WO2011054204A1 - 一种采用甲醇或二甲醚制备低碳烯烃的工艺 - Google Patents

一种采用甲醇或二甲醚制备低碳烯烃的工艺 Download PDF

Info

Publication number
WO2011054204A1
WO2011054204A1 PCT/CN2010/074453 CN2010074453W WO2011054204A1 WO 2011054204 A1 WO2011054204 A1 WO 2011054204A1 CN 2010074453 W CN2010074453 W CN 2010074453W WO 2011054204 A1 WO2011054204 A1 WO 2011054204A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
reactor
dimethyl ether
gas
Prior art date
Application number
PCT/CN2010/074453
Other languages
English (en)
French (fr)
Inventor
魏小波
刘伟伟
梅岭
Original Assignee
兆威兴业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兆威兴业有限公司 filed Critical 兆威兴业有限公司
Priority to RU2012122831/04A priority Critical patent/RU2012122831A/ru
Priority to AU2010314671A priority patent/AU2010314671A1/en
Priority to EP10827818.5A priority patent/EP2500334A4/en
Priority to US13/505,908 priority patent/US20120271088A1/en
Publication of WO2011054204A1 publication Critical patent/WO2011054204A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the invention relates to a process for preparing low-carbon olefins, in particular to a process for preparing low-carbon olefins by using methanol or dimethyl ether, and belongs to the technical field of chemical material preparation. Background technique
  • Low-carbon olefins such as ethylene and propylene are important chemical raw materials.
  • an important way to produce low-carbon olefins such as ethylene and propylene is to obtain light oils such as naphtha and light diesel oil, while naphtha and light diesel oil are mainly used. From oil.
  • the use of abundant raw materials such as coal and natural gas to produce ethylene and propylene has become more and more important both at home and abroad.
  • Mobi Le developed a methanol-to-gasoline (MTG) process using ZSM-5 mesoporous zeolite molecular sieves as a catalyst. It was mainly used to synthesize gasoline from methanol. It was also found that the catalyst can directly convert methanol into low-carbon olefins.
  • UCC successfully developed the SAP0 series of molecular sieves, in which the SAP0-34 molecular sieve catalyst exhibited excellent catalytic performance in the methanol to olefin (MT0) reaction, and had high low-carbon olefin selectivity. Moreover, the activity is high, but the catalyst loses its activity after a period of use due to coke formation in the pore surface area of the catalyst.
  • CN116478A discloses a process for preparing low-carbon olefins such as ethylene and propylene from methanol or dimethyl ether.
  • the catalyst is used and regenerated in a dense-phase bed circulating fluidization reactor. After the catalyst is regenerated, the coke accumulated on the surface is burned. In addition, the activity is recovered, so that the catalyst can be recycled in the reactor and the regenerator, and the low-carbon olefins such as ethylene and propylene can be continuously produced.
  • SAP0-34 molecular sieve catalyst has obvious induction period during use. During the induction period, the selectivity of olefin is lower and the selectivity of alkanes is higher. As the reaction time increases, the selectivity of low-carbon olefins gradually increases. After the period, the catalyst maintains high selectivity and high activity for a certain period of time, and the activity of the catalyst rapidly decreases as time continues to increase.
  • U.S. Patent Nos. 7,045,672 B2 and U.S. Patent 7,070,083 B2 each disclose a process for the pretreatment of catalysts with dimethyl ether and with C4-C7 olefins, wherein the dimethyl ether and C4-C7 olefins are derived from the subsequent separation and refining process of the methanol to olefins process.
  • the catalyst is pretreated with dimethyl ether or a C4-C7 olefin to produce a hydrocarbon-containing cocatalyst to obtain a higher ethylene and propylene yield.
  • the invention indicates that after treatment, based on the molecular sieve weight 5% ⁇
  • the catalyst contains not more than 2% of coke, more preferably not more than 1.5% of coke, more preferably not more than 1% of coke, more preferably not more than 0.5% of coke.
  • the object of the present invention is to propose a process for preparing low-carbon olefins using methanol or dimethyl ether (Chia-Tai)
  • Pretreatment Relay Process pre-treatment of the reactor, pre-treatment of the catalyst, the surface of the inner pores of the catalyst is pre-attached with certain coke to reduce the formation of alkanes and high-carbon olefins, while increasing ethylene and
  • the selectivity of propylene, using a pre-treated catalyst in the reactor ensures that the catalyst is in an optimal operating state, thereby achieving a higher yield of ethylene and propylene.
  • the present invention provides a process for preparing a low-carbon olefin using methanol or dimethyl ether, the technical scheme of which is as follows:
  • a process for preparing a low carbon olefin using methanol or dimethyl ether characterized in that the process comprises the following steps:
  • the pretreatment gas is a mixture of one or more compounds of a hydrocarbon having 2 to 6 carbon atoms in the formula
  • the pretreated catalyst is introduced into the reactor, and the raw material methanol or dimethyl ether is introduced into the reactor, and methanol or dimethyl ether is reacted with the catalyst in the reactor at a reaction temperature of 300-800 °C.
  • the process for preparing a low-carbon olefin using methanol or dimethyl ether, and the pretreatment gas described in the step 1) further comprises a fluidization gas.
  • the process for preparing a low carbon olefin using methanol or dimethyl ether the co-flowing gas being a mixture of one or more of nitrogen, water vapor, argon, hydrogen and methane.
  • the process for preparing a low-carbon olefin using methanol or dimethyl ether, and the catalyst used is a silicoaluminophosphate molecular sieve catalyst.
  • the process for preparing a low-carbon olefin by using methanol or dimethyl ether the temperature in the catalyst pre-processor is 300-800 ° C, the absolute pressure is 0. 05-1 MPa, and the temperature in the reactor is 350-700 °. C, the absolute pressure is 0 ⁇ 05-1 MPa.
  • the process for preparing a low-carbon olefin by using methanol or dimethyl ether uses a fresh catalyst, a regenerated catalyst or a mixture of two catalysts, based on the weight of the catalyst, and the catalyst before pretreatment contains 0-3% coke.
  • the process for preparing a low-carbon olefin using methanol or dimethyl ether further comprising a catalyst regeneration process in the process,
  • the regenerated catalyst contains 0-3% coke based on the weight of the catalyst.
  • the apparatus for preparing a low-carbon olefin using methanol or dimethyl ether, the catalyst pre-processor, and the catalyst pre-processor are preferably a fluidized bed, and the reactor is a fluidized bed, a moving bed or a fixed bed reactor, and the reactor is preferably used. Fluidized bed; catalyst pre-processor, reactor each using a different reactor, or two using the same reactor.
  • the invention has the following advantages and outstanding effects: a pretreatment process is added before the reactor, and the fresh or regenerated catalyst is pretreated to make the catalyst skip the lower selectivity induction.
  • the reaction of the catalyst just in the form of methanol or dimethyl ether to produce lower olefins can be in a highly selective operating region, thus allowing the process to achieve higher ethylene and propylene yields.
  • the catalyst described therein is a silicoaluminophosphate (SAP0) molecular sieve catalyst or a ZSM-based molecular sieve catalyst.
  • SAP0 silicoaluminophosphate
  • the present invention preferably uses a SAP0 molecular sieve catalyst, and the catalyst can be obtained by the method provided in the invention CN1088483A.
  • the pretreatment gas described therein is preferably a mixture of one or more of an alkane, an olefin, a block hydrocarbon, an alcohol, a ketone, an ether and an alkylene oxide having 2 to 6 carbon atoms.
  • the catalyst pretreated by the step 1 contains more than 2% and less than 15% of coke, and the pretreated catalyst preferably contains more than 2% and less than 7% of coke.
