WO2011055472A1 - Dc-dcコンバータ - Google Patents

Dc-dcコンバータ Download PDF

Info

Publication number
WO2011055472A1
WO2011055472A1 PCT/JP2010/004481 JP2010004481W WO2011055472A1 WO 2011055472 A1 WO2011055472 A1 WO 2011055472A1 JP 2010004481 W JP2010004481 W JP 2010004481W WO 2011055472 A1 WO2011055472 A1 WO 2011055472A1
Authority
WO
WIPO (PCT)
Prior art keywords
side switch
output
circuit
low
converter
Prior art date
Application number
PCT/JP2010/004481
Other languages
English (en)
French (fr)
Inventor
石井卓也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080003233.7A priority Critical patent/CN102217179B/zh
Priority to US13/044,284 priority patent/US8558526B2/en
Publication of WO2011055472A1 publication Critical patent/WO2011055472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC-DC converter, and more particularly to a bootstrap of an on-drive voltage of a high-side switch in the DC-DC converter.
  • Switching DC-DC converters are often used as DC power sources for various electronic devices.
  • a DC-DC converter performs switching control of a high-side switch and a low-side switch connected in series between an input voltage and a ground, and smoothes electrical energy accumulated in an inductor with a smoothing capacitor to generate an output voltage. .
  • High-side switches may be composed of N-channel MOSFETs for the purpose of reducing the size and improving the performance of DC-DC converters.
  • a bootstrap circuit is provided because the on-drive voltage of the high-side switch needs to be higher than the input voltage.
  • the bootstrap circuit includes a capacitor connected to a connection point between the high-side switch and the low-side switch, and the on-drive voltage of the high-side switch is raised by the charging voltage of the capacitor.
  • a diode is provided between the capacitor and the power supply so that the charge of the capacitor does not flow backward to the power supply side during the bootstrap of the on-drive voltage of the high side switch.
  • some switching transistors having a small voltage drop are provided in place of the diodes to prevent a decrease in the charging voltage of the capacitor (see, for example, Patent Document 1).
  • the low-side switch In order for the bootstrap circuit to raise the on-drive voltage of the high-side switch to the input voltage or higher, the low-side switch must remain on for a certain period and the capacitor must be fully charged. However, if the switching operation of the DC-DC converter is paused for a long time, such as during standby or when paused after overvoltage detection, the capacitor is discharged and the on-side drive voltage of the high-side switch is sufficient. Will not rise. As a result, even if the high-side switch is turned on when the operation is resumed, the high-side switch may not be turned on and the DC-DC converter may not be restarted smoothly.
  • an object of the present invention is to enable a DC-DC converter having a bootstrap circuit to smoothly return from a long-time switching suspension state to a normal state.
  • a DC-DC converter that generates an output voltage by stepping down an input voltage by switching a high-side switch and a low-side switch connected in series between an input voltage and a ground, and the low-side switch is in an on state. It has a capacitor that is charged at the time, and has a bootstrap circuit that raises the on-drive voltage of the high-side switch with the capacitor charging voltage, and the pause signal that instructs the pause of switching control of the high-side switch and the low-side switch is inactive
  • the high side switch is controlled to be turned off for a certain period of time and the low side switch is controlled to be turned on.
  • the DC-DC converter includes a control circuit that controls switching of the high-side switch and the low-side switch, and a pause signal that instructs suspension of switching control of the high-side switch and the low-side switch. It is assumed that a fixed time trigger circuit is provided that activates the output for a fixed time when inactive. The control circuit controls the high side switch to be off and the low side switch to be on when the output of the trigger circuit is active for a certain period of time.
  • the capacitor in the bootstrap circuit is charged after the hibernation state ends until the high side switch is turned on. Therefore, even if the capacitor is discharged after a long pause, the high-side switch can be turned on when the operation is resumed. As a result, the DC-DC converter can smoothly return from the resting state to the normal state.
  • the DC-DC converter having a bootstrap circuit can smoothly return from the switching pause state for a long time to the normal state.
  • FIG. 1 is a configuration diagram of a DC-DC converter according to the first embodiment.
