WO2010061643A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2010061643A1
WO2010061643A1 PCT/JP2009/054565 JP2009054565W WO2010061643A1 WO 2010061643 A1 WO2010061643 A1 WO 2010061643A1 JP 2009054565 W JP2009054565 W JP 2009054565W WO 2010061643 A1 WO2010061643 A1 WO 2010061643A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
amount
operation amount
power consumption
cycle apparatus
Prior art date
Application number
PCT/JP2009/054565
Other languages
English (en)
French (fr)
Inventor
航祐 田中
豊 青山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010540399A priority Critical patent/JP5213966B2/ja
Priority to US13/124,252 priority patent/US9222694B2/en
Priority to EP09828893.9A priority patent/EP2351973B1/en
Priority to CN200980146939.6A priority patent/CN102224383B/zh
Publication of WO2010061643A1 publication Critical patent/WO2010061643A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and particularly relates to reduction of power consumption.
  • the direct control purpose is control to minimize power consumption only when the deviation between the set value of the room temperature and the target value of the superheat degree of the compressor is within a predetermined range. It is carried out. Therefore, when the application range of the control for minimizing the power consumption is expanded, the predetermined range may be expanded. In this case, the deviation from the set temperature with the room temperature also increases. When the electric power is minimized, there is a problem in that comfort is impaired because the indoor temperature is increased.
  • the temperature sensor and pressure sensor used to calculate the degree of superheat of the compressor output a detected value with a large error with respect to the actual value due to deterioration over time or failure, etc.
  • the deviation from the actually controlled target value is increased, and control for minimizing power consumption is not performed. For this reason, the conventional technique has a problem that the dependence on the sensor accuracy is large.
  • the method of determining the driving operation amount at which the power consumption becomes the minimum value is changed by a certain amount of operation with respect to the current operation amount, and the search is sequentially performed from the increase or decrease of the power consumption.
  • the amount of change in a certain manipulated variable is small, it is the same as having a small gain.Therefore, it takes time to search for an operation state where the power consumption is the minimum value, and the convergence is poor. there were.
  • the amount of change is large, there is a problem that the operating state is hunting and the state of the refrigeration cycle is not stable.
  • the present invention has been made in order to solve the above-described problems, and provides a refrigeration cycle apparatus capable of reducing power consumption while maintaining cooling capacity or heating capacity.
  • the refrigeration cycle apparatus includes a compressor having a variable operating capacity, a heat source side heat exchanger provided with an outdoor fan, a throttle means having a variable throttle opening, and a use provided with an indoor fan.
  • an air temperature setter that sets a target value of the suction air temperature or the blown air temperature of the use side heat exchanger, the target value and the suction air temperature or the Operation control means for controlling at least one of the operating capacity of the compressor, the air volume of the outdoor fan, the air volume of the indoor fan, and the throttle opening of the throttle means so that the deviation from the blown air temperature is small
  • Power detection means for detecting the power consumption of the refrigeration cycle device, the operation control means comprising: an operating capacity of the compressor; an air volume of the outdoor fan; an air volume of the indoor fan; and the throttle An operation operation amount that minimizes power consumption of the refrigeration cycle device is obtained for at least one operation operation amount of the throttle opening of the means, and according to the operation operation amount
  • the present invention provides at least one of the operating capacity of the compressor, the air volume of the outdoor fan, the air volume of the indoor fan, and the throttle opening of the throttle means so that the deviation between the target value and the intake air temperature or the blown air temperature is small.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 4 is an operation flowchart of power consumption minimization control of the refrigeration cycle apparatus according to Embodiment 1.
  • 6 is a diagram for explaining a method of changing an operation amount change amount ⁇ Xm according to Embodiment 1.
  • FIG. 6 is a diagram for explaining a method of changing an operation amount change amount ⁇ Xm according to Embodiment 1.
  • FIG. 6 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 6 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 3.
  • FIG. 6 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 4.
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigeration
  • FIG. 1 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus of the present embodiment is an apparatus used for indoor air conditioning by performing vapor compression refrigeration cycle operation.
  • the refrigeration cycle apparatus includes a plurality of (in this embodiment, one) heat source units 301 connected in parallel, and a liquid connection pipe 6 and a gas connection pipe 9 that serve as refrigerant communication pipes. Via a plurality of (two in this embodiment) usage units 302a and 302b connected in parallel.
  • refrigerant used in the refrigeration cycle apparatus examples include HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium.
  • the usage units 302a and 302b are installed by being embedded or suspended on the indoor ceiling, or are installed on the indoor wall surface by wall hanging or the like, and are connected to the heat source unit 301 via the liquid connection pipe 6 and the gas connection pipe 9. It constitutes a part of the refrigerant circuit.
  • the usage unit 302a constitutes an indoor refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor fan 8a and an indoor heat exchanger 7a that is a usage-side heat exchanger.
  • the indoor heat exchanger 7a is composed of, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins, and functions as a refrigerant evaporator during cooling operation, It cools and functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor blower 8a is attached to the indoor heat exchanger 7a and is a fan capable of varying the flow rate of air supplied to the indoor heat exchanger 7a, such as a centrifugal fan driven by a DC fan motor (not shown). It consists of a multi-blade fan or the like, and has a function of sucking room air into the utilization unit 302a and supplying the air heat exchanged with the refrigerant by the indoor heat exchanger 7a to the room as supply air.
  • Various sensors are installed in the use unit 302a. That is, on the liquid side of the indoor heat exchanger 7a, the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state (the refrigerant temperature corresponding to the supercooled liquid temperature Tco during the heating operation or the evaporation temperature Te during the cooling operation) is set. A liquid temperature sensor 205a for detection is provided.
  • the indoor heat exchanger 7a includes a gas-side temperature sensor 207a that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature Tc during heating operation or refrigerant temperature corresponding to the evaporation temperature Te during cooling operation). Is provided.
  • an indoor temperature sensor 206a for detecting the temperature of the indoor air flowing into the unit (intake air temperature) is provided on the indoor air inlet side of the utilization unit 302a.
  • the indoor temperature sensor 206a may be provided on the indoor air outlet side of the usage unit 302a to detect the temperature of the indoor air discharged from the unit (blow air temperature).
  • the liquid side temperature sensor 205a, the gas side temperature sensor 207a, and the room temperature sensor 206a are constituted by, for example, a thermistor.
  • the indoor blower 8a is controlled by the operation control means 100 (described later) according to the detection values of these sensors. The control operation will be described later.
  • the heat source unit 301 is installed outdoors and is connected to the utilization units 302a and 302b via the liquid connection pipe 6 and the gas connection pipe 9, and constitutes a part of the refrigerant circuit.
  • the heat source unit 301 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 as a heat source side heat exchanger, an outdoor blower 4, and a throttle means 5a.
  • the throttle means 5a is connected to the liquid side of the heat source unit 301.
  • the throttle means 5a has a variable throttle opening, and adjusts the flow rate of the refrigerant flowing in the refrigerant circuit.
  • the compressor 1 can vary its operating capacity. For example, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used.
  • the compressor 1 is controlled by the control unit 103. For example, it is controlled according to the deviation between the indoor temperature sensors 206a, 206b of the indoor heat exchangers 7a, 7b and the set temperature (target value) of an air temperature setter described later. The control operation will be described later.
  • a case where there is only one compressor 1 will be described.
  • the present invention is not limited to this, and two or more compressors 1 are connected in parallel according to the number of connected usage units 302 or the like. It goes without saying that it may have been made.
  • the four-way valve 2 is a valve for switching the direction of the refrigerant flow.
  • the four-way valve 2 uses the outdoor heat exchanger 3 as a refrigerant condenser compressed in the compressor 1 and the indoor heat exchangers 7a and 7b evaporate the refrigerant condensed in the outdoor heat exchanger 3.
  • the discharge side of the compressor 1 and the gas side of the outdoor heat exchanger 3 are connected, and the suction side of the compressor 1 and the gas connection pipe 9 side are connected (FIG. 1).
  • the refrigerant flow path is switched.
  • the four-way valve 2 uses the indoor heat exchangers 7a and 7b as the refrigerant condenser compressed in the compressor 1, and the outdoor heat exchanger 3 as the refrigerant condensed in the indoor heat exchangers 7a and 7b.
  • the discharge side of the compressor 1 and the gas connection pipe 9 side are connected, and the suction side of the compressor 1 and the gas side of the outdoor heat exchanger 3 are connected (see FIG. 1 (see the solid line of the four-way valve 2), and has a function of switching the refrigerant flow path.
  • the outdoor heat exchanger 3 is composed of, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins.
  • the outdoor heat exchanger 3 has a gas side connected to the four-way valve 2 and a liquid side connected to the liquid connection pipe 6 and functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation. .
  • the outdoor blower 4 is attached to the outdoor heat exchanger 3 and is a fan capable of changing the flow rate of air supplied to the outdoor heat exchanger 3, for example, a propeller fan driven by a DC fan motor (not shown).
  • a fan capable of changing the flow rate of air supplied to the outdoor heat exchanger 3 for example, a propeller fan driven by a DC fan motor (not shown).
  • the compressor 1 is provided with a discharge temperature sensor 201 for detecting the discharge temperature Td.
  • the outdoor heat exchanger 3 has a gas side temperature sensor 202 that detects the temperature of the refrigerant in the gas-liquid two-phase state (condensation temperature Tc during cooling operation or refrigerant temperature corresponding to the evaporation temperature Te during heating operation). Is provided.
  • a liquid side temperature sensor 204 for detecting the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is provided on the liquid side of the outdoor heat exchanger 3.
  • an outdoor temperature sensor 203 for detecting the temperature of the outdoor air flowing into the unit, that is, the outdoor air temperature Ta is provided on the outdoor air inlet side of the heat source unit 301.
  • the compressor 1, the four-way valve 2, the outdoor blower 4, and the throttle means 5a are controlled by an operation control means 100 (described later) according to the detection values of these sensors. The control operation will be described later.
  • the heat source unit 301 and the utilization units 302a and 302b are connected via the liquid connection pipe 6 and the gas connection pipe 9 to constitute the refrigerant circuit of the refrigeration cycle apparatus.
