WO2016002052A1 - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
WO2016002052A1
WO2016002052A1 PCT/JP2014/067827 JP2014067827W WO2016002052A1 WO 2016002052 A1 WO2016002052 A1 WO 2016002052A1 JP 2014067827 W JP2014067827 W JP 2014067827W WO 2016002052 A1 WO2016002052 A1 WO 2016002052A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
correction amount
target
air
suction temperature
Prior art date
Application number
PCT/JP2014/067827
Other languages
English (en)
French (fr)
Inventor
周平 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016530768A priority Critical patent/JP6271011B2/ja
Priority to EP14896722.7A priority patent/EP3165846B1/en
Priority to PCT/JP2014/067827 priority patent/WO2016002052A1/ja
Publication of WO2016002052A1 publication Critical patent/WO2016002052A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Definitions

  • the present invention relates to a refrigeration air conditioner controlled based on a set temperature.
  • a refrigeration air conditioner in which a plurality of indoor units are connected to one outdoor unit is known.
  • differential temperature control is performed to control the capacity of the compressor following the indoor air conditioning load (see, for example, Patent Document 1).
  • the differential temperature control during cooling is performed based on the difference between the set temperature of the use side unit and the suction temperature of the use side unit, and the target evaporation temperature corresponding to the air conditioning load is calculated. Control is performed to achieve the target evaporation temperature. At this time, when the suction temperature exceeds the set temperature, control for lowering the target evaporation temperature is performed, and when the suction temperature falls below, control for increasing the target evaporation temperature is performed.
  • the suction temperature deviates from the set temperature by, for example, 0.5 ° C. during the cooling operation, it is determined that the air conditioner is overcapacitating, and the use side heat exchanger is not cooled and room temperature (Thermo OFF).
  • control is performed so that the capacity of the compressor is reduced, so that power consumption can be suppressed to an appropriate capacity.
  • the energy saving operation of the refrigeration air conditioner is performed by controlling the capacity of the compressor according to the change in the air conditioning load.
  • the capacity of the compressor is controlled after detecting that the suction temperature deviates from the set temperature. Therefore, after the capacity change of the compressor, a time lag occurs until the room air is conditioned and reflected in the suction temperature, and the suction temperature undershoots.
  • the differential temperature control since the set temperature is the control target of the suction temperature, if the suction temperature undershoots, the suction temperature is likely to hunt, and the use side unit is likely to be thermo-off.
  • the use side unit is thermo-off, the capacity of the air conditioner is reduced and the suction temperature is likely to fluctuate greatly, so that the stability of the suction temperature is deteriorated.
  • the compressor is repeatedly turned ON / OFF, and it may take time for the suction temperature to reach the set temperature.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerating and air-conditioning apparatus capable of setting a suction temperature to a set temperature in a short time.
  • a refrigeration air conditioner of the present invention is a refrigeration air conditioner having a refrigeration cycle in which a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe, from an air conditioned space.
  • a suction temperature detection unit that detects the temperature of the air sucked into the use side heat exchanger as a suction temperature
  • a state detection unit that detects the state of the refrigerant flowing in the use side heat exchanger
  • a setting that is a target temperature of the air-conditioned space
  • An operation control unit that controls the operation of the compressor based on the temperature, the suction temperature detected by the suction temperature detection unit, and the refrigerant state detected by the state detection unit, and the operation control unit is necessary
  • the correction amount setting means for setting the temperature correction amount to be corrected so that the air conditioning capability becomes lower than the air conditioning capability corresponding to the set temperature is set by a preset variation amount, and the correction amount setting unit is set.
  • Warm Target suction temperature setting means for setting the target suction temperature from the correction amount and the set temperature
  • target refrigerant temperature setting for setting the target refrigerant temperature of the refrigerant flowing in the use side heat exchanger so that the suction temperature becomes the target suction temperature
  • compressor control means for controlling the capacity of the compressor so that the refrigerant flowing in the use side heat exchanger reaches the target refrigerant temperature.
  • the differential temperature control is performed based on the target suction temperature in which the temperature correction amount is added to the set temperature, and the temperature correction amount is set to be reduced by the fluctuation amount.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigerating and air-conditioning apparatus according to an embodiment of the present invention.
  • the refrigerating and air-conditioning apparatus 1 includes a heat source unit 10 and two usage side units 20A and 20B, and the heat source unit 10 and usage side units 20A and 20B are connected by a liquid pipe 2 and a gas pipe 3.
  • the refrigerating and air-conditioning apparatus 1 in FIG. 1 the case where two usage-side units 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the heat source unit 10 is illustrated, but only one or a plurality of units may be connected. It may be.
  • the compressor 11, the flow path switch 12, the heat source side heat exchanger 13, and the accumulator 14 are accommodated on the heat source unit 10 side, and the expansion unit 21 and the use side heat exchange are respectively included in the use side units 20A and 20B.
  • a container 22 is accommodated.
  • the compressor 11, the flow path switch 12, the heat source side heat exchanger 13, the expansion device 21, and the use side heat exchanger 22 have a refrigerant circuit connected by the liquid pipe 2 and the gas pipe 3.
  • the compressor 11 compresses and discharges the sucked refrigerant, and includes, for example, a scroll compressor, a vane compressor, and the like.
  • the compressor 11 is inverter-controlled, for example, and the capacity is controlled by controlling the rotation speed.
  • the flow path switching unit 12 switches between a heating flow path and a cooling flow path in accordance with switching of a cooling operation or an operation mode of heating operation, and includes, for example, a four-way valve.
  • the flow path switch 12 connects the discharge side of the compressor 11 and the heat source side heat exchanger 13 and connects the use side heat exchanger 22 and the accumulator 14 during the cooling operation.
  • the flow path switch 12 connects the discharge side of the compressor 11 and the use side heat exchanger 22 and connects the heat source side heat exchanger 13 and the accumulator 14 during the heating operation.
  • the heat source side heat exchanger 13 functions as a condenser (heat radiator) during the cooling operation, and functions as an evaporator (heat absorber) during the heating operation.