  • FIG. 2 is a configuration diagram of a DC-DC converter showing a configuration example of the constant time trigger circuit in FIG.
  • FIG. 3 is an operation timing chart of the DC-DC converter of FIG.
  • FIG. 4 is a configuration diagram of a DC-DC converter according to the second embodiment.
  • FIG. 5 is a configuration diagram of a DC-DC converter showing a configuration example of the constant time trigger circuit in FIG.
  • FIG. 6 is an operation timing chart of the DC-DC converter of FIG.
  • FIG. 1 shows a configuration of a DC-DC converter according to the first embodiment.
  • a high-side switch 1 and a low-side switch 2 are connected in series between the input voltage Vin and the ground.
  • Each of these switches is composed of an N-channel MOSFET and is driven by drivers 11 and 12, respectively. Then, these switches are alternately turned on at a predetermined time ratio, and the electric energy accumulated in the inductor 3 is smoothed by the smoothing capacitor 4 to generate the output voltage Vout.
  • the bootstrap circuit 5 can be composed of a capacitor 51 and a diode 52.
  • the capacitor 51 is charged via the diode 52 from the control voltage VDD when the low-side switch 2 is in the on state.
  • the low potential end of the capacitor 51 is connected to the source of the high side switch 1 and the reference potential end of the driver 11. Therefore, when the high side switch 1 and the low side switch 2 are alternately turned on at a predetermined time ratio, the capacitor 51 is charged to about the voltage VDD, and the charge is supplied as the on-drive power of the high side switch 1.
  • the voltage VDD is supplied to the driver 12, and the low-side switch 2 is turned on by the voltage VDD.
  • the fixed time trigger circuit 6 activates the output signal LON for a fixed time when the pause signal BRK becomes inactive.
  • the pause signal BRK is a signal for instructing the pause of switching control of the high-side switch 1 and the low-side switch 2, and becomes active when the output voltage Vout reaches the allowable upper limit value, and becomes inactive when the output voltage Vout reaches the allowable lower limit value.
  • the active level is “H” and the inactive level is “L” for each signal.
  • FIG. 2 shows a configuration example of the constant time trigger circuit 6.
  • the fixed time trigger circuit 6 can be constituted by a delay circuit 61 that receives and delays the pause signal BRK and a logic circuit 62 that calculates the logical product of the inversion of the pause signal BRK and the output of the delay circuit 61.
  • the delay circuit 61 can be realized by a CR circuit including a resistance element 611 and a capacitor 612. In this case, the CR time constant is the delay time. Therefore, the delay time can be adjusted by changing the element value of at least one of the resistance element 611 and the capacitor 612.
  • a timer circuit for taking a certain time may be provided.
  • the control circuit 7 performs switching control of the high side switch 1 and the low side switch 2 via the drivers 11 and 12, respectively.
  • the control signal generation circuit 71 operates when the enable signal EN is active, and outputs a control signal S1 for controlling the high-side switch 1 and a control signal S2 for controlling the low-side switch 2.
  • the enable signal EN is assumed to be active when the pause signal BRK is inactive and the output of the trigger circuit 6 is inactive for a predetermined time.
  • the enable signal EN can be provided as an output of the logic circuit 72 that calculates a negative logical sum of the pause signal BRK and the signal LON.
  • the control signal S1 is input to the driver 11 as it is.
  • the driver 12 receives the output of the logic circuit 73 that calculates the logical sum of the control signal S2 and the signal LON. That is, the low-side switch 2 is ON-controlled when the control signal S2 is active or the output of the trigger circuit 6 is active for a certain time.
  • the output of the delay circuit 61 may be input to the logic circuit 72 instead of the signal LON.
  • FIG. 3 shows the operation timing of the DC-DC converter according to this embodiment.
  • the DC-DC converter may be intermittently operated to reduce power consumption.
  • the switching control may be temporarily stopped until the output voltage Vout returns to the target value.
  • the pause signal BRK is active for a certain period.
  • the enable signal EN becomes “L”.
  • the control signal generation circuit 71 stops its operation, and both the control signals S1 and S2 become “L”.
  • the pause signal BRK is “H”, the signal LON remains “L”.
