WO2011052551A1 - 圧電デバイスおよび圧電デバイスの製造方法 - Google Patents
圧電デバイスおよび圧電デバイスの製造方法 Download PDFInfo
- Publication number
- WO2011052551A1 WO2011052551A1 PCT/JP2010/068886 JP2010068886W WO2011052551A1 WO 2011052551 A1 WO2011052551 A1 WO 2011052551A1 JP 2010068886 W JP2010068886 W JP 2010068886W WO 2011052551 A1 WO2011052551 A1 WO 2011052551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- piezoelectric
- thin film
- elastic
- piezoelectric device
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 50
- 239000010409 thin film Substances 0.000 claims abstract description 96
- 239000000758 substrate Substances 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 42
- 239000012528 membrane Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 48
- 238000005468 ion implantation Methods 0.000 claims description 22
- 239000011800 void material Substances 0.000 claims description 9
- 239000011256 inorganic filler Substances 0.000 claims description 6
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 6
- 238000013016 damping Methods 0.000 abstract description 5
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 200
- 239000013078 crystal Substances 0.000 description 26
- 239000002131 composite material Substances 0.000 description 12
- 238000005530 etching Methods 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000005360 phosphosilicate glass Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/704—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
- H10N30/706—Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
- H10N30/708—Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
- H03H9/02102—Means for compensation or elimination of undesirable effects of temperature influence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02228—Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
- H03H9/0504—Holders; Supports for bulk acoustic wave devices
- H03H9/0514—Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
- H03H9/0523—Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for flip-chip mounting
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/173—Air-gaps
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
- H10N30/073—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/021—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
Definitions
- the present invention relates to a piezoelectric device using a piezoelectric single crystal thin film, in particular, a piezoelectric device having a membrane structure and a method for manufacturing the piezoelectric device.
- a piezoelectric device using such a piezoelectric thin film requires a support for supporting the piezoelectric thin film during actual use. As shown in Patent Document 1 and Patent Document 2, such a support is disposed on one main surface of the piezoelectric thin film.
- a membrane structure in which a space is formed between a region where an electrode functioning as a piezoelectric device in a piezoelectric thin film is formed and a support. There is something.
- a smart cut method as one method for forming a composite piezoelectric substrate composed of a piezoelectric thin film and a support.
- an ion implantation layer is formed by performing ion implantation on one main surface of a piezoelectric substrate having a thickness that can be bonded.
- the support formed separately is bonded to the main surface of the piezoelectric substrate on which the ion-implanted layer is formed on the ion-implanted layer side by using activated bonding or affinity bonding.
- the piezoelectric thin film is thermally peeled from the piezoelectric substrate using the ion implantation layer.
- a sacrificial layer that will later become a void layer is formed on one surface of the piezoelectric substrate, and a support is bonded to the surface of the piezoelectric substrate on which the sacrificial layer is formed.
- the piezoelectric thin film is peeled from the piezoelectric substrate, an etching window is formed in the piezoelectric thin film, and then the sacrificial layer is removed from the etching window.
- the piezoelectric thin film and the support are joined as described above.
- the membrane structure is formed, not only the flatness of the piezoelectric substrate surface but also the flatness of the sacrificial layer surface must be increased. Furthermore, in the manufacturing process, the surface of the sacrificial layer and the surface of the piezoelectric substrate cannot be on the same plane, and in order to finish them to a flatness of a predetermined level or more, the process load increases and the cost increases. It will be connected.
- Patent Document 3 by inserting an elastic body between the semiconductor substrate and the support body, various problems that occur when the piezoelectric substrate and the support body are joined are alleviated.
- an elastic body having a small elastic coefficient is joined to the piezoelectric substrate, damping occurs and the function as a piezoelectric device is deteriorated. This phenomenon occurs without exception because there is at least a portion where the piezoelectric thin film and the elastic body are joined even in the membrane structure. In particular, the influence is large in a piezoelectric device using an elastic wave.
- an object of the present invention relates to a piezoelectric device having a membrane structure and a method for manufacturing the piezoelectric device which prevents the occurrence of various problems during bonding as described above and does not structurally deteriorate in function. is there.
- the present invention includes a piezoelectric thin film on which a drive electrode is formed and a support disposed on one main surface side of the piezoelectric thin film, and includes a predetermined region including a region where the drive electrode is formed on the piezoelectric thin film.
- the present invention relates to a piezoelectric device having a membrane structure in which a gap layer is provided between a substrate and a support. Between the piezoelectric thin film and the support of this piezoelectric device, an inorganic layer is formed on the piezoelectric thin film side of the elastic layer and the elastic layer, and is made of a material having a higher elastic modulus and higher hardness than the elastic layer. A layer.
- the material of the support having a thickness larger than that of the piezoelectric thin film and the inorganic layer is used as the piezoelectric thin film. Selection can be made without considering the difference in linear expansion coefficient. Further, since the inorganic layer is interposed between the elastic body layer and the piezoelectric thin film, damping caused by the elastic body layer does not occur.
- the elastic layer of the piezoelectric device of the present invention contains an inorganic filler.
- the inorganic filler is contained in the elastic layer, so that the thermal conductivity of the elastic layer can be increased, the linear expansion coefficient can be decreased, and the elastic modulus can be increased.
- various characteristics such as power durability and temperature characteristics of a piezoelectric device, particularly a device using an elastic wave, can be improved.
- the inorganic layer of the piezoelectric device of the present invention uses a material having a higher thermal conductivity than the piezoelectric thin film.
- the elastic layer of the piezoelectric device of the present invention is made of a material having a higher thermal conductivity than the piezoelectric thin film and the inorganic layer.
- the inorganic layer of the piezoelectric device of the present invention uses a material having a smaller linear expansion coefficient than the piezoelectric thin film.
- the inorganic layer is harder to deform than the piezoelectric thin film, the inorganic layer restrains the piezoelectric thin film, and the temperature characteristics as a piezoelectric device can be improved.