  • the catalyst in the reactor preferably contains 3-10% coke after use.
  • the pretreatment gas described in the step 1) further comprises a fluidization gas
  • the fluidization gas is preferably one of nitrogen, water vapor, argon, hydrogen and methane or a mixture of gases.
  • the silicoaluminophosphate (SAP0) molecular sieve catalyst employed in the pretreatment process it may be a freshly prepared catalyst, a regenerated catalyst or a mixture of the two.
  • the catalyst to be treated preferably contains 0 to 3% of coke, more preferably 0-1% of coke.
  • the reaction temperature which normally enables the carbon source to be decomposed into coke without causing the molecular sieve to collapse can achieve the deposition of coke on the surface of the molecular sieve; and the technical teachings according to the present invention can be Different carbon sources can be selected by routine experimentation.
  • the pretreatment temperature is too low, and the decomposition rate of the carbon source is slow, so that a long pretreatment time is required to obtain sufficient coke deposition amount; the pretreatment temperature is too high, and on the one hand, the decomposition rate of the carbon source is fast, so that the catalyst surface Uneven deposition of coke, on the other hand, too high a temperature will cause the molecular sieve structure to collapse and be permanently deactivated. Therefore, in the present invention, it is preferred that the reaction temperature of the pretreatment reaction is from 300 to 800 ° C, and the reaction temperature of the more preferred pretreatment reaction is from 400 to 700 ° C.
  • the temperature at which methanol or dimethyl ether can react on the SAP0 molecular sieve catalyst can generally achieve the preparation of methanol or dimethyl ether to a lower olefin; and is given by those skilled in the art according to the present invention.
  • Technical teachings can be selected by routine experimentation depending on the carbon source.
  • the reaction temperature of the reactor is from 300 to 800 ° C, and more preferably the reaction temperature of the reactor is from 350 to 700 ° C.
  • the usual pressure can achieve the process of the present invention.
  • the reaction pressure is too low, and the design and operation of the reactor are not easy to achieve; if the reaction pressure is too high, the equipment will be fabricated.
  • the load of this and the power system s. 5 MPao.
  • the absolute pressure of the catalyst pretreatment reactor and the reactor is 0. 1-0. 5 MPao
  • the reactor employed in the pretreatment process is not specifically limited, and any reactor which can decompose the carbon source and achieve coke deposition on the molecular sieve can realize the present invention, for example, a conventional fixed bed reactor, a fluidized bed reactor Or moving bed reactor, the preferred catalyst pretreatment in the present invention is a fluidized bed reactor or a moving bed reactor
  • the reactor employed in the process for preparing a low-carbon olefin from methanol or dimethyl ether is not specifically limited, and any reactor which can bring methanol or dimethyl ether into contact with a catalyst and form a low-carbon olefin can realize the present invention, for example, usually A fixed bed reactor, a fluidized bed reactor or a moving bed reactor, the preferred reactor in the present invention is a fluidized bed reactor.
  • the catalyst pretreatment and reactor mentioned in the present invention may be different reactors, or the same reactor may be used, or a catalyst regenerator may be added in the process to realize the catalyst in the catalyst pretreatment, the reactor and the catalyst. Loop operation between regenerators.
  • Example 1 In order to better explain the technical solutions and technical effects of the present invention, the following description will be made by way of specific examples.
  • Catalyst pretreatment 10 g of fresh SAP0-34 catalyst was added to a fixed bed reactor with an internal diameter of 30 mm.
  • the initial carbon content of the catalyst was 0, the reaction temperature was 350 V, and the absolute pressure was based on the weight of the catalyst.
  • l/h the mass space velocity is 0. 2 / h
  • the mass of the pretreatment gas is 0. 2 / h
  • the feed time lasts for 20 min and is purged with high purity N2 for 30 min.
  • the carbon content of the treated catalyst is shown in Table 1.
  • MTO reaction The pretreated catalyst was charged into a quartz tube fluidized bed reactor with an inner diameter of 20 mm, and the reaction temperature was maintained at 450 V, and the absolute pressure was 0.15 MPa.
  • the raw material methanol was vaporized by a preheater.
  • the mass space velocity of methanol relative to the catalyst is 3/h
  • the reactor outlet product is condensed by a condenser tube
  • the condensed reaction gas is collected by a gas cylinder
  • the liquid is subjected to online methanol concentration analysis, and the reaction is up to the outlet.
  • the reaction is stopped.
  • the gas in the gas cylinder is analyzed by gas chromatography. The selectivity of ethylene and propylene (diene) in the gas phase product and the coke content in the catalyst after use are shown in the table. 1.
  • the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0. 1%, the reaction temperature is 450 ° C, the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, nitrogen flow rate is 300 ml / min, and then adding pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is propylene, The mass space velocity was 1. 5/h, the access time lasted for 8 min, and then purged with high purity N2 for 30 min.
  • the carbon content of the treated catalyst is shown in Table 1.
  • Example 3 The MTO reaction conditions were the same in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • Example 3 The MTO reaction conditions were the same in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • Catalyst pretreatment 10 g of regenerated SAP0-34 catalyst was added to a quartz tube fluidized bed reactor with an inner diameter of 20 mm
  • the initial carbon content of the catalyst is 0.1%
  • the reaction temperature is 500 V
  • the absolute pressure is 0.15 MPa
  • the nitrogen flow rate is 300 ml. /min
  • the pretreatment gas is added from the bottom of the reactor.
  • the composition of the pretreatment gas is 1-butene with a mass space velocity of 2/h, the inlet time lasts 5 min, and then is purged with high purity N2 for 30 min.
  • the carbon content of the treated catalyst is shown in Table 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • the reaction temperature is 550.
  • the initial carbon content of the catalyst is 0.1%, and the reaction temperature is 550.
  • the catalyst is pretreated with a catalyst.
  • V the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, the nitrogen flow rate is 300 ml/min, and then adding the pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is 4 1%, 30.3%, 3. 2%, 15.7%, 0.8%, 3.5%, 23.1%, 19.3% butane, butene, pentane, pentene a mixture of hexane, hexene, methane and hydrogen having a mass space velocity of 1.5/h, a pass time of 8 min, and a high purity N2 purge for 30 min.
  • the char content of the treated catalyst is shown in the table. 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0. 1%, the reaction temperature is 600 ° C, the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, nitrogen flow rate is 300 ml / min, and then the pretreatment gas is added from the bottom of the reactor, the composition of the pretreatment gas is the volume content 5/h, a mass space velocity of 1. 5 / h, a mixture of ethane, ethylene, ethylene oxide, propane, acetone, a mixture of 5%, 12%, 0.5%, 7%, 0.1%, The pass time lasts for 12 min and is purged with high purity N2 for 30 min.
  • the char content of the treated catalyst is shown in Table 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0. 1%, the reaction temperature is 650 ° C, the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, nitrogen flow rate is 300 ml / min, and then adding the pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is methanol, The mass space velocity is 4/h, the access time lasts for 9 min, and then purged with high purity N2 for 30 min.