  • the control signal generation circuit 71 When the pause period ends and the signal BRK becomes “L”, the signal LON becomes “H”, but the enable signal EN remains “L” while the signal LON is “H”. Therefore, since the control signal generation circuit 71 does not resume its operation, the high-side switch 1 is not controlled to be turned on. On the other hand, the low-side switch 2 is turned on when the signal LON becomes “H”. As a result, the high-side switch 1 is turned off and the low-side switch 2 is turned on, and the capacitor 51 discharged during the idle period is charged.
  • the on-side drive voltage of the high side switch can be sufficiently increased to return to the normal state smoothly.
  • FIG. 4 shows the configuration of a DC-DC converter according to the second embodiment.
  • differences from the first embodiment will be described.
  • the DC-DC converter according to the present embodiment includes a hysteresis comparator 8 that compares the voltage Vfb obtained by feeding back the output voltage Vout with the reference voltage Vr with a hysteresis width ⁇ V.
  • the output of the hysteresis comparator 8 becomes the pause signal BRK.
  • the voltage Vfb may be the output voltage Vout itself, or may be a voltage obtained by dividing the output voltage Vout by resistance.
  • the enable signal EN of the control signal generation circuit 71 is given as an inversion of the pause signal BRK. Therefore, the control signal generation circuit 71 immediately starts to operate when the sleep state ends, restarts peripheral circuits (not shown), and resumes switching control of the high-side switch 1 and the low-side switch 2. Regardless of the control signal S2, the output of the logic circuit 73 becomes active by the output of the trigger circuit 6 for a certain period of time after the pause signal BRK becomes inactive. Therefore, it is necessary to mask the control signal S1 so that the high-side switch 1 and the low-side switch 2 are not turned on at the same time.
  • the output of the logic circuit 74 that calculates the logical product of the control signal S1 and the inversion of the signal LON is input to the driver 11. That is, the high-side switch 1 is turned on when the control signal S1 is active and the output of the trigger circuit 6 is inactive for a predetermined time.
  • FIG. 5 shows a configuration example of the constant time trigger circuit 6.
  • the delay circuit 61A can be realized by connecting inverter circuits in multiple stages. The delay time can be adjusted by changing the number of connection stages.
  • the output of the delay circuit 61A may be input to the logic circuit 74 instead of the signal LON.
  • FIG. 6 shows the operation timing of the DC-DC converter according to this embodiment.
  • a current larger than the load current is supplied to the inductor 3, and the output voltage Vout increases.
  • the output of the hysteresis comparator 8 that is, the pause signal BRK becomes “H”.
  • the enable signal EN becomes “L”
  • the control signal generation circuit 71 stops operating, both the high-side switch 1 and the low-side switch 2 are turned off, and the output voltage Vout decreases. In such a pause period, current consumption is reduced by stopping the operation of peripheral circuits (not shown).
  • the pause signal BRK becomes “L”.
  • the enable signal EN becomes “H”
  • the control signal generation circuit 71 and a peripheral circuit (not shown) start operating.
  • the signal LON becomes “H”
  • the low-side switch 2 is on-controlled.
  • the control signal S1 is masked, the high-side switch 1 remains off. Thereby, the capacitor
  • the normal state can be restored more quickly.
  • synchronous rectification may be performed by a switching transistor instead of the diode 52 in the bootstrap circuit 5.
  • the logic circuits 72, 73, and 74 can be variously modified according to the input signal logic.
  • the high side switch 1 it is not necessary to turn on the high side switch 1 immediately after the output of the trigger circuit 6 becomes inactive for a certain time.
  • a timer circuit that ticks longer than the fixed time trigger circuit 6 may be provided, and the high side switch 1 may be turned on after the timer circuit finishes timing. Even in this case, since the capacitor 51 in the bootstrap circuit 5 is charged immediately after the end of the pause period, it is possible to smoothly return from the pause state to the normal state.
  • the DC-DC converter according to the present invention can smoothly return from the hibernation state to the normal state, it is useful as a power supply device for a load circuit having a standby mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 ブートストラップ回路を有するDC-DCコンバータを長期間のスイッチング休止状態から通常状態にスムーズに復帰可能にする。DC-DCコンバータは、ローサイドスイッチ(2)がオン状態のときに充電されるコンデンサ(51)を有し、コンデンサの充電電圧でハイサイドスイッチ(1)のオン駆動電圧を引き上げるブートストラップ回路(5)と、ハイサイドスイッチ(1)およびローサイドスイッチ(2)をスイッチング制御する制御回路(7)と、ハイサイドスイッチ(1)およびローサイドスイッチ(2)のスイッチング制御の休止を指示する休止信号がインアクティブになったとき、出力を一定時間アクティブにする一定時間トリガ回路(6)とを備えている。制御回路(7)は、一定時間トリガ回路(6)の出力がアクティブのとき、ハイサイドスイッチ(1)をオフ制御するとともにローサイドスイッチ(2)をオン制御する。