- the piezoelectric thin film of the piezoelectric device of the present invention is made of a material containing a Group 1 element.
- this invention relates to the manufacturing method of the above-mentioned piezoelectric device.
- an ion implantation process is performed in which an ionized element is implanted into a piezoelectric substrate to form a portion in the piezoelectric substrate where the concentration of the element implanted into the piezoelectric substrate reaches a peak.
- a piezoelectric device having a membrane structure including the above-described piezoelectric thin film, inorganic layer, elastic layer, and support In this case, a problem that occurs when the conventional piezoelectric substrate and the support are bonded by forming the sacrificial layer directly on the piezoelectric substrate without using an inorganic layer and further disposing an elastic layer. Does not occur.
- the composite substrate composed of the sacrificial layer, the composite layer composed of the inorganic layer and the elastic layer, and the support are bonded together, the inorganic layer serves as a protective layer for the sacrificial layered piezoelectric substrate, and the elastic layer serves as the buffer layer and the step relaxation layer.
- the inorganic layer serves as a protective layer for the sacrificial layered piezoelectric substrate
- the elastic layer serves as the buffer layer and the step relaxation layer.
- this invention relates to the manufacturing method of the above-mentioned piezoelectric device.
- an ion implantation process is performed in which an ionized element is implanted into a piezoelectric substrate to form a portion in the piezoelectric substrate where the concentration of the element implanted into the piezoelectric substrate reaches a peak.
- An elastic body layer disposing step for disposing a body layer, a bonding step for bonding an inorganic layer and an elastic body layer, and a piezoelectric substrate on which a portion where the concentration of an element injected into the piezoelectric substrate reaches a peak is formed.
- the above-described manufacturing method forms an elastic layer on the sacrificial layer-attached piezoelectric substrate and inorganic layer side, and is bonded to the support, whereas the elastic layer is formed on the support side.
- a first composite layer composed of a sacrificial layer-attached piezoelectric substrate and an inorganic layer is bonded to a second composite layer composed of a support and an elastic layer.
- the bonding step is performed under a reduced pressure atmosphere, bubbles in the vicinity of the interface of the elastic layer can be suppressed and reliability can be improved. Furthermore, since the heat treatment temperature can be lowered, it is possible to suppress adverse effects such as degradation of the cleaving property and deterioration of characteristics of the piezoelectric substrate due to the heat treatment.
- the inorganic layer forming step is performed in a reduced pressure atmosphere.
- bubbles (voids) near the interface between the inorganic layer and the piezoelectric substrate can be suppressed, and a dense interface can be formed.
- the present invention it is possible to prevent the occurrence of various problems when bonding a piezoelectric substrate with a sacrificial layer, which is a source of a piezoelectric thin film, and a support in a piezoelectric device having a membrane structure, and to reduce the function as a piezoelectric device. I will not let you. Thereby, it is possible to realize a piezoelectric device having a membrane structure that has a higher degree of design freedom than the conventional one, easy process management, and excellent characteristics and reliability.
- FIG. 1 It is a figure which shows typically the manufacturing process of the piezoelectric device formed with the manufacturing flow shown in FIG. It is a side view which shows the structure of the piezoelectric device which consists of another structure of this invention. It is the side view which shows the structure of the elastic wave device which has a structure of this invention, and the top view seen from the mounting surface side.
- FIG. 1A is a side cross-sectional view showing the configuration of the piezoelectric device according to this embodiment
- FIG. 1B is a plan view of the piezoelectric device viewed from the mounting surface side. Note that the solder resist 91 shown in FIG. 1A is not shown in the plan view shown in FIG. FIG. 1A corresponds to the AA ′ cross section in FIG.
- the piezoelectric device has a piezoelectric thin film 10 having a thickness of about 1 ⁇ m made of a piezoelectric single crystal such as LT.
- the piezoelectric thin film 10 includes LN, LBO (Li 2 B 4 O 7 ), langasite (La 3 Ga 5 SiO 14 ), KN (KNbO 3 ), KLN (K 3 Li 2 Nb 5 O). 15 ), etc., as long as the material has piezoelectricity and can be separated at a portion where the concentration of the element injected into the piezoelectric substrate reaches a peak.
- an upper electrode 50U On the surface 13 of the piezoelectric thin film 10, an upper electrode 50U, an upper routing electrode 51LU, and pad electrodes 51U, 51C, 51UD are formed.
- the upper electrode 50U is formed in a flat plate shape having a predetermined area, and is connected to the pad electrode 51U via the upper routing electrode 51LU.
- the pad electrode 51C is formed independently of the other electrodes, and the pad electrode 51UD is connected to the pad electrode 51D on the back surface 12 side via a via hole.
- Al, W, Mo, Ta, Hf, Cu, Pt, Ti, Au, or the like is used alone or in combination depending on the specifications of the device.
- Al, Cu, or the like is used for the upper routing electrode 51LU and the pad electrodes 51U, 51C, 51UD.
- solder resist 91 is formed on the surface 13 of the piezoelectric thin film 10.
- the solder resist 91 is formed so as to exclude a region where a gap layer 60 described later is formed in plan view of the piezoelectric thin film 10. Further, it is formed so as to exclude the above-described pad electrodes 51U, 51C, 51UD.
- a bump is formed on each of the pad electrodes 51U, 51C, 51UD, and a solder ball 90 is formed on each bump.
- a lower electrode 50D On the other hand, on the back surface 12 of the piezoelectric thin film 10, a lower electrode 50D, a lower routing electrode 51LD, and a pad electrode 51D are formed.
- the lower electrode 50D is formed to face the upper electrode 50U with the piezoelectric thin film 10 interposed therebetween.
- the lower electrode 50D is connected to the pad electrode 51D through the lower routing electrode 51LD.
