WO2013081132A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2013081132A1
WO2013081132A1 PCT/JP2012/081163 JP2012081163W WO2013081132A1 WO 2013081132 A1 WO2013081132 A1 WO 2013081132A1 JP 2012081163 W JP2012081163 W JP 2012081163W WO 2013081132 A1 WO2013081132 A1 WO 2013081132A1
Authority
WO
WIPO (PCT)
Prior art keywords
normal
temperature difference
target
temperature
air conditioner
Prior art date
Application number
PCT/JP2012/081163
Other languages
English (en)
French (fr)
Inventor
孝 金子
Original Assignee
株式会社サムスン横浜研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムスン横浜研究所 filed Critical 株式会社サムスン横浜研究所
Priority to ES12853680.2T priority Critical patent/ES2664520T3/es
Priority to EP12853680.2A priority patent/EP2787299B1/en
Priority to KR1020147013178A priority patent/KR101992139B1/ko
Priority to CN201280068543.6A priority patent/CN104272033B/zh
Priority to US14/361,937 priority patent/US9631829B2/en
Priority to JP2013547246A priority patent/JP6092119B2/ja
Publication of WO2013081132A1 publication Critical patent/WO2013081132A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to an air conditioner having a function of reducing power consumption.
  • an air conditioner having a so-called demand control function for reducing the power consumption so that the power consumption consumed by the air conditioner does not exceed a predetermined threshold is known.
  • a method of adjusting the opening degree of the expansion valve in accordance with an external demand command is already known.
  • this method has the effect of reducing power consumption by controlling the amount of refrigerant circulating in the air conditioning cycle, it cannot be adjusted to the optimal air conditioning cycle corresponding to the air conditioning load, so the power saving effect is limited. It has become a thing.
  • Patent Document 2 As another conventional demand control method, another method (see Patent Document 2) in which the rotation speed of a compressor is adjusted according to an external demand command is already known. Although this method can reduce the amount of refrigerant circulating in the air conditioning cycle and improve the COP by increasing the efficiency of the air conditioning cycle, it cannot be adjusted to the optimal air conditioning cycle corresponding to the air conditioning load. Is limited.
  • the air conditioner may be operated at a cooling / heating condensation temperature that impairs the comfort of the user environment.
  • the conventional demand control described above is to reduce the performance of the air conditioner uniformly when the power consumption of the air conditioner exceeds a certain threshold value. Even if the situation is not impaired, even if the power consumption does not exceed a certain threshold, the air conditioner's performance is maintained without being degraded, or the comfort of most users is impaired. However, if the power consumption exceeds a certain threshold, the air conditioner's performance may be reduced, and there is insufficient consideration for the user environment. It was hard to say that it was a balance.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an air conditioner capable of achieving both user comfort and power saving.
  • the air conditioner of the present invention is an air conditioner provided with an indoor unit and an outdoor unit, and includes an average room temperature detection mechanism that detects an average room temperature in a room in which the indoor unit is disposed, and is accommodated in the outdoor unit.
  • Compressor control for controlling the compressor so that the pressure of the refrigerant discharged from the compressor and the pressure of the refrigerant sucked into the compressor becomes a pressure set as a target value
  • a normal target pressure storage unit that stores a normal target pressure linked to an outside air temperature and an air conditioning load in the room, and is set as a target value during normal control in the compressor control unit
  • a normal temperature difference calculation unit that calculates a temperature difference between a normal saturation temperature corresponding to a target pressure and the average room temperature as a normal temperature difference, and a power consumption reduction target for power consumption during normal control in the air conditioner
  • a power-saving temperature difference calculation unit that calculates a power-saving temperature difference obtained by reducing the normal temperature difference based on a quantity, and the compressor control unit is based
  • the power-saving target pressure which is the saturation pressure corresponding to the power-saving saturation temperature calculated as described above, is changed to a target value, and the compressor is controlled.
  • the greater the normal temperature difference (the temperature difference between the normal saturation temperature corresponding to the normal target pressure and the average room temperature) is, the more the user is satisfied with comfort, the capacity of the air conditioner is wasted. Focusing on the usage, the normal temperature difference is reduced based on the power consumption reduction target amount according to the size of the normal temperature difference, and the normal temperature difference is reduced, and the power saving based on the power saving temperature difference is reduced.
  • the power-saving effect is reduced compared to the conventional demand control that reduces the capacity of the air conditioner only when the power consumption of the air conditioner exceeds a certain threshold.
  • the effect that the target pressure at the time of power saving can be set within a range in which the user's comfort can be maintained can be exhibited while securing the constant. As a result, it is possible to save power without impairing comfort, and to achieve both user comfort and power saving.
  • the power saving temperature difference calculation unit multiplies the normal temperature difference by a power saving coefficient based on the power consumption reduction target amount. It is preferable to calculate the difference.
  • the power consumption reduction target amount is set according to the user's operation. It is preferable to provide a changeable power consumption reduction target amount changing unit.
  • the compressor control unit subtracts a predetermined value from the average room temperature during the cooling operation of the air conditioner.
  • the power saving saturation temperature setting unit is within a range of 3 ° C to 10 ° C. It is preferable that a predetermined value can be set as the value.
  • the larger the normal temperature difference (the temperature difference between the normal saturation temperature corresponding to the normal target pressure and the average room temperature) is, the more the user is satisfied with the comfort. Focusing on the wasteful use of the capacity of the harmonic machine, the normal temperature difference is reduced based on the power consumption reduction target amount according to the size of the normal temperature difference, and the normal temperature difference is reduced.
  • FIG. 1 shows a refrigerant circuit of an air conditioner of the present invention.
  • the air conditioner 1 includes an indoor unit 100 and an outdoor unit 101.
  • the air conditioner 1 of the present embodiment is an air conditioner that targets a wide indoor space such as an office in a building, and includes an outdoor unit 101 and a plurality of indoors that are distributed in each region of the room.
  • FIG. 1 illustrates only a representative indoor unit 100 among a plurality of indoor units.
  • the indoor unit 100 includes a room temperature sensor 2 that can detect the room temperature in the room, an indoor heat exchanger 3, and a remote controller 4 that can control the indoor unit 100 according to a user's operation.
  • the outdoor unit 101 includes a compressor 5, a four-way switching valve 6, an outdoor fan 7, an outdoor heat exchanger 8, an expansion valve 9, and an outdoor temperature sensor 10 that can detect the outdoor temperature.
  • the outdoor unit 101 has an outdoor unit casing 101a, in which a compressor 5, an outdoor fan 7, an outdoor heat exchanger 8, an electrical component box 11, and the like are accommodated.
  • the electrical component box 11 accommodates a control board or the like with a built-in control unit 12 that can control the rotation speed of the compressor 5 and the opening degree of the expansion valve 9 based on detection information from each temperature sensor.