  • the refrigeration cycle apparatus in the present embodiment includes operation control means 100, an air temperature setting device (not shown), and power detection means.
  • the air temperature setting device sets a set value (target value) of the intake air temperature or the blown air temperature of the utilization units 302a and 302b based on, for example, an operation from the user.
  • the power detection means includes power detection means or current detection means for detecting power supplied to the refrigeration cycle apparatus, and detects power consumption of the refrigeration cycle apparatus.
  • the operation control unit 100 includes a measurement unit 101, a calculation unit 102, a control unit 103, a storage unit 104, a comparison unit 105, and a determination unit 106.
  • Various amounts detected by various temperature sensors are input to the measurement unit 101.
  • Each quantity input to the measurement unit 101 is processed by the calculation unit 102, and the calculation result is sent to the control unit 103.
  • the control unit 103 drives and controls the compressor 1, the four-way valve 2, the outdoor blower 4, the throttle unit 5 a, and the indoor blower 8 a based on the calculation result of the calculation unit 102 so as to be within a desired control target range. Further, the calculation result of the operation state quantity obtained by the calculation unit 102 and the power consumption value of the refrigeration cycle apparatus are stored in the storage unit 104.
  • the collected power consumption is stored in the storage unit 104.
  • the stored value and the current power consumption value of the refrigeration cycle are compared by the comparison unit 105, and the comparison result is sent to the determination unit 106. Based on the determination result, the operation amount of the control unit 103 of the refrigeration cycle apparatus is determined.
  • the power consumption minimization control includes a cooling operation and a heating operation.
  • the four-way valve 2 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the outdoor heat exchanger 3, and the suction side of the compressor 1 is the indoor heat exchanger 7a. , 7b is connected to the gas side.
  • the opening of the throttle means 5a is adjusted so that the degree of superheat of the refrigerant on the suction side of the compressor 1 becomes a predetermined value.
  • the superheat degree of the refrigerant in the suction of the compressor 1 is first obtained by subtracting the refrigerant evaporation temperature Te detected by the gas side temperature sensors 207a and 207b from the compressor suction temperature Ts.
  • the compressor suction temperature Ts is obtained by converting the refrigerant evaporation temperature detected by the gas side temperature sensors 207a and 207b into a low pressure saturation pressure Ps, and the refrigerant condensation temperature detected by the gas side temperature sensor 202 being a high pressure.
  • the compression process of the compressor 1 is assumed to be a polytropic change of the polytropic index n, and is calculated from the following equation (1). Can be calculated.
  • Ts and Td are temperature [K]
  • Ps and Pd are pressure [MPa]
  • n is a polytropic index [ ⁇ ].
  • a suction pressure sensor 10 and a suction temperature sensor 11 are provided on the suction side of the compressor 1, and the evaporation temperature is determined from the suction pressure Ps of the compressor 1 detected by the suction pressure sensor 10.
  • the degree of superheat of the refrigerant may be detected by converting to a saturation temperature value corresponding to Te and subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the suction temperature sensor 11.
  • the high pressure and the low pressure are calculated from the condensing temperature and the evaporating temperature of the refrigerant here, but the pressure sensors are directly added to the suction side and the discharge side of the compressor 1 to obtain them. Needless to say.
  • the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 3 via the four-way valve 2, exchanges heat with the outdoor air supplied by the outdoor blower 4, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed by the throttling means 5a to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, sent to the utilization units 302a and 302b via the liquid connection pipe 6, and the indoor heat exchanger 7a, In 7b, heat is exchanged with room air to evaporate into a low-pressure gas refrigerant.
  • the throttle means 5a controls the flow rate of the refrigerant flowing in the indoor heat exchangers 7a and 7b so that the degree of superheat in the suction of the compressor 1 becomes a predetermined value
  • the low-pressure gas refrigerant evaporated in is in a state having a predetermined degree of superheat.
  • This low-pressure gas refrigerant is sent to the heat source unit 301 via the gas connection pipe 9 and again sucked into the compressor 1 via the four-way valve 2.
  • the four-way valve 2 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the gas side of the indoor heat exchangers 7a and 7b, and the suction side of the compressor 1 is the outdoor heat exchange. It will be in the state connected to the gas side of the vessel 3.
  • the opening of the throttle means 5a is adjusted so that the degree of superheat of the refrigerant in the suction of the compressor 1 becomes a predetermined value.
  • the degree of superheat of the refrigerant in the suction of the compressor 1 is first obtained by subtracting the refrigerant evaporation temperature Te detected by the gas side temperature sensor 202 from the compressor suction temperature Ts.
  • the compressor suction temperature Ts is obtained by converting the refrigerant evaporation temperature detected by the gas side temperature sensor 202 into a low pressure saturation pressure Ps, and increasing the refrigerant condensation temperature detected by the gas side temperature sensors 207a and 207b. From the refrigerant discharge temperature Td detected by the discharge temperature sensor 201 of the compressor 1 and the compression process of the compressor is assumed to be a change in the polytropy of the polytropic index n, and the above equation (1) is used. Can be calculated.
  • a suction pressure sensor 10 and a suction temperature sensor 11 are provided on the suction side of the compressor 1, and the suction pressure Ps of the compressor 1 detected by the suction pressure sensor 10 is used.
  • the degree of superheat of the refrigerant may be detected by converting to a saturation temperature value corresponding to the evaporation temperature Te and subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the suction temperature sensor 11.
  • the high pressure and the low pressure are calculated from the condensation temperature and the evaporation temperature of the refrigerant, but the pressure sensors are directly connected to the suction side and the discharge side of the compressor 1. It goes without saying that it may be requested by adding.
  • the low-pressure gas refrigerant is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant.
  • the gas is sent to the utilization units 302a and 302b via the gas connection pipe 9.
  • the high-pressure gas refrigerant sent to the utilization units 302a and 302b is condensed by exchanging heat with indoor air in the indoor heat exchangers 7a and 7b, and then the liquid connection pipe 6
  • the refrigerant is reduced in pressure by the throttle means 5a and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the throttle means 5a controls the flow rate of the refrigerant flowing in the indoor heat exchangers 7a and 7b so that the degree of superheat in the suction of the compressor 1 becomes a predetermined value
  • the high-pressure liquid refrigerant condensed in step 1 has a predetermined degree of supercooling.
  • required in each air-conditioning space in which each utilization unit 302a, 302b is flowing is flowing in each indoor heat exchanger 7a, 7b.
  • This low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 3 of the heat source unit 301.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 3 is condensed by exchanging heat with the outdoor air supplied by the outdoor blower 4 and becomes a low-pressure gas refrigerant. Then, it is sucked into the compressor 1 again.
  • operation processing including cooling operation and heating operation is performed by the operation control means 100. That is, the operation control means 100 controls the operation operation so that the deviation between the target value set by the air temperature setting device and the intake air temperature (or the blown air temperature) of the indoor heat exchangers 7a and 7b becomes small. .
  • FIG. 3 is an explanatory diagram of power consumption minimization control of the refrigeration cycle apparatus according to Embodiment 1.
  • a coordinate axis indicating the aperture of the aperture 5a (hereinafter referred to as “the aperture of the aperture Xm_2”).
  • a coordinate axis indicating a coefficient of performance, that is, COP is taken perpendicularly to this surface.
  • the operating capacity (the number of rotations) of the compressor 1 is always controlled according to the air conditioning load so that the room temperature becomes the target set temperature.
  • the outdoor fan air volume Xm_1 and the opening of the throttle means that minimize the power consumption of the refrigeration cycle apparatus, that is, maximize the coefficient of performance (COP).
  • the outdoor fan air volume Xm_1 is increased and decreased by a predetermined amount ⁇ Xm_1. Then, among the three points including the current Xm_1 (Xm_1 before increase and decrease), the operation amount with the smallest power consumption, that is, the operation amount with the largest COP is adopted as the operation amount of the outdoor fan 4 To do.
  • the opening degree Xm_2 of the throttle means is increased and decreased by a predetermined amount ⁇ Xm_2, and the most among the three points including the current Xm_2 (Xm_2 before increasing and decreasing).
  • a driving operation amount with low power consumption that is, a driving operation amount with a large COP is adopted as the driving operation amount of the throttle means 5a. Then, in the state of the opening degree Xm_2 of the throttle means, the outdoor fan air volume Xm_1 is increased and decreased again by a predetermined amount ⁇ Xm_1 to obtain a driving operation amount with low power consumption. By sequentially repeating this operation, it is possible to realize an operation state in which the power consumption becomes the minimum value while the room temperature is the target set temperature.
  • the operation control means 100 sets the operation amount of the operation capacity of the compressor 1 to the target value set by the air temperature setter, the intake air temperature (or blown air temperature) of the indoor heat exchangers 7a and 7b, and Is controlled so as to reduce the deviation of the outdoor fan air volume Xm_1 and the operation amount of the throttle opening degree Xm_2, the operation operation amount at which the power consumption of the refrigeration cycle apparatus is minimized is obtained.
  • the operation capacity of the compressor 1 is controlled according to the air-conditioning load, and the operation amount of the outdoor fan air volume Xm_1 and the opening degree Xm_2 of the throttle means is calculated.
  • the operation capacity of the compressor 1, the air volume of the outdoor fan 4, the air volume of the indoor fan 8, the throttle opening of the throttle means 5a, etc. are set to the target value and the intake air.
  • Driving operation that minimizes the power consumption of the refrigeration cycle apparatus with respect to the driving operation amount other than the driving operation amount that is controlled so that the deviation from the temperature (or the temperature of the blown air) becomes small and the deviation is controlled to be small. The amount may be obtained.
  • an evaluation function that is power consumption is defined by n variables Xm_1 to Xm_n.
  • FIG. 4 is an operation flowchart of power consumption minimization control of the refrigeration cycle apparatus according to the first embodiment. Hereinafter, each step of FIG. 4 will be described.
  • the calculation unit 102 sets the multiplication factor Ci and the reduction rate Cr in “setting the change magnification of the operation amount change amount ⁇ Xm_n”.
  • This multiplication factor Ci is used as a magnification for increasing the operation amount change amount ⁇ Xm_n when the operation amount of Xm_n is changed in “power consumption measurement for each operation amount Xm_n” described later.