- the lower electrode 50D is made of the same material as that of the upper electrode 50U, and the lower lead electrode 51LD and the pad electrode 51D are made of the same material as the upper lead electrode 51LU and the pad electrodes 51U, 51C and 51UD.
- the inorganic layer 20 is disposed so as to contact the back surface of the piezoelectric thin film 10 except for a predetermined area including the formation region of the lower electrode 50D on the back surface 12 of the piezoelectric thin film 10. That is, the inorganic layer 20 is disposed on the back surface 12 side of the piezoelectric thin film 10 so that the void layer 60 is formed in a region having a predetermined area including the formation region of the lower electrode 50D.
- a material having an elastic modulus or hardness larger than a predetermined value in a use environment for example, ⁇ 55 ° C. to + 150 ° C. in a use environment for a general piezoelectric device is used.
- the inorganic layer 20 is preferably made of a material having a high thermal conductivity with respect to the piezoelectric thin film 10 or a material having a small linear expansion coefficient.
- the inorganic layer may be formed of a plurality of layers, such as a two-layer structure of a layer having a small linear expansion coefficient and a layer having a high thermal conductivity.
- the elastic layer 30 is entirely formed on the surface of the inorganic layer 20 opposite to the piezoelectric thin film 10.
- a material having a relatively small elastic modulus and hardness is used as the material of the elastic body layer 30 .
- a resin material such as an epoxy resin, a polyimide resin, a benzocyclobutene resin, a cyclic olefin resin, or a liquid crystal polymer is used.
- the elastic layer 30 may be made of a material having high heat resistance and chemical resistance. Particularly, in the case of a device used at a high temperature of 300 ° C. or higher, polyimide resin, benzocyclobutene resin, liquid crystal Polymer is better.
- the elastic layer 30 should also have a large thermal conductivity.
- the above-described elastic modulus, hardness, thermal conductivity, and linear expansion coefficient can be adjusted as appropriate by adding an inorganic filler made of silica, alumina or the like to the elastic layer 30.
- a support 40 is bonded to the surface of the elastic layer 30 opposite to the inorganic layer 20.
- the support 40 is made of an inexpensive material with excellent workability. Specifically, ceramics such as Si, glass, and alumina are used.
- the sacrificial layer 70 is required to be removed from the etching window 80 formed in the piezoelectric thin film 10 after bonding to the above-described support.
- the surface of the sacrificial layer 70 naturally protrudes from the back surface 13 of the piezoelectric thin film 10 (more precisely, the piezoelectric single crystal substrate 1 when the sacrificial layer 70 is formed). Therefore, it is not easy to make the back surface 13 of the piezoelectric single crystal substrate 1 and the surface of the sacrificial layer 70 have high flatness at the same time, and a step due to unevenness or the like is more likely to occur than when the membrane structure is not used.
- the elastic layer 30 as shown in the present application is provided, the effect of such a step is suppressed, and the stress relaxation action as described above can be obtained.
- the pressure applied to the piezoelectric single crystal substrate 1 at the time of bonding (bonding) is relaxed by the elastic layer 30, the cleavage property of the piezoelectric single crystal substrate 1 is strong and even in the ion-implanted state, Occurrence of defects and the like can be suppressed.
- a piezoelectric device having high reliability and excellent characteristics can be realized at low cost.
- FIG. 2 is a flowchart showing a method for manufacturing the piezoelectric device of the present embodiment.
- 3, 4, and 5 are diagrams schematically showing a manufacturing process of the piezoelectric device formed by the manufacturing flow shown in FIG. 2.
- a piezoelectric single crystal substrate 1 having a predetermined thickness is prepared, and as shown in FIG. 3A, hydrogen ions are implanted from the back surface 12 side to form an ion implanted portion 100 (FIG. 2: S101).
- the piezoelectric single crystal substrate 1 is a substrate on which a plurality of piezoelectric devices are arranged.
- an LT substrate is used as the piezoelectric single crystal substrate 1
- hydrogen ions are implanted at an acceleration energy of 150 KeV and a dose of 1.0 ⁇ 10 17 atoms / cm 2 , so that a position about 1 ⁇ m deep from the back surface 12 is obtained.
- a hydrogen distribution portion is formed, and an ion implantation portion 100 is formed.
- the ion implanted portion 100 is a portion where the concentration of the ion element implanted into the piezoelectric single crystal substrate reaches a peak.
- the conditions for the ion implantation process are appropriately set according to the material of the piezoelectric single crystal substrate 1 and the thickness of the ion implantation portion 100. For example, if the acceleration energy is 75 KeV, the hydrogen distribution portion is located at a depth of 0.5 ⁇ m. Is formed.
- a lower electrode 50D, a pad electrode 51D, and a routing electrode 51LD are formed on the back surface 12 of the piezoelectric single crystal substrate 1 (FIG. 2: S102).
- a sacrificial layer 70 is formed on the back surface 12 of the piezoelectric single crystal substrate 1 (FIG. 2: S103).
- the sacrificial layer 70 is formed in a region having a predetermined area including the lower electrode 50D, that is, in a region serving as a main functional portion of the F-BAR element.
- the sacrificial layer 70 is made of a material that can select an etching gas or an etchant that can have an etching rate different from that of the lower electrode 50D, and is made of a material that is more easily etched than the lower electrode 50D.
- the sacrificial layer 70 is made of a material that is more easily etched than the inorganic layer 20 and the piezoelectric single crystal substrate 1 described later. Furthermore, it is better that the sacrificial layer 70 is made of a material resistant to electromigration. Specifically, it is appropriately set according to conditions from a metal such as Ni, Cu, and Al, an insulating film such as SiO 2 , ZnO, and PSG (phosphosilicate glass), an organic film, and the like.
- the sacrificial layer 70 is laminated by vapor deposition, sputtering, CVD, or the like, or formed by spin coating or the like.
- the inorganic layer 20 is formed on the back surface 12 of the piezoelectric single crystal substrate 1 with the sacrificial layer 70 (FIG. 2: S104).