  • the refrigerating and air-conditioning apparatus 1 only needs to be able to perform a cooling operation or a heating operation, and the flow path switch 12 is not necessarily an essential configuration and can be omitted.
  • the heat source side heat exchanger 13 is composed of, for example, a fin tube type heat exchanger, performs heat exchange between the refrigerant compressed in the compressor 11 and, for example, outdoor air (outside air), and condenses and liquefies the refrigerant. It is something to be made.
  • a heat source side fan (not shown) that sends outside air to the heat source side heat exchanger 13 may be installed.
  • the accumulator 14 is provided on the suction side of the compressor 11 and has a function of storing excess refrigerant and a function of separating liquid refrigerant and gas refrigerant. The compressor 11 sucks and compresses the gas refrigerant among the refrigerant stored in the accumulator 14.
  • the expansion device 21 is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing the opening and adjusting the flow rate of the refrigerant passing therethrough, so that the refrigerant flows out to the use side heat exchanger 22 side.
  • the use side heat exchanger 22 is composed of, for example, a fin tube type heat exchanger, and performs heat exchange between the refrigerant and the air that have been brought into a low pressure state by the expansion device 21.
  • a usage-side fan (not shown) that blows air in an air-conditioned space (indoor space) is installed in the usage-side heat exchanger 22, and ventilation is performed from the usage-side fan.
  • the operation of the refrigerating and air-conditioning apparatus 1 described above is controlled by the outdoor control device 15 and the indoor control device 25.
  • the outdoor control device 15 that controls the operation of each device in the heat source device 10 is provided on the heat source device 10 side, and the use side units 20A and 20B side have the inside of the use side units 20A and 20B, respectively.
  • An indoor control device 25 that controls the operation of each device is provided.
  • the outdoor control device 15 and the indoor control device 25 are connected so as to be able to transmit information, and the outdoor control device 15 and the indoor control device 25 cooperate to control the operation of the entire refrigerating and air-conditioning apparatus 1. Yes.
  • the outdoor control device 15 and the indoor control device 25 control each device based on outputs from various sensors.
  • a state detection unit 31 that detects the low pressure of the refrigerant as the state of the refrigerant is provided on the outlet side of the use side heat exchanger 22 and before returning to the accumulator 14.
  • the state detection unit 31 includes, for example, a pressure sensor, and detects the refrigerant pressure as the refrigerant state.
  • a suction temperature detection unit 32 that detects the temperature of the air sucked into the use side heat exchanger 22 as a suction temperature is provided on the side of the indoor air of the use side units 20A and 20B.
  • the outdoor control device 15 calculates the evaporation temperature of the use side heat exchanger 22 during the cooling operation from the refrigerant pressure detected by the state detection unit 31.
  • the state detection part 31 consists of pressure sensors, if it detects an evaporation temperature, it will not be limited to this structure, A well-known technique is applicable.
  • the refrigerating and air-conditioning apparatus 1 has, for example, an operation control unit 50 that controls operation by differential temperature control in the outdoor control device 15 on the heat source unit 10 side.
  • the operation control part 50 has illustrated about the case where it is provided in the heat-source equipment 10 side, you may be provided in utilization side unit 20A, 20B, the heat-source equipment 10 and utilization side unit. It may be provided in a centralized controller (not shown) that collectively manages 20A and 20B.
  • the indoor controller 25 stores the set temperature of the conditioned space, and the operation control unit 50 controls the operation of each device so that the temperature (suction temperature) of the conditioned space becomes the set temperature.
  • the operation control unit 50 performs differential temperature control for controlling the capacity of the compressor 11 so that the suction temperature into the use-side heat exchanger 22 becomes the set temperature.
  • the operation control unit 50 determines that the air conditioning capacity is excessive and performs control so that the capacity of the compressor 11 is reduced.
  • control is performed so that the thermo OFF state is established.
  • a predetermined temperature for example, 0.5 ° C.
  • the operation is controlled so as to suppress the occurrence of thermo-OFF due to suction temperature hunting.
  • FIG. 2 is a block diagram illustrating an example of an operation control unit in the refrigeration air conditioner of FIG. 2 controls the operation of the refrigerating and air-conditioning apparatus 1 by differential temperature control.
  • the target suction temperature setting means 51, the target refrigerant temperature setting means 52, the compressor control means 53, and the correction amount setting are controlled. Means 54 are provided.
  • the target suction temperature setting means 51 sets the target suction temperature Tico based on the set temperature Ticm of the air-conditioned space.
  • the target refrigerant temperature setting means 52 sets the target refrigerant temperature Tem of the refrigerant flowing through the use side heat exchanger 22 so that the suction temperature Tic becomes the target suction temperature Tico.
  • the target refrigerant temperature Tem means the target evaporation temperature.
  • the compressor control means 53 controls the capacity of the compressor 11 so that the refrigerant temperature Te becomes the target refrigerant temperature Tem.
  • the target suction temperature setting means 51 does not set the set temperature Ticm itself to the target suction temperature Tico, but sets the target suction temperature Tico that gradually approaches the set temperature Ticm with time.
  • the operation control unit 50 includes a correction amount setting unit 54 that sets a temperature correction amount X that decreases by a preset variation amount ⁇ , and the target suction temperature setting unit 51 has a set temperature Ticm. Is set to the target suction temperature Tico in consideration of the temperature correction amount X.
  • the correction amount setting unit 54 includes a correction amount calculation unit 54a, a hunting measurement unit 54b, and a period measurement unit 54c.
  • the correction amount calculation means 54a calculates a temperature correction amount X, and this temperature correction amount X is a parameter that varies within a range of 0.2 ⁇ X ⁇ 1, for example, when the compressor 11 is started.
  • the initial value is set to 1 and the fluctuation amount ⁇ is set to 0.2. Therefore, the temperature correction amount X is set to five values of 0.2 to 1.0 in increments of variation ⁇ (0.2).
  • the method of setting the temperature correction amount X is not limited to the above-described numerical values, and the initial value and the fluctuation amount ⁇ are appropriately set. In other words, the case where the temperature correction amount X gradually decreases in five steps is illustrated, but it may be two steps or more, and the case where the temperature correction amount X fluctuates at equal intervals is illustrated. It may vary.
