2015-05-06 | 三菱电机株式会社 | 空调装置 |
JP2011102674A (ja) * | 2009-11-11 | 2011-05-26 | Mitsubishi Electric Corp | 空気調和機 |
JP5473619B2 (ja) * | 2010-01-12 | 2014-04-16 | 三菱電機株式会社 | 空気調和機の制御装置 |
US9372021B2 (en) * | 2010-11-04 | 2016-06-21 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
US10544973B2 (en) * | 2011-12-16 | 2020-01-28 | Mitsubishi Electric Corporation | Air-conditioning apparatus with temperature controlled pump operation |
KR20130134349A (ko) * | 2012-05-30 | 2013-12-10 | 삼성전자주식회사 | 멀티형 공기조화기 및 그 냉난방제어방법 |
US20140069131A1 (en) * | 2012-09-13 | 2014-03-13 | Mitsubishi Electric Corporation | Air conditioning system |
TW201418648A (zh) * | 2012-11-14 | 2014-05-16 | hui-jun Chen | 利用自然循環之熱驅動除霜裝置 |
-
2012
- 2012-11-30 EP EP12853680.2A patent/EP2787299B1/en not_active Not-in-force
- 2012-11-30 KR KR1020147013178A patent/KR101992139B1/ko active IP Right Grant
- 2012-11-30 ES ES12853680.2T patent/ES2664520T3/es active Active
- 2012-11-30 US US14/361,937 patent/US9631829B2/en active Active
- 2012-11-30 WO PCT/JP2012/081163 patent/WO2013081132A1/ja active Application Filing
- 2012-11-30 JP JP2013547246A patent/JP6092119B2/ja not_active Expired - Fee Related
- 2012-11-30 CN CN201280068543.6A patent/CN104272033B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190455A (ja) | 1993-12-28 | 1995-07-28 | Mitsubishi Electric Corp | 冷凍・空調システム |
JP2006329468A (ja) * | 2005-05-24 | 2006-12-07 | Daikin Ind Ltd | 空調システム |
JP2007255832A (ja) * | 2006-03-24 | 2007-10-04 | Daikin Ind Ltd | 空調システム |
JP2011007422A (ja) | 2009-06-25 | 2011-01-13 | Hitachi Appliances Inc | 空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2787299A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103292422A (zh) * | 2013-06-17 | 2013-09-11 | 南京天加空调设备有限公司 | 直流变频多联机制冷运行吸气压力控制方法 |
CN104791944A (zh) * | 2014-01-21 | 2015-07-22 | 广东美的暖通设备有限公司 | 空调系统及其控制方法、空调系统的室外机 |
US9797642B2 (en) | 2014-01-21 | 2017-10-24 | Gd Midea Heating & Ventilating Equipment Co. Ltd. | System and method for controlling an air conditioning system and an outdoor apparatus of the system |
CN104930590A (zh) * | 2014-03-18 | 2015-09-23 | 三星电子株式会社 | 空调器及其控制方法 |
EP2921794A3 (en) * | 2014-03-18 | 2016-01-06 | Samsung Electronics Co., Ltd. | Air conditioner and method of controlling the same |
US10101042B2 (en) | 2014-03-18 | 2018-10-16 | Samsung Electronics Co., Ltd. | Air conditioner including a handle and method of controlling the same |
CN104930590B (zh) * | 2014-03-18 | 2019-06-25 | 三星电子株式会社 | 空调器及其控制方法 |
WO2018047264A1 (ja) * | 2016-09-08 | 2018-03-15 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2018047264A1 (ja) * | 2016-09-08 | 2019-04-11 | 三菱電機株式会社 | 冷凍サイクル装置 |
AU2016422665B2 (en) * | 2016-09-08 | 2019-09-26 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP2787299A4 (en) | 2015-11-18 |
CN104272033B (zh) | 2017-06-06 |
KR101992139B1 (ko) | 2019-06-25 |
US9631829B2 (en) | 2017-04-25 |
EP2787299B1 (en) | 2018-01-10 |
EP2787299A1 (en) | 2014-10-08 |
JP6092119B2 (ja) | 2017-03-08 |
ES2664520T3 (es) | 2018-04-19 |
US20140358296A1 (en) | 2014-12-04 |
JPWO2013081132A1 (ja) | 2015-04-27 |
CN104272033A (zh) | 2015-01-07 |
KR20140096065A (ko) | 2014-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6092119B2 (ja) | 空気調和機 | |
US10371426B2 (en) | System and method of controlling a variable-capacity compressor | |
CN107300231B (zh) | 热泵机组及其控制方法和装置 | |
JP6270996B2 (ja) | 空調装置 | |
CN108332351B (zh) | 制冷控制方法及系统 | |
AU2010253331A1 (en) | Air conditioner | |
CN114198877B (zh) | 变频空调器的节能控制方法、装置、空调器及存储介质 | |
JPWO2021033231A1 (ja) | 情報処理装置 | |
CN111720981A (zh) | 空调器压缩机的控制方法以及空调器 | |
CN115289639A (zh) | 一种氟泵空调的控制方法、装置、设备及介质 | |
JP7263002B2 (ja) | 個別分散空調高効率制御方法、制御装置及び制御プログラム | |
WO2021175202A1 (zh) | 变频空调的制热控制方法和变频空调 | |
KR101151321B1 (ko) | 멀티형 공기조화기 및 그 운전방법 | |
JP5125695B2 (ja) | 空調システム | |
CN111981649B (zh) | 空调器及其空调控制方法、控制装置和可读存储介质 | |
CN113685996A (zh) | 空调器压缩机的控制方法以及空调器 | |
CN109028496B (zh) | 用于控制可变容量压缩机的系统及方法 | |
CN112834889B (zh) | 空调室外机中的平滑用电容的寿命预测装置及寿命预测方法 | |
JP2013194969A (ja) | 空気調和装置 | |
KR20040105263A (ko) | 인버터형 공기조화기에서 과전압 보상 과전류 제어 운전방법 | |
KR20140100286A (ko) | 차량용 히트 펌프 시스템의 압축기 제어 방법 | |
CN116857779A (zh) | 多联机空调的控制方法、多联机空调以及存储介质 | |
WO2016002052A1 (ja) | 冷凍空調装置 | |
CN116971972A (zh) | 压缩机容量控制方法和控制装置、存储介质、空调器 | |
WO2016199280A1 (ja) | 空気調和システム及び空気調和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853680 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547246 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147013178 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14361937 Country of ref document: US Ref document number: 2012853680 Country of ref document: EP |