  • the cooling operation can be realized by switching the four-way switching valve 6 to the dotted line position shown in the figure, and the heating operation can be realized by switching to the solid line position shown in the figure.
  • FIG. 2 shows the configuration of the control unit 12.
  • the control unit 12 is provided with a control mechanism for achieving both user comfort and energy saving, which is an object of the present invention.
  • a pressure storage unit 14 a normal temperature difference calculation unit 15, a power saving temperature difference calculation unit 16, a power consumption reduction target amount change unit 17, and a compressor control unit 18 are included.
  • the average room temperature detection mechanism 13 inputs the capacity (air conditioning load) Icn in the indoor unit 100 installed in the room and the room temperature Tin detected by the room temperature sensor 2 into the following calculation formula (1). It is configured to detect a weighted average (average room temperature) Tia of Tin.
  • the symbol “n” in “capacity Icn” and “room temperature Tin”, which are components of the following calculation formula (1), indicates the identification number of each indoor unit distributed in each indoor region. For this reason, the average room temperature detection mechanism 13 can detect the weighted average Tia of the room temperature Tin according to the capacity Icn of the area that each indoor unit is in charge of based on the following calculation formula (1).
  • the normal target pressure storage unit 14 is composed of, for example, an electrically rewritable EEPROM or flash memory, and stores the normal target pressure set as a target value during normal control in the compressor control unit 18. It is comprised as follows.
  • the normal target pressure means a pressure that is linked to the outside air temperature detected by the outside air temperature sensor 10 and the indoor capacity Icn.
  • the normal target suction pressure Pto is used as the heating operation.
  • the normal target discharge pressure Pto is sometimes used for normal control in the compressor control unit 18.
  • the normal temperature difference calculation unit 15 uses the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) stored in the normal target pressure storage unit 14 in advance as a normal saturation temperature (normal target suction pressure saturation temperature Tto / normal target).
  • the discharge pressure saturation temperature Tto) is converted. Conversion here is realizable using the following refrigerant
  • the normal temperature difference calculation unit 15 calculates the normal target suction pressure saturation temperature Tto and the weighted average Tia detected by the average room temperature detection mechanism 13 in the following calculation formula (3). By inputting, a normal temperature difference ⁇ To is calculated. Similarly, during the heating operation, the normal temperature difference calculation unit 15 inputs the normal target discharge pressure saturation temperature Tto and the weighted average Tia into the following calculation formula (4), thereby calculating the normal temperature difference ⁇ To. It is configured to calculate.
  • the power-saving temperature difference calculation unit 16 sets a target demand amount (power consumption reduction target amount) Dm that is preset for power consumption during normal control in the air conditioner 1 to the following calculation formula (5):
  • a target demand amount (power consumption reduction target amount) Dm that is preset for power consumption during normal control in the air conditioner 1
  • a demand temperature difference (temperature difference during power saving) ⁇ Td obtained by reducing the normal temperature difference ⁇ To is calculated. It is.
  • the power consumption reduction target amount changing unit 17 is configured to be able to change the target demand amount Dm according to the operation of the remote controller 4 by the user.
  • the minimum value of the power saving coefficient is set to a value that does not impair the comfort of the user environment in accordance with the evaluation of comfort. For example, when it is desired to ensure comfort, it is 0. .5.
  • the maximum value of the power saving coefficient is set according to the variation in which the reduction of the power consumption is allowed. For example, when the variation of about 10% is allowed, it is set to 1.1.
  • the compressor control unit 18 adjusts the pressure of the refrigerant sucked into the compressor 5 during the cooling operation or the pressure of the refrigerant discharged from the compressor 5 during the heating operation to a pressure set as a target value.
  • the compressor 5 is configured to be controlled.
  • the compressor control unit 18 adds the weighted average Tia detected by the average room temperature detection mechanism 13 and the demand temperature difference ⁇ Td calculated by the power saving temperature difference calculation unit 16 to the following calculation formula (6). , The demand saturation temperature (power-saving saturation temperature) Ttd is calculated. Similarly, during the heating operation, the compressor control unit 18 inputs the weighted average Tia and the demand temperature difference ⁇ Td into the following calculation formula (7), so that the demand saturation temperature (power saving saturation temperature) is obtained. ) Ttd is calculated.
  • the compressor control unit 18 is configured to calculate the power saving target pressure by inputting the demand saturation temperature Ttd into the following calculation formula (8).
  • the power saving target pressure here is used for demand control in the compressor control unit 18 as a power saving target suction pressure Ptd during cooling operation and as a power saving target discharge pressure Ptd during heating operation.
  • the compressor control unit 18 changes the target value from the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) to the power saving target pressure (power saving target suction pressure Ptd / power saving target discharge pressure Ptd). It changes and it is comprised so that the compressor 5 may be controlled.
  • the compressor control unit 18 sets a value obtained by subtracting a predetermined value from the weighted average Tia during the cooling operation as an upper limit value of the demand saturation temperature Ttd, and during the heating operation, a value obtained by adding the predetermined value to the weighted average Tia during demand saturation.
  • a power-saving saturation temperature setting unit 19 that can be set to the lower limit value of the temperature Ttd is provided.
  • the power-saving saturation temperature setting unit 19 can set the demand temperature difference ⁇ Td, which is the temperature difference between the weighted average Tia and the demand saturation temperature Ttd, to the predetermined value during the cooling operation.
  • the power-saving saturation temperature setting unit 19 can set the demand temperature difference ⁇ Td, which is the temperature difference between the demand saturation temperature Ttd and the weighted average Tia, to the predetermined value during the heating operation.
  • the predetermined value here is sufficient if the temperature difference between the air and the refrigerant becomes less than 3 ° C., the heat exchange in the indoor unit 100 becomes difficult, or the temperature difference between the air and the refrigerant becomes 10 ° C. or more. Heat exchange is possible, and it can be set to a value within the range of 3 ° C. to 10 ° C. in order to avoid a situation where the power saving effect is reduced when the temperature is set to 10 ° C. or higher.
  • the upper limit value of the demand saturation temperature Ttd is set to 22 ° C.
  • the lower limit value of the demand saturation temperature Ttd is set to 25 ° C.
  • FIG. 3 is a flowchart showing an example of the demand control operation during the cooling operation.
  • a preset target demand amount (power consumption reduction target amount) Dm is recognized.
  • step S2 the normal target suction pressure (normal target pressure) Pto stored in advance in the normal target pressure storage unit 14 is recognized.
  • step S3 the normal target suction pressure Pto is converted into a normal target suction pressure saturation temperature (normal saturation temperature) Tto based on the refrigerant physical property formula (2).
  • step S4 the capacity (cooling load) Icn in the indoor unit 100 installed in the room and the room temperature Tin in the room are recognized.
  • step S5 a weighted average (average room temperature) Tia of the room temperature Tin is calculated based on the calculation formula (1).