  • the target suction temperature setting means 51 calculates the target suction temperature Tico by correcting the set temperature Ticm using the temperature correction amount X set by the correction amount setting means 54.
  • the target suction temperature setting means 51 calculates the target suction temperature Tico using the following equation (1) during the cooling operation.
  • the target suction temperature Tico at the start-up of the compressor 11 is calculated as 28 ° C. according to the equation (1).
  • the target suction temperature Tico is set such that the required air conditioning capability is lower than the air conditioning capability corresponding to the set temperature Ticm.
  • the suction temperature Tic is sufficiently close to the target suction temperature Tico and the suction temperature Tic is in a stable state. After that, the target suction temperature Tico is changed based on the temperature correction amount X. Therefore, it is possible to reliably suppress the occurrence of the thermo-OFF due to the hunting of the suction temperature Tic due to the rapid change of the target suction temperature Tico.
  • the period measuring means 54c measures an elapsed time after the temperature correction amount X is changed by the change amount ⁇ in the correction amount calculating means 54a. Then, the correction amount calculation means 54a is configured to decrease the temperature correction amount X by the variation amount ⁇ when the measured elapsed time has passed for the specified period Pref or more.
  • the temperature correction amount X becomes small after the lapse of the specified period Pref, so that the target with a high effect of suppressing the thermo-off by hunting until the suction temperature Tic is allowed to reach the set temperature Ticm. Since the differential temperature control is performed using the suction temperature Tico, as a result, the operation of the thermo-OFF can be further suppressed and the suction temperature Tic can be set to the set temperature Ticm in a short time.
  • FIG. 3 is a flowchart showing an operation example during the cooling operation of the refrigerating and air-conditioning apparatus 1 of FIG.
  • the target suction temperature setting means 51 sets the target suction temperature Tico according to the equation (1) based on the set temperature Ticm and the initial value of the temperature correction amount X (step ST1).
  • the target refrigerant temperature setting means 52 calculates the difference between the suction temperature Tic detected by the suction temperature detection unit 32 and the target suction temperature Tico (step ST2), and the target refrigerant is based on this difference (Tico-Tic).
  • the temperature Tem is calculated (step ST3).
  • the compressor control means 53 calculates the refrigerant temperature (evaporation temperature) Te based on the refrigerant pressure detected by the state detection unit 31, and the difference (Tem ⁇ Te) between the refrigerant temperature Te and the target refrigerant temperature Tem. ) Is calculated (step ST4). Then, the operating capacity of the compressor 11 is controlled based on the difference (Tem ⁇ Te) between the refrigerant temperature Te and the target refrigerant temperature Tem (step ST5).
  • FIG. 4 is a flowchart showing an example of a method for setting the target suction temperature in FIG. 3, and a method for setting the target suction temperature Tico based on the temperature correction amount X will be described with reference to FIG.
  • the hunting measuring unit 54b counts the number of times the suction temperature Tic is hunted, and the correction amount calculating unit.
  • the suction temperature Tic becomes lower than the target suction temperature Tico (step ST11), and then the suction temperature Tic becomes higher than the target suction temperature Tico (step ST12), and then the suction temperature Tic becomes the target suction.
  • the temperature is lower than Tico (step ST13) it is determined that the number of huntings satisfies the set number.
  • step ST13 After the number of times of hunting satisfies the set number of times (YES in step ST13), whether or not a predetermined period Pref (for example, 24 minutes) has elapsed from the calculation of the target suction temperature Tico (see step ST1) according to equation (1). Is determined (step ST14). When the specified period Pref has elapsed since the calculation of the target suction temperature Tico (YES in step ST14), the temperature correction amount X varies by the variation amount ⁇ (step ST15). Then, it is determined whether or not the temperature correction amount X has become 0 (step ST16).
  • a predetermined period Pref for example, 24 minutes
  • the target suction temperature Tico is reset based on the new temperature correction amount X (see step ST1 to step ST5 in FIG. 3).
  • the temperature difference control is performed based on the corrected target suction temperature Tico (see step ST1 to step ST5 in FIG. 3).
  • FIG. 5 is a graph showing an example of the transition of the suction temperature during the cooling operation in the refrigerating and air-conditioning apparatus of FIG.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • the target suction temperature Tico is set higher than the set temperature Ticm by a temperature correction amount X. Therefore, even when hunting occurs in the suction temperature Tic due to the start of the cooling operation, the thermo OFF is performed. It becomes difficult to decrease to the operating temperature Toff. Therefore, the compressor 11 continues to operate without being stopped due to the thermo OFF.
  • FIG. 6 is a graph showing the transition of the suction temperature during the conventional cooling operation.
  • the set temperature Ticm is set as the target suction temperature Tico, and the differential temperature control is performed so that the suction temperature Tic becomes the target suction temperature Tico.
  • the suction temperature Tic may be lower than the set temperature Ticm, and may further be lower than the operating temperature Toff of the thermo OFF.
  • air conditioning is not performed while the thermo-OFF is performed.
  • FIG. 6 is a graph showing the transition of the suction temperature during the conventional cooling operation.
  • thermo-OFF since the target suction temperature Tico is set so as to approach the set temperature Ticm stepwise, the operation of the thermo-OFF can be reduced and the air-conditioned space can be set to the set temperature Ticm in a short time. At the same time, energy saving can be achieved.
  • the target suction temperature Tico is varied when the suction temperature Tic is sufficiently close to the target suction temperature Tico. Hunting can be reduced and stable transitions can be made. Therefore, the air-conditioned space can be reliably set to the set temperature Ticm in a short time, and energy saving can be achieved. Furthermore, by performing the next variation in the temperature correction amount X after the lapse of the specified period Pref from the variation in the previous temperature correction amount X, the hunting of the suction temperature Tic can be reduced and can be shifted stably. Therefore, the air-conditioned space can be reliably set to the set temperature Ticm in a short time, and energy saving can be achieved.
  • FIG. 7 is a graph showing the transition of the suction temperature during heating operation in the refrigerating and air-conditioning apparatus according to the embodiment of the present invention.