  • the carbon content of the treated catalyst is shown in Table 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • Example 7 I The reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0.1%, the reaction temperature is 0. 1%, the reaction temperature is 700 ° C, absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, nitrogen flow rate is 300 ml / min, and then adding pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is dimethyl ether
  • the mass space velocity is 2.5/h
  • the access time lasts for 12 min, and then purged with high-purity N2 for 30 min.
  • the carbon content of the treated catalyst is shown in Table 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • Catalyst pretreatment 10 g of regenerated SAP0-34 catalyst was added to a quartz tube fluidized bed reactor with an inner diameter of 20 mm.
  • the initial carbon content of the catalyst was 1% based on the weight of the catalyst, and the reaction temperature was 800 °. C, the absolute pressure is 0.1 MPa, first purging with high purity N2 for 30 min, the nitrogen flow rate is 300 ml/min, and then adding the pretreatment gas from the bottom of the reactor.
  • the composition of the pretreatment gas is 25 volume respectively. Mixture of %, 25%, 50% ethanol, propanol and water vapor with a mass space velocity of 1.5/h, a pass time of 15 min, and a high purity N2 purge for 30 min, the treated catalyst
  • the carbon content is shown in Table 1.
  • the MTO reaction conditions were the same as in Example 1, and the selectivity of the diene in the gas phase product and the coke content in the catalyst after use are shown in Table 1.
  • Catalyst Pretreatment 100 g of fresh SAP0-34 catalyst was added to a fluidized bed reactor with an internal diameter of 50 mm. The initial carbon content of the catalyst was 0 and the pretreatment temperature was 450 based on the weight of the catalyst. C, the absolute pressure is 0.1 MPa, first purged with high purity N2 for 30 min, nitrogen flow rate is 60 L / h, and then the pretreatment gas is added from the bottom of the reactor, the composition of the pretreatment gas is propylene, its mass is empty The catalyst has a carbon content of 3.4%, based on the weight of the catalyst.
  • the pretreated catalyst was placed in a stainless steel fluidized bed reactor with an inner diameter of 50 mm, the reaction temperature was maintained at 500 V, and the absolute pressure was 0.1 MPa.
  • the raw material methanol was vaporized by a preheater.
  • the mass space velocity of methanol relative to the catalyst is 3/h
  • the reactor outlet product is condensed by a condenser tube
  • the condensed reaction gas is collected by a gas cylinder
  • the liquid is subjected to online methanol concentration analysis, and the reaction is carried out until the outlet liquid
  • the mass concentration of the methanol reaches 4%
  • the reaction is stopped, and the gas content in the gas cylinder is analyzed by gas chromatography.
  • the selectivity of ethylene and propylene (diene) in the gas phase product is 82.1%, based on the weight of the catalyst. 6% ⁇
  • the coke content of the catalyst was 7.6%.
  • the pretreatment temperature is 500.
  • the initial carbon content of the catalyst is 0. 05%, and the pretreatment temperature is 500.
  • the catalyst is pretreated.
  • the initial carbon content of the catalyst is 0. 05%, and the pretreatment temperature is 500. . C
  • the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, the nitrogen flow rate is 10 L / h, and then adding the pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is dimethyl ether,
  • the mass airspeed is 0. 2/h, the access time lasts for 40 min, and then purged with high purity N2.
  • the treated catalyst had a carbon content of 7% based on the weight of the catalyst.
  • the pretreated catalyst was placed in a stainless steel fluidized bed reactor with an inner diameter of 50 mm, and the reaction temperature was maintained at 430 V, and the absolute pressure was 0.15 MPa.
  • the raw material methanol was vaporized by a preheater.
  • the mass space velocity of methanol relative to the catalyst is 3/h
  • the reactor outlet product is condensed by a condenser tube
  • the condensed reaction gas is collected by a gas cylinder
  • the liquid is subjected to online methanol concentration analysis, and the reaction is carried out until the outlet liquid
  • the mass concentration of methanol reaches 4%, the reaction is stopped.
  • the gas in the gas cylinder is analyzed by gas chromatography for gas content.
  • the selectivity of ethylene and propylene (diene) in the gas phase product is 83%, based on the weight of the catalyst.
  • the coke content in the catalyst after use was 8%.
  • the singularity of the catalyst is 0. 1-0. 3%, the initial carbon content of the catalyst is 0. 1-0. 3%, according to the weight of the catalyst, the initial carbon content of the catalyst is 0. 1-0. 3%,
  • the pretreatment temperature is 450. C, the absolute pressure is 0. 15 MPa, first purging with high purity N2 for 30 min, the nitrogen flow rate is 60 L / h, and then adding the pretreatment gas from the bottom of the reactor, the composition of the pretreatment gas is 50% 1- Butene and 50% water vapor, the mass space velocity is 2 / h, the access time lasts 10 min, and then purging with high purity N2 for 30 min, based on the weight of the catalyst, the treated catalyst carbon content 3. 1-3. 7%.
  • MTO reaction The pretreated catalyst was charged into a stainless steel fluidized bed reactor with an inner diameter of 50 mm, and the reaction temperature was maintained at 550 V, and the absolute pressure was 0.15 MPa.
  • the raw material methanol was vaporized by a preheater.
  • the mass space velocity of methanol relative to the catalyst is 3/h
  • the reactor outlet product is condensed by a condenser tube
  • the condensed reaction gas is collected by a gas cylinder
  • the liquid is subjected to online methanol concentration analysis, and the reaction is carried out until the outlet liquid
  • the 8% of the selectivity of the gas and the propylene (diene) in the gas phase product is 81. 7-82. 8%, 6% ⁇ 6%. The 6%.
  • Catalyst regeneration The used catalyst was charged into a stainless steel fluidized bed reactor with an inner diameter of 50 mm, maintaining a regeneration temperature of 700 V, an absolute pressure of 0.15 MPa, using air as a regeneration gas, and an air flow rate of 60 L/h. I. 3% ⁇ The average amount of the catalyst is 0. 1-0. 3% of coke.
  • the regenerated catalyst is charged into the pretreatment reactor for recycling.
  • the liquid is subjected to online methanol concentration analysis, and the reaction is stopped until the mass concentration of the liquid phase methanol reaches 4%, and the gas in the gas collection bottle is taken. 4% ⁇
  • the coke content of the catalyst after the use of the catalyst was 7. 4%.
  • MTO reaction The regenerated catalyst was charged into a stainless steel fluidized bed reactor with an internal diameter of 50 mm to maintain the reaction temperature.
  • the reactor is 500 V, and the absolute pressure is 0.15 MPa.
  • the raw material methanol is vaporized in the preheater and then introduced into the reactor.
  • the mass space velocity of methanol relative to the catalyst is 3/h, and the reactor outlet product is condensed by a condenser.
  • the condensed reaction gas is collected in a gas cylinder, and the liquid is analyzed by on-line methanol concentration.
  • the reaction is stopped until the mass concentration of the liquid phase methanol reaches 4%, and the gas in the gas cylinder is analyzed by gas chromatography.
  • 6% The 6% of the coke content of the catalyst is 7. 3-7. 6%.
  • Catalyst regeneration The used catalyst was charged into a stainless steel fluidized bed reactor with an inner diameter of 50 mm, maintaining a regeneration temperature of 600 V, an absolute pressure of 0.15 MPa, using air as a regeneration gas, and an air flow rate of 60 L/h. I. 3% ⁇ The average amount of the catalyst is 0. 1-0. 3% of coke.
  • the catalyst is at the outlet of the reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