  • step S6 the normal temperature difference ⁇ To is calculated based on the calculation formula (3).
  • step S7 a demand temperature difference (temperature difference during power saving) ⁇ Td is calculated based on the calculation formula (5).
  • step S8 the demand saturation temperature (saturation temperature during power saving) Ttd is calculated based on the calculation formula (6).
  • step S9 the power saving target suction pressure Ptd is calculated based on the calculation formula (8).
  • step S10 the target value in the compressor control unit 18 is changed from the normal target suction pressure Pto to the power saving target suction pressure Ptd.
  • step S11 the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature are recognized.
  • step S12 a change amount that can change the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature by inputting the demand saturation temperature Ttd and the normal target saturation temperature Tto into the following calculation formula (9). Tc is calculated.
  • step S14 the upper limit value Teuo and the change amount Tc are input to the following calculation formula (10), and the lower limit value Tedo and the change amount Tc are input to the following calculation formula (11).
  • the upper limit demand value Teud and the lower limit demand value Tedd of the target evaporation temperature are respectively calculated.
  • step S14 after the upper limit value Teuo and the lower limit value Tedo at the target evaporation temperature are changed to the upper limit demand value Teud and the lower limit demand value Tedd, respectively, the process returns to step S1.
  • FIG. 4 is a flowchart illustrating an example of a demand control operation during heating operation.
  • the steps S201 to S210 (excluding steps S206 and S208) in the control operation here are the same as the steps S1 to S10 (excluding steps S6 and S8) in the cooling operation in this order, but are compressed.
  • the difference is that the target value in the machine control unit 18 is changed from the normal target discharge pressure Pto to the power saving target discharge pressure Ptd.
  • step S201 a preset target demand amount (power consumption reduction target amount) Dm is recognized.
  • step S202 the normal target discharge pressure (normal target pressure) Pto stored in advance in the normal target pressure storage unit 14 is recognized.
  • step S203 the normal target discharge pressure Pto is converted into a normal target discharge pressure saturation temperature (normal saturation temperature) Tto based on the refrigerant physical property formula (2).
  • step S204 the capacity (heating load) Icn in the indoor unit 100 installed indoors and the room temperature Tin in the room are recognized.
  • step S205 a weighted average (average room temperature) Tia of the room temperature Tin is calculated based on the calculation formula (1).
  • step S206 the normal temperature difference ⁇ To is calculated based on the calculation formula (4).
  • step S207 a demand temperature difference (temperature difference during power saving) ⁇ Td is calculated based on the calculation formula (5).
  • step S208 the demand saturation temperature (saturation temperature during power saving) Ttd is calculated based on the calculation formula (7).
  • step S209 the power saving target discharge pressure Ptd is calculated based on the calculation formula (8).
  • step S210 the target value in the compressor control unit 18 is changed from the normal target discharge pressure Pto to the power-saving target discharge pressure Ptd. Thereafter, the process again proceeds to step S201.
  • the normal temperature difference ⁇ To (the temperature difference between the weighted average Tia shown in FIG. 5 (a-1) and the normal target suction pressure saturation temperature Tto, or the normal target discharge shown in FIG. 5 (b-1).
  • the normal temperature difference ⁇ To is reduced based on the target demand amount Dm according to the magnitude of the normal temperature difference ⁇ To to calculate the demand temperature difference ⁇ Td.
  • the optimum power-saving target suction pressure Ptd / power-saving target discharge pressure Ptd can be calculated based on the target demand amount Dm of the external command according to the operation of the remote controller 4 by the user.
  • the optimum power saving target suction pressure Ptd / power saving target discharge pressure Ptd corresponding to the air conditioning load in the room can be obtained, so that the maximum power saving is possible.
  • the suction pressure can be set higher than the conventional demand control. More specifically, when the suction pressure can be set higher by 0.06 Mpa, the power saving effect can be improved by about 6% compared with the conventional demand control.
  • the compressor control unit 18 sets the target value during the normal control, and the normal target pressure (normal target suction pressure Pto / normal) linked to the outside air temperature and the indoor air conditioning load. Since the target discharge pressure Pto) is used as a reference, it is possible to always ensure a power saving effect against changes in user environmental conditions. For example, when demand control is performed during the cooling operation, the suction pressure can be changed according to a change in the outside air temperature. More specifically, when the outside air temperature decreases by 1 ° C., the power saving effect can be improved by about 2% compared to the conventional demand control.
  • the value of the target demand amount Dm is set to a value such as 50, 60, 70, 80, 90, 100 according to the operation of the remote controller 4 by the user.
  • a value obtained by subtracting a predetermined value from the weighted average Tia is set as the upper limit value of the demand saturation temperature Ttd
  • a value obtained by adding the predetermined value to the weighted average Tia Since the lower limit value of the saturation temperature Ttd can be set, it is possible to prevent a lack of cooling / heating capacity due to insufficient capacity of the indoor heat exchanger 3. For example, when demand control is performed during cooling operation, when the demand saturation temperature is raised by 1 ° C. by setting the lower limit of the demand saturation temperature Ttd, it is possible to prevent a cooling capacity decrease of about 5% compared to the conventional demand control. it can.
  • the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C., so that the temperature difference between the air and the refrigerant, which is predicted to occur in the conventional demand control, is insufficient.
  • the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C., so that the temperature difference between the air and the refrigerant, which is predicted to occur in the conventional demand control, is insufficient.
  • the predetermined value can be set to a value within the range of 3 ° C. to 10 ° C.
  • the compressor control unit 18 inputs the demand saturation temperature Ttd to the calculation formula (8), thereby acquiring the power saving target suction pressure Ptd / power saving target discharge pressure Ptd.
  • the present invention is not limited to this, and based on the output of the suction / discharge pipe thermistor for detecting the suction / discharge refrigerant temperature in the suction pipe / discharge pipe of the compressor 5, the target suction pressure during power saving Ptd / power saving target discharge pressure Ptd may be acquired.
  • the compressor control unit 18 can acquire the normal target suction pressure Pto / normal target discharge pressure Pto based on the output of the suction / discharge pipe thermistor.
  • the compressor control unit 18 is based on the command command value from the control unit 12 side, and the power saving target suction pressure Ptd / power saving target discharge pressure Ptd, or the normal target suction pressure Pto / normal target discharge pressure. Pto can be acquired.
  • the normal temperature difference calculation unit 15 uses the refrigerant physical property formula (2) to change the normal target pressure (normal target suction pressure Pto / normal target discharge pressure Pto) to the normal saturation temperature (normal target suction).
  • the normal target pressure normal target suction pressure Pto / normal target discharge pressure Pto
  • the normal target pressure may be converted into a normal saturation temperature (normal target suction pressure saturation temperature Tto / normal target discharge pressure saturation temperature Tto).
  • the normal target pressure normal target suction pressure Pto / normal target discharge pressure Pto