  • the temperature correction amount X is a parameter for correcting the required air conditioning capability to be lower than the air conditioning capability corresponding to the set temperature Ticm.
  • the target suction temperature Tico the set temperature Ticm ⁇ the temperature correction amount X is calculated and the differential temperature control is performed, and the temperature correction amount X is set to the set temperature Ticm. It will fluctuate to gradually approach.
  • FIG. 4 illustrates the case where both the determination of the number of times of hunting and the determination of the specified period Pref are performed, but the determination of the number of times of hunting is performed without performing the determination of the specified period Pref.
  • the amount X may fluctuate, or the temperature correction amount X may fluctuate by determining the specified period without determining the number of times of hunting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷凍空調装置における運転制御部は、必要空調能力が設定温度に対応する空調能力よりも低くなるように補正する温度補正量を、予め設定された変動量ずつ小さくなるように設定する補正量設定手段と、補正量設定手段により設定された温度補正量と設定温度とから目標吸込温度を設定する目標吸込温度設定手段と、吸込温度が目標吸込温度になるように、利用側熱交換器に流れる冷媒の目標冷媒温度を設定する目標冷媒温度設定手段と、利用側熱交換器に流れる冷媒が目標冷媒温度になるように圧縮機の容量を制御する圧縮機制御手段とを有する。

Description

冷凍空調装置
 本発明は、設定温度に基づいて制御される冷凍空調装置に関するものである。
 従来から、1台の室外機に複数の室内機が接続された冷凍空調装置が知られている。この冷凍空調装置の運転制御を行う際には、室内の空調負荷に追従して圧縮機の容量を制御する差温制御が行われている(例えば特許文献1参照)。特許文献1において、冷房時の差温制御は、利用側ユニットの設定温度と利用側ユニットの吸込温度との差に基づいて、空調負荷に見合った目標蒸発温度が演算され、圧縮機の運転が目標蒸発温度になるように制御される。この際、吸込温度が設定温度を上回った場合は目標蒸発温度を下げる制御が行われ、下回った場合は目標蒸発温度を上げる制御が行われる。
 さらに、冷房運転時に、吸込温度が設定温度から例えば0.5℃乖離した場合、空調機が過剰に能力を出していると判断し、利用側熱交換器が冷却されずに常温の風が室内に送風される(サーモOFF)。この場合、利用側熱交換器において室内空気と熱交換する必要がないため、圧縮機の容量が低下するように制御して消費電力が適正な能力に抑えられる。このように、空調負荷の変化に応じて圧縮機の容量を制御することにより冷凍空調装置の省エネルギー運転が行われる。
特開2003-247742号公報
 特許文献1において、吸込温度が設定温度から乖離していると検知した後に圧縮機の容量が制御される。したがって、圧縮機の容量変化後に室内空気が空気調和され吸込温度に反映されるまでタイムラグが生じ、吸込温度がアンダーシュートする。差温制御は、設定温度が吸込温度の制御目標であるため、吸込温度がアンダーシュートした場合、吸込温度がハンチングしやすく、利用側ユニットがサーモOFFする可能性が高い。利用側ユニットがサーモOFFすると、空調機の能力が低下し吸込温度が大幅に変動しやすいため、吸込温度の安定性が悪化する。このように、吸込温度が不安定になっている場合には、圧縮機がON/OFFを繰り返す運転を行ってしまい、吸込温度が設定温度になるまでに時間が掛かってしまう場合がある。
 本発明は、上記のような課題を解決するためになされたもので、短時間で吸込温度を設定温度にすることができる冷凍空調装置を提供することを目的とするものである。
 本発明の冷凍空調装置は、圧縮機と、熱源側熱交換器と、絞り装置と、利用側熱交換器とが冷媒配管により接続された冷凍サイクルを有する冷凍空調装置であって、空調空間から利用側熱交換器へ吸い込まれる空気の温度を吸込温度として検知する吸込温度検知部と、利用側熱交換器内を流れる冷媒の状態を検知する状態検知部と、空調空間の目標温度である設定温度と、吸込温度検知部において検知された吸込温度と、状態検知部において検知された冷媒の状態とに基づいて圧縮機の動作を制御する運転制御部とを有し、運転制御部は、必要空調能力が設定温度に対応する空調能力よりも低くなるように補正する温度補正量を、予め設定された変動量ずつ小さくなるように設定する補正量設定手段と、補正量設定手段により設定された温度補正量と設定温度とから目標吸込温度を設定する目標吸込温度設定手段と、吸込温度が目標吸込温度になるように、利用側熱交換器に流れる冷媒の目標冷媒温度を設定する目標冷媒温度設定手段と、利用側熱交換器に流れる冷媒が目標冷媒温度になるように圧縮機の容量を制御する圧縮機制御手段とを有するものである。
 本発明によれば、差温制御時において、設定温度に温度補正量を加味した目標吸込温度に基づいて差温制御が行われるとともに、温度補正量が変動量分だけ小さくなるように設定されることにより、吸込温度のハンチングの発生した場合であってもサーモOFFすることが低減されるため、吸込温度を短時間に設定温度にすることができる。
本発明の実施の形態に係る冷凍空調装置の一例を示す冷媒回路図である。 図1の冷凍空調装置における制御部の一例を示すブロック図である。 図1の冷凍空調装置の冷房運転時における動作例を示すフローチャートである。 図3の目標吸込温度の設定方法の一例を示すフローチャートである。 図1の冷凍空調装置における冷房運転時の吸込温度の推移の一例を示すグラフである。 従来の冷房運転時の吸込温度の推移を示すグラフである。 本発明の実施の形態に係る冷凍空調装置における暖房運転時の吸込温度の推移を示すグラフである。