Description

DC-DCコンバータ
 本発明は、DC-DCコンバータに関し、特に、DC-DCコンバータにおけるハイサイドスイッチのオン駆動電圧のブートストラップに関する。
 各種電子機器の直流電源としてスイッチング方式のDC-DCコンバータがよく用いられる。一般に、DC-DCコンバータは、入力電圧とグランドとの間に直列接続されたハイサイドスイッチおよびローサイドスイッチをスイッチング制御してインダクタに蓄積される電気エネルギーを平滑コンデンサで平滑化して出力電圧を生成する。
 DC-DCコンバータの小型化および性能向上の目的でハイサイドスイッチをNチャネルMOSFETで構成することがある。この場合、ハイサイドスイッチのオン駆動電圧を入力電圧以上にする必要からブートストラップ回路が設けられる。ブートストラップ回路はハイサイドスイッチとローサイドスイッチとの接続点に接続されたコンデンサを備えており、このコンデンサの充電電圧でハイサイドスイッチのオン駆動電圧を引き上げる。
 一般に、ハイサイドスイッチのオン駆動電圧のブートストラップ中にコンデンサの電荷が電源側に逆流しないようにコンデンサと電源との間にダイオードが設けられる。また、ダイオードに代えて電圧降下の小さいスイッチングトランジスタを設けてコンデンサの充電電圧の低下を阻止しているものがある(例えば、特許文献1参照)。
特開2007-195361号公報
 ブートストラップ回路がハイサイドスイッチのオン駆動電圧を入力電圧以上に引き上げるには、ローサイドスイッチがある程度の期間オン状態を維持してコンデンサが十分に充電されなければならない。しかし、待機時や過電圧検出後の一時停止時などのようにDC-DCコンバータのスイッチング動作が休止する期間が長時間におよぶ場合、コンデンサが放電してしまい、ハイサイドスイッチのオン駆動電圧が十分に上がらなくなる。この結果、動作再開時にハイサイドスイッチをオン制御してもハイサイドスイッチはターンオンせずにDC-DCコンバータがスムーズに再起動できなくなるおそれがある。
 上記問題に鑑み、本発明は、ブートストラップ回路を有するDC-DCコンバータを長期間のスイッチング休止状態から通常状態にスムーズに復帰可能にすることを課題とする。
 上記課題を解決するために本発明によって次のような手段を講じた。すなわち、入力電圧とグランドとの間に直列接続されたハイサイドスイッチおよびローサイドスイッチをそれぞれスイッチング制御して入力電圧を降圧して出力電圧を生成するDC-DCコンバータであって、ローサイドスイッチがオン状態のときに充電されるコンデンサを有し、コンデンサの充電電圧でハイサイドスイッチのオン駆動電圧を引き上げるブートストラップ回路を備え、ハイサイドスイッチおよびローサイドスイッチのスイッチング制御の休止を指示する休止信号がインアクティブになってから一定時間、ハイサイドスイッチをオフ制御するとともにローサイドスイッチをオン制御し、一定時間の経過後にハイサイドスイッチのオン制御を開始するものとする。具体的には、DC-DCコンバータは、上記ブートストラップ回路の他に、ハイサイドスイッチおよびローサイドスイッチをスイッチング制御する制御回路と、ハイサイドスイッチおよびローサイドスイッチのスイッチング制御の休止を指示する休止信号がインアクティブになったとき、出力を一定時間アクティブにする一定時間トリガ回路とを備えているものとする。そして、制御回路は、一定時間トリガ回路の出力がアクティブのとき、ハイサイドスイッチをオフ制御するとともにローサイドスイッチをオン制御するものとする。
 これによると、休止状態が終了してからハイサイドスイッチがオン制御されるまでの間、ブートストラップ回路におけるコンデンサが充電される。したがって、休止状態が長く続いてコンデンサが放電していても、動作再開時にハイサイドスイッチをオン状態にすることができる。これにより、DC-DCコンバータは休止状態から通常状態にスムーズに復帰することができる。
 本発明によると、ブートストラップ回路を有するDC-DCコンバータが長期間のスイッチング休止状態から通常状態にスムーズに復帰可能になる。
図1は、第1の実施形態に係るDC-DCコンバータの構成図である。 図2は、図1における一定時間トリガ回路の構成例を示したDC-DCコンバータの構成図である。 図3は、図1のDC-DCコンバータの動作タイミングチャートである。 図4は、第2の実施形態に係るDC-DCコンバータの構成図である。 図5は、図4における一定時間トリガ回路の構成例を示したDC-DCコンバータの構成図である。 図6は、図4のDC-DCコンバータの動作タイミングチャートである。
 (第1の実施形態)
 図1は、第1の実施形態に係るDC-DCコンバータの構成を示す。入力電圧Vinとグランドとの間にはハイサイドスイッチ1およびローサイドスイッチ2が直列接続されている。これらスイッチはいずれもNチャネルMOSFETで構成されており、ドライバ11,12によってそれぞれ駆動される。そして、これらスイッチを所定の時比率で交互に導通させてインダクタ3に蓄積された電気エネルギーを平滑コンデンサ4で平滑化して出力電圧Voutが生成される。