  • the reduction rate Cr is used as a ratio for reducing the operation amount change amount ⁇ Xm_n when the operation amount of Xm_n is not changed in the “power consumption measurement for each operation amount Xm_n”.
  • the multiplication factor Ci is normally 1.1 to 2.0, and the reduction rate Cr is usually 0.9 to 0.1, and is fixed to a minimum set value.
  • the calculation unit 102 sets the value of the minimum operation change amount ⁇ _n as the required accuracy (absolute value) of each variable in “setting the minimum increment of each operation amount”. That is, the operation amount change amount ⁇ Xm_n is set not to be smaller than the minimum operation change amount ⁇ _n, and the update limit of each operation amount is set.
  • the value of the minimum operation change amount ⁇ _n corresponds to one pulse in the case of an electric expansion valve because it is the minimum amount of change in the opening degree of the throttle means. Moreover, if it is an external fan air volume, it will become the minimum fan motor change rotation speed.
  • the calculation unit 102 sets an initial value of the operation amount Xm_n and an initial value of the increment ratio D_n in “setting of initial values of each operation amount and increment ratio”. As the initial value of each operation amount Xm_n, the current operation amount is input. A predetermined value (for example, 0.05) is input as the initial value of the increment ratio D_n.
  • the calculation unit 102 increases and decreases the operation amount Xm_n by the operation amount change amount ⁇ Xm_n in “power consumption measurement”. Then, power consumption values in three patterns of operation amount Xm_n, operation amount Xm_n + ⁇ Xm_n, and operation amount Xm_n ⁇ Xm_n are acquired from the power detection unit. The acquired power consumption values are stored in the storage unit 104 as W [0], W [1], and W [2], respectively.
  • the comparison unit 105 compares the values of the power consumption W [0], W [1], and W [2] stored in the storage unit 104.
  • the determination unit 106 determines the smallest power consumption among the values of the power consumption W [0], W [1], and W [2] compared by the comparison unit 105, and the operation amount at the power consumption. Select.
  • the control unit 103 performs a driving operation by employing the operation amount selected by the determination unit 106.
  • the calculation unit 102 The increment ratio D_n multiplied by the reduction rate Cr is taken as the next increment ratio D_n.
  • the increment ratio D_n is multiplied by the multiplication factor Ci. Is the next incremental ratio D_n.
  • the calculation unit 102 repeats steps S15 to S17 using the updated increment ratio D_n until the operation amount Xm_n that minimizes power consumption converges. For example, when the operation amount change amount ⁇ Xm_n is equal to or smaller than the minimum operation change amount ⁇ _n, the operation amount Xm_n is determined to have converged. That is, the value of the increment ratio D_n limits the lower limit value of the increment ratio D_n so that the operation amount change amount ⁇ Xm_n ⁇ the minimum operation change amount ⁇ _n.
  • 5 and 6 are diagrams illustrating a method for changing the operation amount change amount ⁇ Xm according to the first embodiment. 5 and 6, with the operation amount Xm_n as a reference, the input at the operation amount Xm_n is W [0], and the inputs when + ⁇ Xm_n and ⁇ Xm_n are changed are W [1] and W [2], respectively. To do.
  • the next increment ratio D_n is decreased, and the operation amount change amount ⁇ Xm is decreased.
  • the manipulated variable change amount ⁇ Xm_n that minimizes the power consumption W can be obtained with good convergence (fast convergence speed) and with high accuracy.
  • Step S14 Measure power consumption for each operation amount Xm_n” again for the operation amount Xm_n.
  • a restriction may be provided for the operation amount change amount ⁇ Xm_n. That is, when the operation amount of the parameter calculated by the calculation unit 102 is changed, if it is assumed that the state of the refrigeration cycle approaches an operation outside the operation guarantee range of the device, the operation change is prohibited.
  • Set constraints That is, when the driving operation amount with the minimum power consumption is within the predetermined driving guarantee range, control according to the driving operation amount is performed. As a result, it is possible to realize an optimum operation state in which power consumption is minimized within the limitation of the operation guarantee range of the device.
  • the operation outside the guaranteed operating range here means that the outdoor fan airflow is reduced when the high pressure of the refrigeration cycle is operating close to the high pressure upper limit that is the operation guarantee of the equipment during cooling. Doing the operation will cause the risk of operation outside the guaranteed operating range because the high pressure will surely rise, and if the operation to reduce the air volume is prohibited, it is possible to avoid the operation outside the guaranteed operation Become.
  • the operation amount of the operation capacity of the compressor 1 is set to the target value set by the air temperature setter and the intake air temperature (or the blown air temperature) of the indoor heat exchangers 7a and 7b.
  • the air volume of the indoor fan 8 and the operation amount of the throttle opening of the throttle means 5a.
  • power consumption can be reduced while maintaining the cooling capacity or the heating capacity. Therefore, the deviation between the room temperature and the set temperature can be reduced, and the operating state that minimizes the power consumption can be obtained while maintaining the indoor comfort under any installation condition and environmental condition.
  • the power consumption minimization control in the present embodiment inevitably searches for an operation state in which the power consumption becomes the smallest, that is, an operation amount in which the heat exchange performance becomes the highest by the measured amount of power consumption. It is not necessary to measure the state quantity of the refrigerant in the refrigeration cycle such as the degree of heat and the degree of superheat. In other words, even if the measuring means that measures the refrigerant state of the refrigeration cycle such as the degree of supercooling and the degree of superheat becomes impossible to measure due to aging or failure, it is highly efficient while maintaining the reliability of the equipment. Driving can be realized. For this reason, the dependence on sensor accuracy can be reduced. Therefore, a highly efficient operation state is always maintained, and the reliability of the device can be ensured.
  • the operation amount Xm_n is increased and decreased by the operation amount change amount ⁇ Xm_n, and the power consumption at this time is changed to W [0], W [1], and W [2]. Based on this, an operation amount that minimizes power consumption W of the refrigeration cycle apparatus is obtained. Then, the increment ratio D_n of the manipulated variable change amount ⁇ Xm_n is increased (multiplier Ci) or decreased (reduction rate Cr) according to the comparison result of the power consumption. Using this updated operation amount change amount ⁇ Xm_n, a driving operation amount that minimizes power consumption is repeatedly obtained. Therefore, the manipulated variable Xm_n that minimizes the power consumption W can be obtained with good convergence (fast convergence speed) and with high accuracy. Therefore, it is possible to quickly realize an optimum operating state in which power consumption is minimized.
  • the power consumption minimization control in the present embodiment does not change the basic control method of the control of the conventional refrigeration cycle apparatus, so if this power consumption minimization is unnecessary or impossible, This power consumption minimization may be stopped or suspended depending on the judgment of the user or the judgment of the operation control means 100.
  • a local controller is connected as a management apparatus that manages each component device and obtains operation data by communicating with the outside such as a telephone line, a LAN line, and a radio. It is good also as composition to do.
  • a local controller By connecting such a local controller to a remote server of the information management center that receives the operation data of the refrigeration cycle apparatus via a network, and connecting a storage device such as a disk device that stores power consumption to the remote server
  • a power consumption minimizing control system can be configured.
  • the local controller is the measurement unit 101 that acquires the power consumption of the refrigeration cycle apparatus and the calculation unit 102 that calculates the operation amount
  • the storage device is the storage unit 104
  • the remote server is the comparison unit 105
  • the determination unit 106 and the notification.
  • the structure of functioning as a part is conceivable. In this case, it is not necessary for the refrigeration cycle apparatus to have the current power consumption and the reference value of the operating state quantity and the function of comparing operations.
  • the operability of the equipment is improved because there is no need for the operator to go to the site during the regular maintenance to operate or stop the power consumption minimization control. To do.
  • the present invention has been described with reference to the drawings, the specific configuration is not limited to this and can be changed without departing from the scope of the invention.
  • a refrigeration cycle apparatus dedicated to heating a refrigeration cycle apparatus dedicated to cooling
  • the present invention may be applied to a refrigeration cycle apparatus capable of simultaneous cooling and heating.
  • the present invention may be applied to a small refrigeration cycle apparatus such as a room air conditioner or a refrigerator for home use, or a large refrigeration cycle apparatus such as a refrigerator or a heat pump chiller for cooling in a refrigerated warehouse.
  • the present invention is applied to a refrigeration cycle apparatus including one heat source unit 301 as an example.
  • the present invention is not limited thereto, and a plurality of heat source units 301 are provided.
  • the present invention may be applied to a refrigeration cycle apparatus.
  • FIG. FIG. 7 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 2.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the refrigeration cycle apparatus of the present embodiment is provided with a receiver 20 for accumulating an excess refrigerant amount, which is a difference between the required refrigerant amounts for cooling and heating, after the throttling means 5a, and liquid connection with the receiver 20 A throttle means 5b is newly added between the flow paths of the pipe 6.
  • a receiver 20 for accumulating an excess refrigerant amount, which is a difference between the required refrigerant amounts for cooling and heating, after the throttling means 5a, and liquid connection with the receiver 20 A throttle means 5b is newly added between the flow paths of the pipe 6.
  • Such a configuration is suitable for a refrigeration cycle apparatus of a type that has a long connecting pipe length in the field and generates a large amount of surplus refrigerant due to the difference between cooling and heating.
  • Other configurations are the same as those of the first embodiment.
  • the power consumption minimization control of the refrigeration cycle apparatus in the present embodiment only increases the valve opening of each of the throttle means 5a or the throttle means 5b as an operation parameter as the operation amount Xm_n. Therefore, in the second embodiment, the basic idea of power consumption minimization control is not changed, so that an operation for minimizing power consumption can be realized as in the first embodiment.
  • FIG. 8 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 3.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the refrigeration cycle apparatus of the present embodiment is provided with a receiver 20 between the liquid side temperature sensor 204 and the outdoor heat exchanger 3 shown in the first embodiment, and the receiver 20 and the liquid side temperature.
  • a refrigerant-refrigerant heat exchanger 210 is provided between the sensors 204, the refrigerant that has passed through the high-pressure side refrigerant-refrigerant heat exchanger is depressurized by the throttle means 5d, and low-temperature and low-pressure refrigerant is allowed to flow through the refrigerant-refrigerant heat exchanger.