 以下、本発明の冷凍空調装置の実施の形態について、図面を用いて詳細に説明する。図1は、本発明の実施の形態に係る冷凍空調装置の一例を示す冷媒回路図である。図1に示すように、冷凍空調装置1は、熱源機10及び2台の利用側ユニット20A、20Bを備え、熱源機10と利用側ユニット20A、20Bとが液管2及びガス管3により接続されている。なお、図1の冷凍空調装置1において、熱源機10に2台の利用側ユニット20A、20Bが接続された場合について例示しているが、1台だけ接続されていてもよいし複数台接続されていてもよい。
 熱源機10側には、圧縮機11、流路切替器12、熱源側熱交換器13、アキュムレータ14が収容されており、利用側ユニット20A、20Bには、それぞれ絞り装置21、利用側熱交換器22が収容されている。そして、圧縮機11、流路切替器12、熱源側熱交換器13、絞り装置21、利用側熱交換器22が液管2及びガス管3により接続した冷媒回路を有している。圧縮機11は、吸入した冷媒を圧縮して吐出するものであり、例えばスクロール型圧縮機、ベーン型圧縮機等からなっている。特に、圧縮機11は、例えばインバータ制御されており、回転数が制御されることにより容量が制御されるようになっている。
 流路切替器12は、冷房運転もしくは暖房運転の運転モードの切替に応じて暖房流路と冷房流路との切替を行うものであって、例えば四方弁からなっている。流路切替器12は、冷房運転時において、圧縮機11の吐出側と熱源側熱交換器13とを接続させるとともに、利用側熱交換器22とアキュムレータ14とを接続させる。一方、流路切替器12は、暖房運転時において、圧縮機11の吐出側と利用側熱交換器22とを接続させるとともに、熱源側熱交換器13とアキュムレータ14とを接続させる。なお、熱源側熱交換器13は、冷房運転時には凝縮器(放熱器)として機能し、暖房運転時には蒸発器(吸熱器)として機能する。また、冷凍空調装置1は冷房運転もしくは暖房運転が可能であればよく、流路切替器12は必ずしも必須の構成ではなく、省略可能である。
 熱源側熱交換器13は、例えばフィンチューブ式の熱交換器からなっており、圧縮機11において圧縮された冷媒と例えば屋外の空気(外気)との熱交換を行い、冷媒を凝縮して液化させるものである。また、熱源側熱交換器13へ外気を送り込む図示しない熱源側ファンが設置されていてもよい。アキュムレータ14は、圧縮機11の吸入側に設けられ、余剰冷媒を貯留する機能及び液冷媒とガス冷媒とを分離する機能を有している。そして、圧縮機11はアキュムレータ14に貯留された冷媒のうちガス冷媒を吸引し圧縮するようになっている。
 絞り装置21は、例えば電子膨張弁からなり、開度を変化させて通過する冷媒の流量等を調整して冷媒の圧力を調整し、利用側熱交換器22側へ冷媒を流出するものである。利用側熱交換器22は、例えばフィンチューブ式の熱交換器からなっており、絞り装置21によって低圧状態になった冷媒と空気との熱交換を行うものである。また、利用側熱交換器22に空調空間(室内空間)の送風を行う図示しない利用側ファンが設置されており、利用側ファンから送風が行われる。
 上述した冷凍空調装置1の動作は、室外制御装置15及び室内制御装置25により制御されている。すなわち、熱源機10側には、熱源機10内の各機器の動作を制御する室外制御装置15が設けられており、利用側ユニット20A、20B側には、それぞれ利用側ユニット20A、20B内の各機器の動作を制御する室内制御装置25が設けられている。室外制御装置15と室内制御装置25とは、情報伝送可能に接続されており、室外制御装置15と室内制御装置25とは協働して冷凍空調装置1全体の運転制御を行なうようになっている。
 室外制御装置15及び室内制御装置25は、各種センサからの出力に基づいて各機器の制御を行う。具体的には、利用側熱交換器22の出口側であってアキュムレータ14に戻る手前には、冷媒の低圧圧力を冷媒の状態として検知する状態検知部31が設けられている。状態検知部31は、例えば圧力センサからなっており、冷媒の圧力を冷媒の状態として検知する。さらに、利用側ユニット20A、20Bの室内空気の吸入口側には、利用側熱交換器22に吸入される空気の温度を吸込温度として検知する吸込温度検知部32が設けられている。そして、室外制御装置15は、状態検知部31により検知された冷媒圧力から冷房運転時における利用側熱交換器22の蒸発温度を算出する。なお、状態検知部31が圧力センサからなる場合について例示しているが、蒸発温度を検知するものであればこの構成に限定されず、公知の技術を適用することができる。
 ここで、冷凍空調装置1は、例えば熱源機10側の室外制御装置15内に差温制御により運転を制御する運転制御部50を有している。なお、図1において、運転制御部50は熱源機10側に設けられている場合について例示しているが、利用側ユニット20A、20Bに設けられていてもよいし、熱源機10及び利用側ユニット20A、20Bを一括して管理する図示しない集中コントローラに設けられていてもよい。室内制御装置25には空調空間の設定温度が記憶されており、運転制御部50は空調空間の温度(吸込温度)が設定温度になるように各機器の動作を制御する。
 この際、運転制御部50は、利用側熱交換器22への吸込温度が設定温度になるように圧縮機11の容量を制御する差温制御が行われる。また、運転制御部50は、吸込温度が設定温度よりも小さくなった場合、空調能力が過剰であると判断して圧縮機11の容量が小さくなるように制御する。また、吸込温度が設定温度よりも所定温度(例えば0.5℃)以上下回った場合、サーモOFFの状態になるように制御する。ここで、冷凍空調装置1において、吸込温度のハンチングが発生し、ハンチングに起因するサーモOFFが繰り返し行われる場合がある。そこで、冷凍空調装置1において、吸込温度のハンチングによるサーモOFFの発生を抑制するように運転が制御される。
 図2は、図1の冷凍空調装置における運転制御部の一例を示すブロック図である。図2の運転制御部50は、差温制御により冷凍空調装置1の動作を制御するものであって、目標吸込温度設定手段51、目標冷媒温度設定手段52、圧縮機制御手段53、補正量設定手段54を備えている。目標吸込温度設定手段51は、空調空間の設定温度Ticmに基づいて目標吸込温度Ticoを設定するものである。目標冷媒温度設定手段52は、吸込温度Ticが目標吸込温度Ticoになるように、利用側熱交換器22に流れる冷媒の目標冷媒温度Temを設定するものである。なお、冷房運転時において、目標冷媒温度Temは目標蒸発温度を意味する。圧縮機制御手段53は、冷媒温度Teが目標冷媒温度Temになるように、圧縮機11の容量を制御するものである。
 ここで、目標吸込温度設定手段51は、設定温度Ticm自体を目標吸込温度Ticoに設定するのではなく、時間とともに徐々に設定温度Ticmに近づくような目標吸込温度Ticoを設定する。具体的には、運転制御部50は、予め設定された変動量αずつ小さくなる温度補正量Xを設定する補正量設定手段54を有しており、目標吸込温度設定手段51は、設定温度Ticmに温度補正量Xを加味した目標吸込温度Ticoを設定する。