 ブートストラップ回路5は、コンデンサ51とダイオード52とで構成することができる。コンデンサ51は、ローサイドスイッチ2がオン状態のときに制御用の電圧VDDからダイオード52を介して充電される。コンデンサ51の低電位端はハイサイドスイッチ1のソースおよびドライバ11の基準電位端に接続されている。したがって、ハイサイドスイッチ1およびローサイドスイッチ2が所定の時比率で交互に導通することによりコンデンサ51は電圧VDD程度にまで充電され、その電荷がハイサイドスイッチ1のオン駆動電力として供給される。一方、ドライバ12には電圧VDDが供給されており、ローサイドスイッチ2は電圧VDDでオン駆動される。
 一定時間トリガ回路6は、休止信号BRKがインアクティブになったとき、出力である信号LONを一定時間アクティブにする。休止信号BRKはハイサイドスイッチ1およびローサイドスイッチ2のスイッチング制御の休止を指示する信号であり、例えば、出力電圧Voutが許容上限値に達するとアクティブとなり、許容下限値に達するとインアクティブとなる。以下、便宜のため、各信号についてアクティブは“H”、インアクティブは“L”であるとする。
 図2は、一定時間トリガ回路6の構成例を示したものである。一定時間トリガ回路6は、休止信号BRKを受けて遅延出力する遅延回路61と、休止信号BRKの反転と遅延回路61の出力との論理積を演算する論理回路62とで構成することができる。遅延回路61は、抵抗素子611とコンデンサ612とで構成されるCR回路で実現することができる。この場合、CR時定数が遅延時間となる。したがって、抵抗素子611およびコンデンサ612の少なくとも一方の素子値を変更することで遅延時間を調整することができる。なお、遅延回路61に代えて一定時間を刻むタイマ回路を設けてもよい。
 図1に戻り、制御回路7は、ドライバ11,12を介してハイサイドスイッチ1およびローサイドスイッチ2をそれぞれスイッチング制御する。具体的には、制御信号発生回路71は、イネーブル信号ENがアクティブのとき動作して、ハイサイドスイッチ1を制御するための制御信号S1とローサイドスイッチ2を制御するための制御信号S2を出力する。イネーブル信号ENは、休止信号BRKがインアクティブかつ一定時間トリガ回路6の出力がインアクティブのとき、アクティブになるものとする。具体的には、イネーブル信号ENは、休止信号BRKと信号LONとの否定論理和を演算する論理回路72の出力として与えることができる。制御信号S1はそのままドライバ11に入力される。一方、ドライバ12には制御信号S2と信号LONとの論理和を演算する論理回路73の出力が入力される。すなわち、ローサイドスイッチ2は、制御信号S2がアクティブまたは一定時間トリガ回路6の出力がアクティブのとき、オン制御される。なお、一定時間トリガ回路6を図2のように構成した場合、信号LONに代えて遅延回路61の出力を論理回路72に入力してもよい。
 図3は、本実施形態に係るDC-DCコンバータの動作タイミングを示す。DC-DCコンバータに接続された図示しない負荷回路が待機モードにあってDC-DCコンバータの負荷が非常に軽い場合には、消費電力を下げるためにDC-DCコンバータを間欠動作させることがある。あるいは、負荷電流の急減によって出力電圧Voutにオーバーシュートが発生すると、出力電圧Voutが目標値に戻るまでスイッチング制御を一時停止することがある。このような間欠動作時や過電圧検出時などに休止信号BRKはある程度の期間アクティブとなる。休止信号BRKが“H”になると、イネーブル信号ENは“L”になる。このため、制御信号発生回路71は動作を停止して制御信号S1,S2はいずれも“L”になる。一方、休止信号BRKが“H”の間は信号LONは“L”のままである。
 休止期間が終わって信号BRKが“L”になると、信号LONは“H”になるが、イネーブル信号ENは信号LONが“H”となっている間は“L”のままである。したがって、制御信号発生回路71は動作を再開しないためハイサイドスイッチ1はオン制御されない。一方、ローサイドスイッチ2は信号LONが“H”になったことでオン制御される。これにより、ハイサイドスイッチ1はオフ状態、ローサイドスイッチ2はオン状態となり、休止期間中に放電したコンデンサ51が充電される。
 一定時間トリガ回路6が刻む一定時間が経過して信号LONが“L”になるとイネーブル信号ENが“H”になる。これにより、制御信号発生回路71が動作を再開する。このとき、コンデンサ51は十分に充電されているため、DC-DCコンバータはスムーズに通常状態に復帰することができる。