  • a bypass circuit 12 for increasing the cooling capacity by increasing the degree of supercooling of the refrigerant after passing through the receiver is provided, and before and after the refrigerant-refrigerant heat exchanger 210, the refrigerant-refrigerant heat exchanger inlet temperature sensor 208, the refrigerant-refrigerant heat exchanger An outlet temperature sensor 209 is provided.
  • the refrigerant-refrigerant heat exchanger 210 for example, a plate type heat exchanger, a double pipe type heat exchanger, or the like may be used. Other configurations are the same as those of the first embodiment.
  • the power consumption minimization control of the refrigeration cycle apparatus in the present embodiment only increases the valve opening of the throttle means 5d as an operation parameter. Accordingly, the basic concept of power consumption minimization control is not changed in the third embodiment, and thus, an operation for minimizing power consumption can be realized as in the first embodiment.
  • FIG. 9 is a refrigerant circuit diagram schematically showing a refrigeration cycle apparatus according to Embodiment 4.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the refrigeration cycle apparatus of the present embodiment is provided with a pressure sensor 400 that detects a high pressure at the discharge portion of the compressor 1 shown in the first embodiment. It constitutes a part of the indoor refrigerant circuit, a plate-type heat exchanger 401 that is a use-side heat exchanger, and a fluid delivery means 404 that exchanges heat with the refrigerant flowing in the plate-type heat exchanger,
  • the fluid inlet temperature sensor 402 detects the temperature of the fluid before and after heat exchange, and the fluid outlet temperature sensor 403.
  • Other configurations are the same as those of the first embodiment.
  • the fluid that exchanges heat with the refrigerant flowing in the plate heat exchanger 401 may be any object that absorbs heat of condensation of the refrigerant, and may be water, refrigerant, brine, or the like.
  • the fluid delivery means 404 may be a compressor or a pump.
  • the plate heat exchanger 401 is not limited to this form, and may be a double pipe heat exchanger, a microchannel, or the like as long as heat can be exchanged between the refrigerant and the fluid.
  • the refrigeration cycle is the same refrigerant circuit as in the first embodiment. Therefore, also in the fourth embodiment, an operation for minimizing power consumption can be realized as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷却能力又は暖房能力を維持しつつ、消費電力の低減を図ることができる冷凍サイクル装置を得る。  目標値と吸込空気温度又は吹出空気温度との偏差が小さくなるように、圧縮機1の運転容量、室外送風機4の風量、室内送風機8の風量、及び絞り手段5の絞り開度の少なくとも1つを制御する運転制御手段100と、当該冷凍サイクル装置の消費電力を検出する電力検出手段とを備え、運転制御手段100は、圧縮機1の運転容量、室外送風機4の風量、室内送風機8の風量、及び絞り手段5の絞り開度の少なくとも1つの運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求め、該運転操作量に応じて、圧縮機1の運転容量、室外送風機4の風量、室内送風機8の風量、及び絞り手段5の絞り開度の少なくとも1つを制御するものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関し、特に、消費電力の低減に関する。
 従来の冷凍サイクル装置においては、例えば、「演算により決められた前記開度及び前記回転数をそれぞれの偏差が所定の範囲内でかつ消費電力が最小値となるように補正する第3の演算機構とを具備している」ものが提案されている(例えば、特許文献1参照)。
特許第3156191号公報(請求項1)
 従来の冷凍サイクル装置にあっては、制御の直接の目的が室温の設定値及び圧縮機の過熱度の目標値との偏差が所定の範囲内にある場合のみ、消費電力の最小化を図る制御を行っている。
 したがって、消費電力を最小化する制御の適用範囲を拡大する場合、前記所定の範囲を拡大すればよいが、その場合、室内温度との設定温度との偏差も大きくなるため、例えば冷房では、消費電力最小となる場合が、室内温度が高めになる運転状態となるため、快適性が損なわれる、という問題点があった。
 また、圧縮機の過熱度等を演算するのに使用している温度センサ及び圧力センサが経年劣化もしくは故障等により実際の値に対して誤差が大きい検出値を出力している場合は、見かけ上、実際に制御した目標値との偏差が大きくなり、消費電力の最小化を図る制御が行われない。このため、従来の技術では、センサ精度への依存性が大きい、という問題点があった。
 また、従来の技術では、消費電力が最小値となる運転操作量の決定方法は、現在の操作量に対して、一定の操作量だけ変化させて、消費電力の増減から順次探索しているため、一定の操作量の変化量が小さい場合は、ゲインが小さいことと同一であるため、消費電力が最小値となる運転状態を探索するまでに時間がかかり収束性が悪くなる、という問題点があった。
 また、逆に変化量が大きい場合は、運転状態がハンチングし、冷凍サイクルの状態が安定しない、という問題点があった。
 本発明は、上記のような課題を解決するためになされたもので、冷却能力又は暖房能力を維持しつつ、消費電力の低減を図ることができる冷凍サイクル装置を得るものである。
 本発明に係る冷凍サイクル装置は、運転容量が可変である圧縮機と、室外送風機が付設された熱源側熱交換器と、絞り開度が可変である絞り手段と、室内送風機が付設された利用側熱交換器とを順次接続した冷凍サイクル装置において、前記利用側熱交換器の吸込空気温度又は吹出空気温度の目標値を設定する空気温度設定器と、前記目標値と前記吸込空気温度又は前記吹出空気温度との偏差が小さくなるように、前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つを制御する運転制御手段と、当該冷凍サイクル装置の消費電力を検出する電力検出手段とを備え、前記運転制御手段は、前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つの運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求め、該運転操作量に応じて、前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つを制御するものである。
 本発明は、目標値と吸込空気温度又は吹出空気温度との偏差が小さくなるように、圧縮機の運転容量、室外送風機の風量、室内送風機の風量、及び絞り手段の絞り開度の少なくとも1つを制御し、圧縮機の運転容量、室外送風機の風量、室内送風機の風量、及び絞り手段の絞り開度の少なくとも1つの運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求める。このため、冷却能力又は暖房能力を維持しつつ、消費電力の低減を図ることができる。
実施の形態1に係る冷凍サイクル装置を概略的に示す冷媒回路図である。 実施の形態1に係る冷凍サイクル装置を概略的に示す冷媒回路図である。 実施の形態1に係る冷凍サイクル装置の消費電力最小化制御の説明図である。 実施の形態1に係る冷凍サイクル装置の消費電力最小化制御の動作フローチャートである。 実施の形態1に係る操作量変更量ΔXmの変更方法について説明する図である。 実施の形態1に係る操作量変更量ΔXmの変更方法について説明する図である。 実施の形態2に係る冷凍サイクル装置を概略的に示す冷媒回路図である。 実施の形態3に係る冷凍サイクル装置を概略的に示す冷媒回路図である。 実施の形態4に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
符号の説明
 1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風機、5a 絞り手段、5b 絞り手段、5d 絞り手段、6 液接続配管、7a 室内熱交換器、7b 室内熱交換器、8a 室内送風機、8b 室内送風機、9 ガス接続配管、10 吸入圧力センサ、11 吸入温度センサ、12 バイパス回路、20 レシーバ、100 運転制御手段、101 測定部、102 演算部、103 制御部、104 記憶部、105 比較部、106 判定部、201 吐出温度センサ、202 ガス側温度センサ、203 室外温度センサ、204 液側温度センサ、205a 液側温度センサ、205b 液側温度センサ、206a 室内温度センサ、206b 室内温度センサ、207a ガス側温度センサ、207b ガス側温度センサ、208 冷媒-冷媒熱交換器低圧入口温度センサ、209 冷媒-冷媒熱交換器低圧出口温度センサ、210 冷媒-冷媒熱交換器、301 熱源ユニット、302a 利用ユニット、302b 利用ユニット、400 圧力センサ、401 プレート式熱交換器、402 流体入口温度センサ、403 流体出口温度センサ、404 流体送出手段。
実施の形態1.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は本発明の実施の形態1に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
 本実施の形態の冷凍サイクル装置は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される装置である。
 図1に示すように、冷凍サイクル装置は、並列に接続された複数台(本実施の形態では1台)の熱源ユニット301と、それに冷媒連絡配管となる液接続配管6及びガス接続配管9を介して並列に接続された複数台(本実施の形態では2台)の利用ユニット302a、302bとを有している。
 この冷凍サイクル装置に用いられる冷媒としては、例えばR410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、又は炭化水素、ヘリウムのような自然冷媒などがある。
<利用ユニット>
 利用ユニット302a、302bは、屋内の天井に埋め込みや吊り下げ等により設置され、又は屋内の壁面に壁掛け等により設置され、液接続配管6及びガス接続配管9を介して熱源ユニット301に接続されて冷媒回路の一部を構成している。
 次に、利用ユニット302a、302bの詳細な構成について説明する。
 なお、利用ユニット302aと利用ユニット302bとは同様の構成を有しているため、ここでは利用ユニット302aについてのみ説明し、利用ユニット302bについては、各符号にサフィックス「b」を付する。