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 利用者の快適性と省電力との両立を図ることのできる空気調和機を提供することを目的とするために、室内における平均室温を検知する平均室温検知機構13と、圧縮機制御部18において通常制御時に目標値として設定されるものであり、外気温度と、室内における空調負荷とに連動した通常目標圧力を記憶する通常目標圧力記憶部14と、通常目標圧力に対応した通常飽和温度と、平均室温との温度差を通常温度差として算出する通常温度差算出部15と、空気調和機における通常制御時の消費電力に対する電力消費削減目標量に基づいて、通常温度差を縮小した省電力時温度差を算出する省電力時温度差算出部16とを備え、圧縮機制御部18が、平均室温及び省電力時温度差に基づいて算出される省電力時飽和温度に対応する飽和圧力である省電力時目標圧力を目標値に変更して、圧縮機5を制御するように構成されたことを特徴とする。

Description

空気調和機
 本発明は、消費電力を削減する機能を備えた空気調和機に関するものである。
 従来、空気調和機で消費される消費電力が所定の閾値を超えないように該消費電力を削減することを目的とした、いわゆるデマンド制御機能を備えた空気調和機が知られている。このようなデマンド制御の方法として、一つには、外部からのデマンド指令に応じて膨張弁の開度を調整する方法(特許文献1参照)が既に知られている。この方法は、空調サイクル内を循環する冷媒循環量を制御することによる消費電力の削減効果を有するが、空調負荷に対応した最適な空調サイクルに調整できないものであるため、省電力効果が限定的なものとなっている。
従来のデマンド制御の方法として、もう一つには、外部からのデマンド指令に応じて圧縮機の回転数を調整する方法(特許文献2参照)が既に知られている。この方法は、空調サイクル内を循環する冷媒循環量の低減と、空調サイクルの高効率化によるCOPの向上が可能であるが、空調負荷に対応した最適な空調サイクルに調整できないため、省電力効果が限定的なものとなっている。また、この方法では、利用者環境の快適性を損なう冷房蒸発温度/暖房凝縮温度で空気調和機が運転される可能性がある。
特開平7-190455号公報 特開2011-7422号公報
 ここで、上述した従来のデマンド制御は、空気調和機の消費電力が一定の閾値を超えた際に、空気調和機の能力を一律に低下させるものであったため、大半の利用者の快適性が損なわれていない状況であっても、消費電力が一定の閾値を超えない限り空気調和機の能力が低下されないまま維持されたり、大半の利用者の快適性が損なわれている状況であっても、消費電力が一定の閾値を超えれば空気調和機の能力が低下されたりする事態が生じており、利用者環境への配慮が足りないものであって、利用者の快適性と省電力との両立を図ったものとは言い難かった。
 そこで、本発明は上述したような問題を鑑みてなされたものであり、利用者の快適性と省電力との両立を図ることのできる空気調和機を提供することを目的とする。
すなわち、本発明の空気調和機は、室内機及び室外機を備えた空気調和機であって、前記室内機が配置された室内における平均室温を検知する平均室温検知機構と、前記室外機に収容された圧縮機と、前記圧縮機から吐出される冷媒の圧力、又は、当該圧縮機に吸入される冷媒の圧力が目標値として設定された圧力となるように前記圧縮機を制御する圧縮機制御部と、前記圧縮機制御部において通常制御時に目標値として設定されるものであり、外気温度と、前記室内における空調負荷とに連動した通常目標圧力を記憶する通常目標圧力記憶部と、前記通常目標圧力に対応した通常飽和温度と、前記平均室温との温度差を通常温度差として算出する通常温度差算出部と、前記空気調和機における通常制御時の消費電力に対する電力消費削減目標量に基づいて、前記通常温度差を縮小した省電力時温度差を算出する省電力時温度差算出部とを備え、前記圧縮機制御部が、前記平均室温及び前記省電力時温度差に基づいて算出される省電力時飽和温度に対応する飽和圧力である省電力時目標圧力を目標値に変更して、前記圧縮機を制御するように構成されたことを特徴とする。このように構成すれば、通常温度差(通常目標圧力に対応した通常飽和温度と、平均室温との温度差)が大きいほど利用者が快適性に満足した状況で空気調和機の能力が無駄に使用されていることに着目し、通常温度差の大きさに応じて電力消費削減目標量に基づいた通常温度差の縮小を行うとともに、通常温度差を縮小した省電力時温度差に基づいた省電力時目標圧力を目標値として圧縮機を制御することで、空気調和機の消費電力が一定の閾値を超えた場合のみ空気調和機の能力を低下させる従来のデマンド制御と比べて省電力効果を常時確保しつつ、省電力時目標圧力を利用者の快適性の維持が可能な範囲に設定できるという効果を発揮することができる。その結果、快適性を損なわずに省電力が可能となり、利用者の快適性と省電力との両立を図ることができる。
 さらに、利用者によるデマンド要求に対して精度の高い消費電力設定を行うことができるとともに、従来のデマンド制御で発生が予測されるような必要以上に電力消費削減目標量を増加させることによる快適性の低下を防止することができるという効果を得るには、前記省電力時温度差算出部が、前記電力消費削減目標量に基づく省電力係数を前記通常温度差に乗じることによって前記省電力時温度差を算出することが好ましい。
 さらに、室内における空調負荷に対応した最適な省電力時目標圧力を得ることにより最大限の省電力が可能となるという効果を得るには、利用者の操作に応じて前記電力消費削減目標量を変更可能な電力消費削減目標量変更部を備えることが好ましい。
さらに、室内機の能力不足による冷暖房能力の不足を防止することができるという効果を得るには、前記圧縮機制御部が、前記空気調和機の冷房運転時には、前記平均室温から所定値を減算した値を前記省電力時飽和温度の上限値に設定し、前記空気調和機の暖房運転時には、前記平均室温に所定値を加算した値を前記省電力時飽和温度の下限値に設定可能な省電力時飽和温度設定部を備えることが好ましい。
 さらに、従来のデマンド制御で発生が予測される、空気と冷媒の温度差が不足することによる、室内機における熱交換不良を防止することができるとともに、快適性の低下を防止することができ、不必要に省電力時飽和温度を制限することによる省電力効果の不足を防止することができるという効果を得るには、前記省電力時飽和温度設定部が、3℃乃至10℃の範囲内の値に所定値を設定可能であることが好ましい。
 このように、本発明の空気調和機によれば、通常温度差(通常目標圧力に対応した通常飽和温度と、平均室温との温度差)が大きいほど利用者が快適性に満足した状況で空気調和機の能力が無駄に使用されていることに着目し、通常温度差の大きさに応じて電力消費削減目標量に基づいた通常温度差の縮小を行うとともに、通常温度差を縮小した省電力時温度差に基づいた省電力時目標圧力を目標値として圧縮機を制御することで、空気調和機の消費電力が一定の閾値を超えた場合のみ空気調和機の能力を低下させる従来のデマンド制御と比べて省電力効果を常時確保しつつ、省電力時目標圧力を利用者の快適性の維持が可能な範囲に設定できるという効果を発揮することができる。その結果、快適性を損なわずに省電力が可能となり、利用者の快適性と省電力との両立を図ることができる。
本発明の空気調和機の冷媒回路を示す図である。 制御部の構成を示すブロック図である。 本実施形態の冷房運転時におけるデマンド制御動作の一例を示したフローチャートである。 本実施形態の暖房運転時におけるデマンド制御動作の一例を示したフローチャートである。 通常温度差ΔToの縮小動作を示す説明図である。 飽和圧力と飽和温度との関係の一例を示す図である。
1  空気調和機
2  室温センサ
3  室内熱交換器
4  リモコン
5  圧縮機
6  四路切換弁
7  室外ファン
8  室外熱交換器
9  膨張弁
10  外気温度センサ
11  電装品箱
12  制御部
13  平均室温検知機構
14  通常目標圧力記憶部
15  通常温度差算出部
16  省電力時温度差算出部
17  電力消費削減目標量変更部
18  圧縮機制御部
19  省電力時飽和温度設定部
100  室内機
101  室外機
101a  室外機ケーシング
以下、図1~図5を参照しながら、本発明の一実施形態に係る空気調和機について説明する。
 [空気調和機1の全体構成]
図1は、本発明の空気調和機の冷媒回路を示している。図に示すように、空気調和機1は、室内機100と室外機101とを備えている。ここで、本実施形態の空気調和機1は、ビル内のオフィス等の広い室内空間を対象とした空気調和機であって、室外機101と、室内の各領域に分散配置された複数の室内機とからなる空気調和機を想定したものであるが、図1では説明の便宜上、複数の室内機のうち、代表する室内機100のみを図示している。
 室内機100は、室内における室温を検知可能な室温センサ2と、室内熱交換器3と、利用者の操作に応じて室内機100を制御可能なリモコン4とを有している。
室外機101は、圧縮機5と、四路切換弁6と、室外ファン7と、室外熱交換器8と、膨張弁9と、外気温度を検知可能な外気温度センサ10とを有している。室外機101は、室外機ケーシング101aを有しており、その内部において、圧縮機5、室外ファン7、室外熱交換器8及び電装品箱11等が収容されている。電装品箱11には、各温度センサからの検出情報に基づいて圧縮機5の回転速度や膨張弁9の開度を制御可能な制御部12を内蔵した制御基板等が収容されている。
[空気調和機1の動作]
空気調和機1では、四路切換弁6を図示の点線位置に切り換えることで、冷房運転が実現可能であり、図示の実線位置に切り換えることで、暖房運転が実現可能となっている。