说 明 书
一种采用甲醇或二甲醚制备低碳烯烃的工艺
技术领域
本发明涉及一种制备低碳烯烃的工艺方法, 特别涉及一种采用甲醇或二甲醚制备低碳烯 烃的工艺, 属于化工材料制备技术领域。 背景技术
乙烯、 丙烯等低碳烯烃是重要的化工原料, 目前制取乙烯、 丙烯等低碳烯烃的重要途径 是通过裂解石脑油、 轻柴油等轻质油来获取, 而石脑油、 轻柴油主要来源于石油。 随着石油 资源的逐渐匮乏, 采用丰富的煤、 天然气等原料制取乙烯、 丙烯的技术路线, 愈来愈受到国 内外的重视。
1976年, Mobi le公司就开发了以 ZSM-5中孔沸石分子筛为催化剂的甲醇制汽油 (MTG) 工艺, 主要用来由甲醇合成汽油, 同时发现该催化剂可使甲醇直接变成低碳烯烃。 20世纪 80 年代初, UCC公司成功开发出了 SAP0系列分子筛, 其中 SAP0-34分子筛催化剂在用于甲醇制 烯烃(MT0) 反应时表现出优异的催化性能, 具有很高的低碳烯烃选择性, 而且活性很高, 但 催化剂在使用一段时间后由于催化剂内孔表面积有焦炭而失去活性。
CN116478A公开了一种由甲醇或二甲醚制取乙烯、 丙烯等低碳烯烃的方法, 催化剂在密 相床循环流化反应装置进行使用和再生, 催化剂在再生后, 表面上积的焦炭被烧除, 活性得 以回复, 从而实现催化剂在反应器和再生器中循环使用, 能连续的制取乙烯、 丙烯等低碳烯 烃。
SAP0-34分子筛催化剂在使用过程中存在明显的诱导期,在诱导期内,烯烃的选择性较低, 烷烃的选择性较高, 随着反应时间的增加, 低碳烯烃选择性逐渐上升, 诱导期过后, 催化剂 在一定时间内保持高的选择性和高的活性, 随时间的继续延长, 催化剂的活性迅速下降。
US7045672B2和 US7057083B2分别公开了一种用二甲醚和用 C4-C7烯烃对催化剂对行预处 理的方法, 其中采用的二甲醚和 C4-C7烯烃来自甲醇制烯烃工艺后续的分离和精制工艺。采用 二甲醚或 C4-C7烯烃对催化剂进行预处理后, 使催化剂中产生含烃的助催化剂, 以获得更高的 乙烯和丙烯收率, 该发明中指出经处理后, 以分子筛重量为基准计, 催化剂中含有不超过 2% 的焦炭, 更优的是不超过 1. 5%的焦炭, 更优的是不超过 1%的焦炭, 更优的是不超过 0. 5%的焦 炭。
伴随着甲醇 /二甲醚制低碳烯烃的催化剂和工艺的研究进展, 如何在甲醇 /二甲醚制低碳 烯烃工艺中提高催化剂对乙烯和丙烯的选择性, 以获得尽量多的乙烯和丙烯收率有非常重要 的意义。
发明内容 本发明的目的是提出了一种采用甲醇或二甲醚制备低碳烯烃的工艺 (Chia-Tai
Pretreatment Relay Process , 简称 CPR工艺), 在反应器前加预处理工艺, 对催化剂的预处 理使催化剂的内孔表面预先附上一定的焦炭, 以减少烷烃和高碳烯烃的生成, 同时增加乙烯 和丙烯的选择性, 在反应器中采用预处理后的催化剂, 保证催化剂处于最佳的操作状态, 由 此达到更高的乙烯和丙烯的收率的目的。
为了实现上述目的, 本发明提供了一种采用甲醇或二甲醚制备低碳烯烃的工艺, 其技术 方案如下:
一种采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于该工艺包括如下步骤:
1 )将催化剂加入催化剂预处理器, 向催化剂预处理器中通入预处理气体, 对催化剂进 行预处理, 经过预处理后的催化剂, 以催化剂的重量为基准计, 含有大于 2%, 小于 20%的焦 炭, 其中所述的预处理气体采用分子式中含有 2-6个碳原子的碳氢化合物和碳氢氧化合物中 的一种或多种化合物的混合物;
2 )将预处理后的催化剂加入反应器, 向反应器中通入原料甲醇或二甲醚, 甲醇或二甲 醚在反应器中与催化剂接触发生反应,反应温度为 300-800°C。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 在步骤 1 )中所述的预处理气体中还包含 助流化气体。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 所述的助流化气体是氮气、 水蒸汽、 氩 气、 氢气和甲烷中的一种或多种气体的混合物。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 采用的催化剂是硅铝磷酸盐分子筛催化 剂。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 在步骤 1 ) 中所述的预处理气体是含有
2- 6个碳原子的烷烃、 烯烃、 块烃、 醇、 酮、 醚和环氧烷烃中的一种或多种气体的混合物。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 催化剂预处理器内的温度为 300-800°C, 绝对压力为 0. 05-1 MPa, 反应器内的温度为 350-700 °C, 绝对压力为 0· 05-1 MPa。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 催化剂预处理器内的温度为 400-700°C, 绝对压力为 0. 1-0. 5 MPao
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 经过预处理的催化剂, 以催化剂的重量 为基准计, 含有 2-7%的焦炭; 反应器内的催化剂在使用后, 以催化剂的重量为基准计, 含有
3- 10%的焦炭。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 预处理前的催化剂采用新鲜催化剂、 经 过再生的催化剂或两种催化剂的混合物, 以催化剂的重量为基准计, 预处理前的催化剂含有 0-3%的焦炭。
所述的采用甲醇或二甲醚制备低碳烯烃的工艺,在所述的工艺中还包括催化剂再生工艺, 经过再生的催化剂, 以催化剂的重量为基准计, 再生后的催化剂含有 0-3%的焦炭。
所述的采用甲醇或二甲醚制备低碳烯烃的装置, 催化剂预处理器, 催化剂预处理器优选 采用流化床, 反应器采用流化床、 移动床或固定床反应器, 反应器优选采用流化床; 催化剂 预处理器、 反应器各自采用不同的反应器, 或是两个采用同一反应器。
本发明与现有技术相比, 具有以下优点及突出性效果: 在反应器前加上预处理工艺, 对 新鲜的或再生后的催化剂先进行预处理, 使催化剂跳过选择性较低的诱导期前期, 并使催化 剂刚参与甲醇或二甲醚制低碳烯烃的反应就能处于高选择性操作区域, 因此可使工艺获得更 高的乙烯和丙烯收率。
具体实施方式
其中所述的催化剂是硅铝磷酸盐 (SAP0) 分子筛催化剂或 ZSM系分子筛催化剂, 本发明 优选使用 SAP0分子筛催化剂, 催化剂的可按发明 CN1088483A所提供的方法获得。 其中所述 的预处理气体优选是含有 2-6个碳原子的烷烃、 烯烃、 块烃、 醇、 酮、 醚和环氧烷烃中的一 种或多种的混合物。 通过步骤 1预处理后的催化剂中含有大于 2%, 小于 15%的焦炭, 预处理 后的催化剂优选含有大于 2%, 小于 7%的焦炭。 对于步骤 2 ) 反应器中的催化剂在使用后优选 含有 3-10%的焦炭。
本发明所述工艺中, 步骤 1 )中所述的预处理气体中还包含助流化气体, 所述的助流化气 体优选采用氮气、 水蒸汽、 氩气、 氢气和甲烷中的一种或多种气体的混合物。
对于预处理工艺中所采用的硅铝磷酸盐 (SAP0) 分子筛催化剂, 其可以是新鲜制备的催 化剂、也可以是经过再生的催化剂或两者的混合物。待处理的催化剂中优选含有 0-3%的焦炭, 更优选含有 0-1%的焦炭。
对于预处理反应器的温度, 通常使得碳源能够分解成焦炭而不使得分子筛坍塌的反应温 度均可以实现焦炭在分子筛表面的沉积; 并且本领域技术人员根据本发明给出的技术教导, 可以根据不同碳源通过常规的实验可以进行选择。