 以上、本実施形態によると、休止状態の終了時にブートストラップ回路におけるコンデンサが充電されるため、ハイサイドスイッチのオン駆動電圧を十分に引き上げて通常状態にスムーズに復帰することができる。
 (第2の実施形態)
 図4は、第2の実施形態に係るDC-DCコンバータの構成を示す。以下、第1の実施形態と異なる点について説明する。
 本実施形態に係るDC-DCコンバータは、出力電圧Voutをフィードバックした電圧Vfbと基準電圧Vrとをヒステリシス幅ΔVで比較するヒステリシスコンパレータ8を備えている。ヒステリシスコンパレータ8の出力が休止信号BRKとなる。電圧Vfbは出力電圧Voutそのものでもよいし、出力電圧Voutを抵抗分圧した電圧であってもよい。
 制御回路7Aにおいて、制御信号発生回路71のイネーブル信号ENは休止信号BRKの反転として与えられる。したがって、休止状態が終了すると制御信号発生回路71は直ちに動作を開始し、図示しない周辺回路を再起動するとともにハイサイドスイッチ1およびローサイドスイッチ2のスイッチング制御を再開する。休止信号BRKがインアクティブとなってから一定時間は制御信号S2にかかわらず一定時間トリガ回路6の出力によって論理回路73の出力がアクティブとなる。したがって、制御信号S1をマスクして、ハイサイドスイッチ1とローサイドスイッチ2が同時にオン状態とならないようにする必要がある。そこで、制御信号S1と信号LONの反転との論理積を演算する論理回路74の出力をドライバ11に入力する。すなわち、制御信号S1がアクティブかつ一定時間トリガ回路6の出力がインアクティブのときにハイサイドスイッチ1をオン制御する。
 図5は、一定時間トリガ回路6の構成例を示したものである。遅延回路61Aはインバータ回路を多段接続して実現することができる。この接続段数を変更することで遅延時間を調整することができる。なお、一定時間トリガ回路6を図5のように構成した場合、信号LONに代えて遅延回路61Aの出力を論理回路74に入力してもよい。
 図6は、本実施形態に係るDC-DCコンバータの動作タイミングを示す。間欠動作時のような軽負荷状態ではインダクタ3に負荷電流よりも大きな電流が供給され、出力電圧Voutが上昇する。そして、電圧Vfbが基準電圧Vr+ΔVを上回ると、ヒステリシスコンパレータ8の出力、すなわち、休止信号BRKが“H”になる。これにより、イネーブル信号ENは“L”になり、制御信号発生回路71は動作を停止し、ハイサイドスイッチ1およびローサイドスイッチ2はいずれもオフ状態となり、出力電圧Voutは低下する。このような休止期間において、図示しない周辺回路も動作を停止することで消費電流が低減される。
 出力電圧Voutが低下して電圧Vfbが基準電圧Vrを下回ると、休止信号BRKは“L”になる。これにより、イネーブル信号ENは“H”になり、制御信号発生回路71および図示しない周辺回路が動作を開始する。また、信号LONが“H”になるため、ローサイドスイッチ2はオン制御される。一方、制御信号S1がマスクされるため、ハイサイドスイッチ1はオフ状態のままである。これにより、休止期間中に放電したコンデンサ51が充電される。
 一定時間トリガ回路6が刻む一定時間が経過して信号LONが“L”になると制御信号S1のマスクが解除される。これにより、ハイサイドスイッチ1がオン制御される。このとき、コンデンサ51は十分に充電されているため、DC-DCコンバータはスムーズに通常状態に復帰することができる。
 以上、本実施形態によると、休止状態の終了時にブートストラップ回路におけるコンデンサを充電している間に周辺回路の動作を再開させることができるため、より素早く通常状態に復帰することができる。
 なお、上記各実施形態において、ブートストラップ回路5におけるダイオード52に代えてスイッチングトランジスタで同期整流するようにしてもよい。また、論理回路72,73,74は、入力される信号論理に応じてさまざまに変形可能である。
 また、一定時間トリガ回路6の出力がインアクティブになってから直ちにハイサイドスイッチ1をオン制御しなくてもよい。例えば、一定時間トリガ回路6よりも長い時間を刻むタイマ回路を設けて、当該タイマ回路の計時が終了してからハイサイドスイッチ1をオン制御するようにしてもよい。この場合においても休止期間の終了直後にブートストラップ回路5におけるコンデンサ51が充電されるため、休止状態から通常状態にスムーズに復帰することができる。
 本発明に係るDC-DCコンバータは、休止状態から通常状態にスムーズに復帰することができるため、待機モードを有する負荷回路の電源装置として有用である。
 5   ブートストラップ回路
 51  コンデンサ
 6   一定時間トリガ回路
 61  遅延回路
 61A 遅延回路
 62  論理回路
 7   制御回路
 72  論理回路(第1の論理回路)
 73  論理回路(第2の論理回路)
 74  論理回路(第1の論理回路)
 71  制御信号発生回路
 8   ヒステリシスコンパレータ