[制御部12の構成]
図2は、制御部12の構成を示している。制御部12は、本発明の目的とされる利用者の快適性と省エネルギーとの両立を図るための制御機構を備えたものであって、図に示すように、平均室温検知機構13、通常目標圧力記憶部14、通常温度差算出部15、省電力時温度差算出部16、電力消費削減目標量変更部17、及び、圧縮機制御部18を有している。
平均室温検知機構13は、以下の算出式(1)に、室内に設置された室内機100における容量(空調負荷)Icnと、室温センサ2で検知された室温Tinとを入力することにより、室温Tinの加重平均(平均室温)Tiaを検知するように構成されているものである。ここで、以下の算出式(1)の構成要素である「容量Icn」及び「室温Tin」中の符号nは、室内の各領域に分散配置された各室内機の識別番号を示している。このため、平均室温検知機構13は、以下の算出式(1)に基づいて、各室内機が担当している領域の容量Icnに応じた室温Tinの加重平均Tiaを検知可能となっている。
Figure JPOXMLDOC01-appb-M000001
 通常目標圧力記憶部14は、例えば電気的にデータの書き換えが可能なEEPROMやフラッシュメモリ等で構成されており、圧縮機制御部18において通常制御時に目標値として設定される通常目標圧力を記憶するように構成されているものである。ここでの通常目標圧力とは、外気温度センサ10で検知された外気温度と、室内における容量Icnとに連動した圧力を意味するものであって、冷房運転時には通常目標吸入圧力Ptoとして、暖房運転時には通常目標吐出圧力Ptoとして圧縮機制御部18における通常制御に使用されるものである。
通常温度差算出部15は、通常目標圧力記憶部14に予め記憶された通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)を通常飽和温度(通常目標吸入圧力飽和温度Tto/通常目標吐出圧力飽和温度Tto)に換算するように構成されているものである。ここでの換算は、冷媒の物性値(飽和圧力及び飽和温度)を相互に換算可能な以下の冷媒物性式(2)を用いて実現可能である。
Figure JPOXMLDOC01-appb-M000002
 また、通常温度差算出部15は、冷房運転時にあっては、以下の算出式(3)に、通常目標吸入圧力飽和温度Ttoと、平均室温検知機構13で検知された加重平均Tiaと、を入力することにより、通常温度差ΔToを算出するように構成されているものである。同様に、通常温度差算出部15は、暖房運転時にあっては、以下の算出式(4)に、通常目標吐出圧力飽和温度Ttoと加重平均Tiaとを入力することにより、通常温度差ΔToを算出するように構成されているものである。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
省電力時温度差算出部16は、以下の算出式(5)に、空気調和機1における通常制御時の消費電力に対して予め設定された目標デマンド量(電力消費削減目標量)Dmと、通常温度差算出部15で算出された通常温度差ΔToと、を入力することにより、通常温度差ΔToを縮小したデマンド温度差(省電力時温度差)ΔTdを算出するように構成されているものである。以下の算出式(5)からも明らかなように、通常温度差ΔToの縮小は、通常温度差ΔToに目標デマンド量Dmを乗じることにより実現可能である。このため、例えば通常温度差ΔToが25℃、目標デマンド量Dmが80の場合には、算出により得られるデマンド温度差ΔTdは、25×80/100=20℃となる。
Figure JPOXMLDOC01-appb-M000005
 電力消費削減目標量変更部17は、利用者によるリモコン4の操作に応じて目標デマンド量Dmを変更可能に構成されているものである。なお、目標デマンド量Dmは、50、60、70、80、90、100などの値に段階的に設定可能である。つまり、利用者が快適性を重視する場合には、省電力係数(=目標デマンド量Dm/100)を大きな値に設定可能であり、省電力を重視する場合には、省電力係数(=目標デマンド量Dm/100)を小さな値に設定可能となっている。ここで、省電力係数の最小値は、快適性の評価に応じて利用者環境の快適性が損なわれない値に設定されるものであって、例えば確実に快適性を確保したい場合には0.5に設定される。また、省電力係数の最大値は、消費電力量の削減が許容されるバラツキに応じて設定されるものであって、例えば10%程度のバラツキが許容される場合には1.1に設定される。
圧縮機制御部18は、冷房運転時において圧縮機5に吸入される冷媒の圧力、又は、暖房運転時において圧縮機5から吐出される冷媒の圧力が目標値として設定された圧力となるように圧縮機5を制御するように構成されているものである。
 圧縮機制御部18は、冷房運転時には以下の算出式(6)に、平均室温検知機構13で検知された加重平均Tiaと、省電力時温度差算出部16で算出されたデマンド温度差ΔTdと、を入力することにより、デマンド飽和温度(省電力時飽和温度)Ttdを算出するように構成されているものである。同様に、圧縮機制御部18は、暖房運転時にあっては、以下の算出式(7)に、加重平均Tiaとデマンド温度差ΔTdとを入力することにより、デマンド飽和温度(省電力時飽和温度)Ttdを算出するように構成されているものである。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 圧縮機制御部18は、以下の算出式(8)に、デマンド飽和温度Ttdを入力することにより、省電力目標圧力を算出するように構成されているものである。ここでの省電力目標圧力とは、冷房運転時には省電力時目標吸入圧力Ptdとして、暖房運転時には省電力時目標吐出圧力Ptdとして圧縮機制御部18におけるデマンド制御に使用されるものである。
Figure JPOXMLDOC01-appb-M000008
 圧縮機制御部18は、目標値を通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)から省電力時目標圧力(省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptd)に変更して、圧縮機5を制御するように構成されているものである。
圧縮機制御部18は、冷房運転時には、加重平均Tiaから所定値を減算した値をデマンド飽和温度Ttdの上限値に設定し、暖房運転時には、加重平均Tiaに所定値を加算した値をデマンド飽和温度Ttdの下限値に設定可能な省電力時飽和温度設定部19を備えているものである。換言すれば、省電力時飽和温度設定部19は、冷房運転時には、加重平均Tiaとデマンド飽和温度Ttdとの温度差であるデマンド温度差ΔTdを上記所定値に設定可能である。同様に、省電力時飽和温度設定部19は、暖房運転時には、デマンド飽和温度Ttdと加重平均Tiaとの温度差であるデマンド温度差ΔTdを上記所定値に設定可能である。ここでの所定値は、空気と冷媒との温度差が3℃未満になると、室内機100における熱交換が困難となる事態や、空気と冷媒との温度差が10℃以上になれば、十分熱交換が可能であり、10℃以上に設定すると省電力効果が低下する事態を回避するために、3℃乃至10℃の範囲内の値に設定可能となっている。従って、冷房運転時において、例えば加重平均Tiaが27℃、所定値が5℃の場合には、デマンド飽和温度Ttdの上限値が22℃に設定される。一方、暖房運転時において、例えば加重平均Tiaが20℃、所定値が5℃の場合には、デマンド飽和温度Ttdの下限値が25℃に設定される。
[本実施形態のデマンド制御動作]
以下では、図3及び図4を参照しながら、冷房運転時及び暖房運転時における各デマンド制御動作の一例について説明する。なお、図3及び図4に示す各動作は、制御部12が、ROMに格納されたプログラムを実行することによって実現可能である。
[冷房運転時におけるデマンド制御動作]
図3は、冷房運転時におけるデマンド制御動作の一例を示したフローチャートである。この制御動作では、まず、ステップS1において、予め設定された目標デマンド量(電力消費削減目標量)Dmが認識される。
次に、ステップS2において、通常目標圧力記憶部14に予め格納されている通常目標吸入圧力(通常目標圧力)Ptoが認識される。
次に、ステップS3において、上記冷媒物性式(2)に基づき、通常目標吸入圧力Ptoが通常目標吸入圧力飽和温度(通常飽和温度)Ttoに換算される。
次に、ステップS4において、室内に設置された室内機100における容量(冷房負荷)Icnと、室内における室温Tinとが認識される。
 次に、ステップS5において、上記算出式(1)に基づき、室温Tinの加重平均(平均室温)Tiaが算出される。
 次に、ステップS6において、上記算出式(3)に基づき、通常温度差ΔToが算出される。
 次に、ステップS7において、上記算出式(5)に基づき、デマンド温度差(省電力時温度差)ΔTdが算出される。
 次に、ステップS8において、上記算出式(6)に基づき、デマンド飽和温度(省電力時飽和温度)Ttdが算出される。
 次に、ステップS9において、上記算出式(8)に基づき、省電力時目標吸入圧力Ptdが算出される。
 次に、ステップS10において、圧縮機制御部18における目標値が通常目標吸入圧力Ptoから省電力時目標吸入圧力Ptdに変更される。
 次に、ステップS11において、目標蒸発温度における上限値Teuo及び下限値Tedoが認識される。
 次に、ステップS12において、以下の算出式(9)に、デマンド飽和温度Ttd及び通常目標飽和温度Ttoが入力されることにより、目標蒸発温度における上限値Teuo及び下限値Tedoを変更可能な変更量Tcが算出される。
