WO2011051996A1 - 永久磁石式回転電機及び車両用永久磁石式回転電機システム - Google Patents

永久磁石式回転電機及び車両用永久磁石式回転電機システム Download PDF

Info

Publication number
WO2011051996A1
WO2011051996A1 PCT/JP2009/005631 JP2009005631W WO2011051996A1 WO 2011051996 A1 WO2011051996 A1 WO 2011051996A1 JP 2009005631 W JP2009005631 W JP 2009005631W WO 2011051996 A1 WO2011051996 A1 WO 2011051996A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
permanent magnet
rotating electrical
electrical machine
Prior art date
Application number
PCT/JP2009/005631
Other languages
English (en)
French (fr)
Inventor
郡大祐
小村昭義
堀雅寛
増田誠吉
藤枝昌泰
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/503,992 priority Critical patent/US8994245B2/en
Priority to PCT/JP2009/005631 priority patent/WO2011051996A1/ja
Priority to JP2011538105A priority patent/JP5383817B2/ja
Publication of WO2011051996A1 publication Critical patent/WO2011051996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet type rotating electrical machine having a rotor cantilever support structure that supports only one end of a shaft of a rotor via a bearing provided on one side of a rotating electrical machine casing, and a vehicle such as a railway vehicle using the same.
  • the present invention relates to a permanent magnet type rotating electrical machine system.
  • wound-type generators and induction motors have been used as rotating electrical machines used in railway vehicles.
  • the size and weight of the permanent magnets have increased due to higher performance and lower prices of permanent magnets and the spread of high-performance inverters.
  • Motivation to adopt a permanent magnet type rotating electrical machine that enables higher efficiency and higher efficiency is increasing.
  • Such a rotor cantilever support structure of a rotating electrical machine continues until it is directly connected to the prime mover.
  • a rotating electrical machine for example, a generator
  • the rotor is wound, and the rotor becomes an electromagnet by supplying current to the winding. For this reason, unless a current is supplied to the rotor, no magnetic flux exists in the generator and no magnetic attractive force or the like is generated.
  • a permanent magnet generator when a permanent magnet generator is applied, since there is a permanent magnet in the rotor, magnetic flux always exists in the generator, and a magnetic attractive force is generated in the gap between the rotor and the stator.
  • the rotor of the cantilevered support structure is able to restrain the movement until it is directly connected to the prime mover. Is required. Moreover, since it is necessary to disconnect the connection part of a motor and a generator at the time of maintenance of a motor and a generator, the structure which can restrain a movement of a rotor also at the time of a maintenance is required.
  • Patent Documents 1 and 2 for example, as a transport protection device for a cantilevered rotary motor used in an elevator hoisting machine, the side that is not supported by the bearing of the rotor of the motor is screwed to the end face of the flange portion of one end of the motor casing.
  • a technology is disclosed in which a pair of fixed plates that are stopped are sandwiched from the radial direction of the rotor shaft to restrain the movement of the rotor in the radial direction and the axial direction. More specifically, in Patent Document 1, the fixed plate is concavo-convexly fitted with the flange end surface of the motor casing, and one end of each fixed plate is engaged with a stepped portion provided on the outer periphery of the rotor shaft.
  • Such a restraint structure is an effective transportation protection means in an elevator-specific rotating electrical machine that is relatively small compared to, for example, a railway vehicle generator.
  • a permanent magnet type rotating electric machine having a child cantilever support structure When applied to a permanent magnet type rotating electric machine having a child cantilever support structure, it cannot be said to be sufficient for the following reason.
  • the magnetic attraction force inside the rotating electrical machine is very large. Therefore, if an external force acts in the rotational direction before the direct connection to the prime mover, It is expected that restraints will not be adequately addressed.
  • Patent Document 3 a spacer for preventing adsorption is provided between the rotor and the stator, and the spacer can be removed after the rotating machine is assembled. Since this structure is intended to prevent adsorption between the rotor and the stator, it is not a structure in which the rotor itself is fixed. Therefore, it cannot fully cope with the rotation direction (circumferential direction) constraint of the rotor as in the cantilever support structure. In addition, it takes relatively time to remove the spacer, and once the spacer is removed, it is difficult to attach it again, and there are points to consider in terms of assembly and maintenance.
  • the present invention has been made in view of the above points, and even if it is a permanent magnet type rotating electrical machine having a large capacity (large magnetic attraction force) and a rotor cantilever support structure, the rotation before coupling with the prime mover
  • An object of the present invention is to provide a permanent magnet type rotating electrical machine that can sufficiently cope with not only the axial direction and radial direction of the rotor but also the rotational direction (circumferential direction) as the restraint structure of the rotor.