 利用ユニット302aは、冷媒回路の一部である室内側冷媒回路を構成しており、室内送風機8aと、利用側熱交換器である室内熱交換器7aとを備えている。
 室内熱交換器7aは、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。
 室内送風機8aは、室内熱交換器7aに付設され、室内熱交換器7aに供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動される遠心ファンや多翼ファン等からなり、これによって利用ユニット302a内に室内空気を吸入し、室内熱交換器7aにより冷媒との間で熱交換した空気を供給空気として室内に供給する機能を有する。
 また、利用ユニット302aには、各種のセンサが設置されている。
 すなわち、室内熱交換器7aの液側には、液状態又は気液二相状態の冷媒の温度(暖房運転時における過冷却液温度Tco又は冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する液側温度センサ205aが設けられている。
 また、室内熱交換器7aには、気液二相状態の冷媒の温度(暖房運転時における凝縮温度Tc又は冷房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ207aが設けられている。
 さらに、利用ユニット302aの室内空気の吸入口側には、ユニット内に流入する室内空気の温度(吸込空気温度)を検出する室内温度センサ206aが設けられている。なお、室内温度センサ206aを、利用ユニット302aの室内空気の吹出口側に設けて、ユニット内から吐出する室内空気の温度(吹出空気温度)を検出するようにしてもよい。
 なお、液側温度センサ205a、ガス側温度センサ207a、及び室内温度センサ206aは、例えばサーミスタにより構成されている。
 室内送風機8aは、これらセンサの検出値に応じて運転制御手段100(後述)によって制御される。制御動作については後述する。
<熱源ユニット>
 熱源ユニット301は、屋外に設置されており、液接続配管6及びガス接続配管9を介して利用ユニット302a、302bに接続されており、冷媒回路の一部を構成している。
 次に、熱源ユニット301の詳細な構成について説明する。
 熱源ユニット301は、圧縮機1と、四方弁2と、熱源側熱交換器としての室外熱交換器3と、室外送風機4と、絞り手段5aとを備えている。
 絞り手段5aは、熱源ユニット301の液側に接続配置されている。この絞り手段5aは、絞り開度が可変であり、冷媒回路内を流れる冷媒の流量の調節等を行う。
 圧縮機1は、運転容量を可変することが可能であり、例えばインバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機を用いる。この圧縮機1は、制御部103により制御される。例えば、室内熱交換器7a、7bの室内温度センサ206a、206bと、後述する空気温度設定器の設定温度(目標値)との偏差に応じて制御される。制御動作については後述する。
 なお、本実施の形態では、圧縮機1が1台のみの場合を説明するが、これに限定されず、利用ユニット302の接続台数等に応じて、2台以上の圧縮機1が並列に接続されたものであってもよいことは言うまでもない。
 四方弁2は、冷媒の流れの方向を切り換えるための弁である。この四方弁2は、冷房運転時には、室外熱交換器3を圧縮機1において圧縮される冷媒の凝縮器として、かつ室内熱交換器7a、7bを室外熱交換器3において凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側とガス接続配管9側とを接続するように(図1の四方弁2の破線を参照)、冷媒流路を切り換える。
 また四方弁2は、暖房運転時には、室内熱交換器7a、7bを圧縮機1において圧縮される冷媒の凝縮器として、かつ室外熱交換器3を室内熱交換器7a、7bにおいて凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側とガス接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように(図1の四方弁2の実線を参照)、冷媒流路を切り換える機能を有する。
 室外熱交換器3は、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなる。この室外熱交換器3は、そのガス側が四方弁2に接続され、その液側が液接続配管6に接続され、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。
 室外送風機4は、室外熱交換器3に付設され、室外熱交換器3に供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動されるプロペラファンからなり、これによって熱源ユニット301内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換した空気を室外に排出する機能を有する。
 また、熱源ユニット301には、各種のセンサが設置されている。
 すなわち、圧縮機1には、吐出温度Tdを検出する吐出温度センサ201が設けられている。
 また、室外熱交換器3には、気液二相状態の冷媒の温度(冷房運転時における凝縮温度Tc又は暖房運転時における蒸発温度Teに対応する冷媒温度)を検出するガス側温度センサ202が設けられている。
 さらに、室外熱交換器3の液側には、液状態又は気液二相状態の冷媒の温度を検出する液側温度センサ204が設けられている。
 また、熱源ユニット301の室外空気の吸入口側には、ユニット内に流入する室外空気の温度すなわち外気温度Taを検出する室外温度センサ203が設けられている。
 なお、圧縮機1、四方弁2、室外送風機4、及び絞り手段5aは、これらセンサの検出値に応じて運転制御手段100(後述)によって制御される。制御動作については後述する。
 以上のように、熱源ユニット301と利用ユニット302a、302bとが液接続配管6とガス接続配管9を介して接続されて、冷凍サイクル装置の冷媒回路が構成されている。
<制御系>
 本実施の形態における冷凍サイクル装置は、運転制御手段100、図示しない空気温度設定器、及び電力検出手段を有している。
 空気温度設定器は、例えば使用者からの操作に基づいて、利用ユニット302a、302bの吸込空気温度又は吹出空気温度の設定値(目標値)を設定する。
 電力検出手段は、当該冷凍サイクル装置に供給される電力を検出する電力検出手段又は電流検出手段を有し、当該冷凍サイクル装置の消費電力を検出する。
 運転制御手段100は、測定部101、演算部102、制御部103、記憶部104、比較部105、判定部106を有している。
 測定部101には、各種温度センサによって検知された各諸量が入力される。この測定部101に入力された各諸量は、演算部102によって処理され、演算結果が制御部103に送られる。そして制御部103により、演算部102の演算結果に基づき、圧縮機1、四方弁2、室外送風機4、絞り手段5a、室内送風機8aが、所望の制御目標範囲に収まるように駆動制御される。
 また、演算部102によって得られた運転状態量の演算結果及び冷凍サイクル装置の消費電力の値は記憶部104に記憶される。
 また、記憶部104には、採取した消費電力が記憶されており、この記憶された値と現在の冷凍サイクルの消費電力の値が、比較部105によって比較され、その比較結果が判定部106に送られてその判定結果に基づき、冷凍サイクル装置の制御部103の操作量を決定する。
 次に、本実施の形態の冷凍サイクル装置の消費電力を最小にする消費電力最小化制御について説明する。
 なお、消費電力最小化制御には、冷房運転と暖房運転とが含まれる。
<消費電力最小化制御>
 まず、消費電力最小化制御における冷房運転について、図1を用いて説明する。
 冷房運転時は、四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3のガス側に接続され、かつ圧縮機1の吸入側が室内熱交換器7a、7bのガス側に接続された状態となる。また、絞り手段5aは圧縮機1の吸入側における冷媒の過熱度が所定値になるように開度調節される。本実施の形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、ガス側温度センサ207a、207bにより検出される冷媒の蒸発温度Teを差し引くことによって求められる。
 ここで、圧縮機吸入温度Tsは、ガス側温度センサ207a、207bにより検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、ガス側温度センサ202により検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、下記(1)式より算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[-]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、より精度よく圧縮機吸入温度Tsを推測することができる。
 なお、図2の冷媒回路図に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ11を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ11により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。
 なお、高圧の圧力及び低圧の圧力を算出するのに、ここでは冷媒の凝縮温度及び蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。
 この冷媒回路の状態で、圧縮機1、室外送風機4及び室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、四方弁2を経由して室外熱交換器3に送られて、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて高圧の液冷媒となる。
 そして、この高圧の液冷媒は、絞り手段5aによって減圧されて、低温低圧の気液二相冷媒となり、液接続配管6を経由して利用ユニット302a、302bに送られ、室内熱交換器7a、7bで室内空気と熱交換を行って蒸発されて低圧のガス冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器7a、7b内を流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて蒸発された低圧のガス冷媒は、所定の過熱度を有する状態となる。
 このように、各室内熱交換器7a、7bには、利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。
 この低圧のガス冷媒は、ガス接続配管9を経由して熱源ユニット301に送られ、四方弁2を経由して、再び、圧縮機1に吸入される。
 次に、暖房運転について説明する。
 暖房運転時は、四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7a、7bのガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器3のガス側に接続された状態となる。また、絞り手段5aは圧縮機1の吸入における冷媒の過熱度が所定値になるように開度調節される。本実施の形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、ガス側温度センサ202により検出される冷媒の蒸発温度Teを差し引くことによって求められる。
 ここで、圧縮機吸入温度Tsは、ガス側温度センサ202により検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、ガス側温度センサ207a、207bにより検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、前述の(1)式より算出することができる。
 なお、冷房運転と同様に、図2に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ11を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ11により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。
 なお、冷房運転と同様に、高圧の圧力及び低圧の圧力を算出するのに、ここでも冷媒の凝縮温度及び蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。
 この冷媒回路の状態で、圧縮機1、室外送風機4及び室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となり、四方弁2及びガス接続配管9を経由して、利用ユニット302a、302bに送られる。
 そして、利用ユニット302a、302bに送られた高圧のガス冷媒は、室内熱交換器7a、7bにおいて、室内空気と熱交換を行って凝縮されて高圧の液冷媒となった後、液接続配管6を経由して、絞り手段5aによって減圧されて低圧の気液二相状態の冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器7a、7b内を流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて凝縮された高圧の液冷媒は、所定の過冷却度を有する状態となる。
 このように、各室内熱交換器7a、7bには、各利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。
 この低圧の気液二相状態の冷媒は、熱源ユニット301の室外熱交換器3に流入する。