Figure JPOXMLDOC01-appb-M000009
 次に、ステップS14において、以下の算出式(10)に、上限値Teuo及び変更量Tcが入力されるとともに、以下の算出式(11)に、下限値Tedo及び変更量Tcが入力されることにより、目標蒸発温度の上限デマンド値Teud及び下限デマンド値Teddがそれぞれ算出される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 そして、ステップS14において、目標蒸発温度における上限値Teuo及び下限値Tedoが、それぞれ、上限デマンド値Teud及び下限デマンド値Teddに変更された後、処理は再びステップS1に移行する。
[暖房運転時におけるデマンド制御動作]
図4は、暖房運転時におけるデマンド制御動作の一例を示したフローチャートである。ここでの制御動作における各ステップS201~S210(ステップS206,S208を除く)は、上記の冷房運転時における各ステップS1~S10(ステップS6,S8を除く)と順に同様のものであるが、圧縮機制御部18における目標値を通常目標吐出圧力Ptoから省電力時目標吐出圧力Ptdに変更することを目的とした点で相違するものである。
まず、ステップS201において、予め設定された目標デマンド量(電力消費削減目標量)Dmが認識される。
次に、ステップS202において、通常目標圧力記憶部14に予め格納されている通常目標吐出圧力(通常目標圧力)Ptoが認識される。
次に、ステップS203において、上記冷媒物性式(2)に基づき、通常目標吐出圧力Ptoが通常目標吐出圧力飽和温度(通常飽和温度)Ttoに換算される。
次に、ステップS204において、室内に設置された室内機100における容量(暖房負荷)Icnと、室内における室温Tinとが認識される。
 次に、ステップS205において、上記算出式(1)に基づき、室温Tinの加重平均(平均室温)Tiaが算出される。
 次に、ステップS206において、上記算出式(4)に基づき、通常温度差ΔToが算出される。
 次に、ステップS207において、上記算出式(5)に基づき、デマンド温度差(省電力時温度差)ΔTdが算出される。
 次に、ステップS208において、上記算出式(7)に基づき、デマンド飽和温度(省電力時飽和温度)Ttdが算出される。
 次に、ステップS209において、上記算出式(8)に基づき、省電力時目標吐出圧力Ptdが算出される。
 次に、ステップS210において、圧縮機制御部18における目標値が通常目標吐出圧力Ptoから省電力時目標吐出圧力Ptdに変更される。その後、処理は再びSステップ201に移行する。
[本実施形態における空気調和機の特徴]
上記構成によれば、通常温度差ΔTo(図5(a-1)に示す加重平均Tiaと通常目標吸入圧力飽和温度Ttoとの温度差、又は、図5(b-1)に示す通常目標吐出圧力飽和温度Ttoと加重平均Tiaとの温度差)が大きいほど利用者が快適性に満足した状況で空気調和機1の能力が無駄に使用されていることに着目し、図5(a-2)又は図5(b-2)に示すように、通常温度差ΔToの大きさに応じて目標デマンド量Dmに基づいた通常温度差ΔToの縮小を行ってデマンド温度差ΔTdを算出するとともに、該デマンド温度差ΔTdに基づいた省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを目標値として圧縮機5を制御することで、空気調和機の消費電力が一定の閾値を超えた場合のみ空気調和機の能力を低下させる従来のデマンド制御と比べて省電力効果を常時確保しつつ、省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを利用者の快適性の維持が可能な範囲に設定できるという効果を発揮することができる。その結果、快適性を損なわずに省電力が可能となり、利用者の快適性と省電力との両立を図ることができる。
 また、上記構成によれば、利用者によるリモコン4の操作に応じた外部指令の目標デマンド量Dmに基づいて、最適な省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを演算できる。これにより、室内における空調負荷に対応した最適な省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを得ることができるため、最大限の省電力が可能となる。例えば、冷房運転時にデマンド制御を行う場合、従来のデマンド制御に対して吸入圧力を高く設定することが可能となる。より具体的に、吸入圧力を0.06Mpaだけ高く設定できる場合には、従来のデマンド制御と比べて省電力効果を約6%向上させることができる。
 また、上記構成によれば、圧縮機制御部18において通常制御時に目標値として設定されるものであり、外気温度と、室内における空調負荷とに連動した通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)を基準とするものであるため、利用者環境条件の変化に対して、常時、省電力効果を確保することができる。例えば冷房運転時にデマンド制御を行う場合、外気温度の変化に応じて吸入圧力を変化させることができる。より具体的に、外気温度が1℃低下した場合には、従来のデマンド制御と比べて省電力効果を約2%向上させることができる。
 また、上記構成によれば、通常温度差ΔToの縮小が、該通常温度差ΔToに省電力係数(=目標デマンド量Dm/100)を乗じることによって行われるものであるため、利用者によるデマンド要求に対して精度の高い消費電力設定を行うことができる。また、従来のデマンド制御で発生が予測される、必要以上に目標デマンド量Dmを増加させることによる、快適性の低下を防止することができる。
また、上記構成によれば、通常温度差ΔToの縮小時に、利用者によるリモコン4の操作に応じて目標デマンド量Dmの値を、50、60、70、80、90、100などの値に段階的に設定可能であり、利用者の快適性が重視される場合には、省電力係数(=目標デマンド量Dm/100)を大きな値に設定可能であるとともに、省電力が重視される場合には、省電力係数(=目標デマンド量Dm/100)を小さな値に設定可能であるため、
空気調和機1が設置されている物件の用途又は利用者の要求に対して、デマンド制御の強弱が調整可能となる。従って、従来のデマンド制御で発生が予測される、快適性の低下や省電力効果の不足による、利用者からのクレームを防止することができる。
また、上記構成によれば、冷房運転時には、加重平均Tiaから所定値を減算した値をデマンド飽和温度Ttdの上限値に設定し、暖房運転時には、加重平均Tiaに所定値を加算した値をデマンド飽和温度Ttdの下限値に設定可能であるため、室内熱交換器3の能力不足による冷暖房能力の不足を防止することができる。例えば冷房運転時にデマンド制御を行う場合、デマンド飽和温度Ttdの下限設定により、デマンド飽和温度を1℃上昇させる場合には、従来のデマンド制御に比べて約5%の冷房能力低下を防止することができる。
また、上記構成によれば、所定値を3℃乃至10℃の範囲内の値に設定可能であるため、従来のデマンド制御で発生が予測される、空気と冷媒の温度差が不足することによる、室内機における熱交換不良を防止することができるとともに、快適性の低下を防止することができる。また、不必要にデマンド飽和温度Ttdを制限することによる、省電力効果の不足を防止することができる。
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
なお、上記実施形態では、圧縮機制御部18が、上記算出式(8)に、デマンド飽和温度Ttdを入力することにより、省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを取得する例について述べたが、本発明はこれに限定されず、圧縮機5の吸入配管/吐出配管において吸入/吐出冷媒温度を検出する吸入/吐出管サーミスタの出力に基づいて、省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptdを取得してもよい。同様に、圧縮機制御部18は、吸入/吐出管サーミスタの出力に基づいて、通常目標吸入圧力Pto/通常目標吐出圧力Ptoを取得可能である。また、圧縮機制御部18は、制御部12側からの指令コマンド値に基づいて、省電力時目標吸入圧力Ptd/省電力時目標吐出圧力Ptd、又は、通常目標吸入圧力Pto/通常目標吐出圧力Ptoを取得可能である。
なお、上記実施形態では、通常温度差算出部15が、上記冷媒物性式(2)を用いて、通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)を通常飽和温度(通常目標吸入圧力飽和温度Tto/通常目標吐出圧力飽和温度Tto)に換算する例について述べたが、本発明はこれに限定されず、冷媒の物性値を示す冷媒物性表(ルックアップテーブル)を参照することにより、通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)を通常飽和温度(通常目標吸入圧力飽和温度Tto/通常目標吐出圧力飽和温度Tto)に換算してもよく、冷媒の飽和圧力と飽和温度との対応関係(図6参照)に基づいて、通常目標圧力(通常目標吸入圧力Pto/通常目標吐出圧力Pto)を通常飽和温度(通常目標吸入圧力飽和温度Tto/通常目標吐出圧力飽和温度Tto)に換算してもよい。
 本発明によれば、利用者の快適性と省電力とを両立できる空気調和機を提供することができる。