  • the present invention is basically a rotor cantilever support structure in which only one end of a rotor shaft is supported via a bearing provided on one side of a rotating electrical machine casing.
  • the permanent magnet type rotating electrical machine in which one end of the shaft not supported by the bearing can be connected to one end of the shaft of the prime mover has the following characteristics.
  • the side of the rotor shaft that is not supported by the bearing is constrained to one end surface of the casing so that movement in the axial direction, radial direction, and circumferential direction is constrained when the shaft of the rotor is disconnected from the shaft of the prime mover. It is connected via a connecting member.
  • One end side of the constraining connecting member is attached to a shaft end surface on the side not supported by the bearing of the rotor shaft via a screw member, and the other end side is attached to one end surface of the casing via a screw member. It is attached.
  • the shaft of the rotor is integrally provided with a flange for directly connecting to the shaft of the prime mover at the end of the shaft that is not supported by the bearing, and one end side of the constraining connecting member is connected to the shaft.
  • the rotor shaft is provided with a first flange portion and a second flange on the shaft that is not supported by the bearing, and the first flange portion is provided on the shaft of the prime mover.
  • the rotor is provided at one end of the rotor to be directly connected to the shaft, the second flange portion is provided corresponding to the restraining connecting member, and the one end side of the restraining connecting member is the second
  • the one end surface of the flange portion may be attached via a screw member, and the other end side may be attached to the one end surface of the casing via the screw member.
  • the present invention even in a permanent magnet type rotating electrical machine having a large capacity (large magnetic attraction force) rotor cantilevered support structure, only the axial direction and the radial direction of the rotor are required before being connected to the prime mover.
  • a rotor restraint structure excellent in protection of rotating electrical machines that can sufficiently cope with restraint in the rotational direction (circumferential direction).
  • the constraining connecting member can be easily attached and detached, it is possible to provide a permanent magnet type rotating electrical machine that can contribute to simplification of assembly work and maintenance work of the rotating electrical machine.
  • FIG. 1 is an axial sectional view of a vehicle permanent magnet generator according to a first embodiment of the present invention.
  • the axial direction fragmentary sectional view which shows the other aspect of the said 1st Example.
  • the right view of the permanent magnet type generator for vehicles of FIG. The axial direction fragmentary sectional view which shows the other aspect of the said 2nd Example.
  • the right view of the permanent magnet type generator for vehicles of FIG. The axial direction fragmentary sectional view of the permanent magnet type generator for vehicles used as the 4th example of the present invention.
  • FIG. 1 is an axial sectional view of a vehicular permanent magnet generator according to a first embodiment of the present invention. Used for generators for railway vehicles of several MW class, it rotates in the range of 600-2500min- 1 .
  • a rotor 3 and a stator 4 are housed.
  • a permanent magnet 6 serving as a field pole is embedded in the rotor core 5, and the rotor core 5 and the rotor shaft 7 are fastened.
  • the stator 4 is equipped with a stator coil 8 for taking out electric power excited by the rotation of the rotor.
  • the generator casing 2 includes a cylindrical yoke (cylindrical frame) 2a, an end bracket 2b having a bearing inside disposed at one end thereof, and an open bracket 2c disposed at the other end.
  • the bracket 2c side which is one end side of the casing, is a connection side with the prime mover 101 (shown in FIGS. 11 and 12). That is, the generator according to this embodiment employs a cantilever support structure in which only one end of the shaft of the rotor 3 is supported via a bearing 9 provided on one side (end bracket) 2b of the casing, and is supported by the bearing 9. One end of the shaft that is not connected can be connected to one end of the output shaft of the prime mover.
  • the side of the rotor shaft 7 connected to the output shaft of the prime mover has such a length that one end thereof is flush with one end surface of the casing (that is, the outer end surface 2c ′ of the end bracket 2c).
  • a flange portion 10 is provided at one end.
  • One end of the flange portion 10 on the motor coupling side is also flush with the casing one end surface 2c ′.
  • the term “equal” includes a certain amount of surface deviation due to dimensional errors and assembly errors.
  • the fan 11 for cooling a generator is provided in the end surface on the opposite side to the motor
  • the shaft 7 of the rotor 3 is supported by a bearing 9 so that movement in the axial direction, radial direction, and circumferential direction is constrained when the output shaft 102 of the prime mover is not connected.