 そして、室外熱交換器3に流入した低圧の気液二相状態の冷媒は、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて低圧のガス冷媒となり、四方弁2を経由して再び、圧縮機1に吸入される。
 このように、冷房運転及び暖房運転を含む運転処理が運転制御手段100により行われる。つまり、運転制御手段100は、空気温度設定器により設定された目標値と、室内熱交換器7a、7bの吸込空気温度(又は吹出空気温度)との偏差が小さくなるように運転動作を制御する。
<消費電力最小化制御方法>
 次に、消費電力最小化制御方法の考え方について図3を用いて述べる。
 図3は実施の形態1に係る冷凍サイクル装置の消費電力最小化制御の説明図である。
 図3において、水平面内には、2つの運転操作量(Xm_n:n=識別番号)として、室外送風機4が室外熱交換器3に供給する空気の流量(以下「室外ファン風量Xm_1」という。)と、絞り手段5aの絞り開度(以下「絞り手段の開度Xm_2」という。)とを示す座標軸をとる。また、この面と垂直に、成績係数すなわちCOPを示す座標軸をとる。
 ここで、圧縮機1の運転容量(回転数)は、室温が目標設定温度になるように空調負荷に応じて常に制御されているものとする。
 このように冷凍サイクル装置の冷却能力又は暖房能力を維持した状態で、冷凍サイクル装置の消費電力を最小とする、すなわち成績係数(COP)を最大とする、室外ファン風量Xm_1と絞り手段の開度Xm_2との運転操作量を求める場合を考える。
 まず、室外ファン風量Xm_1を所定量ΔXm_1だけ増加及び減少させる。そして、現Xm_1(増加及び減少する前のXm_1)を含めた3点の中で最も消費電力が小さい運転操作量、すなわちCOPが最も大きくなる運転操作量を、室外送風機4の運転操作量として採用する。
 次に、上記の室外ファン風量Xm_1の状態で、絞り手段の開度Xm_2を、所定量ΔXm_2だけ増加及び減少させて、現Xm_2(増加及び減少する前のXm_2)を含め3点の中で最も消費電力が小さい運転操作量、すなわちCOPが大きい運転操作量を、絞り手段5aの運転操作量として採用する。
 そして、上記の絞り手段の開度Xm_2の状態で、再度、室外ファン風量Xm_1を所定量ΔXm_1だけ増加及び減少させて、消費電力が小さい運転操作量を求める。
 この操作を順次繰り返すことによって、室温が目標設定温度になっている状態で、消費電力が最小値となる運転状態が実現できる。
 つまり、運転制御手段100は、圧縮機1の運転容量の運転操作量を、空気温度設定器により設定された目標値と、室内熱交換器7a、7bの吸込空気温度(又は吹出空気温度)との偏差が小さくなるように制御し、室外ファン風量Xm_1、及び絞り手段の開度Xm_2の運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求めることとなる。
 なお、図3においては、室外ファン風量Xm_1と絞り手段の開度Xm_2との運転操作量を求める場合を説明したが、同様の考え方により、室内送風機8aの運転操作量など、他の運転操作量Xm_nについて、順次行うことにより、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求めることができる。
 なお、上記説明では、圧縮機1の運転容量を空調負荷に応じて制御して、室外ファン風量Xm_1と絞り手段の開度Xm_2との運転操作量を求める場合を説明したが、本発明はこれに限るものではなく、圧縮機1の運転容量、室外送風機4の風量、室内送風機8の風量、及び絞り手段5aの絞り開度等のうち、少なくとも1つの運転操作量を、目標値と吸込空気温度(又は吹出空気温度)との偏差が小さくなるように制御し、この偏差が小さくなるように制御する運転操作量以外の運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求めるようにしてもよい。
 次に、消費電力最小化制御における運転制御手段100の詳細動作について、図4のフローチャートを用いて述べる。ここで、消費電力最小化実現のため、消費電力である評価関数を、Xm_1~Xm_nのn個の変数によって定義されたものとする。
 図4は実施の形態1に係る冷凍サイクル装置の消費電力最小化制御の動作フローチャートである。以下、図4の各ステップについて説明する。
(S11)
 まず、演算部102は、「操作量変更量ΔXm_nの変更倍率の設定」において、増倍率Ciと低減率Crとを設定する。
 この増倍率Ciは、後述する「各操作量Xm_n毎の消費電力測定」において、Xm_nの操作量が変更された場合に、操作量変更量ΔXm_nを増加させる倍率として用いるものである。
 また、低減率Crは、同様に「各操作量Xm_n毎の消費電力測定」において、Xm_nの操作量が変更されなかった場合に、操作量変更量ΔXm_nを低減させる比率として用いるものである。この増倍率Ciは、通常1.1~2.0、低減率Crは通常0.9~0.1であり、最小に設定した値に固定する。
 これらの増倍率Ciと低減率Crとを用いることにより、操作量変更量ΔXm_nが弾力的に変化し、収束速度と、消費電力が最小となる運転状態実現への精度が向上する。
(S12)
 次に、演算部102は、「各操作量の最小増分の設定」において、各変数の所要精度(絶対値)として最小操作変更量ε_nの値を設定する。
 すなわち、操作量変更量ΔXm_nは、最小操作変更量ε_nより小さくならないようにして、各操作量の更新限界を設定する。この最小操作変更量ε_nの値は、例えば絞り手段の開度であれば、最小開度変更量であるため、電気式膨張弁であれば1パルス分に相当する。また、外ファン風量であれば、最小ファンモータ変更回転数となる。
(S13)
 さらに、演算部102は、「各操作量、増分比率の初期値設定」において、操作量Xm_nの初期値と増分比率D_nの初期値とを設定する。
 各操作量Xm_nの初期値は、現在の操作量を入力する。増分比率D_nの初期値は、所定値(例えば0.05)を入力する。
(S14)
 ここから、「各操作量Xm_n毎の消費電力測定」を行う繰り返しループに入る。
(S15)
 まず、繰り返しループの中で、演算部102は、最初に「増分計算」において、操作量変更量ΔXm_nを次式にて計算する。
Figure JPOXMLDOC01-appb-M000002
(S16)
 次に、演算部102は、「消費電力測定」において、操作量Xm_nを操作量変更量ΔXm_nだけ増加及び減少させる。そして、操作量Xm_n、操作量Xm_n+ΔXm_n、操作量Xm_n-ΔXm_nの3パターンでの消費電力の値を、電力検出手段から取得する。そして取得した消費電力の値を、それぞれW[0]、W[1]、W[2]として、記憶部104に記憶させる。
(S17)
 次に、「3パターンの消費電力比較」において、比較部105は、記憶部104に記憶された消費電力W[0]、W[1]、W[2]の値を比較する。
 判定部106は、比較部105により比較された消費電力W[0]、W[1]、W[2]の値のうち、最も消費電力が小さいものを判定し、当該消費電力での操作量を選択する。制御部103は、判定部106により選択された操作量を採用して運転操作を行う。
 さらに、演算部102は、初期の操作量Xm_n(増加又は減少する前の操作量)での消費電力が最小である場合、すなわち制御部103が操作する運転操作量が更新されなかった場合は、増分比率D_nに低減率Crを掛けたものを次回の増分比率D_nとする。
 一方、操作量Xm_n+ΔXm_n、又は操作量Xm_n-ΔXm_nでの消費電力が最小である場合、すなわち制御部103が操作する運転操作量が更新された場合は、増分比率D_nに増倍率Ciを掛けたものを次回の増分比率D_nとする。
 そして、演算部102は、更新した増分比率D_nを用いて、消費電力を最小とする操作量Xm_nが収束するまで、ステップS15~S17を繰り返し行う。
 なお、この操作量Xm_nの収束の判断は、例えば、操作量変更量ΔXm_nが最小操作変更量ε_n以下となったとき、操作量Xm_nが収束したと判断する。
 つまり、増分比率D_nの値は、操作量変更量ΔXm_n≧最小操作変更量ε_nとなるように、増分比率D_nの下限値を制限する。
 ここで、消費電力Wの最小値探索における、操作量変更量ΔXmの変更方法について、図5、図6を用いて説明する。
 図5及び図6は実施の形態1に係る操作量変更量ΔXmの変更方法について説明する図である。
 図5及び図6において、操作量Xm_nを基準として、操作量Xm_nでの入力をW[0]とし、+ΔXm_n、-ΔXm_n変化させた時の入力をそれぞれ、W[1]、W[2]とする。
 例えば図5に示すように、W[0]、W[1]、W[2]を比較し、消費電力Wの最小値が、W[1]もしくは、W[2]である場合、Wが最小となる解が、操作量Xm±ΔXmの範囲外にある可能性がある。このため、次回の増分比率D_nを増加させて、操作量変更量ΔXm_nを増加させる。
 一方、例えば図6に示すように、W[0]、W[1]、W[2]を比較し、消費電力Wの最小値が、W[0]である場合、Wが最小となる解が、操作量Xm_n±ΔXm_nの範囲内にある可能性がある。このため、次回の増分比率D_nを減少させ、操作量変更量ΔXmを減少させる。
 このように、順次、操作量変更量ΔXm_nを更新していくことで、消費電力Wが最小となる操作量Xm_nを、収束性が良く(収束速度が速く)、かつ精度良く求めることができる。
(S18)
 次に、演算部102は、操作パラメータを次のパラメータ(n=n+1)に変化させて、当該操作量Xm_nについて、再度、ステップS14「各操作量Xm_n毎の消費電力測定」を行う。
 そして、すべての操作パラメータ数(n=nmax)まで一通り実施した場合は、最初の操作パラメータ(n=1)に戻り、繰り返し同じ操作を行う。
 なお、上記説明(図4)では、操作量Xm_nを1つずつ別個に変更する手順を示したが、1つの操作量を3パターンで変更中に、他の操作量を同時に変更してもよい。
 このようにすることで、消費電力の最小化に影響の大きいパラメータから収束させることが可能となるため、時間的に効率的に消費電力を最小化できる。
 なお、上記説明(図4)では、操作量変更量ΔXm_nについて、制約を設けるようにしても良い。つまり、演算部102によって算出されるパラメータの操作量の変更を行うことによって、冷凍サイクルの状態がその機器の運転保証範囲外の運転に近づくと想定される場合は、その操作変更を禁止するという制約条件を設ける。すなわち、消費電力が最小となる運転操作量が、所定の運転保証範囲内にあるとき、当該運転操作量に応じた制御を行う。
 これにより、機器の運転保証範囲の制約の中で消費電力が最小となる最適な運転状態を実現できる。
 例えば、ここで、運転保証範囲外の運転になるというのは、冷房時に冷凍サイクルの高圧が、機器の運転保証である高圧上限値に近い状態で運転している場合に、室外ファン風量を低下させる操作を行うのは、高圧圧力が確実に上昇するため、運転保証範囲外の運転になる危険性があり、風量低下の操作を禁止すれば、運転保証外の運転を回避することが可能となる。
 以上のように本実施の形態においては、圧縮機1の運転容量の運転操作量を、空気温度設定器により設定された目標値と室内熱交換器7a、7bの吸込空気温度(又は吹出空気温度)との偏差が小さくなるように制御し、室外送風機4の風量、室内送風機8の風量、及び絞り手段5aの絞り開度の運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求める。
 このため、冷却能力又は暖房能力を維持しつつ、消費電力の低減を図ることができる。したがって、室内温度と設定温度との偏差を小さくして、如何なる設置条件、環境条件においても、室内の快適性を維持した上で、消費電力が最小となる運転状態を求めることができる。
 また、本実施の形態における消費電力最小化制御は、必然的に最も消費電力が小さくなる運転状態、すなわち熱交換性能が最も高くなる操作量を、消費電力の計測量によって探索するため、過冷却度、過熱度等の冷凍サイクルの冷媒の状態量を測定する必要がない。
 つまり、過冷却度、過熱度等の冷凍サイクルの冷媒状態を計測している測定手段が経年劣化や故障により、測定不能になった場合でも、機器の信頼性を維持した状態で、高効率な運転を実現できる。
 このため、センサ精度への依存度を小さくすることができる。したがって、常に高効率な運転状態が保持され、機器の信頼性を確保することができる。
 また、「各操作量Xm_n毎の消費電力測定」において、操作量Xm_nを操作量変更量ΔXm_nだけ増加及び減少させ、このときの消費電力W[0]、W[1]、W[2]に基づき、当該冷凍サイクル装置の消費電力Wが最小となる運転操作量を求める。そして、消費電力の比較結果に応じて、操作量変更量ΔXm_nの増分比率D_nを増加(増倍率Ci)又は減少(低減率Cr)させる。この更新した操作量変更量ΔXm_nを用いて、消費電力が最小となる運転操作量を繰り返し求める。
 このため、消費電力Wが最小となる操作量Xm_nを、収束性が良く(収束速度が速く)、かつ精度良く求めることができる。したがって、消費電力が最小となる最適運転状態を迅速に実現できる。
 なお、本実施の形態における消費電力最小化制御は、従来の冷凍サイクル装置の制御の基本制御方法を変更するものではないので、この消費電力の最小化が不必要もしくは不可能な場合には、使用者の判断もしくは運転制御手段100の判断によって、この消費電力最小化を停止もしくは休止させてもよい。
 なお、本実施の形態においては、消費電力を最小化することを目的として説明したが、その代わりに成績係数(COP)やエネルギー効率を最大化することを評価標として用いてもよい。これは、冷凍サイクルの能力と消費電力の比で求められるので同じことになる。