Claims (5)

  1. 室内機及び室外機を備えた空気調和機であって、
    前記室内機が配置された室内における平均室温を検知する平均室温検知機構と、
    前記室外機に収容された圧縮機と、
    前記圧縮機から吐出される冷媒の圧力、又は、当該圧縮機に吸入される冷媒の圧力が目標値として設定された圧力となるように前記圧縮機を制御する圧縮機制御部と、
    前記圧縮機制御部において通常制御時に目標値として設定されるものであり、外気温度と、前記室内における空調負荷とに連動した通常目標圧力を記憶する通常目標圧力記憶部と、
    前記通常目標圧力に対応した通常飽和温度と、前記平均室温との温度差を通常温度差として算出する通常温度差算出部と、
    前記空気調和機における通常制御時の消費電力に対する電力消費削減目標量に基づいて、前記通常温度差を縮小した省電力時温度差を算出する省電力時温度差算出部とを備え、
    前記圧縮機制御部が、前記平均室温及び前記省電力時温度差に基づいて算出される省電力時飽和温度に対応する飽和圧力である省電力時目標圧力を目標値に変更して、前記圧縮機を制御するように構成されたことを特徴とする空気調和機。
  2.  前記省電力時温度差算出部が、
     前記電力消費削減目標量に基づく省電力係数を前記通常温度差に乗じることによって前記省電力時温度差を算出することを特徴とする請求項1に記載の空気調和機。
  3.  利用者の操作に応じて前記電力消費削減目標量を変更可能な電力消費削減目標量変更部を備えたことを特徴とする請求項1に記載の空気調和機。
  4.  前記圧縮機制御部が、
     前記空気調和機の冷房運転時には、前記平均室温から所定値を減算した値を前記省電力時飽和温度の上限値に設定し、前記空気調和機の暖房運転時には、前記平均室温に所定値を加算した値を前記省電力時飽和温度の下限値に設定可能な省電力時飽和温度設定部を備えたことを特徴とする請求項1に記載の空気調和機。
  5.  前記省電力時飽和温度設定部が、
     3℃乃至10℃の範囲内の値に所定値を設定可能であることを特徴とする請求項4に記載の空気調和機。
PCT/JP2012/081163 2011-11-30 2012-11-30 空気調和機 WO2013081132A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES12853680.2T ES2664520T3 (es) 2011-11-30 2012-11-30 Acondicionador de aire
EP12853680.2A EP2787299B1 (en) 2011-11-30 2012-11-30 Air conditioner
KR1020147013178A KR101992139B1 (ko) 2011-11-30 2012-11-30 공기조화기
CN201280068543.6A CN104272033B (zh) 2011-11-30 2012-11-30 空调
US14/361,937 US9631829B2 (en) 2011-11-30 2012-11-30 Air conditioner
JP2013547246A JP6092119B2 (ja) 2011-11-30 2012-11-30 空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011262298 2011-11-30
JP2011-262298 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013081132A1 true WO2013081132A1 (ja) 2013-06-06

Family

ID=48535579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081163 WO2013081132A1 (ja) 2011-11-30 2012-11-30 空気調和機

Country Status (7)

Country Link
US (1) US9631829B2 (ja)
EP (1) EP2787299B1 (ja)
JP (1) JP6092119B2 (ja)
KR (1) KR101992139B1 (ja)
CN (1) CN104272033B (ja)
ES (1) ES2664520T3 (ja)
WO (1) WO2013081132A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292422A (zh) * 2013-06-17 2013-09-11 南京天加空调设备有限公司 直流变频多联机制冷运行吸气压力控制方法
CN104791944A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调系统及其控制方法、空调系统的室外机
CN104930590A (zh) * 2014-03-18 2015-09-23 三星电子株式会社 空调器及其控制方法
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204997A (zh) * 2012-03-30 2014-12-10 富士通株式会社 信息处理装置、控制方法以及程序
CN103727627B (zh) * 2012-10-11 2016-10-05 财团法人车辆研究测试中心 适用于冷/暖空调系统的智能型恒温控制方法与装置
JP5780280B2 (ja) * 2013-09-30 2015-09-16 ダイキン工業株式会社 空調システム及びその制御方法
US10619952B2 (en) 2014-10-13 2020-04-14 Guentner Gmbh & Co. Kg Method for operating a heat exchanger system and heat exchanger system
KR102346627B1 (ko) * 2015-09-30 2022-01-05 엘지전자 주식회사 공기조화기 및 그 제어방법
DE102017204122B4 (de) 2017-03-13 2020-07-16 Audi Ag Verfahren zum Betreiben eines Kältemittelkreislaufs für eine Fahrzeugklimaanlage
CN107726554B (zh) * 2017-09-19 2020-01-17 青岛海尔空调电子有限公司 一种多联机舒适度均衡控制方法及系统
JP7153864B2 (ja) * 2018-07-30 2022-10-17 パナソニックIpマネジメント株式会社 空気調和装置
CN110857806B (zh) * 2018-08-24 2022-07-22 广东松下环境系统有限公司 送风装置的控制方法及应用其的送风装置
CN109028494B (zh) * 2018-09-18 2020-09-18 青岛海尔空调电子有限公司 空调冷媒流量控制的方法、装置及计算机存储介质
JP6885497B2 (ja) * 2019-06-21 2021-06-16 ダイキン工業株式会社 情報処理方法、情報処理装置、及びプログラム
CN112460839B (zh) * 2020-10-09 2022-04-01 国网浙江省电力有限公司湖州供电公司 一种基于用户舒适度的地源热泵的控制方法及系统
US12050034B2 (en) * 2022-08-29 2024-07-30 Johnson Controls Tyco IP Holdings LLP System and method for operating a compressor of an energy efficient heat pump
CN115597180B (zh) * 2022-09-30 2024-06-04 珠海格力电器股份有限公司 一种空调器的控制方法、控制装置、介质及空调器
CN117200551B (zh) * 2023-11-07 2024-03-15 深圳市力生美半导体股份有限公司 开关电源的温度控制方法和开关电源
CN118066644B (zh) * 2024-04-18 2024-07-26 宁波奥克斯电气股份有限公司 一种空调保护的控制方法、装置、空调器及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190455A (ja) 1993-12-28 1995-07-28 Mitsubishi Electric Corp 冷凍・空調システム
JP2006329468A (ja) * 2005-05-24 2006-12-07 Daikin Ind Ltd 空調システム
JP2007255832A (ja) * 2006-03-24 2007-10-04 Daikin Ind Ltd 空調システム
JP2011007422A (ja) 2009-06-25 2011-01-13 Hitachi Appliances Inc 空気調和機