  • An unfinished side (in this embodiment, the end surface 10 ′ on the motor coupling side of the flange 10) is connected to one end surface (bracket end surface) 2 c ′ of the casing 2 via a plurality of constraining connecting members 12.
  • each constraining connecting member 12 may have various forms.
  • each constraining connecting member 12 is composed of a pair of L-shaped metal fittings 12a and 12b.
  • the one side 12a 'and 12b' of the L-shaped metal fittings 12a and 12b are abutted with each other, They are coupled via a screw member 14.
  • the L-shaped brackets 12a and 12b are screw members (bolts in this embodiment) on the end surface (the flange end surface 10 'in this embodiment) of the rotor shaft 7 on the non-bearing side and the end surface 2c' of the casing. 14 is attached.
  • a play is provided in the bolt through hole (screw member through hole) 121 provided in the abutting side 12a 'of one L-shaped metal fitting 12a so that the L-shaped metal fittings 12a and 12b can be adjusted in the axial direction of the rotor 3. It is.
  • components for example, the rotor shaft 7 and the casing 2 are attached to the L-shaped metal fitting mounting portions between the end surface (flange end surface 10 ') of the shaft 7 of the rotor 3 and the casing end surface 2c'. Even when a deviation in the axial direction occurs due to an assembly error or dimensional error in the axial direction, the structure can absorb the deviation.
  • the bolt through hole 121 of the L-shaped metal fitting 12a has a long hole shape extending in the axial direction of the rotor as shown in FIGS. 3 and 4, that is, the hole diameter in the long hole direction is made larger than the diameter of the bolt 14.
  • the play is ensured in the axial direction of the rotor.
  • the diameter of the head 14 ′ of the bolt 14 is larger than the width of the long hole 121 in the short direction.
  • the bolt through hole 121 may be made larger than the diameter of the bolt in place of the elongated hole to provide play (not shown).
  • the pair of L-shaped metal fittings 12 is configured to be arranged at four locations at equal intervals along the peripheral edge of the opening of the casing 2 as shown in FIG. 2, but the present invention is not limited to this. There is no problem with the number.
  • symbol 122 of FIG. 3 is a volt
  • the axial assembly error between the flange end surface 10 ′ of the rotor 3 and the casing end surface 2 c ′ due to an axial assembly error or dimensional error between the rotor shaft 7 and the casing 2.
  • a spacer 20 may be interposed between the flange end surface 10 ′ and the casing end surface 2c ′ as shown in FIG. 8 to absorb the shift. .
  • a hole (hidden by the L-shaped metal fitting 12b in FIG. 2) is provided together with a plurality of screw holes 30 when the flange 10 of the rotor shaft 7 is connected to the output shaft of the prime mover.
  • an L-shaped bracket (a connecting member for restraint) 12 for restraining the movement of the rotor 3 can be attached in the connected state. Therefore, maintainability is also improved (described below with reference to FIG. 12).
  • FIG. 12 is a diagram in which the vehicle permanent magnet generator 1 and the prime mover 101 according to this embodiment are connected.
  • the prime mover 101 include an electric motor and an internal combustion engine (for example, a diesel engine).
  • the flange portion 10 provided on the rotor shaft 7 of the rotor cantilever support structure of the generator 1 is connected to the flange 103 provided on the output shaft 102 of the prime mover 101 in a directly connected state.
  • FIG. 12 shows an L-shaped bracket 12 (12a, 12b) for restraining the movement of the rotor 3 in a state where the shafts 7, 102 of the generator 1 and the prime mover 101 are connected to each other via flanges 10, 103. The state just before removing is shown. With such a configuration, in a state where the generator 1 and the prime mover 101 are connected, the connecting members (L-shaped metal fittings 12a and 12b) for restraint can be attached and detached, and the maintainability is improved.
  • FIG. 13 shows the state of FIG.
  • FIG. 6 is an axial sectional view of a vehicular permanent magnet generator according to a second embodiment of the present invention
  • FIG. 7 is a right side view thereof (a side view seen from the side where the shaft is not supported by the bearing). is there.
  • the connecting member for restraining the rotor shaft that connects the end surface 2c ′ of the casing 2 of the generator and the flange end surface 10 ′ of the rotor shaft 7 is connected.
  • a plate-shaped metal fitting 15 was used instead of the L-shaped metal fittings 12a and 12b as in the first embodiment.
  • a spacer 20 (see FIG. 8) may be provided as in the first embodiment as a method for absorbing the axial assembly error between the rotor shaft and the casing of the generator component.