 なお、本実施の形態における冷凍サイクル装置の構成に加え、各構成機器を管理して運転データを電話回線、LAN回線、無線などの外部との通信を行い取得する管理装置としてのローカルコントローラを接続する構成としてもよい。このようなローカルコントローラを、冷凍サイクル装置の運転データを受信する情報管理センターの遠隔サーバに、ネットワークを介して接続し、遠隔サーバに消費電力を記憶するディスク装置等の記憶装置を接続することによって、消費電力最小化制御システムを構成することができる。
 例えば、ローカルコントローラを、冷凍サイクル装置の消費電力を取得する測定部101及び操作量を演算する演算部102とし、記憶装置を記憶部104とし、遠隔サーバを比較部105、判定部106、及び報知部として機能させる等の構成が考えられる。
 この場合には、冷凍サイクル装置には現在の消費電力及び運転状態量の基準値や演算比較する機能を有しておく必要がなくなる。
 また、このように遠隔監視できるシステムを構成することによって、定期メンテナンス時に、作業者が現地に赴いて消費電力最小化制御の稼動もしくは停止を行う作業の必要がなくなるため、機器の操作性が向上する。
 以上、本実施の形態について図面に基づいて説明したが、具体的な構成は、これに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。
 例えば本実施の形態では、冷暖切り換え可能な冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、暖房専用の冷凍サイクル装置や冷房専用の冷凍サイクル装置や冷暖同時運転可能な冷凍サイクル装置に本発明を適用してもよい。
 また、家庭用のルームエアコンや冷蔵庫などの小型の冷凍サイクル装置や、冷蔵倉庫の冷却用の冷凍機やヒートポンプチラーなどの大型の冷凍サイクル装置に本発明を適用してもよい。
 また、本実施の形態では、1台の熱源ユニット301を備えた冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、複数台の熱源ユニット301を備えた冷凍サイクル装置に本発明を適用してもよい。
実施の形態2.
 図7は実施の形態2に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
 図7において、前述の実施の形態1と同一部分には同一符号を付してある。
 本実施の形態の冷凍サイクル装置は、図7に示すように、絞り手段5aの後に冷房と暖房の必要冷媒量の差である余剰冷媒量を溜めるレシーバ20を設けるとともに、そのレシーバ20と液接続配管6の流路の間に絞り手段5bを新たに付加したものである。このような構成は、現地での接続配管長が長く、冷房と暖房の差での余剰冷媒が多量に発生するタイプの冷凍サイクル装置に好適である。
 それ以外の構成は前述の実施の形態1と同様である。
 このような構成により、本実施の形態における冷凍サイクル装置の消費電力最小化制御は、操作量Xm_nとして、絞り手段5aもしくは絞り手段5bのそれぞれの弁開度が操作パラメータとして増えるのみである。
 したがって、本実施の形態2においても、基本的な消費電力最小化制御の考え方は変わらないため、実施の形態1と同様に消費電力を最小化する運転を実現できる。
実施の形態3.
 図8は実施の形態3に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
 図8において、前述の実施の形態1と同一部分には同一符号を付してある。
 本実施の形態の冷凍サイクル装置は、図8に示すように、実施の形態1に示した液側温度センサ204と室外熱交換器3の間に、レシーバ20を設け、レシーバ20と液側温度センサ204の間に冷媒-冷媒熱交換器210を設け、高圧側の冷媒-冷媒熱交換器通過後の冷媒を絞り手段5dによって減圧し、低温低圧の冷媒を冷媒-冷媒熱交換器に流し、レシーバ通過後の冷媒の過冷却度を増加により冷却能力を増加させるバイパス回路12を備え、冷媒-冷媒熱交換器210の前後に冷媒-冷媒熱交換器入口温度センサ208、冷媒-冷媒熱交換器出口温度センサ209を設けたものである。
 なお、冷媒-冷媒熱交換器210は、例えばプレート式熱交換器や二重管式熱交換器等を用いることが考えられる。
 それ以外の構成は前述の実施の形態1と同様である。
 このような構成により、本実施の形態における冷凍サイクル装置の消費電力最小化制御は、絞り手段5dの弁開度が操作パラメータとして増えるのみである。
 したがって、本実施の形態3においても、基本的な消費電力最小化制御の考え方は変わらないため、実施の形態1と同様に消費電力を最小化する運転を実現できる。
 なお、本実施の形態ではレシーバ20を設けた冷媒回路構成で示したが、レシーバ20が無い構成としてもよい。
実施の形態4.
 図9は実施の形態4に係る冷凍サイクル装置を概略的に示す冷媒回路図である。
 図9において、前述の実施の形態1と同一部分には同一符号を付してある。
 本実施の形態の冷凍サイクル装置は、図9に示すように、実施の形態1に示した圧縮機1の吐出部分に高圧圧力を検出する圧力センサ400を設け、利用ユニット302aは、冷媒回路の一部である室内側冷媒回路を構成しており、利用側熱交換器であるプレート式熱交換器401と、プレート式熱交換器内を流れる冷媒と熱交換する流体送出手段404と、送出される流体の熱交換前後の温度を検出する流体入口温度センサ402と、流体出口温度センサ403とで構成されたものである。
 それ以外の構成は前述の実施の形態1と同様である。
 ここで、プレート式熱交換器401内を流れる冷媒と熱交換を行う流体は、冷媒の凝縮熱の吸熱対象となるものであればよく、例えば水、冷媒、ブライン等でもよい。また、流体送出手段404は圧縮機やポンプ等でもよい。
 また、プレート式熱交換器401もこの形態に限るものではなく、冷媒と流体間で熱交換できるものであれば、二重管熱交換器やマイクロチャネル等でもよい。
 このような冷媒回路構成でも、冷凍サイクルは、前述の実施の形態1と同じ冷媒回路になる。
 したがって、本実施の形態4においても、実施の形態1と同様に消費電力を最小化する運転を実現できる。
 

Claims (7)

  1.  運転容量が可変である圧縮機と、室外送風機が付設された熱源側熱交換器と、絞り開度が可変である絞り手段と、室内送風機が付設された利用側熱交換器とを順次接続した冷凍サイクル装置において、
     前記利用側熱交換器の吸込空気温度又は吹出空気温度の目標値を設定する空気温度設定器と、
     前記目標値と前記吸込空気温度又は前記吹出空気温度との偏差が小さくなるように、前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つを制御する運転制御手段と、
     当該冷凍サイクル装置の消費電力を検出する電力検出手段と
    を備え、
     前記運転制御手段は、
     前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つの運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求め、
     該運転操作量に応じて、前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つを制御する
    ことを特徴とする冷凍サイクル装置。
  2.  前記運転制御手段は、
     前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度のうち、少なくとも1つの運転操作量を、前記目標値と前記吸込空気温度又は前記吹出空気温度との偏差が小さくなるように制御し、
     該偏差が小さくなるように制御する運転操作量以外の運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求める
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  3.  前記運転制御手段は、
     前記圧縮機の運転容量の運転操作量を、前記目標値と前記吸込空気温度又は前記吹出空気温度との偏差が小さくなるように制御し、
     前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の運転操作量について、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求める
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  4.  前記運転制御手段は、
     前記圧縮機の運転容量、前記室外送風機の風量、前記室内送風機の風量、及び前記絞り手段の絞り開度の少なくとも1つについて、運転操作量を所定量増加及び減少させ、
     所定量増加した運転操作量、所定量減少した運転操作量、並びに増加及び減少する前の運転操作量において検出された前記消費電力に基づき、当該冷凍サイクル装置の消費電力が最小となる運転操作量を求める
    ことを特徴とする請求項1~3の何れかに記載の冷凍サイクル装置。
  5.  前記運転制御手段は、
     前記所定量増加した運転操作量、前記所定量減少した運転操作量、並びに前記増加及び減少する前の運転操作量において検出された前記消費電力のうち、
     前記所定量増加した運転操作量、又は前記所定量減少した運転操作量において検出された前記消費電力が最小となるとき、前記所定量の値を増加させた所定量を用いて、当該運転操作量を所定量増加及び減少させ、
     前記増加及び減少する前の運転操作量において検出された前記消費電力が最小となるとき、前記所定量の値を減少させた所定量を用いて、当該運転操作量を所定量増加及び減少させ、
     当該冷凍サイクル装置の消費電力が最小となる運転操作量を繰り返し求める
    ことを特徴とする請求項4記載の冷凍サイクル装置。
  6.  前記運転制御手段は、
     当該冷凍サイクル装置の消費電力が最小となる前記運転操作量が、所定の運転保証範囲内にあるとき、当該運転操作量に応じた制御を行う
    ことを特徴とする請求項1~5の何れかに記載の冷凍サイクル装置。
  7.  前記電力検出手段は、
     当該冷凍サイクル装置に供給される電力を検出する電力検出手段又は電流検出手段を有する
    ことを特徴とする請求項1~6の何れかに記載の冷凍サイクル装置。
PCT/JP2009/054565 2008-11-25 2009-03-10 冷凍サイクル装置 WO2010061643A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010540399A JP5213966B2 (ja) 2008-11-25 2009-03-10 冷凍サイクル装置
US13/124,252 US9222694B2 (en) 2008-11-25 2009-03-10 Refrigerating cycle device
EP09828893.9A EP2351973B1 (en) 2008-11-25 2009-03-10 Refrigeration cycle device
CN200980146939.6A CN102224383B (zh) 2008-11-25 2009-03-10 冷冻循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-299289 2008-11-25
JP2008299289 2008-11-25

Publications (1)

Publication Number Publication Date
WO2010061643A1 true WO2010061643A1 (ja) 2010-06-03

Family

ID=42225527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054565 WO2010061643A1 (ja) 2008-11-25 2009-03-10 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US9222694B2 (ja)
EP (1) EP2351973B1 (ja)
JP (1) JP5213966B2 (ja)
CN (1) CN102224383B (ja)
WO (1) WO2010061643A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021744A (ja) * 2010-07-16 2012-02-02 Daikin Industries Ltd 冷凍装置
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045524B2 (ja) * 2008-03-31 2012-10-10 ダイキン工業株式会社 冷凍装置
US8145926B2 (en) * 2008-09-30 2012-03-27 Intel Corporation Fan speed control of silicon based devices in low power mode to reduce platform power
JP5594267B2 (ja) * 2011-09-12 2014-09-24 ダイキン工業株式会社 冷凍装置
EP2780649B1 (de) * 2011-11-16 2020-09-30 A-Heat Allied Heat Exchange Technology AG Verfahren zur minimierung eines energieverbrauchs einer wärmeumwälzmaschine, sowie wärmeumwälzmaschine
JP5717873B2 (ja) * 2011-11-18 2015-05-13 三菱電機株式会社 空気調和装置
KR101992139B1 (ko) 2011-11-30 2019-06-25 삼성전자주식회사 공기조화기