- the material of the inorganic layer 20 a material satisfying the above-described elastic modulus, hardness, thermal conductivity, and linear expansion coefficient is used, and the thickness is appropriately set.
- the inorganic layer 20 For the formation method of the inorganic layer 20, a bonding method is not used, but a direct formation method such as CVD, sputtering, E / B (electron beam) method, ion plating, spraying, spraying, etc. Therefore, it is set as appropriate according to the specifications and manufacturing conditions. At this time, the inorganic layer 20 is formed at a temperature lower than the temperature of the peeling step described later.
- the inorganic layer 20 is formed under a reduced pressure atmosphere.
- the formation of voids (bubbles) at the interface between the back surface 12 of the piezoelectric single crystal substrate 1 and the inorganic layer 20 is prevented, and the interface is formed densely.
- voids bubbles
- the interface is formed densely.
- variations in reflection of the elastic wave at the interface can be suppressed, so that the characteristics of the acoustic wave device can be improved and the characteristics can be stabilized.
- the elastic layer 30 is formed on the surface of the inorganic layer 20 opposite to the piezoelectric single crystal substrate 1 (FIG. 2: S105).
- the material of the elastic layer 30 a material satisfying a smaller elastic modulus and lower hardness than the above-described inorganic layer 20 is used, and further, a material satisfying the above-described thermal conductivity and linear expansion coefficient is preferably used.
- the formation method of the elastic body layer 30 is, for example, a coating method, and more specifically, a spin coating method, a spray coating method, or a dispensing method is better used as the coating method.
- the coating thickness is appropriately set according to the characteristics necessary for the elastic layer 30 and the inherent elastic modulus of the material.
- the support 40 is bonded to the surface of the elastic layer 30 opposite to the inorganic layer 20 (FIG. 2: S106).
- the bonding is performed in a reduced pressure atmosphere.
- the composite piezoelectric substrate composed of the piezoelectric single crystal substrate 1 on which the inorganic layer 20, the elastic layer 30 and the support 40 are disposed is heated, and the ion-implanted portion 100 is peeled off.
- the surface is peeled off (FIG. 2: S107).
- the piezoelectric thin film 10 with the sacrificial layer 70 supported by the support 40 and provided with the inorganic layer 20 and the elastic layer 30 is formed.
- the heating temperature can be lowered by heating in a reduced pressure atmosphere.
- the surface 13 of the piezoelectric thin film 10 thus peeled and formed is polished by a CMP process or the like and flattened so that the surface roughness Ra becomes 1 nm or less. Thereby, the characteristic of an elastic wave device can be improved.
- polarization electrodes are formed on the upper and lower surfaces of the composite piezoelectric substrate composed of the piezoelectric thin film 10, the inorganic layer 20, the elastic layer 30, and the support 40, and a polarization treatment is performed by applying a predetermined voltage.
- the sacrificial layer 70 may be used as a conductive material for a polarization electrode.
- predetermined upper electrode patterns such as an upper electrode 50U and a pad electrode 51U for driving as an F-BAR device are formed on the surface 13 of the piezoelectric thin film 10 (see FIG. 4C).
- FIG. 2 S108).
- an etching window 80 for removing the sacrificial layer 70 and a through hole 81 for a via hole that conducts the front surface 13 side and the back surface 12 side of the piezoelectric thin film 10 are formed into a piezoelectric thin film. 10 to form.
- the etching window 80 is formed in the vicinity of the end of the sacrificial layer 70 forming region in the piezoelectric thin film 10.
- the through hole 81 is formed on the pad electrode 51D in the piezoelectric thin film 10.
- These etching window 80 and through hole 81 are formed by dry etching using, for example, photolithography. For this dry etching, NLD (Neural Loop Discharge) -RIE or SWP (Surface Wave Plasma) -RIE may be used.
- the via hole electrode of the through hole 81, the pad electrode 51UD connected to the via hole electrode, the upper lead electrode 51LU connected to the pad electrode 51U, and the like are formed.
- the pad electrode 51C may be formed in this step or may be formed in the above step S108.
- the composite is annealed.
- the crystallinity of the piezoelectric thin film 10 that has undergone crystal damage in the ion implantation process can be recovered, and the elongation and warpage of the piezoelectric thin film 10 are suppressed.
- the void layer 60 is formed in the next step of removing the sacrificial layer 70, damage to the portion of the piezoelectric thin film 10 (piezoelectric membrane portion) in contact with the void layer 60 can be suppressed.
- the sacrificial layer 70 is removed by flowing an etching gas or an etchant through the etching window 80. Thereby, the space in which the sacrificial layer 70 corresponding to the region where the lower electrode 50D and the upper electrode 50U of the piezoelectric device are formed becomes a void layer 60 as shown in FIG. 5A (FIG. 2: S109). ).
- a solder resist 91 is formed on each pad electrode 51U, 51UD, 51C and on the surface 13 of the piezoelectric thin film 10 excluding the gap layer 60. Then, bumps are formed on the pad electrodes 51U, 51UD, 51C, and solder balls 90 are formed on the bumps. In this way, an F-BAR piezoelectric device having a membrane structure is formed.
- the piezoelectric thin film 10, the inorganic layer 20, the elastic body layer 30, and the support 40 described above are layered, and a piezoelectric device having a membrane structure has high reliability and excellent characteristics. Can be manufactured. Furthermore, the piezoelectric device can be manufactured without increasing the process load.
- the piezoelectric device of the present embodiment has a feature in the manufacturing method, and the final configuration of the piezoelectric device is the same as that of the first embodiment, and thus the structural description is omitted. Also in the manufacturing method, only the characteristic part will be described, and the description of the same steps as those of the other first embodiment will be simplified.
- FIG. 6 is a flowchart showing a method for manufacturing the piezoelectric device of the present embodiment.
- FIG. 7 is a diagram schematically showing characteristic steps different from those of the first embodiment in the manufacturing process of the piezoelectric device formed by the manufacturing flow shown in FIG.
- the steps up to the step of forming the inorganic layer 20 on the piezoelectric single crystal substrate 1 with the sacrificial layer 70 are the same as in the first embodiment. .
- the elastic layer 30 is formed on the surface of the support 40 as shown in FIG. 7B (FIG. 6: S205).
- the material and forming method of the elastic body layer 30 are the same as those in the first embodiment.
- the support 40 with the elastic layer 30 is baked at a predetermined temperature (FIG. 6: S206).
- a predetermined temperature For example, if an acoustic wave device to be used at 300 ° C. or higher is manufactured, the baking process is performed at a temperature obtained by adding a predetermined margin to the use condition temperature.
- the baking process is performed at a temperature obtained by adding a predetermined margin to the use condition temperature.
- the elastic body layer 30 formed on the support 40 and the inorganic layer 20 formed on the piezoelectric single crystal substrate 1 with the sacrificial layer 70 are bonded together (FIG. 6). : S207). At this time, the surface of the inorganic layer 20 is flattened.
- the process conditions of this bonding process may be the same as those in the first embodiment.
- the piezoelectric thin film is formed by heat peeling (FIG. 6: S208) and the upper electrode pattern is formed (FIG. 6: S209). Further, under the same conditions as in the first embodiment, the sacrificial layer 70 is removed to form the gap layer 60 (FIG. 6: S210), and finally the piezoelectric device having the shape shown in FIG. 1 is formed.
- a piezoelectric device formed with a process flow of 300 ° C. or higher can also be reliably manufactured while maintaining excellent characteristics with high reliability. .
- FIG. 8 is a side sectional view showing the configuration of a piezoelectric device having another configuration of the present invention. With such a configuration, the thickness of the elastic body layer and the inorganic layer can be made constant.
- FIG. 9 is a side view showing the configuration of the acoustic wave device of the present invention and a plan view seen from the mounting surface side.
- the IDT electrode 50P and the routing electrodes 51L1 and 51L2 are formed on the back surface 13 of the piezoelectric thin film 10 instead of the upper electrodes 50U and 50D and the upper routing electrode 51LU of the F-BAR piezoelectric device described above.
- This is an example of an elastic wave device using Lamb wave or plate wave.
- each electrode on the surface 12 side of the piezoelectric thin film 10 is not formed with respect to the F-BAR piezoelectric device. Even in such an acoustic wave device, the above-described configuration can be used, and the same operational effects as the above-described F-BAR piezoelectric device and the manufacturing method thereof can be obtained.
- 1-piezoelectric single crystal substrate 10-piezoelectric thin film, 12-back surface, 13-front surface, 20-inorganic layer, 30-elastic layer, 40-support, 50U-upper electrode, 50D-lower electrode, 50P-IDT electrode , 51U, 51D, 51LU, 51LD-routing electrode, 60-gap layer, 70-sacrificial layer, 80-etching window, 81-through hole, 90-solder bump, 91-solder resist, 100-ion implantation part
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
Description
図1(A)は、本実施形態に係る圧電デバイスの構成を示す側面断面図であり、図1(B)は、当該圧電デバイスを実装面側から見た平面図である。なお、図1(B)に示す平面図では、図1(A)に示すソルダレジスト91の図示を省略している。また、図1(A)は、図1(B)にA-A’断面に対応する。
圧電デバイスは、LT等の圧電単結晶を材料とする1μm程度の厚みからなる圧電薄膜10を有する。なお、圧電薄膜10には、LT以外に、LNやLBO(Li2B4O7)やランガサイト(La3Ga5SiO14)、KN(KNbO3)、KLN(K3Li2Nb5O15)等、圧電性を有し、圧電基板に注入された元素の濃度がピークになる部分で分離が可能な材料であれば良い。
図3、図4、図5は、図2に示す製造フローで形成される圧電デバイスの製造過程を模式的に示す図である。
図7は、図6に示す製造フローで形成される圧電デバイスの製造過程における第1の実施形態とは異なる特徴的な工程を模式的に示す図である。
Claims (10)
- 駆動電極が形成された圧電薄膜と、該圧電薄膜の一方主面側に配設された支持体とを備え、前記圧電薄膜における前記駆動電極が形成される領域を含む所定領域と前記支持体との間に空隙層が設けられたメンブレン構造からなる圧電デバイスであって、
前記圧電薄膜と前記支持体との間には、
弾性体層と、
該弾性体層の前記圧電薄膜側に形成され、該弾性体層と比較して弾性率が大きく硬度が高い材質からなる無機層と、
を備える、圧電デバイス。 - 前記弾性体層は、無機フィラーが含有されている請求項1に記載の圧電デバイス。
- 前記無機層は、前記圧電薄膜よりも熱伝導率が大きい、請求項1または請求項2に記載の圧電デバイス。
- 前記弾性体層は、前記圧電薄膜および前記無機層よりも熱伝導率が大きい、請求項1~請求項3のいずれかに記載の圧電デバイス。
- 前記無機層は、前記圧電薄膜よりも線膨張係数が小さい、請求項1~請求項4のいずれかに記載の圧電デバイス。
- 前記圧電薄膜は、第1族元素を含む材料からなる請求項1~請求項5のいずれかに記載の圧電デバイス。
- 請求項1~請求項6のいずれかに記載した圧電デバイスの製造方法であって、
圧電基板にイオン化した元素を注入することで、前記圧電基板の中に圧電基板に注入された元素の濃度がピークになる部分を形成するイオン注入工程と、
圧電基板のイオン注入側の面に犠牲層を形成する犠牲層形成工程と、
該犠牲層が形成された前記圧電基板のイオン注入側の面に前記無機層を直接形成する無機層形成工程と、
前記無機層の前記圧電基板と反対側の面に前記弾性体層を配設する弾性体層配設工程と、
前記弾性体層に前記支持体を貼り合わせる貼合工程と、
前記圧電基板に注入された元素の濃度がピークになる部分が形成された前記圧電基板から前記圧電薄膜を剥離形成する剥離工程と、
前記犠牲層を除去することで、空隙層を形成する犠牲層除去工程と、
を有する圧電デバイスの製造方法。 - 請求項1~請求項6のいずれかに記載した圧電デバイスの製造方法であって、
圧電基板にイオン化した元素を注入することで、前記圧電基板の中に圧電基板に注入された元素の濃度がピークになる部分を形成するイオン注入工程と、
圧電基板のイオン注入側の面に犠牲層を形成する犠牲層形成工程と、
該犠牲層が形成された前記圧電基板のイオン注入側の面に無機層を直接形成する無機層形成工程と、
前記支持体の表面に前記弾性体層を配設する弾性体層配設工程と、
前記無機層と前記弾性体層とを貼り合わせる貼合工程と、
前記圧電基板に注入された元素の濃度がピークになる部分が形成された前記圧電基板から前記圧電薄膜を剥離形成する剥離工程と、
前記犠牲層を除去することで、空隙層を形成する犠牲層除去工程と、
を有する圧電デバイスの製造方法。 - 前記貼合工程を減圧雰囲気下で行う請求項7または請求項8に記載の圧電デバイスの製造方法。
- 前記無機層形成工程を減圧雰囲気下で行う請求項7~請求項9のいずれかに記載の圧電デバイスの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011538420A JP5229399B2 (ja) | 2009-10-30 | 2010-10-26 | 圧電デバイスの製造方法 |
DE112010004178.4T DE112010004178B4 (de) | 2009-10-30 | 2010-10-26 | Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements |
US13/455,378 US8889452B2 (en) | 2009-10-30 | 2012-04-25 | Piezoelectric device and method for manufacturing piezoelectric device |
US14/516,767 US9123885B2 (en) | 2009-10-30 | 2014-10-17 | Piezoelectric device and method for manufacturing piezoelectric device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009250121 | 2009-10-30 | ||
JP2009-250121 | 2009-10-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/455,378 Continuation US8889452B2 (en) | 2009-10-30 | 2012-04-25 | Piezoelectric device and method for manufacturing piezoelectric device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052551A1 true WO2011052551A1 (ja) | 2011-05-05 |
Family
ID=43921974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068886 WO2011052551A1 (ja) | 2009-10-30 | 2010-10-26 | 圧電デバイスおよび圧電デバイスの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US8889452B2 (ja) |
JP (1) | JP5229399B2 (ja) |
DE (1) | DE112010004178B4 (ja) |
WO (1) | WO2011052551A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130250527A1 (en) * | 2010-10-28 | 2013-09-26 | Kyocera Corporation | Electronic device |
JP2013214954A (ja) * | 2012-03-07 | 2013-10-17 | Taiyo Yuden Co Ltd | 共振子、周波数フィルタ、デュプレクサ、電子機器及び共振子の製造方法 |
CN103532513A (zh) * | 2012-07-04 | 2014-01-22 | 太阳诱电株式会社 | 兰姆波器件及其制造方法 |
KR101469348B1 (ko) * | 2012-02-29 | 2014-12-04 | 인피니언 테크놀로지스 아게 | 조정 가능 mems 디바이스 및 조정 가능 mems 디바이스의 제조 방법 |
JPWO2013018603A1 (ja) * | 2011-07-29 | 2015-03-05 | 株式会社村田製作所 | 弾性波デバイスの製造方法 |
JPWO2013018604A1 (ja) * | 2011-07-29 | 2015-03-05 | 株式会社村田製作所 | 圧電デバイス、および、圧電デバイスの製造方法 |
WO2016021304A1 (ja) * | 2014-08-05 | 2016-02-11 | 株式会社村田製作所 | 圧電共振器の製造方法および圧電共振器 |
WO2016072270A1 (ja) * | 2014-11-05 | 2016-05-12 | 株式会社村田製作所 | 圧電デバイス |
JP2016086308A (ja) * | 2014-10-27 | 2016-05-19 | 株式会社村田製作所 | 圧電共振器、及び圧電共振器の製造方法 |
WO2016093020A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社村田製作所 | 圧電デバイス、及び圧電デバイスの製造方法 |
WO2016103925A1 (ja) * | 2014-12-25 | 2016-06-30 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
CN110995196A (zh) * | 2019-12-05 | 2020-04-10 | 瑞声科技(新加坡)有限公司 | 谐振器的制备方法和谐振器 |
US10924083B2 (en) | 2014-10-27 | 2021-02-16 | Murata Manufacturing Co., Ltd. | Piezoelectric device and method for manufacturing piezoelectric device |
WO2022186201A1 (ja) * | 2021-03-01 | 2022-09-09 | 株式会社村田製作所 | 弾性波装置 |
WO2022210859A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | 弾性波装置 |
WO2022210687A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | 弾性波装置 |
WO2023033147A1 (ja) * | 2021-09-06 | 2023-03-09 | 株式会社村田製作所 | 弾性波装置 |
WO2023085362A1 (ja) * | 2021-11-11 | 2023-05-19 | 株式会社村田製作所 | 弾性波装置 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4582235B2 (ja) * | 2008-10-31 | 2010-11-17 | 株式会社村田製作所 | 圧電デバイスの製造方法 |
US9646874B1 (en) * | 2013-08-05 | 2017-05-09 | Sandia Corporation | Thermally-isolated silicon-based integrated circuits and related methods |
WO2016098526A1 (ja) * | 2014-12-18 | 2016-06-23 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
US10855250B2 (en) * | 2016-07-11 | 2020-12-01 | Akoustis, Inc. | Communication filter for LTE band 41 |
US10256786B1 (en) * | 2016-07-11 | 2019-04-09 | Akoustis, Inc. | Communication filter using single crystal acoustic resonator devices |
US10601391B2 (en) * | 2016-11-15 | 2020-03-24 | Global Communication Semiconductors, Llc. | Film bulk acoustic resonator with spurious resonance suppression |
US11736088B2 (en) * | 2016-11-15 | 2023-08-22 | Global Communication Semiconductors, Llc | Film bulk acoustic resonator with spurious resonance suppression |
DE102017102190B4 (de) * | 2017-02-03 | 2020-06-04 | Infineon Technologies Ag | Membranbauteile und Verfahren zum Bilden eines Membranbauteils |
US11764750B2 (en) | 2018-07-20 | 2023-09-19 | Global Communication Semiconductors, Llc | Support structure for bulk acoustic wave resonator |
JP7290941B2 (ja) | 2018-12-27 | 2023-06-14 | 太陽誘電株式会社 | 弾性波デバイス、フィルタおよびマルチプレクサ |
US11817839B2 (en) | 2019-03-28 | 2023-11-14 | Global Communication Semiconductors, Llc | Single-crystal bulk acoustic wave resonator and method of making thereof |
WO2021042342A1 (zh) * | 2019-09-05 | 2021-03-11 | 刘宇浩 | 一种体声波谐振装置及一种体声波滤波器 |
WO2021042345A1 (zh) * | 2019-09-05 | 2021-03-11 | 刘宇浩 | 一种体声波谐振装置的形成方法 |
US11979134B2 (en) | 2019-10-15 | 2024-05-07 | Global Communication Semiconductors, Llc | Composite piezoelectric film and bulk acoustic resonator incorporating same |
WO2021109090A1 (zh) * | 2019-12-05 | 2021-06-10 | 瑞声声学科技(深圳)有限公司 | 谐振器的制备方法和谐振器 |
CN115051676A (zh) * | 2022-04-18 | 2022-09-13 | 电子科技大学 | 一种高频兰姆波谐振器及其制备方法 |
CN114553163B (zh) * | 2022-04-28 | 2022-09-06 | 深圳新声半导体有限公司 | 体声波谐振器的制造方法 |
CN114900147B (zh) * | 2022-07-08 | 2022-11-01 | 深圳新声半导体有限公司 | 体声波谐振器及其制造方法 |
US20230011477A1 (en) * | 2022-09-16 | 2023-01-12 | Shenzhen Newsonic Technologies Co., Ltd. | Structure and manufacturing method of surface acoustic wave filter with back electrode of piezoelectric layer |
US12088271B2 (en) | 2022-09-16 | 2024-09-10 | Shenzhen Newsonic Technologies Co., Ltd. | Structure and manufacturing method of surface acoustic wave filter with back electrode of piezoelectric layer |
US12074586B2 (en) * | 2022-09-16 | 2024-08-27 | Shenzhen Newsonic Technologies Co., Ltd. | Structure and manufacturing method of surface acoustic wave filter with back electrode of piezoelectric layer |
US20230188117A1 (en) * | 2022-09-16 | 2023-06-15 | Shenzhen Newsonic Technologies Co., Ltd. | Structure and manufacturing method of surface acoustic wave filter with interdigital transducer |
US20240213958A1 (en) * | 2022-12-21 | 2024-06-27 | RF360 Europe GmbH | Vertically coupled saw resonators |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6276913A (ja) * | 1985-09-30 | 1987-04-09 | Toshiba Corp | 薄膜弾性波装置 |
JP2000196407A (ja) * | 1998-12-28 | 2000-07-14 | Tdk Corp | 弾性表面波装置 |
JP2004312201A (ja) * | 2003-04-04 | 2004-11-04 | Murata Mfg Co Ltd | 圧電共振子、その製造方法、圧電フィルタ、デュプレクサ、通信装置 |
JP2008042871A (ja) * | 2006-03-08 | 2008-02-21 | Ngk Insulators Ltd | 圧電薄膜デバイス |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017967A (ja) | 2001-06-29 | 2003-01-17 | Toshiba Corp | 弾性表面波素子及びその製造方法 |
JP4627269B2 (ja) | 2006-02-24 | 2011-02-09 | 日本碍子株式会社 | 圧電薄膜デバイスの製造方法 |
JP4866210B2 (ja) | 2006-11-08 | 2012-02-01 | 信越化学工業株式会社 | 単結晶シリコン太陽電池の製造方法 |
WO2011004665A1 (ja) * | 2009-07-07 | 2011-01-13 | 株式会社村田製作所 | 弾性波デバイスおよび弾性波デバイスの製造方法 |
-
2010
- 2010-10-26 JP JP2011538420A patent/JP5229399B2/ja active Active
- 2010-10-26 WO PCT/JP2010/068886 patent/WO2011052551A1/ja active Application Filing
- 2010-10-26 DE DE112010004178.4T patent/DE112010004178B4/de active Active
-
2012
- 2012-04-25 US US13/455,378 patent/US8889452B2/en active Active
-
2014
- 2014-10-17 US US14/516,767 patent/US9123885B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6276913A (ja) * | 1985-09-30 | 1987-04-09 | Toshiba Corp | 薄膜弾性波装置 |
JP2000196407A (ja) * | 1998-12-28 | 2000-07-14 | Tdk Corp | 弾性表面波装置 |
JP2004312201A (ja) * | 2003-04-04 | 2004-11-04 | Murata Mfg Co Ltd | 圧電共振子、その製造方法、圧電フィルタ、デュプレクサ、通信装置 |
JP2008042871A (ja) * | 2006-03-08 | 2008-02-21 | Ngk Insulators Ltd | 圧電薄膜デバイス |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9165849B2 (en) * | 2010-10-28 | 2015-10-20 | Kyocera Corporation | Electronic device |
US20130250527A1 (en) * | 2010-10-28 | 2013-09-26 | Kyocera Corporation | Electronic device |
JP2015222970A (ja) * | 2011-07-29 | 2015-12-10 | 株式会社村田製作所 | 弾性波デバイスの製造方法 |
JPWO2013018603A1 (ja) * | 2011-07-29 | 2015-03-05 | 株式会社村田製作所 | 弾性波デバイスの製造方法 |
JPWO2013018604A1 (ja) * | 2011-07-29 | 2015-03-05 | 株式会社村田製作所 | 圧電デバイス、および、圧電デバイスの製造方法 |
KR101469348B1 (ko) * | 2012-02-29 | 2014-12-04 | 인피니언 테크놀로지스 아게 | 조정 가능 mems 디바이스 및 조정 가능 mems 디바이스의 제조 방법 |
JP2013214954A (ja) * | 2012-03-07 | 2013-10-17 | Taiyo Yuden Co Ltd | 共振子、周波数フィルタ、デュプレクサ、電子機器及び共振子の製造方法 |
JP2014013991A (ja) * | 2012-07-04 | 2014-01-23 | Taiyo Yuden Co Ltd | ラム波デバイスおよびその製造方法 |
CN103532513A (zh) * | 2012-07-04 | 2014-01-22 | 太阳诱电株式会社 | 兰姆波器件及其制造方法 |
US10560065B2 (en) | 2014-08-05 | 2020-02-11 | Murata Manufacturing Co., Ltd. | Piezoelectric resonator manufacturing method and piezoelectric resonator |
WO2016021304A1 (ja) * | 2014-08-05 | 2016-02-11 | 株式会社村田製作所 | 圧電共振器の製造方法および圧電共振器 |
JPWO2016021304A1 (ja) * | 2014-08-05 | 2017-04-27 | 株式会社村田製作所 | 圧電共振器の製造方法および圧電共振器 |
JP2016086308A (ja) * | 2014-10-27 | 2016-05-19 | 株式会社村田製作所 | 圧電共振器、及び圧電共振器の製造方法 |
US10924083B2 (en) | 2014-10-27 | 2021-02-16 | Murata Manufacturing Co., Ltd. | Piezoelectric device and method for manufacturing piezoelectric device |
WO2016072270A1 (ja) * | 2014-11-05 | 2016-05-12 | 株式会社村田製作所 | 圧電デバイス |
WO2016093020A1 (ja) * | 2014-12-08 | 2016-06-16 | 株式会社村田製作所 | 圧電デバイス、及び圧電デバイスの製造方法 |
US10700262B2 (en) | 2014-12-08 | 2020-06-30 | Murata Manufacturing Co., Ltd. | Piezoelectric device and production method for piezoelectric device |
US10530333B2 (en) | 2014-12-25 | 2020-01-07 | Murata Manufacturing Co., Ltd. | Acoustic wave device and manufacturing method for same |
WO2016103925A1 (ja) * | 2014-12-25 | 2016-06-30 | 株式会社村田製作所 | 弾性波装置及びその製造方法 |
CN110995196A (zh) * | 2019-12-05 | 2020-04-10 | 瑞声科技(新加坡)有限公司 | 谐振器的制备方法和谐振器 |
CN110995196B (zh) * | 2019-12-05 | 2023-11-10 | 瑞声科技(新加坡)有限公司 | 谐振器的制备方法和谐振器 |
WO2022186201A1 (ja) * | 2021-03-01 | 2022-09-09 | 株式会社村田製作所 | 弾性波装置 |
WO2022210859A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | 弾性波装置 |
WO2022210687A1 (ja) * | 2021-03-31 | 2022-10-06 | 株式会社村田製作所 | 弾性波装置 |
WO2023033147A1 (ja) * | 2021-09-06 | 2023-03-09 | 株式会社村田製作所 | 弾性波装置 |
WO2023085362A1 (ja) * | 2021-11-11 | 2023-05-19 | 株式会社村田製作所 | 弾性波装置 |
Also Published As
Publication number | Publication date |
---|---|
US8889452B2 (en) | 2014-11-18 |
DE112010004178T5 (de) | 2012-12-06 |
US9123885B2 (en) | 2015-09-01 |
DE112010004178B4 (de) | 2018-08-23 |
US20150035413A1 (en) | 2015-02-05 |
JP5229399B2 (ja) | 2013-07-03 |
JPWO2011052551A1 (ja) | 2013-03-21 |
US20120205754A1 (en) | 2012-08-16 |
DE112010004178T8 (de) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229399B2 (ja) | 圧電デバイスの製造方法 | |
JP5637136B2 (ja) | 弾性波デバイスおよび弾性波デバイスの製造方法 | |
US9197184B2 (en) | Method for manufacturing piezoelectric device | |
US10580962B2 (en) | Method for manufacturing piezoelectric device | |
KR101251031B1 (ko) | 복합 압전기판의 제조방법 및 압전 디바이스 | |
US9240540B2 (en) | Piezoelectric device | |
JP5447682B2 (ja) | 圧電デバイスの製造方法 | |
JP5522263B2 (ja) | 圧電デバイス、圧電デバイスの製造方法 | |
JP2010109949A (ja) | 電子デバイスの製造方法および圧電デバイスの製造方法 | |
JPWO2011099381A1 (ja) | 圧電デバイス、圧電デバイスの製造方法 | |
JP5796316B2 (ja) | 圧電デバイスの製造方法 | |
JP5682201B2 (ja) | 圧電デバイスの製造方法 | |
WO2011074329A1 (ja) | 圧電デバイスの製造方法 | |
JP5581619B2 (ja) | 圧電デバイスの製造方法および圧電デバイス | |
US20100175236A1 (en) | Method for manufacturing piezoelectric device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826683 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011538420 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112010004178 Country of ref document: DE Ref document number: 1120100041784 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10826683 Country of ref document: EP Kind code of ref document: A1 |