Claims (6)

  1. 入力電圧とグランドとの間に直列接続されたハイサイドスイッチおよびローサイドスイッチをスイッチング制御して前記入力電圧を降圧して出力電圧を生成するDC-DCコンバータであって、
     前記ローサイドスイッチがオン状態のときに充電されるコンデンサを有し、前記コンデンサの充電電圧で前記ハイサイドスイッチのオン駆動電圧を引き上げるブートストラップ回路と、
     前記ハイサイドスイッチおよびローサイドスイッチをスイッチング制御する制御回路と、
     前記ハイサイドスイッチおよびローサイドスイッチのスイッチング制御の休止を指示する休止信号がインアクティブになったとき、出力を一定時間アクティブにする一定時間トリガ回路とを備え、
     前記制御回路は、前記一定時間トリガ回路の出力がアクティブのとき、前記ハイサイドスイッチをオフ制御するとともに前記ローサイドスイッチをオン制御する
    ことを特徴とするDC-DCコンバータ。
  2. 請求項1のDC-DCコンバータにおいて、
     前記制御回路は、
      前記休止信号がインアクティブかつ前記一定時間トリガ回路の出力がインアクティブのとき、出力をアクティブにし、それ以外は出力をインアクティブにする第1の論理回路と、
      前記第1の論理回路の出力がアクティブのとき、前記ハイサイドスイッチを制御するための第1の制御信号および前記ローサイドスイッチを制御するための第2の制御信号を出力する制御信号発生回路と、
      前記第2の制御信号がアクティブまたは前記一定時間トリガ回路の出力がアクティブのとき、出力をアクティブにし、それ以外は出力をインアクティブにする第2の論理回路とを有するものであり、
     前記ハイサイドスイッチおよびローサイドスイッチは、それぞれ、前記第1の制御信号および前記第2の論理回路の出力に従ってスイッチング動作する
    ことを特徴とするDC-DCコンバータ。
  3. 請求項1のDC-DCコンバータにおいて、
     前記制御回路は、
      前記休止信号がインアクティブのとき、前記ハイサイドスイッチを制御するための第1の制御信号および前記ローサイドスイッチを制御するための第2の制御信号を出力する制御信号発生回路と、
      前記第1の制御信号がアクティブかつ前記一定時間トリガ回路の出力がインアクティブのとき、出力をアクティブにし、それ以外は出力をインアクティブにする第1の論理回路と、
      前記第2の制御信号がアクティブまたは前記一定時間トリガ回路の出力がアクティブのとき、出力をアクティブにし、それ以外は出力をインアクティブにする第2の論理回路とを有するものであり、
     前記ハイサイドスイッチおよびローサイドスイッチは、それぞれ、前記第1および第2の論理回路の出力に従ってスイッチング動作する
    ことを特徴とするDC-DCコンバータ。
  4. 請求項1のDC-DCコンバータにおいて、
     前記一定時間トリガ回路は、
      前記休止信号を受けて遅延出力する遅延回路と、
      前記休止信号と前記遅延回路の出力との論理演算を行う論理回路とを有する
    ことを特徴とするDC-DCコンバータ。
  5. 請求項1のDC-DCコンバータにおいて、
     前記出力電圧をフィードバックした電圧と目標電圧とを比較し、当該比較結果として前記休止信号を出力するヒステリシスコンパレータを備えている
    ことを特徴とするDC-DCコンバータ。
  6. 入力電圧とグランドとの間に直列接続されたハイサイドスイッチおよびローサイドスイッチをそれぞれスイッチング制御して前記入力電圧を降圧して出力電圧を生成するDC-DCコンバータであって、
     前記ローサイドスイッチがオン状態のときに充電されるコンデンサを有し、前記コンデンサの充電電圧で前記ハイサイドスイッチのオン駆動電圧を引き上げるブートストラップ回路を備え、
     前記ハイサイドスイッチおよびローサイドスイッチのスイッチング制御の休止を指示する休止信号がインアクティブになってから一定時間、前記ハイサイドスイッチをオフ制御するとともに前記ローサイドスイッチをオン制御し、前記一定時間の経過後に前記ハイサイドスイッチのオン制御を開始する
    ことを特徴とするDC-DCコンバータ。
PCT/JP2010/004481 2009-11-04 2010-07-09 Dc-dcコンバータ WO2011055472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080003233.7A CN102217179B (zh) 2009-11-04 2010-07-09 Dc-dc转换器
US13/044,284 US8558526B2 (en) 2009-11-04 2011-03-09 DC-DC converter having a bootstrap circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009252874A JP5330962B2 (ja) 2009-11-04 2009-11-04 Dc−dcコンバータ
JP2009-252874 2009-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/044,284 Continuation US8558526B2 (en) 2009-11-04 2011-03-09 DC-DC converter having a bootstrap circuit

Publications (1)

Publication Number Publication Date
WO2011055472A1 true WO2011055472A1 (ja) 2011-05-12

Family

ID=43969715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004481 WO2011055472A1 (ja) 2009-11-04 2010-07-09 Dc-dcコンバータ

Country Status (4)

Country Link
US (1) US8558526B2 (ja)
JP (1) JP5330962B2 (ja)
CN (1) CN102217179B (ja)
WO (1) WO2011055472A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201037953A (en) * 2009-04-09 2010-10-16 Anpec Electronics Corp Direct current converter
TWI376869B (en) * 2009-04-13 2012-11-11 Anpec Electronics Corp Direct current converter
ITMI20110388A1 (it) * 2011-03-11 2012-09-12 St Microelectronics Srl Dispositivo per evitare l'hard-switching nei convertitori risonanti e relativo metodo.
CN102761245B (zh) * 2011-04-26 2016-06-29 国网新疆电力公司电力科学研究院 降压式变换电路
TWI419452B (zh) * 2011-11-15 2013-12-11 Lextar Electronics Corp 自舉電路與應用其之電子裝置
JP6011761B2 (ja) * 2011-12-19 2016-10-19 パナソニックIpマネジメント株式会社 点灯装置及びそれを用いた照明器具
TW201347381A (zh) * 2012-05-03 2013-11-16 Anpec Electronics Corp 應用於靴帶電路之直流轉換器
CN102832810B (zh) * 2012-08-30 2015-04-08 成都芯源系统有限公司 自举电压刷新控制电路、电压转换电路及相关控制方法
US9479055B2 (en) * 2012-12-03 2016-10-25 Panasonic Intellectual Property Management Co., Ltd. DC-DC converter
US9431890B2 (en) * 2013-02-20 2016-08-30 Micron Technology, Inc. Apparatuses and methods for converting single input voltage regulators to dual input voltage regulators
US9419509B2 (en) * 2014-08-11 2016-08-16 Texas Instruments Incorporated Shared bootstrap capacitor for multiple phase buck converter circuit and methods
EP3780368B1 (en) 2018-04-27 2023-12-13 Huawei Technologies Co., Ltd. Power supply circuit and device
JP7070830B2 (ja) * 2018-05-07 2022-05-18 オムロン株式会社 スイッチング電源装置
JP7266414B2 (ja) * 2019-01-28 2023-04-28 リンナイ株式会社 ファンモーター駆動装置
JP7364316B2 (ja) * 2019-03-26 2023-10-18 Fdk株式会社 電力変換装置、及び電力変換制御方法
JP7327998B2 (ja) * 2019-05-17 2023-08-16 ローム株式会社 Dc/dcコンバータ
CN110932550B (zh) * 2019-12-26 2021-02-26 上海贝岭股份有限公司 电压输出电路、开关电源直流变换器及集成电路
CN114448411A (zh) * 2020-11-02 2022-05-06 圣邦微电子(北京)股份有限公司 用于电池接入或脱离的按键控制电路、方法及其相关设备
US11942940B2 (en) * 2021-02-05 2024-03-26 Renesas Electronics America Inc. Boot capacitor charge during low power states