 補正量設定手段54は、補正量演算手段54a、ハンチング計測手段54b、期間計測手段54cを有している。補正量演算手段54aは、温度補正量Xを演算するものであって、この温度補正量Xは、例えば0.2≦X≦1の範囲で変動するパラメータであり、圧縮機11の起動時の初期値が1に設定され、変動量αが0.2に設定されている。したがって、温度補正量Xは変動量α(0.2)刻みで0.2~1.0の5つの値に設定されることになる。なお、温度補正量Xの設定方法は、上述した数値に限定されず、初期値及び変動量αは適宜設定されるものである。言い換えれば、温度補正量Xが5段階で徐々に減少する場合について例示しているが2段階以上であればよく、等間隔で変動する場合について例示しているが、各段階において不等間隔で変動するものであってもよい。
 したがって、目標吸込温度設定手段51は、補正量設定手段54により設定された温度補正量Xを用いて設定温度Ticmを補正して目標吸込温度Ticoを算出することになる。目標吸込温度設定手段51は、冷房運転時において下記式(1)を用いて目標吸込温度Ticoを算出する。
[数1]
  Tico=Ticm+X   ・・・(1)
 例えば、設定温度Ticmが27℃である場合、圧縮機11の起動時の目標吸込温度Ticoは式(1)により28℃として算出されることになる。このように、目標吸込温度Ticoは、必要空調能力が設定温度Ticmに対応する空調能力よりも低くなるように設定される。
 ハンチング計測手段54bは、吸込温度Ticが目標吸込温度Ticoを下回ったとき及び上回ったときにハンチングの回数をカウントするものである。そして、補正量演算手段54aは、ハンチング計測手段54bにおいてハンチングの回数が設定回数になった場合、予め設定された変動量α分だけ温度補正量Xを小さくする。この設定回数は例えば3回に設定されており、ハンチング計測手段54bにおいて計測されたハンチングの回数が3回目になったとき、補正量演算手段54aは温度補正量Xを変動量αだけ小さくする(X=X-α)。すると、式(1)において算出される目標吸込温度Ticoは、設定温度Ticmに変動量α分だけ近づくことになる。
 このように、吸込温度Ticのハンチングの回数に基づいて温度補正量Xを小さくするか否かを判定することにより、吸込温度Ticが目標吸込温度Ticoに十分に近づき吸込温度Ticが安定な状態になった後に温度補正量Xに基づく目標吸込温度Ticoの変動が行われる。したがって、早急な目標吸込温度Ticoの変動による吸込温度TicのハンチングによるサーモOFFの発生を確実に抑えることができる。
 期間計測手段54cは、補正量演算手段54aにおいて温度補正量Xを変動量αだけ変動させた後からの経過時間を計測するものである。そして、補正量演算手段54aは、計測された経過時間が規定期間Pref以上経過したとき、温度補正量Xを変動量αだけ小さくするようになっている。この規定期間Prefは、例えば吸込温度Ticが設定温度Ticmになるまでの目標時間に基づいて設定されるものであって、上述のように5段階に温度補正量Xが変動し目標時間が2時間である場合、120分/5=24分が規定期間Prefとして設定される。なお、規定期間Prefが24分に設定されている場合について例示しているが、これに限らず、適宜変更可能である。
 このように、規定期間Prefの経過後に温度補正量Xが小さくなることにより、吸込温度Ticが設定温度Ticmにするのに許容される期間になるまでは、ハンチングによるサーモOFFの抑制効果の高い目標吸込温度Ticoを用いて差温制御されることになるため、結果としてサーモOFFの作動をさらに抑制して短時間で吸込温度Ticを設定温度Ticmにすることができる。
 図3は、図1の冷凍空調装置1の冷房運転時における動作例を示すフローチャートであり、図1から図3を参照して冷凍空調装置1における運転容量の制御について説明する。圧縮機起動時に、目標吸込温度設定手段51において、設定温度Ticmと温度補正量Xの初期値とに基づいて、式(1)に従い目標吸込温度Ticoが設定される(ステップST1)。その後、目標冷媒温度設定手段52において、吸込温度検知部32により検知された吸込温度Ticと目標吸込温度Ticoとの差分が演算され(ステップST2)、この差分(Tico-Tic)に基づいて目標冷媒温度Temが算出される(ステップST3)。そして、圧縮機制御手段53において、状態検知部31において検知された冷媒の圧力に基づいて冷媒温度(蒸発温度)Teが算出され、この冷媒温度Teと目標冷媒温度Temとの差分(Tem-Te)が算出される(ステップST4)。そして、冷媒温度Teと目標冷媒温度Temの差分(Tem-Te)に基づいて圧縮機11の運転容量が制御される(ステップST5)。
 次に、図4は、図3の目標吸込温度の設定方法の一例を示すフローチャートであり、図4を参照して温度補正量Xに基づく目標吸込温度Ticoの設定方法について説明する。まず、温度補正量Xが初期値(X=1)の状態において、上述した差温制御が行われている際、ハンチング計測手段54bにおいて吸込温度Ticのハンチングの回数がカウントされ、補正量演算手段54aにおいてハンチングの回数が設定回数(例えば3回)になったか否かが判定される(ステップST11~ST13)。具体的には、吸込温度Ticが目標吸込温度Ticoよりも小さくなり(ステップST11)、その後に吸込温度Ticが目標吸込温度Ticoよりも大きくなり(ステップST12)、さらにその後に吸込温度Ticが目標吸込温度Ticoよりも小さくなった場合(ステップST13)、ハンチング回数が設定回数を満たしたと判定される。
 次に、ハンチング回数が設定回数を満たした後に(ステップST13のYES)、式(1)による目標吸込温度Ticoの算出(ステップST1参照)から規定期間Pref(例えば24分)経過しているか否かが判定される(ステップST14)。そして、目標吸込温度Ticoの算出から規定期間Pref経過している場合(ステップST14のYES)、温度補正量Xが変動量αだけ変動する(ステップST15)。そして、温度補正量Xが0になったか否かが判定され(ステップST16)、温度補正量Xが0よりも大きい場合、目標吸込温度Ticoが新たな温度補正量Xに基づいて再設定され(図3のステップST1参照)、補正後の目標吸込温度Ticoに基づいて差温制御が行われる(図3のステップST1~ステップST5参照)。一方、温度補正量Xが0になった場合、設定温度Ticm=目標吸込温度Ticoになるため、温度補正量Xを用いた目標吸込温度Ticoの変動ルーチンを終了し(図4のステップ、ST17)、設定温度Ticm=目標吸込温度Ticoの差温制御が行われる。