  • FIG. 9 shows an axial sectional view of a permanent magnet generator for a vehicle, which is a third embodiment of the present invention.
  • the configuration of this embodiment is obtained by further adding the following configuration in addition to the configuration of the generator shown in the first embodiment.
  • the male screw 16a extends from the outer periphery of the generator casing 2 to the casing radial direction, that is, toward the shaft portion on the side not supported by the bearing 9 of the rotor 3.
  • a plurality of attached shaft pressing rods 16 are mounted through screw holes 201 provided in the casing 2, and the shaft pressing rods 16 hold down a part of the rotor shaft (in this embodiment, the outer peripheral surface of the flange portion 10).
  • the radial, axial, and circumferential constraints of the rotor 3 are reinforced.
  • the shaft pressing rod 16 is, for example, a bolt-shaped member, and the male screw portion 16 a is provided corresponding to the screw hole 201, and is screwed to a position where the tip of the rod contacts the outer peripheral surface of the flange portion 10.
  • FIG. 10 shows a right side view of the generator of this embodiment. As shown in FIG. 10, four shaft pressing rods 16 are used, and the two shaft pressing rods 16 are arranged to face each other. In FIG. 10, the number of rods 16 is four. However, the number of rods 16 is not limited as long as an even number of four or more rods 16 are arranged to face each other.
  • the shaft pressing rod 16 is provided.
  • the movement of the rotor 3 can be restricted with respect to the axial direction and the radial direction. Further, by providing such a rod 16, it is possible to avoid contact between the rotor 3 and the stator 4 due to the magnetic attraction force. Further, since the rotor 3 can be restrained without the restraining connecting member 12, the rotor 1 can be adjusted by adjusting the screwing amount of the rod 16 when the generator 1 is coupled to the prime mover 101 by coupling. Can be finely adjusted in the radial direction, and the centering accuracy of the rotor 3 can be improved.
  • the configuration of the third embodiment can be applied to the second embodiment and the same effect can be obtained.
  • FIG. 11 is a sectional view in the axial direction of a permanent magnet generator for a vehicle, which is a fourth embodiment of the present invention.
  • a shaft pressing rod 16 for pressing the shaft is mounted on the outer side of the generator casing 2 on the side opposite to the motor coupling side. is there.
  • the rod 16 is screwed to a position where it comes into contact with the rotor shaft 7.
  • the circumferential position where the rod 16 is disposed is the same as the position shown in the third embodiment.
  • FIG. 14 shows a diagram in which a vehicular permanent magnet generator and a prime mover are connected as a fifth embodiment of the present invention.
  • an L-shaped bracket 12 for restraining the movement of the rotor 3 in a state where the shafts 7 and 102 of the generator 1 and the prime mover 101 are connected to each other via flanges 10 and 103. 12a, 12b) is shown just before removal.
  • the generator shaft 7 is structured to extend further outward than the end surface 2c ′ of the generator casing 2, and a prime mover connecting flange portion (first flange portion) 10 provided at the tip of the elongated shaft 7 is provided. And a flange portion (second flange portion) 17 for attaching a constraining connecting member provided in the middle of the shaft, and a constraining connecting member that connects one end surface 17 ′ of the second flange portion 17 and the casing end surface 2c ′. 12 (L-shaped metal fittings 12a, 12b).
  • the first flange portion 10 provided on the rotor shaft 7 of the generator of this embodiment is exclusively used for connection with the flange 103 provided on the output shaft 102 of the prime mover 101.
  • FIG. 15 shows the state of FIG. 14, that is, after the flange portion 10 provided on the rotor shaft 7 and the flange 103 provided on the prime mover output shaft 102 are connected by the bolt 14, another flange 17 and the end face of the generator casing.
  • FIG. 16 shows a diagram in which a permanent magnet generator for a vehicle and a prime mover according to a sixth embodiment of the present invention are connected.
  • the shaft 7 extending from the rotor 3 of the generator 1 and the prime mover 101 are connected via a connecting member 18 made of a joint.
  • a connecting member 12 (12a, 12a for restraint) for restraining the movement of the rotor 3 is restrained. 12b) shows a state immediately before removing.
  • the connecting member 12 (12a, 12b) for restraint can be removed in a state where the generator 1 and the prime mover 101 are connected, and the maintainability is improved. Further, the axial lengths of the generator 1 and the prime mover 101 can be adjusted by connecting the generator rotor shaft 7 and the prime mover output shaft 102 using the joint 18.