但是通常来说, 预处理温度过低, 碳源分解速度慢, 使得需要较长的预处理时间才能获 得足够的焦炭沉积量; 预处理温度过高, 一方面碳源分解速度快, 使得催化剂表面焦炭沉积 不均匀, 另一方面温度过高会导致分子筛结构坍塌从而永久失活。 因此, 本发明中优选地预 处理反应的反应温度为 300-800°C, 更优选的预处理反应的反应温度为 400-700°C。
对于 MT0反应器的温度,通常使得甲醇或二甲醚能在 SAP0分子筛催化剂上发生反应的温 度均可以实现甲醇或二甲醚到低碳烯烃的制备; 并且本领域技术人员根据本发明给出的技术 教导, 可以根据不同碳源通过常规的实验可以进行选择。 本发明中优选地反应器的反应温度 为 300-800°C, 更优选的反应器的反应温度为 350-700°C。
对于催化剂预处理器和反应器的压力, 通常的压力均能实现本发明中的工艺。 但是通常 来说反应压力过低, 反应器的设计和操作不容易实现; 反应压力过高, 会增加设备的制作成 本和动力系统的负荷。 因此, 本发明中优选的催化剂预处理器和反应器的绝对压力为 0. 05-1 MPa, 更优选的催化剂预处理器和反应器的绝对压力为 0. 1-0. 5 MPao
对于预处理过程采用的反应器, 并没有具体的限制, 任何可以使得碳源分解并在分子筛 上实现焦炭沉积的反应器均可实现本发明, 例如通常的固定床反应器、 流化床反应器或移动 床反应器, 本发明中优选的催化剂预处理器是流化床反应器或移动床反应器
对于甲醇或二甲醚制备低碳烯烃的过程采用的反应器, 并没有具体的限制, 任何可以使 得甲醇或二甲醚与催化剂接触并生成低碳烯烃的反应器均可实现本发明, 例如通常的固定床 反应器、 流化床反应器或移动床反应器, 本发明中优选的反应器是流化床反应器。
本发明中提及的催化剂预处理器和反应器, 可以采用不同的反应器, 或采用同一反应器, 也可以在工艺中加上催化剂再生器, 实现催化剂在催化剂预处理器、 反应器和催化剂再生器 之间的循环操作。
为了更好的说明本发明的技术方案和技术效果, 下面将通过具体的实施例进行说明。 实施例 1 :
催化剂预处理: 将 10 g新鲜的 SAP0-34催化剂加入内径为 30 mm的固定床反应器中, 以 催化剂的重量为基准计,催化剂初始含碳量为 0, 反应温度为 350 V , 绝对压力为 l MPa, 先 用高纯 N2吹扫 30 min, 氮气流量为 100 ml/min, 再将预处理气从反应器底部加入, 预处理 气的成分是乙烯, 其质量空速为 0. 2/h, 通入时间持续 20 min, 再用高纯 N2吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应: 将预处理后的催化剂装入内径为 20 mm的石英管流化床反应器中, 维持反应 温度为 450 V , 绝对压力为 0. 15 MPa, 原料甲醇经预热器气化后通入反应器中, 甲醇相对于 催化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气瓶进 行收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反应, 取集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中乙烯和丙烯 (双烯) 选择性和 使用后的催化剂中焦炭含量见表 1。
实施例 2 :
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 450°C, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是丙烯, 其质量空速为 1. 5/h, 通入时间持续 8min, 再用高纯 N2吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件实施例 1相同,气相产品中双烯选择性和使用后的催化剂中焦炭含量见表 1。 实施例 3 :
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 500 V, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是 1-丁烯, 其质量空速为 2/h, 通入时间持续 5 min, 再用高纯 N2吹 扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 4:
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 550 V, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是体积含量分别为 4. 1%、 30. 3%、 3. 2%、 15. 7%、 0. 8%、 3. 5%、 23. 1%、 19. 3%的丁烷、 丁烯、 戊烷、 戊烯、 己烷、 己烯、 甲烷、 氢气的混合物, 其质量空速为 1. 5/h, 通入时间持续 8 min, 再用高纯 N2吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 5:
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 600°C, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是体积含量分别为 69. 5%、 12%、 0. 5%、 17. 7%、 0. 3%的乙烷、 乙烯、 环氧乙烷、 丙烷、 丙酮的混合物, 其质量空速为 1. 5/h, 通入时间持续 12 min, 再用高纯 N2 吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 6:
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 650°C, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是甲醇, 其质量空速为 4/h, 通入时间持续 9 min, 再用高纯 N2吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 7: 催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1%, 反应温度为 700°C, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部 加入, 预处理气的成分是二甲醚, 其质量空速为 2. 5/h, 通入时间持续 12 min, 再用高纯 N2 吹扫 30 min, 处理后的催化剂含炭量见表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 8:
催化剂预处理: 将 10 g再生的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器 中, 以催化剂的重量为基准计,催化剂初始含碳量为 1%, 反应温度为 800°C, 绝对压力为 0. 1 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 再将预处理气从反应器底部加入, 预处理气的成分是体积含量分别为 25%、 25%、 50%的乙醇、 丙醇、 水蒸汽的混合物, 其质量 空速为 1. 5/h, 通入时间持续 15 min, 再用高纯 N2吹扫 30 min, 处理后的催化剂含炭量见 表 1。