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638851B2 (ja) * 1973-08-25 1981-09-09
US4633672A (en) * 1985-02-19 1987-01-06 Margaux Controls, Inc. Unequal compressor refrigeration control system
JP3213422B2 (ja) * 1993-02-02 2001-10-02 三洋電機株式会社 空気調和装置及びこの空気調和装置等が設けられた建物の消費電力の制御装置
JP3265803B2 (ja) * 1994-03-18 2002-03-18 株式会社日立製作所 多室空気調和機及びその制御方法
JPH09266630A (ja) * 1996-03-27 1997-10-07 Chubu Electric Power Co Inc 電力抑制制御装置、空気調和装置
KR19990042964A (ko) * 1997-11-28 1999-06-15 윤종용 공기조화기의 난방제어장치 및 그 방법
JPH11325539A (ja) * 1998-05-14 1999-11-26 Matsushita Electric Ind Co Ltd 空気調和機のデマンド制御方法
US6637222B2 (en) * 2000-06-07 2003-10-28 Samsung Electronics Co., Ltd. System for controlling starting of air conditioner and control method thereof
JP2003013863A (ja) * 2001-06-29 2003-01-15 Toyota Industries Corp 容量可変型圧縮機の容量制御装置
KR100484869B1 (ko) * 2003-01-13 2005-04-22 엘지전자 주식회사 히트펌프 시스템의 운전제어방법
US7918655B2 (en) * 2004-04-30 2011-04-05 Computer Process Controls, Inc. Fixed and variable compressor system capacity control
US7424343B2 (en) * 2004-08-11 2008-09-09 Lawrence Kates Method and apparatus for load reduction in an electric power system
JP4268931B2 (ja) * 2004-12-30 2009-05-27 中山エンジニヤリング株式会社 冷蔵・冷凍設備及びその制御方法
US7890215B2 (en) * 2006-12-22 2011-02-15 Duncan Scot M Optimized control system for cooling systems
JP4899979B2 (ja) * 2007-03-27 2012-03-21 パナソニック電工株式会社 空調制御システム
US8485789B2 (en) * 2007-05-18 2013-07-16 Emerson Climate Technologies, Inc. Capacity modulated scroll compressor system and method
CN101688701B (zh) * 2007-07-18 2011-08-17 三菱电机株式会社 冷冻循环装置及其运转控制方法
JP2009041856A (ja) * 2007-08-09 2009-02-26 Hitachi Ltd 空調制御システム
AU2008288065B2 (en) * 2007-08-10 2011-08-04 Daikin Industries, Ltd. Monitoring system for air conditioner
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
JP5213966B2 (ja) * 2008-11-25 2013-06-19 三菱電機株式会社 冷凍サイクル装置
JP5751742B2 (ja) * 2009-02-27 2015-07-22 三菱重工業株式会社 空気調和設備の遠隔管理システム、遠隔管理装置、制御装置
CN102597660B (zh) * 2009-10-28 2015-05-06 三菱电机株式会社 空调装置
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機
JP5473619B2 (ja) * 2010-01-12 2014-04-16 三菱電機株式会社 空気調和機の制御装置
US9372021B2 (en) * 2010-11-04 2016-06-21 Mitsubishi Electric Corporation Air-conditioning apparatus
US10544973B2 (en) * 2011-12-16 2020-01-28 Mitsubishi Electric Corporation Air-conditioning apparatus with temperature controlled pump operation
KR20130134349A (ko) * 2012-05-30 2013-12-10 삼성전자주식회사 멀티형 공기조화기 및 그 냉난방제어방법
US20140069131A1 (en) * 2012-09-13 2014-03-13 Mitsubishi Electric Corporation Air conditioning system
TW201418648A (zh) * 2012-11-14 2014-05-16 hui-jun Chen 利用自然循環之熱驅動除霜裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190455A (ja) 1993-12-28 1995-07-28 Mitsubishi Electric Corp 冷凍・空調システム
JP2006329468A (ja) * 2005-05-24 2006-12-07 Daikin Ind Ltd 空調システム
JP2007255832A (ja) * 2006-03-24 2007-10-04 Daikin Ind Ltd 空調システム
JP2011007422A (ja) 2009-06-25 2011-01-13 Hitachi Appliances Inc 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787299A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292422A (zh) * 2013-06-17 2013-09-11 南京天加空调设备有限公司 直流变频多联机制冷运行吸气压力控制方法
CN104791944A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调系统及其控制方法、空调系统的室外机
US9797642B2 (en) 2014-01-21 2017-10-24 Gd Midea Heating & Ventilating Equipment Co. Ltd. System and method for controlling an air conditioning system and an outdoor apparatus of the system
CN104930590A (zh) * 2014-03-18 2015-09-23 三星电子株式会社 空调器及其控制方法
EP2921794A3 (en) * 2014-03-18 2016-01-06 Samsung Electronics Co., Ltd. Air conditioner and method of controlling the same
US10101042B2 (en) 2014-03-18 2018-10-16 Samsung Electronics Co., Ltd. Air conditioner including a handle and method of controlling the same
CN104930590B (zh) * 2014-03-18 2019-06-25 三星电子株式会社 空调器及其控制方法
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置
JPWO2018047264A1 (ja) * 2016-09-08 2019-04-11 三菱電機株式会社 冷凍サイクル装置
AU2016422665B2 (en) * 2016-09-08 2019-09-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
EP2787299A4 (en) 2015-11-18
CN104272033B (zh) 2017-06-06
KR101992139B1 (ko) 2019-06-25
US9631829B2 (en) 2017-04-25
EP2787299B1 (en) 2018-01-10
EP2787299A1 (en) 2014-10-08
JP6092119B2 (ja) 2017-03-08
ES2664520T3 (es) 2018-04-19
US20140358296A1 (en) 2014-12-04
JPWO2013081132A1 (ja) 2015-04-27
CN104272033A (zh) 2015-01-07
KR20140096065A (ko) 2014-08-04

Similar Documents

Publication Publication Date Title
JP6092119B2 (ja) 空気調和機
US10371426B2 (en) System and method of controlling a variable-capacity compressor
CN107300231B (zh) 热泵机组及其控制方法和装置
JP6270996B2 (ja) 空調装置
CN108332351B (zh) 制冷控制方法及系统
AU2010253331A1 (en) Air conditioner
CN114198877B (zh) 变频空调器的节能控制方法、装置、空调器及存储介质
JPWO2021033231A1 (ja) 情報処理装置
CN111720981A (zh) 空调器压缩机的控制方法以及空调器
CN115289639A (zh) 一种氟泵空调的控制方法、装置、设备及介质
JP7263002B2 (ja) 個別分散空調高効率制御方法、制御装置及び制御プログラム
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
KR101151321B1 (ko) 멀티형 공기조화기 및 그 운전방법
JP5125695B2 (ja) 空調システム
CN111981649B (zh) 空调器及其空调控制方法、控制装置和可读存储介质
CN113685996A (zh) 空调器压缩机的控制方法以及空调器
CN109028496B (zh) 用于控制可变容量压缩机的系统及方法
CN112834889B (zh) 空调室外机中的平滑用电容的寿命预测装置及寿命预测方法
JP2013194969A (ja) 空気調和装置
KR20040105263A (ko) 인버터형 공기조화기에서 과전압 보상 과전류 제어 운전방법
KR20140100286A (ko) 차량용 히트 펌프 시스템의 압축기 제어 방법
CN116857779A (zh) 多联机空调的控制方法、多联机空调以及存储介质
WO2016002052A1 (ja) 冷凍空調装置
CN116971972A (zh) 压缩机容量控制方法和控制装置、存储介质、空调器
WO2016199280A1 (ja) 空気調和システム及び空気調和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147013178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14361937

Country of ref document: US

Ref document number: 2012853680

Country of ref document: EP