 このように、目標吸込温度Ticoを設定する際に、設定温度Ticmに徐々に減少する温度補正量Xを用いることにより、設定温度Ticm自体と目標吸込温度Ticoとを比較して差温制御する場合に比べてサーモOFFすることを抑制することができる。具体的には、図5は、図1の冷凍空調装置における冷房運転時の吸込温度の推移の一例を示すグラフである。なお、図5において、横軸は時間を表しており、縦軸は温度を示している。図5において、目標吸込温度Ticoは、設定温度Ticmよりも温度補正量Xだけ高く設定されることになるため、冷房運転の開始により吸込温度Ticにハンチングが発生した場合であっても、サーモOFFになる作動温度Toffまで低下しにくくなる。よって、圧縮機11はサーモOFFにより運転が停止されることなく運転を継続し続ける。
 図6は従来の冷房運転時の吸込温度の推移を示すグラフである。図6において、設定温度Ticmが目標吸込温度Ticoとして設定されており、吸込温度Ticが目標吸込温度Ticoになるように差温制御されている。そして、吸込温度Ticのハンチングにより、吸込温度Ticが設定温度Ticm以下になり、さらにサーモOFFの作動温度Toff以下になる場合がある。その結果、サーモOFFしている最中は空気調和が行われないため、結果として空調空間が設定温度Ticmになるまでの時間が掛かってしまうとともに、無駄な電力を消費してしまう。一方、図6において、目標吸込温度Ticoが段階的に設定温度Ticmに近づくように設定されるため、サーモOFFが作動することを低減し、短時間で空調空間を設定温度Ticmにすることができるとともに、省エネ化を図ることができる。
 また、吸込温度Ticのハンチング回数に応じて温度補正量Xが変動するとき、吸込温度Ticが目標吸込温度Ticoに十分近づいた際に目標吸込温度Ticoを変動させることになるため、吸込温度Ticのハンチングを低減し安定しながら推移させることができる。よって、確実に、短時間で空調空間を設定温度Ticmにすることができるとともに、省エネ化を図ることができる。さらに、前回の温度補正量Xの変動から規定期間Pref経過後に、次の温度補正量Xの変動を行うことにより、吸込温度Ticのハンチングを低減し安定しながら推移させることができる。よって、確実に、短時間で空調空間を設定温度Ticmにすることができるとともに、省エネ化を図ることができる。
 本発明の実施の形態は、上記実施の形態に限定されない。たとえば、上記実施形態において、冷房運転時における目標吸込温度Ticoの設定について例示しているが、暖房運転時においても同様の手法により目標吸込温度Ticoを設定するようにしてもよい。図7は、本発明の実施の形態に係る冷凍空調装置における暖房運転時の吸込温度の推移を示すグラフである。図7に示すように、暖房運転時であっても、温度補正量Xは必要空調能力が設定温度Ticmに対応する空調能力よりも低くなるように補正するパラメータになっている。具体的には、暖房運転時には、式(1)に代えて、目標吸込温度Tico=設定温度Ticm-温度補正量Xが算出されて差温制御が行われ、温度補正量Xが設定温度Ticmに徐々に近づくように変動することになる。
 また、図4において、ハンチングの回数の判定と規定期間Prefの判定との双方を行う場合について例示しているが、規定期間Prefの判定を行わずにハンチングの回数の判定が行われて温度補正量Xが変動してもよいし、ハンチングの回数の判定を行わずに規定期間の判定が行われて温度補正量Xが変動してもよい。
 1 冷凍空調装置、2 液管、3 ガス管、10 熱源機、11 圧縮機、12 流路切替器、13 熱源側熱交換器、14 アキュムレータ、15 室外制御装置、20A、20B 利用側ユニット、21 絞り装置、22 利用側熱交換器、25 室内制御装置、31 状態検知部、32 吸込温度検知部、50 運転制御部、51 目標吸込温度設定手段、52 目標冷媒温度設定手段、53 圧縮機制御手段、54 補正量設定手段、54a 補正量演算手段、54b ハンチング計測手段、54c 期間計測手段、Pref 規定期間、Te 冷媒温度、Tem 目標冷媒温度、Tic 吸込温度、Ticm 設定温度、Tico 目標吸込温度、Toff 作動温度、X 温度補正量、α 変動量。

Claims (7)

  1.  圧縮機と、熱源側熱交換器と、絞り装置と、利用側熱交換器とが冷媒配管により接続された冷凍サイクルを有する冷凍空調装置であって、
     空調空間から前記利用側熱交換器へ吸い込まれる空気の温度を吸込温度として検知する吸込温度検知部と、
     前記利用側熱交換器内を流れる冷媒の状態を検知する状態検知部と、
     前記空調空間の目標温度である設定温度と、前記吸込温度検知部において検知された吸込温度と、前記状態検知部において検知された冷媒の状態とに基づいて前記圧縮機の動作を制御する運転制御部と
     を有し、
     前記運転制御部は、
     必要空調能力が前記設定温度に対応する空調能力よりも低くなるように補正する温度補正量を、予め設定された変動量ずつ小さくなるように設定する補正量設定手段と、
     前記補正量設定手段により設定された前記温度補正量と前記設定温度とから目標吸込温度を設定する目標吸込温度設定手段と、
     前記吸込温度が前記目標吸込温度になるように、前記利用側熱交換器に流れる冷媒の目標冷媒温度を設定する目標冷媒温度設定手段と、
     前記利用側熱交換器に流れる冷媒が前記目標冷媒温度になるように前記圧縮機の容量を制御する圧縮機制御手段と
     を有する冷凍空調装置。
  2.  前記補正量設定手段は、
     前記吸込温度のハンチング回数が設定回数以上であるか否かを判定するハンチング計測手段と、
     前記ハンチング計測手段においてハンチングの回数が設定回数以上であると判定された場合に前記温度補正量を変動量分だけ小さくする補正量演算手段と
     を備えたものである請求項1に記載の冷凍空調装置。
  3.  前記ハンチング計測手段は、前記吸込温度が前記目標吸込温度よりも小さくなった回数及び大きくなった回数の合計をハンチングの回数として計測するものであり、
     前記補正量演算手段は、前記ハンチング計測手段においてハンチングの回数が3回以上になったとき、前記温度補正量を変動量分だけ小さくするものである請求項2に記載の冷凍空調装置。
  4.  前記補正量設定手段は、前記温度補正量を変動量分だけ変動させた後からの経過時間を計測する期間計測手段を有し、前記期間計測手段において計測された経過時間が規定期間以上経過したとき、再び前記温度補正量を変動量分だけ小さくするものである請求項1~3のいずれか1項に記載の冷凍空調装置。
  5.  前記温度補正量は、初期値が1℃であり、変動量は、0.2℃である請求項1~4のいずれか1項に記載の冷凍空調装置。
  6.  前記補正量設定手段は、前記利用側熱交換器が蒸発器として機能する場合、前記目標吸込温度が前記設定温度よりも高くなるように前記温度補正量を設定するものである請求項1~5のいずれか1項に記載の冷凍空調装置。
  7.  前記補正量設定手段は、前記利用側熱交換器が凝縮器として機能する場合、前記目標吸込温度が前記設定温度よりも低くなるように前記温度補正量を設定するものである請求項1~5のいずれか1項に記載の冷凍空調装置。