MTO反应条件与实施例 1相同, 气相产品中双烯选择性和使用后的催化剂中焦炭含量见 表 1。
实施例 9:
催化剂预处理: 将 100 g新鲜的 SAP0-34催化剂加入内径为 50 mm的流化床反应器中, 以催化剂的重量为基准计,催化剂初始含碳量为 0,预处理温度为 450 。C,绝对压力为 0. 1 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 60 L/h, 再将预处理气从反应器底部加入, 预处理气 的成分是丙烯, 其质量空速为 l/h, 通入时间持续 10 min, 再用高纯 N2吹扫 30 min, 以催 化剂的重量为基准计,处理后的催化剂含炭量为 3. 4%。
MTO反应: 将预处理后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持反应 温度为 500 V , 绝对压力为 0. 1 MPa, 原料甲醇经预热器气化后通入反应器中, 甲醇相对于 催化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气瓶进 行收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反应, 取集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中乙烯和丙烯 (双烯) 选择性为 82. 1%, 以催化剂的重量为基准计,使用后的催化剂中焦炭含量为 7. 6%。
实施例 10:
催化剂预处理: 将 100 g再生后的 SAP0-34催化剂加入内径为 50 mm的移动床反应器中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 05%, 预处理温度为 500 。C , 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 10 L/h, 再将预处理气从反应器底部加入, 预处理气的成分是二甲醚, 其质量空速为 0. 2/h, 通入时间持续 40 min, 再用高纯 N2吹扫 30 min, 以催化剂的重量为基准计,处理后的催化剂含炭量为 7%。
MTO反应: 将预处理后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持反应 温度为 430 V , 绝对压力为 0. 15 MPa, 原料甲醇经预热器气化后通入反应器中, 甲醇相对于 催化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气瓶进 行收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反应, 取集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中乙烯和丙烯 (双烯) 选择性为 83 %, 以催化剂的重量为基准计,使用后的催化剂中焦炭含量为 8%。
实施例 11 :
催化剂预处理: 将 100 g再生后的 SAP0-34催化剂加入内径为 50 mm的流化床反应器中, 以催化剂的重量为基准计,催化剂初始含碳量为 0. 1-0. 3%, 预处理温度为 450 。C , 绝对压力 为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 60 L/h, 再将预处理气从反应器底部加 入,预处理气的成分是 50%的 1-丁烯和 50%的水蒸汽,其质量空速为 2/h,通入时间持续 10 min, 再用高纯 N2吹扫 30 min, 以催化剂的重量为基准计,处理后的催化剂含炭量为 3. 1-3. 7%。
MTO反应: 将预处理后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持反应 温度为 550 V , 绝对压力为 0. 15 MPa, 原料甲醇经预热器气化后通入反应器中, 甲醇相对于 催化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气瓶进 行收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反应, 取集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中乙烯和丙烯 (双烯) 选择性为 81. 7-82. 8%, 以催化剂的重量为基准计,使用后的催化剂中焦炭含量为 7. 2-7. 6%。
催化剂再生: 将使用后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持再生 温度为 700 V , 绝对压力为 0. 15 MPa, 使用空气作为再生气体, 空气流量为 60L/h, 通入时 间为 lh, 以催化剂的重量为基准计,再生后的催化剂平均含有 0. 1-0. 3%的焦炭。
将再生后的催化剂装入预处理反应器中循环使用。
对比例 1 :
将 10 g新鲜的 SAP0-34催化剂加入内径为 20 mm的石英管流化床反应器中, 以催化剂的 重量为基准计,催化剂初始含炭量为 0, 反应温度为 450Ό, 绝对压力为 0. 15 MPa, 先用高纯 N2吹扫 30 min, 氮气流量为 300 ml/min, 原料甲醇经预热器气化后通入反应器中, 甲醇相 对于催化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气 瓶进行收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反 应, 取集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中双烯选择性为 78. 2%, 以 催化剂的重量为基准计,使用后的催化剂中焦炭含量为 7. 4%。
对比例 2:
MTO反应: 将再生后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持反应温 度为 500 V, 绝对压力为 0. 15 MPa, 原料甲醇经预热器气化后通入反应器中, 甲醇相对于催 化剂的质量空速为 3/h, 反应器出口产品用冷凝管冷凝, 经冷凝后的反应气体用集气瓶进行 收集, 液体进行在线甲醇浓度分析, 反应直至出口液相甲醇质量浓度达到 4%时停止反应, 取 集气瓶中气体用气相色谱进行烃类含量的分析, 气相产品中乙烯和丙烯 (双烯) 选择性为 78. 1-78. 7%, 以催化剂的重量为基准计,使用后的催化剂中焦炭含量为 7. 3-7. 6%。
催化剂再生: 将使用后的催化剂装入内径为 50 mm的不锈钢流化床反应器中, 维持再生 温度为 600 V , 绝对压力为 0. 15 MPa, 使用空气作为再生气体, 空气流量为 60L/h, 通入时 间为 lh, 以催化剂的重量为基准计,再生后的催化剂平均含有 0. 1-0. 3%的焦炭。
从实施例和对比例可以看出, 采用本发明的采用甲醇或二甲醚制备低碳烯烃用的工艺, 获得了更高双烯选择性。
表 1
序号 预处理后催化剂 反应器出口烃类中 反应后催化剂中
中焦炭含量 (wt%) 双烯选择性 (%) 焦炭含量 (wt%)
实施例 1 2. 1 80. 1 7. 4
实施例 2 2. 8 81. 6 7. 5
实施例 3 3. 6 82. 3 7. 3
实施例 4 4. 5 83. 8 7. 5
实施例 5 5. 3 83. 5 7. 4
实施例 6 5. 8 83. 3 7. 6
实施例 7 6. 2 83. 2 7. 5
实施例 8 6. 3 84. 1 7. 8