US20140196489A1 (en) * 2013-01-11 2014-07-17 University Of Dayton Energy-optimized cycle control of time-variant loads for thermal management of vapor compression systems
KR20140129779A (ko) * 2013-04-30 2014-11-07 엘지전자 주식회사 공기조화기 및 공기조화기 제어방법
CN104729005A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 空调节能控制方法和装置
DE102014003907B4 (de) * 2014-03-19 2021-07-01 Audi Ag Fahrzeugklimaanlage mit einem Kältemittelkreislauf mit Wärmepumpenfunktionalität
KR20160084149A (ko) * 2015-01-05 2016-07-13 엘지전자 주식회사 냉장고의 제어방법
ES2925539T3 (es) * 2017-03-31 2022-10-18 Daikin Ind Ltd Sistema de aire acondicionado
US10906374B2 (en) * 2018-12-03 2021-02-02 Ford Global Technologies, Llc A/C compressor control using refrigerant pressure
FR3100794A1 (fr) * 2019-09-18 2021-03-19 Schneider Electric Industries Sas Procédés et dispositifs pour piloter un système de refroidissement
US11519646B2 (en) * 2020-08-28 2022-12-06 Rheem Manufacturing Company Heat pump systems with gas bypass and methods thereof
CN113375301B (zh) * 2020-12-11 2022-04-12 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN114353287A (zh) * 2021-12-08 2022-04-15 青岛海尔空调电子有限公司 风机优化调节方法及空调器
CN114413543B (zh) * 2022-01-14 2024-04-05 海信冰箱有限公司 一种冰箱及其静音控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325446A (ja) * 1986-07-18 1988-02-02 Nippon Telegr & Teleph Corp <Ntt> 空気調和機の制御方法
JPH06139296A (ja) * 1990-07-19 1994-05-20 Mitsubishi Electric Corp 回路定数自動設計システム及び回路定数最適化方法
JPH07110165A (ja) * 1993-10-15 1995-04-25 Hitachi Ltd 空気調和装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2368054A1 (fr) * 1976-10-13 1978-05-12 Comp Generale Electricite Procede pour augmenter l'eclairement produit par un faisceau laser
US5410420A (en) * 1993-04-14 1995-04-25 Winey; Calvin M. Drum scanner focusing system
US5456088A (en) * 1993-11-12 1995-10-10 Thermo King Corporation Refrigeration unit and method of operating same
JP3265803B2 (ja) 1994-03-18 2002-03-18 株式会社日立製作所 多室空気調和機及びその制御方法
US5515693A (en) * 1994-06-15 1996-05-14 Carrier Corporation Enable system for a controlled atmosphere system for a refrigerated container
JP2000088376A (ja) * 1998-09-18 2000-03-31 Hitachi Ltd ヒートポンプ装置
US6505476B1 (en) * 1999-10-28 2003-01-14 Denso Corporation Refrigerant cycle system with super-critical refrigerant pressure
JP2001317353A (ja) * 2000-05-11 2001-11-16 Nissan Motor Co Ltd 車両用モータファンの制御方法及び装置
JP3798374B2 (ja) * 2000-06-07 2006-07-19 サムスン エレクトロニクス カンパニー リミテッド 空気調和機の制御システム及びその制御方法
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6510703B1 (en) * 2001-11-27 2003-01-28 Cohand Technology Co., Ltd. Method for controlling corresponding energy supply of a heat source unit of a refrigeration air conditioning system based on required energy value calculated from output power value
JP4053327B2 (ja) * 2002-03-27 2008-02-27 カルソニックカンセイ株式会社 車両用空調制御装置
KR100474330B1 (ko) * 2002-05-13 2005-03-08 엘지전자 주식회사 냉장고용 왕복동식 압축기의 운전제어장치
JP2004027991A (ja) * 2002-06-27 2004-01-29 Calsonic Kansei Corp 車両用制御装置
US6672085B1 (en) * 2002-10-24 2004-01-06 Delphi Technologies, Inc. Hierarchical control method for a motor vehicle HVAC system
JP4261881B2 (ja) 2002-11-25 2009-04-30 株式会社テージーケー 冷凍サイクルの制御方法
US6755035B1 (en) * 2003-02-20 2004-06-29 Supermarket Environment Services Company HVAC system and method for conditioning air
JP2004249897A (ja) * 2003-02-21 2004-09-09 Denso Corp 車両用空調装置
US6860431B2 (en) * 2003-07-10 2005-03-01 Tumkur S. Jayadev Strategic-response control system for regulating air conditioners for economic operation
US20050155369A1 (en) * 2004-01-15 2005-07-21 Toshiba Carrier Corporation Air conditioner
US6931872B2 (en) * 2004-01-23 2005-08-23 Hoshizaki Denki Kabuski Kaisha Operation control device for cooling apparatus
US8051668B2 (en) * 2004-10-28 2011-11-08 Emerson Retail Services, Inc. Condenser fan control system
JP4580816B2 (ja) * 2005-05-25 2010-11-17 カルソニックカンセイ株式会社 可変容量コンプレッサのトルク算出装置およびトルク算出方法
JP4424292B2 (ja) * 2005-09-28 2010-03-03 ソニー株式会社 撮像装置、露出制御方法およびプログラム
JP4915156B2 (ja) * 2006-07-12 2012-04-11 株式会社デンソー 車両用空調制御装置
JP2008038833A (ja) * 2006-08-09 2008-02-21 Calsonic Kansei Corp 可変容量圧縮機の制御装置及び可変容量圧縮機の制御方法
US7584021B2 (en) * 2006-11-08 2009-09-01 Hewlett-Packard Development Company, L.P. Energy efficient CRAC unit operation using heat transfer levels
KR100844324B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325446A (ja) * 1986-07-18 1988-02-02 Nippon Telegr & Teleph Corp <Ntt> 空気調和機の制御方法
JPH06139296A (ja) * 1990-07-19 1994-05-20 Mitsubishi Electric Corp 回路定数自動設計システム及び回路定数最適化方法
JPH07110165A (ja) * 1993-10-15 1995-04-25 Hitachi Ltd 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351973A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021744A (ja) * 2010-07-16 2012-02-02 Daikin Industries Ltd 冷凍装置
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve

Also Published As

Publication number Publication date
CN102224383A (zh) 2011-10-19
EP2351973A1 (en) 2011-08-03
EP2351973A4 (en) 2014-07-16
JP5213966B2 (ja) 2013-06-19
US9222694B2 (en) 2015-12-29
CN102224383B (zh) 2014-07-30
US20110197607A1 (en) 2011-08-18
EP2351973B1 (en) 2019-06-26
JPWO2010061643A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5213966B2 (ja) 冷凍サイクル装置
US10145595B2 (en) Refrigeration cycle apparatus
JP5056855B2 (ja) 空気調和装置
JP4767199B2 (ja) 空気調和システムの運転制御方法並びに空気調和システム
WO2016117128A1 (ja) 空気調和装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
US10451324B2 (en) Air-conditioning apparatus
JP2010127568A (ja) 異常検出装置およびそれを備えた冷凍サイクル装置
JP2010032127A (ja) 空気調和装置
US10184683B2 (en) Air conditioning device
AU2015379472B2 (en) Air conditioning device
AU2010259838B2 (en) Refrigeration apparatus
KR101901540B1 (ko) 공기 조화 장치
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
US20210341170A1 (en) Air conditioning apparatus, management device, and connection pipe
WO2019021464A1 (ja) 空気調和装置
JP6509047B2 (ja) 空気調和装置
WO2017119138A1 (ja) 空気調和装置
WO2017122264A1 (ja) 空気調和機
JP6537629B2 (ja) 空気調和装置
JP6271011B2 (ja) 冷凍空調装置
KR102662870B1 (ko) 공기 조화기 및 그 제어 방법
KR20210026645A (ko) 공기 조화기 및 그 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146939.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13124252

Country of ref document: US

Ref document number: 2009828893

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4386/CHENP/2011

Country of ref document: IN