  • FIG. 17 shows the state shown in FIG. 16, that is, after the rotor shaft 7 and the motor output shaft 102 are connected via the joint 18, the restraint connecting member 12 (L-shaped bracket) is connected from the flange 17 and the generator casing end face 2c ′. 12a, 12b) is shown removed.
  • FIG. 18 shows an example of a system in which the vehicle permanent magnet generators according to the first to sixth embodiments of the present invention are mounted on a railway vehicle.
  • the train 100 includes the generator 1, the prime mover 101, the converter 105, and the battery 106 shown in the first to seventh embodiments.
  • the generator 1 When the prime mover 101 is driven, the generator 1 generates electric power to generate the converter 105. Through the battery 106.
  • the power of the prime mover 101 is reduced.
  • a water turbine, wind power, and turbine can be sufficiently applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

容量の大きい回転子片持ち支持構造の永久磁石式回転電機であっても、原動機と連結する前の回転子の拘束構造として、回転子の軸方向、径方向のみならず回転方向(周方向)の拘束にも充分に対処し得る永久磁石式回転電機を提供する。 永久磁石式回転電機1は、回転子3のシャフト7一端側のみを回転電機ケーシング2の片側に設けた軸受け9を介して支持する回転子片持ち支持構造を有する。回転子シャフト7の軸受けにより支持されていない側の一端は、シャフト一端に設けたフランジ部10を介して、原動機のシャフト一端と連結可能である。回転子シャフト7は、原動機のシャフトと非連結状態にある時にその軸方向、径方向、周方向の動きが拘束されるように、軸受けで支持されていない前記フランジ10がケーシング2の一端面に拘束用連結部材12を介して連結されている。

Description

永久磁石式回転電機及び車両用永久磁石式回転電機システム
 本発明は、回転子のシャフト一端側のみを回転電機ケーシングの片側に設けた軸受けを介して支持する回転子の片持ち支持構造を有する永久磁石式回転電機及びこれを用いた鉄道車両などの車両用永久磁石式回転電機システムに関する。
 鉄道車両に使用される回転電機としてはこれまで、巻線型発電機や誘導電動機が用いられてきたが、近年、永久磁石の高性能化、低価格化や高性能なインバータの普及により、小型軽量化、高効率化を可能とする永久磁石式回転電機を採用する気運が高まっている。
 このような中、鉄道車両に搭載する発電機を、車両内での限られたスペースに配置するため、発電機の回転子シャフトのうち、原動機と直結する側の軸受けを無くして(いわゆる回転子シャフトの片持ち支持構造:オーバーハング構造)、軸受けを無くした側のシャフトを、直結対象の原動機側の軸受けによって支持するいわゆる軸受兼用型の片持ち支持構造が提案されている。
 このような回転電機(例えば発電機)の回転子の片持ち支持構造は、原動機と直結するまで継続する。ところで、従来型となる巻線式発電機では、回転子に巻線が施されており、その巻線に電流を通電することにより回転子が電磁石となる。このため、回転子に電流を通電しない限り発電機には磁束が存在せず磁気吸引力等も発生しない。一方、永久磁石式発電機を適用した場合、回転子には永久磁石があるため、常に発電機内に磁束が存在し回転子と固定子間の空隙部に磁気吸引力が発生している。このため、磁気吸引力による回転子の移動、及び固定子との接触が懸念されることから、原動機と直結されるまでは、片持ち支持構造の回転子は、その移動を拘束できる発電機構造が必要となる。また、原動機及び発電機のメンテナンス時に原動機と発電機との連結部を切り離す必要があるため、メンテナンス時にも回転子の移動を拘束できる構造が必要とされる。