Claims

权 利 要 求 书
I. 一种采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于该工艺包括如下步骤:
1 )将催化剂加入催化剂预处理器, 向催化剂预处理器中通入预处理气体, 对催化剂进 行预处理, 经过预处理后的催化剂, 以催化剂的重量为基准计, 含有大于 2%, 小于 15%的焦 炭, 其中所述的预处理气体采用分子式中含有 2-6个碳原子的碳氢化合物和碳氢氧化合物中 的一种或多种化合物的混合物;
2 )将预处理后的催化剂加入反应器, 向反应器中通入原料甲醇或二甲醚, 甲醇或二甲 醚在反应器中与催化剂接触发生反应,反应温度为 300-800°C。
2. 如权利要求 1 所述的采用甲醇或二甲醚制备低碳烯烃的工艺,其特征在于,在步骤 1 ) 中所述的预处理气体中还包含助流化气体。
3. 如权利要求 2 所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 所述的助 流化气体是氮气、 水蒸汽、 氩气、 氢气和甲烷中的一种或多种气体的混合物。
4. 如权利要求 1所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 采用的催 化剂是硅铝磷酸盐分子筛催化剂。
5. 如权利要求 1所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 在步骤 1 ) 中所述的预处理气体是含有 2-6个碳原子的烷烃、 烯烃、 块烃、 醇、 酮、 醚和环氧烷烃中的 一种或多种气体的混合物。
6. 如权利要求 1-5任一权利要求所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征 在于, 所述催化剂预处理器内的温度为 300-800 °C, 绝对压力为 0. 05-1 MPa, 反应器内的温 度为 350-700 °C, 绝对压力为 0. 05-1 MPa。
7. 如权利要求 6所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 催化剂预 处理器内的温度为 400-700 °C, 绝对压力为 0. 1-0. 5 MPa。
8. 如权利要求 1-5任一权利要求所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征 在于, 经过预处理的催化剂, 以催化剂的重量为基准计, 含有 2-7%的焦炭; 反应器内的催化 剂在使用后, 以催化剂的重量为基准计, 含有 3-10%的焦炭。
9. 如权利要求 1-5所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 预处理 前的催化剂采用新鲜催化剂、 经过再生的催化剂或两种催化剂的混合物, 以催化剂的重量为 基准计, 预处理前的催化剂含有 0-3%的焦炭。
10. 如权利要求 1-5所述的采用甲醇或二甲醚制备低碳烯烃的工艺, 其特征在于, 在所 述的工艺中还包括催化剂再生工艺, 经过再生的催化剂, 以催化剂的重量为基准计, 再生后 的催化剂含有 0-3%的焦炭。
II . 按照权利要求 1-5任一所述的采用甲醇或二甲醚制备低碳烯烃的装置,其特征在于, 催化剂预处理器采用流化床, 反应器采用流化床、 移动床或固定床反应器, 反应器优选采用 流化床; 催化剂预处理器、 反应器各自采用不同的反应器, 或是两个采用同一反应器。
PCT/CN2010/074453 2009-11-04 2010-06-25 一种采用甲醇或二甲醚制备低碳烯烃的工艺 WO2011054204A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2012122831/04A RU2012122831A (ru) 2009-11-04 2010-06-25 Способ получения легких олефинов из метанола или диметилового эфира
AU2010314671A AU2010314671A1 (en) 2009-11-04 2010-06-25 Process for producing lower alkenes with methanol or dimethyl ether
EP10827818.5A EP2500334A4 (en) 2009-11-04 2010-06-25 PROCESS FOR PREPARING LOW ALKENE WITH METHANOL OR DIMETHYL ETHER
US13/505,908 US20120271088A1 (en) 2009-11-04 2010-06-25 Process for producing lower alkenes with methanol or dimethyl ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910210635.3 2009-11-04
CN200910210635A CN101696145A (zh) 2009-11-04 2009-11-04 一种采用甲醇或二甲醚制备低碳烯烃的工艺

Publications (1)

Publication Number Publication Date
WO2011054204A1 true WO2011054204A1 (zh) 2011-05-12

Family

ID=42141288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074453 WO2011054204A1 (zh) 2009-11-04 2010-06-25 一种采用甲醇或二甲醚制备低碳烯烃的工艺

Country Status (6)