PCT/JP2014/067827 2014-07-03 2014-07-03 冷凍空調装置 WO2016002052A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016530768A JP6271011B2 (ja) 2014-07-03 2014-07-03 冷凍空調装置
EP14896722.7A EP3165846B1 (en) 2014-07-03 2014-07-03 Refrigerating and air-conditioning apparatus
PCT/JP2014/067827 WO2016002052A1 (ja) 2014-07-03 2014-07-03 冷凍空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067827 WO2016002052A1 (ja) 2014-07-03 2014-07-03 冷凍空調装置

Publications (1)

Publication Number Publication Date
WO2016002052A1 true WO2016002052A1 (ja) 2016-01-07

Family

ID=55018651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067827 WO2016002052A1 (ja) 2014-07-03 2014-07-03 冷凍空調装置

Country Status (3)

Country Link
EP (1) EP3165846B1 (ja)
JP (1) JP6271011B2 (ja)
WO (1) WO2016002052A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193770A1 (ja) * 2017-04-18 2018-10-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158927A (ja) * 1993-12-01 1995-06-20 Toshiba Corp 人体活動予測装置およびその機能を有する空気調和機
JPH1073300A (ja) * 1996-08-29 1998-03-17 Sanyo Electric Co Ltd 空気調和機
WO2003029728A1 (en) * 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360530B2 (ja) * 1996-06-28 2002-12-24 ダイキン工業株式会社 空気調和機の制御装置
JP4463920B2 (ja) * 1999-08-26 2010-05-19 三菱電機株式会社 通信中継基地局の冷却制御方式
US10054349B2 (en) * 2012-07-20 2018-08-21 Mitsubishi Electric Corporation Air-conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158927A (ja) * 1993-12-01 1995-06-20 Toshiba Corp 人体活動予測装置およびその機能を有する空気調和機
JPH1073300A (ja) * 1996-08-29 1998-03-17 Sanyo Electric Co Ltd 空気調和機
WO2003029728A1 (en) * 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165846A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193770A1 (ja) * 2017-04-18 2018-10-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018177083A (ja) * 2017-04-18 2018-11-15 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN110505968A (zh) * 2017-04-18 2019-11-26 三电汽车空调系统株式会社 车辆用空气调和装置
US11485191B2 (en) 2017-04-18 2022-11-01 Sanden Automotive Climate Systems Corporation Vehicular air conditioning device
CN110505968B (zh) * 2017-04-18 2023-03-28 三电有限公司 车辆用空气调和装置

Also Published As

Publication number Publication date
EP3165846A1 (en) 2017-05-10
JPWO2016002052A1 (ja) 2017-04-27
JP6271011B2 (ja) 2018-01-31
EP3165846A4 (en) 2018-03-14
EP3165846B1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6642379B2 (ja) 空調機
JP4497234B2 (ja) 空気調和装置
US8522568B2 (en) Refrigeration system
EP3199880B1 (en) Air conditioner
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP6609417B2 (ja) 空気調和機
US10371407B2 (en) Air conditioning apparatus
WO2010061643A1 (ja) 冷凍サイクル装置
US20100281895A1 (en) Air conditioner
US10184683B2 (en) Air conditioning device
AU2015379472B2 (en) Air conditioning device
EP1988346A1 (en) Air-conditioning apparatus
US9410715B2 (en) Air conditioning apparatus
JP2014169802A (ja) 空気調和装置
KR102558826B1 (ko) 공기 조화 시스템 및 제어 방법
JP6271011B2 (ja) 冷凍空調装置
JP2002147819A (ja) 冷凍装置
JP6115594B2 (ja) 空調室内機
WO2017094172A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530768

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014896722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE