WO2023090029A1 - 電源制御装置、スイッチング電源 - Google Patents

電源制御装置、スイッチング電源 Download PDF

Info

Publication number
WO2023090029A1
WO2023090029A1 PCT/JP2022/038732 JP2022038732W WO2023090029A1 WO 2023090029 A1 WO2023090029 A1 WO 2023090029A1 JP 2022038732 W JP2022038732 W JP 2022038732W WO 2023090029 A1 WO2023090029 A1 WO 2023090029A1
Authority
WO
WIPO (PCT)
Prior art keywords
load mode
power supply
transistor
voltage
control device
Prior art date
Application number
PCT/JP2022/038732
Other languages
English (en)
French (fr)
Inventor
和宏 村上
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023090029A1 publication Critical patent/WO2023090029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention disclosed in this specification relates to a power supply control device and a switching power supply.
  • Patent Document 1 can be cited as an example of conventional technology related to the above.
  • the invention disclosed in the present specification provides a power supply control device and a switching power supply that can reduce dark current in the light load mode in view of the above problems found by the inventors of the present application. intended to
  • the power supply control device disclosed in this specification is a power supply control device configured to control a switching power supply that generates an output voltage from an input voltage, the application terminal of the input voltage and the switch voltage and an upper gate driver configured to turn on and off an N-channel upper transistor connected between the application end of the and generating a bootstrap voltage higher than the switch voltage by the charging voltage of the boot capacitor.
  • a bootstrap circuit configured to supply the upper gate driver; and a controller configured to switch the switching power supply between a heavy load mode and a light load mode
  • the bootstrap circuit comprising: A capacitance value of the boot capacitor can be switched according to on/off of the upper transistor, and the controller performs capacitance value switching control of the boot capacitor in the heavy load mode, and controls the boot capacitor in the light load mode.
  • the bootstrap circuit is controlled so as to stop the capacitance value switching control of .
  • FIG. 1 is a diagram showing the overall configuration of a switching power supply.
  • FIG. 2 is a diagram showing a first embodiment of the power control device.
  • FIG. 3 is a diagram showing a second embodiment of the power control device.
  • FIG. 4 is a diagram showing an example of switching drive in the second embodiment.
  • FIG. 1 is a diagram showing the overall configuration of a switching power supply.
  • the switching power supply 1 of this configuration example is a non-isolated step-down DC/DC converter (so-called BUCK converter) that steps down an input voltage Vin to generate an output voltage Vout. It comprises various discrete components (here inductor L1 and capacitor C1).
  • the power supply control device 10 is a semiconductor device that controls the switching power supply 1 .
  • the power supply control device 10 has a plurality of external terminals (external terminals T1 to T4 in this figure) as means for establishing electrical connection with the outside of the device.
  • the external terminal T1 (PVIN pin) is connected to the application end of the input voltage Vin.
  • the external terminal T2 (SW pin) is connected to the first end of the inductor L1.
  • the external terminal T3 (FB pin) is connected to the application end of the output voltage Vout together with the second end of the inductor L1 and the first end of the capacitor C1.
  • a voltage dividing circuit that generates a feedback voltage Vfb corresponding to the output voltage Vout may be provided between the terminal to which the output voltage Vout is applied and the external terminal T3.
  • the power supply control device 10 switches and drives a built-in switch output stage (not shown) so that the output voltage Vout (or the feedback voltage Vfb) fed back to the external terminal T3 matches a desired target value. As a result, a square-wave switch voltage Vsw is generated at the external terminal T2.
  • the inductor L1 and the capacitor C1 function as a rectifying/smoothing circuit for rectifying and smoothing the switch voltage Vsw to generate the output voltage Vout.
  • FIG. 2 is a diagram showing a first embodiment of the power control device 10. As shown in FIG. A power supply control device 10 of this embodiment is formed by integrating a switch output stage 11, a drive circuit 12, a bootstrap circuit 13, a controller 14, and a zero cross detection circuit 15. FIG.
  • the power control device 10 may be provided with functional blocks other than those described above.
  • the power supply control device 10 includes an internal reference voltage generation circuit, a communication I/O [input/output] circuit, a clock generation circuit, a self-diagnostic circuit, and various abnormal protection circuits (UVLO [under voltage locked out], OCP [over current protection], OVD [over voltage detection], UVD [under voltage detection], SCP [short circuit protection], and TSD [thermal shutdown]) may be integrated.
  • various abnormal protection circuits UVLO [under voltage locked out], OCP [over current protection], OVD [over voltage detection], UVD [under voltage detection], SCP [short circuit protection], and TSD [thermal shutdown]
  • the switch output stage 11 includes a transistor N1 (eg, an N-channel MOSFET [metal oxide semiconductor field effect transistor]) and transistors N2(a) to N2(d) (eg, all N-channel MOSFETs).
  • N1 eg, an N-channel MOSFET [metal oxide semiconductor field effect transistor]
  • transistors N2(a) to N2(d) eg, all N-channel MOSFETs.
  • the drain of the transistor N1 is connected to the application terminal (PVIN pin) of the input voltage Vin.
  • the source of the transistor N1 is connected to the switch voltage Vsw application terminal (SW pin).
  • the gate of the transistor N1 is connected to the application terminal of the upper gate drive signal HG.
  • the transistor N1 is turned on when the upper gate drive signal HG is at high level ( ⁇ Vbst), and turned off when the upper gate drive signal HG is at low level ( ⁇ Vsw).
  • the drains of the transistors N2(a) to N2(d) are all connected to the switch voltage Vsw application terminal (SW pin).
  • the sources of the transistors N2(a) to N2(d) are all connected to the power system ground terminal (PGND pin).
  • Gates of the transistors N2(a) to N2(d) are connected to application terminals of the lower gate drive signals LG(a) to LG(d), respectively.
  • the transistor N2(a) is turned on when the lower gate drive signal LG(a) is at high level ( ⁇ Vin), and is turned on when the lower gate drive signal LG(a) is at low level ( ⁇ PGND). is turned off.
  • transistors N2(b) to N2(d) which are turned on when the lower gate drive signals LG(b) to LG(d) are at high level ( ⁇ Vin).
  • side gate drive signals LG(b) to LG(d) are at low level ( ⁇ PGND), they are turned off.
  • transistors N2(a)-N2(d) and lower gate drive signals LG(a)-LG(d) may be collectively referred to as transistor N2 and lower gate drive signal LG, respectively. .
  • the transistors N1 and N2 are complementarily turned on/off according to the upper gate drive signal HG and the lower gate drive signal LG. As a result, a square-wave switch voltage Vsw pulse-driven between the input voltage Vin and the ground voltage PGND is generated.
  • the rectification method of the switching power supply 1 is not necessarily limited to the synchronous rectification method, and a diode rectification method may be adopted. In that case, a rectifier diode may be used instead of the transistor N2.
  • the drive circuit 12 is a circuit block that drives the switch output stage 11 according to the pulse control signal PWM input from the controller 14, and includes an upper gate driver 121 and a lower gate driver 122.
  • the upper gate driver 121 is a circuit block that charges and discharges the gate capacitance (for example, about 100 pF) of the transistor N1 by receiving the input of the pulse control signal PWM and outputting the upper gate drive signal HG.
  • a buffer X1 an inverter INV0, a transistor P1 (eg, a P-channel MOSFET), and a transistor N5 (eg, an N-channel MOSFET).
  • the delay circuit DLY0 gives a predetermined delay to the pulse control signal PWM (for example, rising timing from low level to high level) so as to provide a simultaneous OFF period for the transistors N1 and N2 to generate the upper pulse control signal HGCTL.
  • the buffer X1 operates by being supplied with the bootstrap voltage Vbst and the switch voltage Vsw, and generates the upper gate control signal SX1 according to the upper pulse control signal HGCTL input from the delay circuit DLY0.
  • the upper gate control signal SX1 becomes high level ( ⁇ Vbst) when the upper pulse control signal HGCTL is high level ( ⁇ Vreg), and becomes low level ( ⁇ AGND) when the upper pulse control signal HGCTL is low level ( ⁇ AGND). ⁇ Vsw).
  • the inverter INV0 inverts the logic level of the upper gate control signal SX1 to generate an inverted upper gate control signal S11. Therefore, the inverted upper gate control signal S11 becomes low level when the upper gate control signal SX1 is at high level, and becomes high level when the upper gate control signal SX1 is at low level.
  • Each of the lower gate control signals SX2(a) to SX2(d) becomes high level ( ⁇ Vin) when the lower pulse control signal LGCTL is at high level ( ⁇ Vreg), and the lower pulse control signal LGCTL is at high level ( ⁇ Vreg). When it is low level ( ⁇ AGND), it becomes low level ( ⁇ PGND).
  • the inverters INV1(a) to INV1(d) invert the logic levels of the lower gate control signals SX2(a) to SX2(d) to generate the lower gate drive signals LG(a) to LG(d), respectively. to generate The lower gate drive signals LG(a) to LG(d) are set to low level ( ⁇ PGND) when the lower gate control signals SX2(a) to SX2(d) are high level ( ⁇ Vin). ), and becomes high level ( ⁇ Vin) when the lower gate control signals SX2(a) to SX2(d) are low level ( ⁇ PGND).
  • the drain of the transistor P2 is connected to the application terminal (PVIN pin) of the input voltage Vin.
  • the drain of the transistor P2 may be connected to the application end of the internal power supply voltage Vref (eg, 5V).
  • a bootstrap control signal S4 is input from the controller 14 to the gate of the transistor P2.
  • a body diode BD3 is attached to the transistor P2. Specifically, the drain of the transistor P2 corresponds to the anode of the body diode BD3, and the source of the transistor P2 corresponds to the cathode of the body diode BD3.
  • the gate and source of the transistor P2 should be shorted.
  • Vcap ⁇ Vin-Vds (where Vds is the voltage between the drain and source of the transistor P2).
  • Vf is the forward drop voltage of the body diode BD3
  • the capacitor circuit CAP is built into the power supply control device 10, it becomes possible to reduce external discrete components. However, it is difficult to secure a sufficient capacitance value for the IC-embedded capacitor circuit CAP.
  • the charge accumulated in the capacitor circuit CAP is transferred to the transistor N1 as the transistor N1 turns on. It may be absorbed by the accompanying charging of the gate capacitance, and the bootstrap voltage Vbst may be lowered to interfere with the gate drive (especially full-on) of the transistor N1.
  • the capacitor circuit CAP receives the input of the upper gate control signal SX1, and is capable of variably controlling the capacitance value in synchronization with the charging and discharging of the gate capacitance of the transistor N1. It includes capacitors C11 and C12, transistors N6 and N7, transistor P3, buffer BUF1, and inverter INV2.
  • the second end of capacitor C11 is connected to the drains of transistors N6 and N7, respectively.
  • Gates of the transistors N7 and P3 are both connected to the application terminal of the doubler control signal DBLR.
  • the source of transistor N7 and the drain of transistor P3 are both connected to the first end of capacitor C12.
  • the buffer BUF1 receives the input of the upper gate control signal SX1 and outputs it as the doubler control signal DBLR without changing its logic level. Therefore, the doubler control signal DBLR is high level ( ⁇ Vbst) when the upper gate control signal SX1 is high level ( ⁇ Vbst), and is low level when the upper gate control signal SX1 is low level ( ⁇ Vsw). ( ⁇ Vsw).
  • the inverter INV2 inverts the logic level of the doubler control signal DBLR to generate an inverted doubler control signal XDBLR.
  • the inverted doubler control signal XDBLR is low level ( ⁇ Vsw) when the doubler control signal DBLR is high level ( ⁇ Vbst), and is high level ( ⁇ Vsw) when the doubler control signal DBLR is low level ( ⁇ Vsw). ⁇ Vbst).
  • the transistor N6 is turned on when the inverted doubler control signal XDBLR is at high level ( ⁇ Vbst), and turned off when the inverted doubler control signal XDBLR is at low level ( ⁇ Vsw). In other words, the transistor N6 is turned off when the doubler control signal DBLR is at high level ( ⁇ Vbst), and turned on when the doubler control signal DBLR is at low level ( ⁇ Vsw).
  • the transistor N7 is turned on when the doubler control signal DBLR is at high level ( ⁇ Vbst), and turned off when the doubler control signal DBLR is at low level ( ⁇ Vsw).
  • the transistor P3 is turned off when the doubler control signal DBLR is at high level ( ⁇ Vbst), and turned on when the doubler control signal DBLR is at low level ( ⁇ Vsw).
  • the on/off switching timings of the transistors N6, N7, and P3 are controlled according to the doubler control signal DBLR.
  • the capacitors C11 and C12 respectively retain the charge stored in the first operating state. Therefore, if the voltage across each of the capacitors C11 and C12 immediately before the transition to the second operating state is VC, the bootstrap voltage Vbst changes from (VC+Vsw) to (2VC+Vsw). That is, double boosting of the voltage VC between both ends is realized.
  • the configuration of the capacitor circuit CAP is not necessarily limited to the above, and any configuration that can achieve m-fold boosting of the voltage VC across both ends (where m>1) is acceptable.
  • the controller 14 operates by being supplied with an internal power supply voltage Vreg (eg, 5V) and generates a pulse control signal PWM so that a desired output voltage Vout is generated from the input voltage Vin.
  • Vreg internal power supply voltage
  • PWM pulse control signal
  • the controller 14 also has a function of switching the switching power supply 1 between a heavy load mode (HLM [heavy load mode]) and a light load mode (LLM [light load mode]).
  • HLM heavy load mode
  • LLM light load mode
  • the switching drive of the switch output stage 11 is temporarily stopped in a light load state in which the output current Iout flowing through the load is zero or very small, thereby reducing power consumption more than the heavy load mode (normal mode). It is a kind of power saving mode that reduces power consumption.
  • the controller 14 may switch the switching power supply 1 from the heavy load mode (normal mode) to the light load mode according to the zero-crossing detection signal ZERO.
  • both the transistors N1 and N2 In order to temporarily stop the switching drive of the switch output stage 11, both the transistors N1 and N2 must be turned off, and the switch voltage Vsw application terminal (SW pin) must be in a high impedance state. Therefore, in the light load mode, the power supply control device 10 sets the lower gate drive signals LG(a) to LG(d) to low level regardless of the output states of the inverters INV1(a) to INV1(d). ( ⁇ PGND) requires a means (not explicitly shown in this figure for convenience of illustration).
  • the zero-cross detection circuit 15 monitors the switch voltage Vsw and generates a pulse of the zero-cross detection signal ZERO.
  • the zero-cross detection circuit 15 has a switch voltage Vsw input to the non-inverting input terminal (+) (more precisely, when the transistor N1 is turned off and the transistor N2 is turned on).
  • a comparator that compares the obtained switch voltage Vsw (low level) with a threshold voltage (eg, ground voltage PGND) input to the inverting input terminal (-) to generate the zero-cross detection signal ZERO can be used.
  • the zero-cross detection signal ZERO becomes low level when the low level of the switch voltage Vsw is lower than the ground voltage PGND, and becomes high level when the low level of the switch voltage Vsw is higher than the ground voltage PGND.
  • the zero-cross detection signal ZERO becomes low level when the output current Iout flows from the power system ground terminal PGND toward the switch voltage Vsw application terminal (SW pin). ) toward the power system ground terminal PGND, the output current Iout is at a high level.
  • the controller 14 detects that the zero-cross detection signal ZERO has risen to a high level while the transistor N2 is on, and forcibly turns off the transistor N2. As a result, both the transistors N1 and N2 are turned off, that is, the switching drive of the switch output stage 11 is temporarily stopped, so that the power consumption of the switching power supply 1 can be reduced.
  • the controller 14 detects that the output voltage Vout (or the feedback voltage corresponding thereto) has decreased to a predetermined bottom value while the switching drive of the switch output stage 11 is temporarily stopped, the transistor N2 is released, and only one pulse of the pulse control signal PWM is generated.
  • the transistors N1 and N2 are complementarily turned on/off only once, so that the output voltage Vout is pulled up and maintained at the target value.
  • the switching drive of the switch output stage 11 is suspended again.
  • the switching drive temporary stop control by zero cross detection (reverse current detection) of the output current Iout and the switching drive return control by bottom detection of the output voltage Vout are repeated.
  • Such a state corresponds to a state in which the light load mode is returned to the heavy load mode (normal mode).
  • FIG. 3 is a diagram showing a second embodiment of the power control device 10. As shown in FIG.
  • the power supply control device 10 of the present embodiment is based on the above-described first embodiment (FIG. 2), and includes an upper overcurrent detection circuit 16H, a lower overcurrent detection circuit 16L, an upper mask circuit 17H, and a lower overcurrent detection circuit 16H. A side mask circuit 17L is added.
  • the upper mask circuit 17H is provided between the upper overcurrent detection circuit 16H and the controller 14.
  • the lower mask circuit 17L is provided between the lower overcurrent detection circuit 16L and the controller 14.
  • the lower mask circuit 17L determines whether or not to mask the lower overcurrent detection signal S16L according to the state signal STATE output from the controller .
  • the state signal STATE output from the controller 14 is also input to the bootstrap circuit 13 and the lower gate driver 122 in addition to the upper mask circuit 17H and the lower mask circuit 17L.
  • Each of the circuit blocks receiving the input of the state signal STATE performs a dark current reduction operation in the light load mode according to the state signal STATE (details will be described later).
  • FIG. 4 is a diagram showing an example of switching drive by the power supply control device 10 of the second embodiment. LG(a) and LG(b) to LG(d), switch voltage Vsw, zero-cross detection signal ZERO, and state signal STATE (LLM or HLM) are depicted.
  • the controller 14 activates the upper gate driver 121 and the lower gate driver 122 to complementarily turn on/off the transistors N1 and N2 at a predetermined switching period Tsw. They are controlled respectively (see after time t16).
  • the upper gate driver 121 and the lower gate driver 122 are controlled so as to repeat switching drive recovery control (see times t11, t13, and t15) by detecting the bottom of Vout.
  • the pulse interval TLLM of the pulse control signal PWM (not shown in this figure) in the light load mode becomes longer than the switching period Tsw in the heavy load mode. Therefore, since the switching loss in the switch output stage 11 can be reduced, the power consumption of the switching power supply 1 can be reduced.
  • the controller 14 does not generate a pulse of the zero-crossing detection signal ZERO, and the predetermined switching period Tsw. has passed, the switching power supply 1 is switched from the light load mode to the heavy load mode. That is, by the second continuous pulse drive, the switching power supply 1 returns from the light load mode to the heavy load mode.
  • the bootstrap circuit 13 switches the capacitance value of the capacitor circuit CAP from the combined capacitance value Ccap1 to a smaller combined capacitance value Ccap2 when the transistor N1 is turned on.
  • the capacitance value of the capacitor circuit CAP is switched from the combined capacitance value Ccap2 to the combined capacitance value Ccap1.
  • the controller 14 controls the lower gate drive signals LG(a) to LG(a) to Both LG(d) are synchronously pulse-driven (see times t16 to t18).
  • the controller 14 pulse-drives only the lower gate drive signal LG(a) when turning on/off the transistors N2(a) to N2(d).
  • Gate drive signals LG(b) to LG(d) are all fixed at low level (see times t11 to t16).
  • the transistor N2 is divided into a plurality of parts, and only a part of the transistor N2 is turned on/off in the light load mode.
  • the lower current IL which in turn makes it possible to reduce the dark current in the light load mode.
  • Timing control for switching the number of divisions driving the transistor N2 is easier than that for switching the number of divisions driving the transistor N1.
  • the upper mask circuit 17H and the lower mask circuit 17L are controlled so as to mask both the lower overcurrent detection signal S16L.
  • the transistors N1 and N2 Each on-resistance RonH and RonL changes.
  • the upper overcurrent detection threshold value VocpH and the lower overcurrent detection threshold value VocpL are appropriately set according to the operation mode (heavy load mode or light load mode) of the switching power supply 1. It is also conceivable to switch to a value. However, such threshold switching control is not necessarily easy.
  • both the upper overcurrent detection signal S16H and the lower overcurrent detection signal S16L in the light load mode are masked, and the overcurrent detection operation is performed only in the heavy load mode. Therefore, it is sufficient to set the upper overcurrent detection threshold VocpH and the lower overcurrent detection threshold VocpL to fixed values assuming the on-resistances RonH and RonL of the transistors N1 and N2 in the heavy load mode, respectively. As a result, it becomes possible to perform the overcurrent detection operation in the heavy load mode with high accuracy.
  • the power supply control device disclosed in this specification is a power supply control device configured to control a switching power supply that generates an output voltage from an input voltage, the application terminal of the input voltage and the switch voltage and an upper gate driver configured to turn on and off an N-channel upper transistor connected between the application end of the and generating a bootstrap voltage higher than the switch voltage by the charging voltage of the boot capacitor.
  • a bootstrap circuit configured to supply the upper gate driver; and a controller configured to switch the switching power supply between a heavy load mode and a light load mode
  • the bootstrap circuit comprising: A capacitance value of the boot capacitor can be switched according to on/off of the upper transistor, and the controller performs capacitance value switching control of the boot capacitor in the heavy load mode, and controls the boot capacitor in the light load mode.
  • the configuration (first configuration) controls the bootstrap circuit so as to stop the capacitance value switching control.
  • the power supply control device has a lower gate driver configured to turn on/off a plurality of lower transistors connected in parallel between the switch voltage application terminal and the reference potential terminal. and wherein the controller controls the lower gate driver so that the number of driving the plurality of lower transistors is reduced in the light load mode as compared to the heavy load mode (second configuration). good.
  • the power supply control device includes: a lower overcurrent detection circuit configured to monitor a lower current flowing through the lower transistor and generate a lower overcurrent detection signal; a lower mask circuit configured to mask a side overcurrent detection signal, wherein the controller does not mask the lower overcurrent detection signal in the heavy load mode and the overcurrent detection signal in the light load mode;
  • a configuration (third configuration) may be employed in which the lower mask circuit is controlled so as to mask the lower overcurrent detection signal.
  • the power supply control device includes: an upper overcurrent detection circuit configured to monitor an upper current flowing through the upper transistor and generate an upper overcurrent detection signal; an upper mask circuit configured to mask a current detection signal, the controller not masking the upper overcurrent detection signal in the heavy load mode and the upper overcurrent detection in the light load mode.
  • a configuration (fourth configuration) may be employed in which the upper mask circuit is controlled so as to mask the signal.
  • the bootstrap circuit sets the capacitance value of the boot capacitor to the first capacitance value when the upper transistor is turned on. to a second capacitance value smaller than this, and the capacitance value of the boot capacitor is switched from the second capacitance value to the first capacitance value when the upper transistor is turned off (fifth configuration). good.
  • the bootstrap circuit fixes the capacitance value of the boot capacitor to the first capacitance value without depending on whether the upper transistor is turned on or off. It is good also as a structure (sixth structure) which carries out.
  • the controller turns on the upper transistor at a predetermined switching cycle in the heavy load mode, and controls the output voltage or the output voltage in the light load mode.
  • a configuration (seventh configuration) may be employed in which the upper gate driver is controlled so as to detect a corresponding drop in the feedback voltage and turn on the upper transistor.
  • the power supply control device further includes a zero-cross detection circuit configured to monitor the switch voltage and generate a pulse of a zero-cross detection signal, wherein the controller comprises the A configuration (eighth configuration) may be employed in which the switching power supply is switched from the heavy load mode to the light load mode in response to a zero cross detection signal.
  • the controller turns off the switching power supply when a predetermined switching period elapses without generating the pulse of the zero-cross detection signal after turning off the upper transistor.
  • a configuration may be employed in which the light load mode is switched to the heavy load mode.
  • the switching power supply disclosed in this specification has a configuration (tenth configuration) including a power supply control device having any one of the first to ninth configurations.

Abstract

電源制御装置10は、入力電圧Vinの印加端とスイッチ電圧Vswの印加端との間に接続されるNチャネル型の上側トランジスタN1をオン/オフする上側ゲートドライバ121と、スイッチ電圧Vswよりもブートキャパシタの充電電圧だけ高いブートストラップ電圧Vbstを生成して上側ゲートドライバ121に供給するブートストラップ回路13と、スイッチング電源を重負荷モード及び軽負荷モードのいずれかに切り替えるコントローラ14を備える。ブートストラップ回路13は、上側トランジスタN1のオン/オフに応じてブートキャパシタの容量値を切替可能である。コントローラ14は、重負荷モードではブートキャパシタの容量値切替制御を行い、軽負荷モードではブートキャパシタの容量値切替制御を停止するように、ブートストラップ回路13を制御する。

Description

電源制御装置、スイッチング電源
 本明細書中に開示されている発明は、電源制御装置及びスイッチング電源に関する。
 近年、様々なアプリケーションの電源手段として、スイッチング電源が広く一般に用いられている。
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。
特開2018-57100号公報
 しかしながら、スイッチング電源を制御する従来の電源制御装置では、軽負荷モードにおける暗電流の削減について改善の余地があった。
 本明細書中に開示されている発明は、本願の発明者によって見出された上記の課題に鑑み、軽負荷モード時の暗電流を削減することのできる電源制御装置、及び、スイッチング電源を提供することを目的とする。
 例えば、本明細書中に開示されている電源制御装置は、入力電圧から出力電圧を生成するスイッチング電源を制御するように構成された電源制御装置であって、前記入力電圧の印加端とスイッチ電圧の印加端との間に接続されるNチャネル型の上側トランジスタをオン/オフするように構成された上側ゲートドライバと、前記スイッチ電圧よりもブートキャパシタの充電電圧だけ高いブートストラップ電圧を生成して前記上側ゲートドライバに供給するように構成されたブートストラップ回路と、前記スイッチング電源を重負荷モード及び軽負荷モードのいずれかに切り替えるように構成されたコントローラと、を備え、前記ブートストラップ回路は、前記上側トランジスタのオン/オフに応じて前記ブートキャパシタの容量値を切替可能であり、前記コントローラは、前記重負荷モードでは前記ブートキャパシタの容量値切替制御を行い、前記軽負荷モードでは前記ブートキャパシタの容量値切替制御を停止するように、前記ブートストラップ回路を制御する。
 なお、その他の特徴、要素、ステップ、利点、及び、特性については、以下に続く発明を実施するための形態及びこれに関する添付の図面によって、さらに明らかとなる。
 本明細書中に開示されている発明によれば、軽負荷モード時の暗電流を削減することのできる電源制御装置、及び、スイッチング電源を提供することが可能となる。
図1は、スイッチング電源の全体構成を示す図である。 図2は、電源制御装置の第1実施形態を示す図である。 図3は、電源制御装置の第2実施形態を示す図である。 図4は、第2実施形態におけるスイッチング駆動の一例を示す図である。
<スイッチング電源>
 図1は、スイッチング電源の全体構成を示す図である。本構成例のスイッチング電源1は、入力電圧Vinを降圧して出力電圧Voutを生成する非絶縁型の降圧DC/DCコンバータ(いわゆるBUCKコンバータ)であり、電源制御装置10とこれに外付けされる種々のディスクリート部品(本図ではインダクタL1及びキャパシタC1)を備える。
 電源制御装置10は、スイッチング電源1の制御主体となる半導体装置である。なお、電源制御装置10は、装置外部との電気的な接続を確立するための手段として、複数の外部端子(本図では外部端子T1~T4)を備える。
 外部端子T1(PVINピン)は、入力電圧Vinの印加端に接続されている。外部端子T2(SWピン)は、インダクタL1の第1端に接続されている。外部端子T3(FBピン)は、インダクタL1の第2端及びキャパシタC1の第1端と共に、出力電圧Voutの印加端に接続されている。なお、出力電圧Voutの印加端と外部端子T3との間には、出力電圧Voutに応じた帰還電圧Vfbを生成する分圧回路を設けてもよい。外部端子T4(PGNDピン)及びキャパシタC1の第2端は、いずれもパワー系接地端(=接地電圧PGNDの印加端)に接続されている。
 電源制御装置10は、外部端子T3に帰還入力される出力電圧Vout(または帰還電圧Vfb)が所望の目標値と一致するように内蔵のスイッチ出力段(不図示)をスイッチング駆動する。その結果、外部端子T2には、矩形波状のスイッチ電圧Vswが生成される。なお、インダクタL1及びキャパシタC1は、スイッチ電圧Vswを整流及び平滑して出力電圧Voutを生成するための整流平滑回路として機能する。
<電源制御装置(第1実施形態)>
 図2は、電源制御装置10の第1実施形態を示す図である。本実施形態の電源制御装置10は、スイッチ出力段11と、駆動回路12と、ブートストラップ回路13と、コントローラ14と、ゼロクロス検出回路15と、を集積化して成る。
 なお、電源制御装置10には、上記以外の機能ブロックを設けてもよい。例えば、電源制御装置10には、内部基準電圧生成回路、通信I/O[input/output]回路、クロック生成回路、自己診断回路、及び、各種の異常保護回路(UVLO[under voltage locked out]、OCP[over current protection]、OVD[over voltage detection]、UVD[under voltage detection]、SCP[short circuit protection]、及び、TSD[thermal shut down])などを集積化してもよい。
 スイッチ出力段11は、トランジスタN1(例えばNチャネル型MOSFET[metal oxide semiconductor field effect transistor])と、トランジスタN2(a)~N2(d)(例えばいずれもNチャネル型MOSFET)と、を含む。
 トランジスタN1のドレインは、入力電圧Vinの印加端(PVINピン)に接続されている。トランジスタN1のソースは、スイッチ電圧Vswの印加端(SWピン)に接続されている。トランジスタN1のゲートは、上側ゲート駆動信号HGの印加端に接続されている。トランジスタN1は、上側ゲート駆動信号HGがハイレベル(≒Vbst)であるときにオン状態となり、上側ゲート駆動信号HGがローレベル(≒Vsw)であるときにオフ状態となる。トランジスタN1は、スイッチ出力段11の上側トランジスタ(=出力トランジスタ)として機能する。
 トランジスタN2(a)~N2(d)それぞれのドレインは、いずれもスイッチ電圧Vswの印加端(SWピン)に接続されている。トランジスタN2(a)~N2(d)それぞれのソースは、いずれもパワー系接地端(PGNDピン)に接続されている。トランジスタN2(a)~N2(d)それぞれのゲートは、下側ゲート駆動信号LG(a)~LG(d)の印加端にそれぞれ接続されている。トランジスタN2(a)は、下側ゲート駆動信号LG(a)がハイレベル(≒Vin)であるときにオン状態となり、下側ゲート駆動信号LG(a)がローレベル(≒PGND)であるときにオフ状態となる。
 トランジスタN2(b)~N2(d)についても上記と同様であり、それぞれ、下側ゲート駆動信号LG(b)~LG(d)がハイレベル(≒Vin)であるときにオン状態となり、下側ゲート駆動信号LG(b)~LG(d)がローレベル(≒PGND)であるときにオフ状態となる。
 このように、スイッチ電圧Vswの印加端(SWピン)とパワー系接地端(PGNDピン)との間に並列接続されるN個(ただしN≧2、本図ではN=4)のトランジスタN2(a)~N2(d)は、スイッチ出力段11の下側トランジスタ(=同期整流トランジスタ)として機能する。以下の説明では、トランジスタN2(a)~N2(d)及び下側ゲート駆動信号LG(a)~LG(d)をそれぞれ一まとめにしてトランジスタN2及び下側ゲート駆動信号LGと呼ぶ場合がある。
 なお、トランジスタN1及びN2は、上側ゲート駆動信号HG及び下側ゲート駆動信号LGに応じて相補的にオン/オフされる。その結果、入力電圧Vinと接地電圧PGNDとの間でパルス駆動される矩形波状のスイッチ電圧Vswが生成される。
 なお、上記の「相補的」という文言は、トランジスタN1及びトランジスタN2のオン/オフ状態が完全に逆転している場合だけでなく、貫通電流の発生を防止するためにトランジスタN1及びN2の同時オフ期間(いわゆるデッドタイム)が設けられている場合を包含するように広義に理解すべきである。
 また、スイッチング電源1の整流方式は、必ずしも同期整流方式に限定されるものではなく、ダイオード整流方式を採用してもよい。その場合には、トランジスタN2に代えて整流ダイオードを用いてもよい。
 駆動回路12は、コントローラ14から入力されるパルス制御信号PWMに応じてスイッチ出力段11を駆動する回路ブロックであり、上側ゲートドライバ121と下側ゲートドライバ122を含む。
 上側ゲートドライバ121は、パルス制御信号PWMの入力を受けて上側ゲート駆動信号HGを出力することにより、トランジスタN1のゲート容量(例えば100pF程度)を充放電する回路ブロックであって、遅延回路DLY0と、バッファX1と、インバータINV0と、トランジスタP1(例えばPチャネル型MOSFET)と、トランジスタN5(例えばNチャネル型MOSFET)と、を含む。
 遅延回路DLY0は、トランジスタN1及びN2の同時オフ期間を設けるように、パルス制御信号PWM(例えばローレベルからハイレベルへの立上りタイミング)に所定の遅延を与えて上側パルス制御信号HGCTLを生成する。
 バッファX1は、ブートストラップ電圧Vbstとスイッチ電圧Vswの供給を受けて動作し、遅延回路DLY0から入力される上側パルス制御信号HGCTLに応じて上側ゲート制御信号SX1を生成する。上側ゲート制御信号SX1は、上側パルス制御信号HGCTLがハイレベル(≒Vreg)であるときにハイレベル(≒Vbst)となり、上側パルス制御信号HGCTLがローレベル(≒AGND)であるときにローレベル(≒Vsw)となる。
 インバータINV0は、上側ゲート制御信号SX1の論理レベルを反転させて反転上側ゲート制御信号S11を生成する。従って、反転上側ゲート制御信号S11は、上側ゲート制御信号SX1がハイレベルであるときにローレベルとなり、上側ゲート制御信号SX1がローレベルであるときにハイレベルとなる。
 トランジスタP1のソース及びバックゲートは、いずれもブートストラップ電圧Vbstの印加端(=BOOTノード)に接続されている。トランジスタP1及びN5それぞれのドレインは、トランジスタN1のゲート(=上側ゲート駆動信号HGの印加端)に接続されている。トランジスタN5のソース及びバックゲートは、いずれもスイッチ電圧Vswの印加端(=SWピン)に接続されている。トランジスタP1及びN5それぞれのゲートは、インバータINV0の出力端(=反転上側ゲート制御信号S11の印加端)に接続されている。
 このようにして接続されたトランジスタP1及びN5は、反転上側ゲート制御信号S11の論理レベルを反転して上側ゲート駆動信号HGを生成するインバータを形成する。従って、上側ゲート駆動信号HGは、反転上側ゲート制御信号S11がハイレベル(=Vbst)であるときにローレベル(=Vsw)となり、反転上側ゲート制御信号S11がローレベル(=Vsw)であるときにハイレベル(=Vbst)となる。
 下側ゲートドライバ122は、パルス制御信号PWM(=下側パルス制御信号LGCTL)の入力を受けて下側ゲート駆動信号LG(a)~LG(d)を出力する回路ブロックであり、4つのバッファX2(a)~X2(d)と、4つのインバータINV1(a)~INV1(d)と、を含む。
 バッファX2(a)~X2(d)は、いずれも入力電圧Vinと接地電圧PGNDの供給を受けて動作し、コントローラ14から入力されるパルス制御信号PWM(=下側パルス制御信号LGCTL)に応じて下側ゲート制御信号SX2(a)~SX2(d)をそれぞれ生成する。下側ゲート制御信号SX2(a)~SX2(d)は、それぞれ、下側パルス制御信号LGCTLがハイレベル(≒Vreg)であるときにハイレベル(≒Vin)となり、下側パルス制御信号LGCTLがローレベル(≒AGND)であるときにローレベル(≒PGND)となる。
 インバータINV1(a)~INV1(d)は、それぞれ、下側ゲート制御信号SX2(a)~SX2(d)の論理レベルを反転することにより下側ゲート駆動信号LG(a)~LG(d)を生成する。なお、下側ゲート駆動信号LG(a)~LG(d)は、それぞれ、下側ゲート制御信号SX2(a)~SX2(d)がハイレベル(≒Vin)であるときにローレベル(≒PGND)となり、下側ゲート制御信号SX2(a)~SX2(d)がローレベル(≒PGND)であるときにハイレベル(≒Vin)となる。
 ブートストラップ回路13は、スイッチ電圧Vswよりも高いブートストラップ電圧Vbstを生成する回路ブロックであって、トランジスタP2(例えばPチャネル型MOSFET)と、キャパシタ回路CAP(=ブートキャパシタに相当)と、を含む。
 トランジスタP2のドレインは、入力電圧Vinの印加端(PVINピン)に接続されている。トランジスタP2のドレインは、内部電源電圧Vref(例えば5V)の印加端に接続してもよい。トランジスタP2のソース及びバックゲートは、いずれもブートストラップ電圧Vbstの印加端(=BOOTノード)に接続されている。トランジスタP2のゲートには、コントローラ14からブートストラップ制御信号S4が入力されている。
 なお、トランジスタP2は、基本的にトランジスタN2と同期してオン/オフされる。より具体的に述べると、トランジスタP2は、トランジスタN2のオン期間(=スイッチ電圧Vswのローレベル期間)にオン状態となり、トランジスタN2のオフ期間(=スイッチ電圧Vswのハイレベル期間)にオフ状態となる。
 また、トランジスタP2には、ボディダイオードBD3が付随する。具体的には、トランジスタP2のドレインがボディダイオードBD3のアノードに相当し、トランジスタP2のソースがボディダイオードBD3のカソードに相当する。なお、ブートストラップ回路13を形成する整流素子として、ボディダイオードBD3のみを用いる場合には、トランジスタP2のゲート・ソース間をショートしておけばよい。
 また、キャパシタ回路CAPは、ブートストラップ電圧Vbstの印加端(=BOOTノード)とスイッチ電圧Vswの印加端(=SWピン)との間に接続されており、その両端間(=BOOT-SW間)に充電電圧Vcapを蓄える。
 従って、先述のブートストラップ電圧Vbstは、スイッチ電圧Vswよりも常に充電電圧Vcapだけ高い電圧(≒Vsw+Vcap)となる。具体的に述べると、スイッチ電圧Vswのハイレベル期間(Vsw≒Vin、N1=ON、N2=OFF)には、Vbst≒Vin+Vcapとなる。一方、スイッチ電圧Vswのローレベル期間(Vsw≒PGND、N1=OFF、N2=ON)には、Vbst≒PGND+Vcapとなる。
 なお、ブートストラップ回路13の整流素子としてトランジスタP2をオン/オフする場合には、Vcap≒Vin-Vds(ただし、VdsはトランジスタP2のドレイン・ソース間電圧)となる。一方、トランジスタP2を常にオフ状態とし、ブートストラップ回路13の整流素子としてボディダイオードBD3のみを用いる場合には、Vcap≒Vin-Vf(ただし、VfはボディダイオードBD3の順方向降下電圧)となる。
 このようにして生成されるブートストラップ電圧Vbstは、駆動回路12(特に上側ゲートドライバ121)に供給されており、上側ゲート駆動信号HGのハイレベル(=トランジスタN1をオンするためのゲート電圧)として用いられる。すなわち、トランジスタN1のオン期間には、上側ゲート駆動信号HGのハイレベル(≒Vbst)がスイッチ電圧Vswのハイレベル(≒Vin)よりも高い電圧値(≒Vin+Vcap)まで引き上げられる。従って、トランジスタN1のゲート・ソース間電圧(=HG-SW)を高めてトランジスタN1を確実にオンすることが可能となる。
 ところで、キャパシタ回路CAPを電源制御装置10に内蔵すれば、外付けのディスクリート部品を削減することが可能となる。しかしながら、IC内蔵型のキャパシタ回路CAPは、その容量値を十分に確保することが難しい。
 そのため、仮に、キャパシタ回路CAPに何の工夫もせず、キャパシタ回路CAPとして単一のキャパシタ素子を内蔵した場合には、トランジスタN1のオン遷移に伴い、キャパシタ回路CAPに蓄えられた電荷がトランジスタN1に付随するゲート容量の充電で吸い取られてしまい、ブートストラップ電圧Vbstが低下してトランジスタN1のゲート駆動(特にフルオン)に支障を生じるおそれがある。
 そこで、本実施形態の電源制御装置10では、キャパシタ回路CAPが小容量であってもトランジスタN1のゲート駆動に支障を生じにくいように、キャパシタ回路CAPがいわゆるダブラーキャパシタ(=電圧ダブラー)として構成されている。
 本図に即して述べると、キャパシタ回路CAPは、上側ゲート制御信号SX1の入力を受け付けており、トランジスタN1のゲート容量の充放電に同期して容量値を可変制御することができるように、キャパシタC11及びC12と、トランジスタN6及びN7と、トランジスタP3と、バッファBUF1と、インバータINV2と、を含む。
 キャパシタC11の第1端とトランジスタP3のソースは、いずれもブートストラップ電圧Vbstの印加端(=BOOTノード)に接続されている。キャパシタC11の第2端は、トランジスタN6及びN7それぞれのドレインに接続されている。トランジスタN7及びP3それぞれのゲートは、いずれもダブラー制御信号DBLRの印加端に接続されている。トランジスタN6のゲートは、反転ダブラー制御信号XDBLR(=ダブラー制御信号DBLRの論理反転信号に相当)の印加端に接続されている。トランジスタN7のソースとトランジスタP3のドレインは、いずれもキャパシタC12の第1端に接続されている。トランジスタN6のソースとキャパシタC12の第2端は、いずれもスイッチ電圧Vswの印加端(=SWピン)に接続されている。
 バッファBUF1は、上側ゲート制御信号SX1の入力を受け付けてその論理レベルを変えることなくダブラー制御信号DBLRとして出力する。従って、ダブラー制御信号DBLRは、上側ゲート制御信号SX1がハイレベル(≒Vbst)であるときにハイレベル(≒Vbst)となり、上側ゲート制御信号SX1がローレベル(≒Vsw)であるときにローレベル(≒Vsw)となる。
 インバータINV2は、ダブラー制御信号DBLRの論理レベルを反転して反転ダブラー制御信号XDBLRを生成する。なお、反転ダブラー制御信号XDBLRは、ダブラー制御信号DBLRがハイレベル(≒Vbst)であるときにローレベル(≒Vsw)となり、ダブラー制御信号DBLRがローレベル(≒Vsw)であるときにハイレベル(≒Vbst)となる。
 トランジスタN6は、反転ダブラー制御信号XDBLRがハイレベル(≒Vbst)であるときにオン状態となり、反転ダブラー制御信号XDBLRがローレベル(≒Vsw)であるときにオフ状態となる。言い換えると、トランジスタN6は、ダブラー制御信号DBLRがハイレベル(≒Vbst)であるときにオフ状態となり、ダブラー制御信号DBLRがローレベル(≒Vsw)であるときにオン状態となる。
 トランジスタN7は、ダブラー制御信号DBLRがハイレベル(≒Vbst)であるときにオン状態となり、ダブラー制御信号DBLRがローレベル(≒Vsw)であるときにオフ状態となる。
 トランジスタP3は、ダブラー制御信号DBLRがハイレベル(≒Vbst)であるときにオフ状態となり、ダブラー制御信号DBLRがローレベル(≒Vsw)であるときにオン状態となる。
 すなわち、トランジスタN6、N7及びP3それぞれのオン/オフ切替タイミングは、ダブラー制御信号DBLRに応じて制御される。
 特に、本実施形態のキャパシタ回路CAPは、その動作状態として、トランジスタN6及びP3がオンしてトランジスタN7がオフした第1動作状態(=並列キャパシタ状態)と、これとは逆に、トランジスタN6及びP3がオフしてトランジスタN7がオンした第2動作状態(=直列キャパシタ状態)を取り得る。以下、それぞれの動作状態について、詳細に説明する。
 まず、トランジスタN6及びP3がオンしてトランジスタN7がオフした第1動作状態(=並列キャパシタ状態)を考える。この場合、キャパシタC11及びC12がブートストラップ電圧Vbstの印加端(=BOOTノード)とスイッチ電圧Vswの印加端(=SWピン)との間に並列接続された形となる。従って、キャパシタ回路CAPの合成容量値Ccap1は、Ccap1=C11+C12として求めることができる。具体例を挙げると、C11=C12=75pFである場合には、Ccap2=150pFとなる。このような第1動作状態では、キャパシタC11及びC12それぞれが並列に充電される。
 次に、上記した第1動作状態から、トランジスタN6及びP3がオフしてトランジスタN7がオンした第2動作状態に遷移した場合を考える。この場合、キャパシタC11及びC12は、ブートストラップ電圧Vbstの印加端(=BOOTノード)とスイッチ電圧Vswの印加端(=SWピン)との間に直列接続された形となる。従って、キャパシタ回路CAPの合成容量値Ccap2は、Ccap2=(C11・C12)/(C11+C12)に引き下げられる。具体例を挙げると、C11=C12=75pFである場合には、Ccap2=37.5pFとなる。
 このとき、キャパシタC11及びC12には、それぞれ、上記した第1動作状態で蓄えられた電荷が保持されている。従って、第2動作状態への遷移直前におけるキャパシタC11及びC12それぞれの両端間電圧をVCとすると、第1動作状態から第2動作状態への遷移直後には、ブートストラップ電圧Vbstが(VC+Vsw)から(2VC+Vsw)まで持ち上げられる。すなわち、両端間電圧VCの2倍昇圧が実現される。
 なお、キャパシタC11及びC12それぞれの容量値を増やすほど、ブートストラップ電圧Vbstをより高く持ち上げることができる反面、電源制御装置10のチップに占めるレイアウト面積が大きくなる。そのため、両者のトレードオフを考慮し、例えば、第2動作状態におけるキャパシタ回路CAPの合成容量値Ccap2(=(C11・C12)/(C11+C12))がトランジスタN1のゲート容量(例えば100pF)の1/2程度となるように、キャパシタC11及びC12それぞれの容量値を設定するとよい。
 もちろん、キャパシタ回路CAPの構成については、必ずしも上記に限定されるものではなく、両端間電圧VCのm倍昇圧(ただしm>1)を実現し得る構成であればよい。
 また、キャパシタ回路CAPを電源制御装置10に内蔵するのではなく、ディスクリートのキャパシタ素子を電源制御装置10に外付けすることも可能である。その場合には、ブートストラップ電圧Vbstの印加端(=BOOTノード)をBOOTピンとして電源制御装置10の外部に引き出せばよい。
 コントローラ14は、内部電源電圧Vreg(例えば5V)の供給を受けて動作し、入力電圧Vinから所望の出力電圧Voutが生成されるようにパルス制御信号PWMを生成する。なお、出力電圧Voutの出力帰還制御方式については、任意の周知技術(電圧モード制御、電流モード制御、ヒステリシス制御(リップル制御)など)を適用すればよいので、詳細な説明は省略する。
 また、コントローラ14は、スイッチング電源1を重負荷モード(HLM[heavy load mode])及び軽負荷モード(LLM[light load mode])のいずれか一方に切り替える機能を備えている。
 上記の軽負荷モードは、負荷に流れる出力電流Ioutがゼロ又は非常に小さい軽負荷状態において、スイッチ出力段11のスイッチング駆動を一時停止することにより、重負荷モード(通常モード)よりも消費電力を低減する省電力モードの一種である。例えば、コントローラ14は、ゼロクロス検出信号ZEROに応じて、スイッチング電源1を重負荷モード(通常モード)から軽負荷モードに切り替えるとよい。
 なお、スイッチ出力段11のスイッチング駆動を一時停止するためには、トランジスタN1及びN2をいずれもオフ状態として、スイッチ電圧Vswの印加端(SWピン)をハイインピーダンス状態としなければならない。そのため、電源制御装置10には、インバータINV1(a)~INV1(d)それぞれの出力状態に依らず、軽負荷モードでは下側ゲート駆動信号LG(a)~LG(d)をいずれもローレベル(≒PGND)に固定する手段(図示の便宜上、本図では明示せず)が必要となる。
 ゼロクロス検出回路15は、スイッチ電圧Vswを監視してゼロクロス検出信号ZEROのパルス生成を行う。本図に即して述べると、ゼロクロス検出回路15としては、非反転入力端(+)に入力されるスイッチ電圧Vsw(より正確にはトランジスタN1がオフしてトランジスタN2がオンしている状態で得られるスイッチ電圧Vswのローレベル)と、反転入力端(-)に入力される閾値電圧(例えば接地電圧PGND)とを比較して、ゼロクロス検出信号ZEROを生成するコンパレータを用いることができる。
 この場合、ゼロクロス検出信号ZEROは、スイッチ電圧Vswのローレベルが接地電圧PGNDよりも低いときにローレベルとなり、スイッチ電圧Vswのローレベルが接地電圧PGNDよりも高いときにハイレベルとなる。言い換えると、ゼロクロス検出信号ZEROは、パワー系接地端PGNDからスイッチ電圧Vswの印加端(SWピン)に向けて出力電流Ioutが流れているときにローレベルとなり、スイッチ電圧Vswの印加端(SWピン)からパワー系接地端PGNDに向けて出力電流Ioutが逆流しているときにハイレベルとなる。
<軽負荷モード>
 次に、軽負荷モードでのスイッチング制御について簡単に説明する。負荷に流れる出力電流Ioutが小さいと、トランジスタN1のオン期間中にインダクタL1で蓄えられるエネルギーが減少する。そして、インダクタL1で蓄えられたエネルギーがトランジスタN2のオン期間中(=トランジスタN1の次周期におけるオンタイミングが到来する前)に枯渇すると、スイッチ電圧Vswの印加端(SWピン)からパワー系接地端PGNDに向けて出力電流Ioutが逆流し始めるので、スイッチング電源1の効率悪化に繋がる。
 そこで、コントローラ14は、例えば、トランジスタN2のオン期間中にゼロクロス検出信号ZEROがハイレベルに立ち上がったことを検出して、トランジスタN2を強制的にオフする。その結果、トランジスタN1及びN2がいずれもオフした状態、すなわち、スイッチ出力段11のスイッチング駆動が一時停止した状態となるので、スイッチング電源1の消費電力を削減することが可能となる。
 一方、コントローラ14は、例えば、スイッチ出力段11のスイッチング駆動を一時停止している間に出力電圧Vout(またはこれに応じた帰還電圧)が所定のボトム値まで低下したことを検出すると、トランジスタN2の強制オフ状態を解除して、パルス制御信号PWMを1パルスだけ生成する。その結果、トランジスタN1及びN2が一度だけ相補的にオン/オフされるので、出力電圧Voutが引き上げられて目標値に維持される。
 その後、ゼロクロス検出信号ZEROがハイレベルに立ち上がると、スイッチ出力段11のスイッチング駆動が再び一時停止される。このように、軽負荷モードでは、出力電流Ioutのゼロクロス検出(逆流検出)によるスイッチング駆動の一時停止制御と、出力電圧Voutのボトム検出によるスイッチング駆動の復帰制御が繰り返される。
 なお、負荷に流れる出力電流Ioutが大きいほど、スイッチング駆動の一時停止中における出力電圧Voutの低下が速くなる。従って、出力電流Ioutが大きくなるにつれてパルス制御信号PWMのパルス生成間隔が短くなり、最終的には、パルス制御信号PWMに所定のスイッチング周期Tswで連続パルスが生成される状態となる。このような状態は、軽負荷モードから重負荷モード(通常モード)に復帰した状態に相当する。
<暗電流性能に関する考察>
 ところで、電源制御装置10が大電流タイプの機種である場合には、トランジスタN1及びN2のサイズが大きいので、トランジスタN1及びN2それぞれに付随しているゲート容量も比較的大きくなる。そのため、軽負荷モードにおいて、パルス制御信号PWMを1パルス生成する度に必要となるゲート容量の充放電電流も大きくなる。従って、軽負荷モードにおける性能指標の一つである暗電流性能に影響を与え得る。
 なお、トランジスタN1を複数に分割しておき、軽負荷モードではトランジスタN1の一部しかオン/オフしないことにより、上記の充放電電流を削減する方法も考えられる。しかしながら、この方法では、トランジスタN1の分割駆動数を切り替えるためのタイミング制御が難しいので、必ずしも最善の方法とは言えない。また、トランジスタN1のドレイン・ソース間電圧VdsH(=オン抵抗RonH×出力電流Iout)を監視して過電流検出を行う場合には、トランジスタN1の分割駆動数切替制御(延いてはオン抵抗RonHの変動)が過電流検出閾値に及ぼす影響も考慮する必要がある。
 以下では、上記の考察に鑑み、軽負荷モード時の暗電流を削減することのできる電源制御装置10の第2実施形態を提案する。
<電源制御装置(第2実施形態)>
 図3は、電源制御装置10の第2実施形態を示す図である。本実施形態の電源制御装置10は、先出の第1実施形態(図2)を基本としつつ、上側過電流検出回路16Hと、下側過電流検出回路16Lと、上側マスク回路17Hと、下側マスク回路17Lと、が追加されている。
 上側過電流検出回路16Hは、トランジスタN1のオン期間に流れる上側電流IHを監視して上側過電流検出信号S16Hを生成する。例えば、上側過電流検出回路16Hは、トランジスタN1のドレイン・ソース間電圧VdsH(=オン抵抗RonH×上側電流IH)が所定の上側過電流検出閾値VocpHよりも高いか否かを判定して、上側過電流検出信号S16Hの論理レベルを切り替える。例えば、上側過電流検出信号S16Hは、VdsH>VocpHであるときにハイレベル(=過電流検出時の論理レベル)となり、VdsH<VocpHであるときにローレベル(=過電流非検出時の論理レベル)となる。
 下側過電流検出回路16Lは、トランジスタN2のオン期間に流れる下側電流ILを監視して下側過電流検出信号S16Lを生成する。例えば、下側過電流検出回路16Lは、トランジスタN2のドレイン・ソース間電圧VdsL(=オン抵抗RonL×下側電流IL)が所定の下側過電流検出閾値VocpLよりも高いか否かを判定して、下側過電流検出信号S16Lの論理レベルを切り替える。例えば、下側過電流検出信号S16Lは、VdsL>VocpLであるときにハイレベル(=過電流検出時の論理レベル)となり、VdsL<VocpLであるときにローレベル(=過電流非検出時の論理レベル)となる。
 なお、コントローラ14は、例えば、上側過電流検出信号S16Hまたは下側過電流検出信号S16Lの少なくとも一方がハイレベル(=過電流検出時の論理レベル)であるときに、スイッチ出力段11のスイッチング駆動を強制的に停止するとよい。
 上側マスク回路17Hは、上側過電流検出回路16Hとコントローラ14との間に設けられている。上側マスク回路17Hは、コントローラ14から出力されるステート信号STATE(=軽負荷モードであるか重負荷モードであるかを示す信号)に応じて、上側過電流検出信号S16Hをマスクするか否かを決定する。上側マスク回路17Hでのマスク処理としては、例えば、上側過電流検出信号S16Hをローレベル(=過電流非検出時の論理レベル)に固定すればよい。
 下側マスク回路17Lは、下側過電流検出回路16Lとコントローラ14との間に設けられている。下側マスク回路17Lは、コントローラ14から出力されるステート信号STATEに応じて、下側過電流検出信号S16Lをマスクするか否かを決定する。下側マスク回路17Lでのマスク処理としては、例えば、下側過電流検出信号S16Lをローレベル(=過電流非検出時の論理レベル)に固定すればよい。
 なお、コントローラ14から出力されるステート信号STATEは、上側マスク回路17H及び下側マスク回路17Lのほかに、ブートストラップ回路13及び下側ゲートドライバ122にも入力されている。ステート信号STATEの入力を受け付けている回路ブロックでは、それぞれ、ステート信号STATEに応じて軽負荷モード時の暗電流削減動作が行われる(詳細は後述)。
 図4は、第2実施形態の電源制御装置10によるスイッチング駆動の一例を示す図であり、紙面の上から順に、トランジスタN1のゲート・ソース間電圧(=HG-SW)、下側ゲート駆動信号LG(a)並びにLG(b)~LG(d)、スイッチ電圧Vsw、ゼロクロス検出信号ZERO、及び、ステート信号STATE(LLMまたはHLM)が描写されている。
 スイッチング電源1の重負荷モード(STATE=HLM)において、コントローラ14は、所定のスイッチング周期TswでトランジスタN1及びN2を相補的にオン/オフするように、上側ゲートドライバ121及び下側ゲートドライバ122をそれぞれ制御する(時刻t16以降を参照)。
 一方、スイッチング電源1の軽負荷モード(STATE=LLM)において、コントローラ14は、出力電流Ioutのゼロクロス検出(ZERO=H)によるスイッチング駆動の一時停止制御(時刻t12及びt14を参照)と、出力電圧Voutのボトム検出によるスイッチング駆動の復帰制御(時刻t11、t13及びt15を参照)を繰り返すように、上側ゲートドライバ121及び下側ゲートドライバ122をそれぞれ制御する。
 その結果、軽負荷モードにおけるパルス制御信号PWM(本図では不図示)のパルス間隔TLLMは、重負荷モードにおけるスイッチング周期Tswよりも長くなる。従って、スイッチ出力段11でのスイッチング損失を減らすことができるので、スイッチング電源1の消費電力を削減することが可能となる。
 なお、時刻t15~t16で示すように、コントローラ14は、軽負荷モードでトランジスタN1及びN2を相補的にオン/オフした後、ゼロクロス検出信号ZEROのパルス生成が行われることなく所定のスイッチング周期Tswが経過したときに、スイッチング電源1を軽負荷モードから重負荷モードに切り替える。すなわち、2発目の連続パルス駆動により、スイッチング電源1は、軽負荷モードから重負荷モードに復帰する。
 次に、ステート信号STATEの入力を受け付けている回路ブロック(ブートストラップ回路13、下側ゲートドライバ122、上側マスク回路17H及び下側マスク回路17L)での暗電流削減動作について個別具体的に説明する。
 まず、ブートストラップ回路13での暗電流削減動作について述べる。コントローラ14は、重負荷モード(STATE=HLM)ではキャパシタ回路CAPの容量値切替制御(=ダブラー制御)を行い、軽負荷モード(STATE=LLM)ではキャパシタ回路CAPの容量値切替制御を停止するように、ブートストラップ回路13を制御する。
 より具体的に述べると、ブートストラップ回路13は、重負荷モード(STATE=HLM)では、トランジスタN1がオンされるときにキャパシタ回路CAPを第1動作状態(=並列キャパシタ状態)から第2動作状態(=直列キャパシタ状態)に切り替え、トランジスタN1がオフされるときにキャパシタ回路CAPを第2動作状態(=直列キャパシタ状態)から第1動作状態(=並列キャパシタ状態)に切り替える。
 すなわち、ブートストラップ回路13は、重負荷モード(STATE=HLM)では、トランジスタN1がオンされるときにキャパシタ回路CAPの容量値を合成容量値Ccap1からこれよりも小さい合成容量値Ccap2に切り替え、トランジスタN1がオフされるときにキャパシタ回路CAPの容量値を合成容量値Ccap2から合成容量値Ccap1に切り替える。
 このようなキャパシタ回路CAPの容量値切替制御(=ダブラー制御)により、重負荷モード(STATE=HLM)では、ブートストラップ電圧Vbstが最大限まで引き上げられる。その結果、トランジスタN1のゲート・ソース間電圧(=HG-SW)がフルドライブされる(時刻t16、t17及びt18を参照)。従って、トランジスタN1のオン抵抗が最低値まで引き下げられるので、より大きい上側電流IHを流すことのできる状態となる。
 一方、コントローラ14は、軽負荷モード(STATE=LLM)では、トランジスタN1のオン/オフに依ることなくキャパシタ回路CAPを第1動作状態(=並列キャパシタ状態)に固定する。すなわち、軽負荷モード(STATE=LLM)では、キャパシタ回路CAPの容量値が合成容量値Ccap1に固定される。
 このように、キャパシタ回路CAPの容量値切替制御(=ダブラー制御)を停止することにより、軽負荷モード(STATE=LLM)では、ブートストラップ電圧Vbstが最大限まで引き上げられなくなる。その結果、重負荷モード(STATE=HLM)と比べて、トランジスタN1のゲート・ソース間電圧(=HG-SW)が低下する(時刻t11、t13及びt15を参照)。従って、トランジスタN1のオン抵抗RonHが先述の最低値よりも高くなるので、上側電流IHを小さく絞ることが可能となり、延いては、軽負荷モード時の暗電流を削減することが可能となる。
 次に、下側ゲートドライバ122での暗電流削減動作について説明する。コントローラ14は、重負荷モード(STATE=HLM)ではN個(例えばN=4)のトランジスタN2(a)~N2(d)のうちi個(例えばi=4)をオン/オフし、軽負荷モード(STATE=LLM)ではj個(例えばj=1)のトランジスタN2(a)のみをオン/オフするように、下側ゲートドライバ122を制御する。
 本図に即して述べると、コントローラ14は、重負荷モード(STATE=HLM)では、トランジスタN2(a)~N2(d)それぞれのオン/オフに際して、下側ゲート駆動信号LG(a)~LG(d)をいずれも同期してパルス駆動する(時刻t16~t18を参照)。一方、コントローラ14は、軽負荷モード(STATE=LLM)では、トランジスタN2(a)~N2(d)それぞれのオン/オフに際して、下側ゲート駆動信号LG(a)のみをパルス駆動し、下側ゲート駆動信号LG(b)~LG(d)をいずれもローレベルに固定する(時刻t11~t16を参照)。
 このようにトランジスタN2を複数に分割しておき、軽負荷モードではトランジスタN2の一部しかオン/オフしないこと、より上位概念化すれば、軽負荷モードでは重負荷モードよりもトランジスタN2の並列駆動数を減らすことにより、下側電流ILを小さく絞ることが可能となり、延いては、軽負荷モード時の暗電流を削減することが可能となる。なお、トランジスタN2の分割駆動数切替制御は、トランジスタN1の分割駆動数切替制御と比べて、タイミング制御が容易である。
 最後に、上側マスク回路17H及び下側マスク回路17Lでのマスク動作(=上側過電流検出回路16H及び下側過電流検出回路16Lの誤検出防止動作)について述べる。コントローラ14は、重負荷モード(STATE=HLM)では上側過電流検出信号S16H及び下側過電流検出信号S16Lをいずれもマスクせず、軽負荷モード(STATE=LLM)では上側過電流検出信号S16H及び下側過電流検出信号S16Lをいずれもマスクするように、上側マスク回路17H及び下側マスク回路17Lをそれぞれ制御する。
 ブートストラップ回路13及び下側ゲートドライバ122において、先に説明した暗電流削減動作を実施する場合には、スイッチング電源1の動作モード(重負荷モード又は軽負荷モード)に応じて、トランジスタN1及びN2それぞれのオン抵抗RonH及びRonLが変化する。
 そのため、上側過電流検出回路16HがトランジスタN1のドレイン・ソース間電圧VdsH(=オン抵抗RonH×上側電流IH)を監視して過電流検出を行う構成である場合には、スイッチング電源1の動作モード(重負荷モード又は軽負荷モード)に応じて、トランジスタN1のドレイン・ソース間電圧VdsHと上側過電流検出閾値VocpHとの関係が変化するので、上側電流IHの過電流検出動作に支障を来すおそれがある。
 同様に、下側過電流検出回路16LがトランジスタN2のドレイン・ソース間電圧VdsL(=オン抵抗RonL×下側電流IL)を監視して過電流検出を行う構成である場合には、スイッチング電源の動作モード(重負荷モード又は軽負荷モード)に応じて、トランジスタN2のドレイン・ソース間電圧VdsLと下側過電流検出閾値VocpLトン関係が変化するので、下側電流ILの過電流検出動作に支障を来すおそれがある。
 なお、上記の不具合を解消する手法としては、例えば、スイッチング電源1の動作モード(重負荷モード又は軽負荷モード)に応じて上側過電流検出閾値VocpH及び下側過電流検出閾値VocpLをそれぞれ適切な値に切り替えることも考えられる。ただし、このような閾値切替制御は必ずしも容易でない。
 一方、本実施形態の電源制御装置10では、軽負荷モード時の上側過電流検出信号S16H及び下側過電流検出信号S16Lがいずれもマスクされ、重負荷モードでのみ過電流検出動作が行われる。従って、上側過電流検出閾値VocpH及び下側過電流検出閾値VocpLは、重負荷モードにおけるトランジスタN1及びN2それぞれのオン抵抗RonH及びRonLを想定した固定値に設定すれば足りる。その結果、重負荷モードでの過電流検出動作を高精度に実施することが可能となる。
 なお、軽負荷モードでは、そもそも負荷に流れる出力電流Ioutが小さいので、過電流検出動作を行わなくても特段の支障は生じない。
<総括>
 以下では、上記で説明した種々の実施形態について総括的に述べる。
 例えば、本明細書中に開示されている電源制御装置は、入力電圧から出力電圧を生成するスイッチング電源を制御するように構成された電源制御装置であって、前記入力電圧の印加端とスイッチ電圧の印加端との間に接続されるNチャネル型の上側トランジスタをオン/オフするように構成された上側ゲートドライバと、前記スイッチ電圧よりもブートキャパシタの充電電圧だけ高いブートストラップ電圧を生成して前記上側ゲートドライバに供給するように構成されたブートストラップ回路と、前記スイッチング電源を重負荷モード及び軽負荷モードのいずれかに切り替えるように構成されたコントローラと、を備え、前記ブートストラップ回路は、前記上側トランジスタのオン/オフに応じて前記ブートキャパシタの容量値を切替可能であり、前記コントローラは、前記重負荷モードでは前記ブートキャパシタの容量値切替制御を行い、前記軽負荷モードでは前記ブートキャパシタの容量値切替制御を停止するように、前記ブートストラップ回路を制御する構成(第1の構成)とされている。
 なお、上記第1の構成による電源制御装置は、前記スイッチ電圧の印加端と基準電位端との間に並列接続される複数の下側トランジスタをオン/オフするように構成された下側ゲートドライバを更に備え、前記コントローラは、前記軽負荷モードでは前記重負荷モードよりも前記複数の下側トランジスタの駆動数を減らすように、前記下側ゲートドライバを制御する構成(第2の構成)としてもよい。
 また、上記第2の構成による電源制御装置は、前記下側トランジスタに流れる下側電流を監視して下側過電流検出信号を生成するように構成された下側過電流検出回路と、前記下側過電流検出信号をマスクするように構成された下側マスク回路と、を更に備え、前記コントローラは、前記重負荷モードでは前記下側過電流検出信号をマスクせず、前記軽負荷モードでは前記下側過電流検出信号をマスクするように、前記下側マスク回路を制御する構成(第3の構成)としてもよい。
 また、上記第2又は第3の構成による電源制御装置は、前記上側トランジスタに流れる上側電流を監視して上側過電流検出信号を生成するように構成された上側過電流検出回路と、前記上側過電流検出信号をマスクするように構成された上側マスク回路と、を更に備え、前記コントローラは、前記重負荷モードでは前記上側過電流検出信号をマスクせず、前記軽負荷モードでは前記上側過電流検出信号をマスクするように、前記上側マスク回路を制御する構成(第4の構成)としてもよい。
 また、上記第1~第4いずれかの構成による電源制御装置において、前記ブートストラップ回路は、前記重負荷モードでは、前記上側トランジスタがオンされるときに前記ブートキャパシタの容量値を第1容量値からこれよりも小さい第2容量値に切り替え、前記上側トランジスタがオフされるときに前記ブートキャパシタの容量値を前記第2容量値から前記第1容量値に切り替える構成(第5の構成)としてもよい。
 また、上記第5の構成による電源制御装置において、前記ブートストラップ回路は、前記軽負荷モードでは、前記上側トランジスタのオン/オフに依ることなく前記ブートキャパシタの容量値を前記第1容量値に固定する構成(第6の構成)としてもよい。
 また、上記第1~第6いずれかの構成による電源制御装置において、前記コントローラは、前記重負荷モードでは所定のスイッチング周期で前記上側トランジスタをオンし、前記軽負荷モードでは前記出力電圧又はこれに応じた帰還電圧の低下を検出して前記上側トランジスタをオンするように、前記上側ゲートドライバを制御する構成(第7の構成)としてもよい。
 また、上記第1~第7いずれかの構成による電源制御装置は、前記スイッチ電圧を監視してゼロクロス検出信号のパルス生成を行うように構成されたゼロクロス検出回路を更に備え、前記コントローラは、前記ゼロクロス検出信号に応じて前記スイッチング電源を前記重負荷モードから前記軽負荷モードに切り替える構成(第8の構成)としてもよい。
 また、上記第8の構成による電源制御装置において、前記コントローラは、前記上側トランジスタをオフした後に前記ゼロクロス検出信号のパルス生成が行われることなく所定のスイッチング周期が経過したときに、前記スイッチング電源を前記軽負荷モードから前記重負荷モードに切り替える構成(第9の構成)としてもよい。
 また、例えば、本明細書中に開示されているスイッチング電源は、上記第1~第9いずれかの構成による電源制御装置を備える構成(第10の構成)とされている。
<その他の変形例>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。例えば、バイポーラトランジスタとMOS電界効果トランジスタとの相互置換、及び、各種信号の論理レベル反転は任意である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、特許請求の範囲により規定されるものであって、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
   1  スイッチング電源
   10  電源制御装置(半導体装置)
   11  スイッチ出力段
   12  駆動回路
   121  上側ゲートドライバ
   122  下側ゲートドライバ
   13  ブートストラップ回路
   14  コントローラ
   15  ゼロクロス検出回路
   16H  上側過電流検出回路
   16L  下側過電流検出回路
   17H  上側マスク回路
   17L  下側マスク回路
   BD3  ボディダイオード
   BUF1  バッファ
   C1、C11、C12  キャパシタ
   CAP  キャパシタ回路(ブートキャパシタ)
   DLY0  遅延回路
   INV0、INV1、INV2  インバータ
   L1  インダクタ
   N1、N2、N5~N7  トランジスタ(Nチャネル型MOSFET)
   P1~P3  トランジスタ(Pチャネル型MOSFET)
   T1~T4  外部端子
   X1、X2  バッファ

Claims (10)

  1.  入力電圧から出力電圧を生成するスイッチング電源を制御するように構成された電源制御装置であって、
     前記入力電圧の印加端とスイッチ電圧の印加端との間に接続されるNチャネル型の上側トランジスタをオン/オフするように構成された上側ゲートドライバと、
     前記スイッチ電圧よりもブートキャパシタの充電電圧だけ高いブートストラップ電圧を生成して前記上側ゲートドライバに供給するように構成されたブートストラップ回路と、
     前記スイッチング電源を重負荷モード及び軽負荷モードのいずれかに切り替えるように構成されたコントローラと、
     を備え、
     前記ブートストラップ回路は、前記上側トランジスタのオン/オフに応じて前記ブートキャパシタの容量値を切替可能であり、
     前記コントローラは、前記重負荷モードでは前記ブートキャパシタの容量値切替制御を行い、前記軽負荷モードでは前記ブートキャパシタの容量値切替制御を停止するように、前記ブートストラップ回路を制御する、電源制御装置。
  2.  前記スイッチ電圧の印加端と基準電位端との間に並列接続される複数の下側トランジスタをオン/オフするように構成された下側ゲートドライバを更に備え、
     前記コントローラは、前記軽負荷モードでは前記重負荷モードよりも前記複数の下側トランジスタの並列駆動数を減らすように前記下側ゲートドライバを制御する、請求項1に記載の電源制御装置。
  3.  前記下側トランジスタに流れる下側電流を監視して下側過電流検出信号を生成するように構成された下側過電流検出回路と、前記下側過電流検出信号をマスクするように構成された下側マスク回路と、を更に備え、
     前記コントローラは、前記重負荷モードでは前記下側過電流検出信号をマスクせず、前記軽負荷モードでは前記下側過電流検出信号をマスクするように、前記下側マスク回路を制御する、請求項2に記載の電源制御装置。
  4.  前記上側トランジスタに流れる上側電流を監視して上側過電流検出信号を生成するように構成された上側過電流検出回路と、前記上側過電流検出信号をマスクするように構成された上側マスク回路と、を更に備え、
     前記コントローラは、前記重負荷モードでは前記上側過電流検出信号をマスクせず、前記軽負荷モードでは前記上側過電流検出信号をマスクするように、前記上側マスク回路を制御する、請求項2又は3に記載の電源制御装置。
  5.  前記ブートストラップ回路は、前記重負荷モードでは、前記上側トランジスタがオンされるときに前記ブートキャパシタの容量値を第1容量値からこれよりも小さい第2容量値に切り替え、前記上側トランジスタがオフされるときに前記ブートキャパシタの容量値を前記第2容量値から前記第1容量値に切り替える、請求項1~4のいずれか一項に記載の電源制御装置。
  6.  前記ブートストラップ回路は、前記軽負荷モードでは、前記上側トランジスタのオン/オフに依ることなく前記ブートキャパシタの容量値を前記第1容量値に固定する、請求項5に記載の電源制御装置。
  7.  前記コントローラは、前記重負荷モードでは所定のスイッチング周期で前記上側トランジスタをオンし、前記軽負荷モードでは前記出力電圧又はこれに応じた帰還電圧の低下を検出して前記上側トランジスタをオンするように、前記上側ゲートドライバを制御する、請求項1~6のいずれか一項に記載の電源制御装置。
  8.  前記スイッチ電圧を監視してゼロクロス検出信号のパルス生成を行うように構成されたゼロクロス検出回路を更に備え、
     前記コントローラは、前記ゼロクロス検出信号に応じて前記スイッチング電源を前記重負荷モードから前記軽負荷モードに切り替える、請求項1~7のいずれか一項に記載の電源制御装置。
  9.  前記コントローラは、前記上側トランジスタをオフした後に前記ゼロクロス検出信号のパルス生成が行われることなく所定のスイッチング周期が経過したときに、前記スイッチング電源を前記軽負荷モードから前記重負荷モードに切り替える、請求項8に記載の電源制御装置。
  10.  請求項1~9のいずれか一項に記載の電源制御装置を備える、スイッチング電源。
PCT/JP2022/038732 2021-11-16 2022-10-18 電源制御装置、スイッチング電源 WO2023090029A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021186324 2021-11-16
JP2021-186324 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090029A1 true WO2023090029A1 (ja) 2023-05-25

Family

ID=86396602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038732 WO2023090029A1 (ja) 2021-11-16 2022-10-18 電源制御装置、スイッチング電源

Country Status (1)

Country Link
WO (1) WO2023090029A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677806A (ja) * 1992-08-26 1994-03-18 Mitsubishi Electric Corp 半導体記憶装置の出力回路
JP2005304226A (ja) * 2004-04-14 2005-10-27 Renesas Technology Corp 電源ドライバ回路及びスイッチング電源装置
JP2016058953A (ja) * 2014-09-11 2016-04-21 ローム株式会社 ブートストラップ回路
JP2018057100A (ja) * 2016-09-27 2018-04-05 東芝ライテック株式会社 電源装置及びこの電源装置を備えた照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677806A (ja) * 1992-08-26 1994-03-18 Mitsubishi Electric Corp 半導体記憶装置の出力回路
JP2005304226A (ja) * 2004-04-14 2005-10-27 Renesas Technology Corp 電源ドライバ回路及びスイッチング電源装置
JP2016058953A (ja) * 2014-09-11 2016-04-21 ローム株式会社 ブートストラップ回路
JP2018057100A (ja) * 2016-09-27 2018-04-05 東芝ライテック株式会社 電源装置及びこの電源装置を備えた照明装置

Similar Documents

Publication Publication Date Title
US10333384B2 (en) System and method for a switch driver
US7285941B2 (en) DC-DC converter with load intensity control method
US9484758B2 (en) Hybrid bootstrap capacitor refresh technique for charger/converter
JP5451123B2 (ja) 電源装置,電源制御装置及び電源装置の制御方法
US8000117B2 (en) Buck boost function based on a capacitor bootstrap input buck converter
US11251691B2 (en) Floating power supply for a driver circuit configured to drive a high-side switching transistor
US7560910B2 (en) Voltage converter and semiconductor integrated circuit
US7830131B2 (en) Control circuit for switching regulator
US8836300B2 (en) Step-down switching regulator
CN102594100B (zh) 用于驱动开关晶体管的系统和方法
EP1696565B1 (en) Inverter apparatus with improved gate drive for power mosfet
WO2011055472A1 (ja) Dc-dcコンバータ
WO2006115178A1 (ja) 出力装置及びこれを備えた電子機器
JP2006304512A (ja) 昇降圧型dc−dcコンバータ、昇降圧型dc−dcコンバータの制御回路、昇降圧型dc−dcコンバータの制御方法
US20160065074A1 (en) Dc-dc converter and control method for the same
CN102882369A (zh) 一种新型的电机驱动器芯片中的电荷泵电路
JP5839863B2 (ja) 降圧スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
WO2023090029A1 (ja) 電源制御装置、スイッチング電源
TWI710202B (zh) 開關調節器
US6943536B2 (en) Power supply circuit for charging a bootstrap capacitor
JP2023082477A (ja) ゲートドライバ、半導体装置、スイッチング電源
JP2023072494A (ja) 駆動回路、電源制御装置、スイッチング電源
TWI721127B (zh) 切換調節器
JP2023072497A (ja) 駆動回路、電源制御装置、スイッチング電源
CN114977785A (zh) 用于控制dc-dc芯片中电荷泵的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023561468

Country of ref document: JP

Kind code of ref document: A