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065393A (ja) * 2003-08-08 2005-03-10 Fujitsu Ltd Dc/dcコンバータ、半導体装置、電子機器、及びバッテリパック
JP2007028797A (ja) * 2005-07-15 2007-02-01 Sanken Electric Co Ltd スイッチング電源装置
JP2007215259A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 駆動回路及びそれを用いたスイッチングレギュレータ
JP2010200554A (ja) * 2009-02-26 2010-09-09 Fuji Electric Systems Co Ltd Dc−dcコンバータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233035B2 (ja) 1996-08-09 2001-11-26 株式会社村田製作所 Dc−dcコンバータ
EP1087507B1 (en) * 1999-09-21 2004-10-13 STMicroelectronics S.r.l. Method of controlling a DC-DC converter
IT1317125B1 (it) * 2000-03-07 2003-05-27 St Microelectronics Srl Circuito di controllo a frequenza costante per un regolatore ditensione di switching di tipo isteretico
US6922044B2 (en) * 2002-09-06 2005-07-26 Intersil Americas Inc. Synchronization of multiphase synthetic ripple voltage regulator
JP2004304527A (ja) 2003-03-31 2004-10-28 Hitachi Ltd ゲート駆動回路及びその電源制御方法
CN100590954C (zh) * 2004-12-08 2010-02-17 三垦电气株式会社 多输出电流谐振型dc-dc变换器
JP4685531B2 (ja) * 2005-07-11 2011-05-18 ローム株式会社 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP4830507B2 (ja) 2006-01-20 2011-12-07 富士電機株式会社 ブートストラップ回路
JP5586211B2 (ja) * 2009-11-17 2014-09-10 株式会社東芝 Dc−dcコンバータおよび半導体集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065393A (ja) * 2003-08-08 2005-03-10 Fujitsu Ltd Dc/dcコンバータ、半導体装置、電子機器、及びバッテリパック
JP2007028797A (ja) * 2005-07-15 2007-02-01 Sanken Electric Co Ltd スイッチング電源装置
JP2007215259A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 駆動回路及びそれを用いたスイッチングレギュレータ
JP2010200554A (ja) * 2009-02-26 2010-09-09 Fuji Electric Systems Co Ltd Dc−dcコンバータ

Also Published As

Publication number Publication date
US20110156669A1 (en) 2011-06-30
JP5330962B2 (ja) 2013-10-30
CN102217179A (zh) 2011-10-12
US8558526B2 (en) 2013-10-15
CN102217179B (zh) 2014-08-27
JP2011101452A (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5330962B2 (ja) Dc−dcコンバータ
JP4481879B2 (ja) スイッチング電源装置
US9729061B2 (en) Boost regulator having adaptive dead time
US8299765B2 (en) Power supply control device and power supply control method
JP4315208B2 (ja) スイッチング電源装置の制御回路及び制御方法
WO2007080777A1 (ja) 電源装置及びこれを備えた電子機器
US20110241642A1 (en) Voltage converter
JP2014023269A (ja) 半導体集積回路およびその動作方法
JP5910395B2 (ja) ドライブ回路
WO2006132138A1 (ja) Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP2007020315A (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP2009247202A (ja) Dc−dcシステムのための逆電流低減技法
JP2014023272A (ja) スイッチング電源回路
US20100085776A1 (en) Switching power supply apparatus
JP2010200554A (ja) Dc−dcコンバータ
JP2010213559A (ja) 直流電源装置およびdc−dcコンバータ
JP5825433B2 (ja) スイッチング電源装置
JP2010158116A (ja) Dc−dcコンバータ
JP6619662B2 (ja) スイッチングレギュレータ
JPH11353038A (ja) 電源装置の突入電流防止回路
JP2005295630A (ja) 電源装置及び電源制御回路
JP4201087B2 (ja) スイッチング電源回路
US20240113626A1 (en) Power supply control apparatus and switching power supply including the same
JP2006148988A (ja) スイッチング電源回路
WO2023090029A1 (ja) 電源制御装置、スイッチング電源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003233.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828035

Country of ref document: EP

Kind code of ref document: A1