Country Link
US (1) US20120271088A1 (zh)
EP (1) EP2500334A4 (zh)
CN (1) CN101696145A (zh)
AU (1) AU2010314671A1 (zh)
RU (1) RU2012122831A (zh)
WO (1) WO2011054204A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633246A (zh) * 2011-05-27 2012-08-15 天津市贝特瑞新能源材料有限责任公司 一种制备中间相炭微球的成套装置及催化剂预处理装置与制备方法
RU2667912C2 (ru) * 2013-06-27 2018-09-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Системы и способы получения диметилсульфида из газифицированного кокса

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696145A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 一种采用甲醇或二甲醚制备低碳烯烃的工艺
CN102276384B (zh) * 2010-06-11 2013-12-04 中国石油化工股份有限公司 保持低碳烯烃选择性稳定的方法
CN102464536B (zh) * 2010-11-17 2014-03-26 中国石油化工股份有限公司 生产低碳烯烃的方法
DE102013102980A1 (de) * 2013-03-22 2014-09-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur Herstellung kurzkettiger Olefine aus Oxygenaten
CN112774735A (zh) * 2019-11-09 2021-05-11 洛阳维达石化工程有限公司 一种催化剂预烃池化的方法及其设备
CN111018646A (zh) * 2019-11-09 2020-04-17 洛阳维达石化工程有限公司 一种提高含氧化合物转化制低碳烯烃选择性的方法及其装置
CN114425436B (zh) * 2020-10-09 2023-08-29 中国石油化工股份有限公司 分子筛流化床催化剂的制备方法及制备的催化剂和应用
CN114377621B (zh) * 2020-10-16 2024-03-19 中国科学院大连化学物理研究所 一种流化床反应器、装置以及应用
CN114377625B (zh) * 2020-10-16 2023-06-06 中国科学院大连化学物理研究所 焦调控反应器、装置及含氧化合物制备低碳烯烃的方法
CN114377624B (zh) * 2020-10-16 2024-03-19 中国科学院大连化学物理研究所 一种焦调控反应器、由含氧化合物制备低碳烯烃的装置和应用
CN114377620B (zh) * 2020-10-16 2024-03-19 中国科学院大连化学物理研究所 流化床反应器、装置以及含氧化合物制备低碳烯烃的方法
CN116375551B (zh) * 2023-04-14 2024-03-29 浙江大学 一种烷氧基苯高选择性制乙烯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270023A (zh) * 2008-04-11 2008-09-24 中国石油化工股份有限公司 提高轻质烯烃收率的方法
CN101696145A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 一种采用甲醇或二甲醚制备低碳烯烃的工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231899A (en) * 1979-01-22 1980-11-04 Mobil Oil Corporation Method of producing a steam stable aluminosilicate zeolite catalyst
US6444868B1 (en) * 1999-02-17 2002-09-03 Exxon Mobil Chemical Patents Inc. Process to control conversion of C4+ and heavier stream to lighter products in oxygenate conversion reactions
US7781633B2 (en) * 2001-12-31 2010-08-24 Exxonmobil Chemical Patents Inc. Method for converting an oxygenate feed to a light olefin
US7199277B2 (en) * 2004-07-01 2007-04-03 Exxonmobil Chemical Patents Inc. Pretreating a catalyst containing molecular sieve and active metal oxide
US7465845B2 (en) * 2004-12-22 2008-12-16 Exxonmobil Chemical Patents Inc. Increasing ethylene and/or propylene production in an oxygenate to olefins reaction systems
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270023A (zh) * 2008-04-11 2008-09-24 中国石油化工股份有限公司 提高轻质烯烃收率的方法
CN101696145A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 一种采用甲醇或二甲醚制备低碳烯烃的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500334A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633246A (zh) * 2011-05-27 2012-08-15 天津市贝特瑞新能源材料有限责任公司 一种制备中间相炭微球的成套装置及催化剂预处理装置与制备方法
RU2667912C2 (ru) * 2013-06-27 2018-09-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Системы и способы получения диметилсульфида из газифицированного кокса

Also Published As

Publication number Publication date
EP2500334A4 (en) 2013-04-10
EP2500334A1 (en) 2012-09-19
RU2012122831A (ru) 2013-12-10
US20120271088A1 (en) 2012-10-25
CN101696145A (zh) 2010-04-21
AU2010314671A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2011054204A1 (zh) 一种采用甲醇或二甲醚制备低碳烯烃的工艺
JP4829227B2 (ja) 移動床技術を用いてのオキシジェネートのプロピレンへの転化
EP2303805B1 (en) Process to make olefins from oxygenates
RU2712274C1 (ru) Реактор с турбулентным псевдоожиженным слоем, устройство и способ, в котором используют кислородсодержащее соединение для производства пропена и c4 углеводорода
TWI385140B (zh) A method for producing olefins and a manufacturing apparatus thereof
RU2722772C1 (ru) Быстрый реактор с псевдоожиженным слоем, устройство и способ, в котором используют кислородсодержащее соединение для производства пропена или с4 углеводорода
EP2300396B1 (en) Process to make olefins from oxygenates
JPH0448499B2 (zh)
JP5518727B2 (ja) 連続的な2段階反応を利用した合成ガスからの軽質オレフィンの製造方法
EP2303806B1 (en) Process to make olefins from oxygenates
EP2303807B1 (en) Process to make olefins from oxygenates
WO2011054203A1 (zh) 对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法
JP5135840B2 (ja) プロピレンの製造方法
CN104098429B (zh) 一种利用循环流化床由甲醇制备丙烯、c4烃类的方法
JP4334540B2 (ja) 液化石油ガスの製造方法
US5059738A (en) Method for reactivating MTG process catalyst
CN1504542A (zh) 一种耦合的石油烃类催化裂解制取低碳烯烃的方法
CN1978410A (zh) 一种增产丙烯的c4馏分催化转化方法
JP5180449B2 (ja) メタノールまたはジメチルエーテルから低級オレフィンを製造する方法
CN111253204B (zh) 一种乙醇脱水制备乙烯的方法
JP6446033B2 (ja) 不飽和炭化水素の製造方法
MXPA02008221A (es) Pre-tratamiento de catalizador en un sistema de reaccion de oxigenado a olefinas.
Wang et al. Methanol to lower olefins and methanol to propylene
CN1234805C (zh) 一种增产轻烯烃的石油烃催化转化方法
US11975315B2 (en) Method for partially regenerating catalyst for methanol and/or dimethyl ether-to-olefin and method for methanol and/or dimethyl ether-to-olefin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010827818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010314671

Country of ref document: AU

Ref document number: 2012122831

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010314671

Country of ref document: AU

Date of ref document: 20100625

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13505908

Country of ref document: US