 発電機などの回転電機で回転子を片持ち支持する構造の場合には、回転子のシャフトが原動機と直結するまでは、回転子が動かないように固定する必要があり、そのため、下記特許文献に示すように、様々な形式の回転子を固定する回転電機構造が検討されている。
特開2007-325449号公報 特開2007-325426号公報 特開昭62-040035号公報
 特許文献1、2では、例えばエレベータの巻上機に用いられる片持ち軸回転電動機の輸送保護装置として、電動機の回転子の軸受けで支持されていない側を、電動機ケーシング一端のフランジ部端面に螺子止めした一対の固定板により、回転子シャフトの径方向から挟み込んで、回転子の径方向及び軸方向の動きを拘束する技術が開示されている。より具体的には、特許文献1では、固定板を電動機ケーシングのフランジ端面と凹凸嵌め合いさせ、かつ各固定板の一端を回転子シャフトの外周に設けた段差部に係合させて、回転子の径方向及び軸方向の動きを拘束している。特許文献2では、固定板の一端がU字形状をし、このU字部で回転子シャフトを挟み込むことで、回転子の軸方向及び径方向を拘束している。
 このような拘束構造は、例えば鉄道車両用発電機に比べて比較的小型であるエレベータ仕様の回転電機では、有効な輸送保護手段であるが、鉄道車両仕様の発電機、特に数MW級の回転子片持ち支持構造の永久磁石式回転電機に適用する場合には、次の理由により充分とはいえない。すなわち、数MW級の永久磁石式回転電機の場合には、回転電機内部の磁気吸引力が非常に大きいために、原動機と直結前は、外的力が回転方向に作用すると、その回転方向の拘束に対して十分に対処されないことが予想される。
 回転子にかような回転方向の変位が生じると、原動機等と連結する場合、片持ち支持構造の回転電機の回転子シャフトと原動機のシャフトとの連結に際して、周方向に対しての位置決めが困難となり、組み立て性、メンテナンス性が悪化することが予想される。
 ちなみに、その他の従来技術として、特許文献3では、回転子と固定子との間に吸着防止のためのスペーサを設け、そのスペーサは回転機を組み立て後に取外せる構造としている。この構造は、回転子、固定子間の吸着防止を目的としているため、回転子そのものを固定した構造でない。したがって、片持ち支持構造のような回転子の回転方向(周方向)の拘束については、対応しきれない。また、スペーサの取り外しなどに比較的手間を要したり、一度、スペーサを取外したら再度取り付けることが困難であり、組立性、メンテナンス性の面で考慮すべき点がある。
 本発明は、以上の点に鑑みてなされたものであり、容量の大きい(磁気吸引力の大きい)回転子片持ち支持構造の永久磁石式回転電機であっても、原動機と連結する前の回転子の拘束構造として、回転子の軸方向、径方向のみならず回転方向(周方向)の拘束にも充分に対処し得る永久磁石式回転電機を提供することにある。
 本発明は、上記目的を達成するために、基本的には、回転子のシャフト一端側のみを回転電機ケーシングの片側に設けた軸受けを介して支持する回転子片持ち支持構造で、回転子のシャフトの前記軸受けにより支持されていない側の一端が原動機のシャフト一端と連結可能な永久磁石式回転電機において、次のような特徴を有する。
 前記回転子のシャフトは、原動機のシャフトと非連結状態にある時にその軸方向、径方向、周方向の動きが拘束されるように、前記軸受けで支持されていない側が前記ケーシングの一端面に拘束用連結部材を介して連結されている。
 本発明の好ましい態様を例示すれば次の通りである。
 前記拘束用連結部材の一端側は、回転子のシャフトの軸受けで支持されていない側のシャフト端面に螺子部材を介して取り付けられ、もう一端側は、前記ケーシングの一端面に螺子部材を介して取り付けられている。
 例えば、前記回転子のシャフトには、前記軸受けで支持されていない側のシャフト端部に前記原動機のシャフトと直結するためのフランジを一体に設け、前記拘束用連結部材の一端側を、前記シャフト端部の前記フランジの一端面に螺子部材を介して取り付け、もう一端側を、前記ケーシングの一端面に螺子部材を介して取り付けてもよい。
 また、前記回転子のシャフトには、前記軸受けで支持されてない側のシャフトに、第1のフランジ部と第2のフランジとが設けられており、前記第1のフランジ部は、前記原動機のシャフトと直結するために前記回転子のシャフト一端に設けられ、前記第2のフランジ部は、前記拘束用連結部材に対応して設けられ、前記拘束用連結部材の一端側は、前記第2のフランジ部の一端面に螺子部材を介して取り付けられ、もう一端側は前記ケーシングの一端面に螺子部材を介して取り付けられるようにしてもよい。
 本願発明は、上記したものに限定されず、その他種々の具体的態様のものが考えられるが、それらについては、発明の実施例の項で説明する。
 本発明によれば、容量の大きい(磁気吸引力の大きい)回転子片持ち支持構造の永久磁石式回転電機であっても、原動機と連結する前には、回転子の軸方向、径方向のみならず回転方向(周方向)の拘束にも充分に対処し得る回転電機保護に優れた回転子の拘束構造を提供することができる。しかも、拘束用連結部材の着脱も簡便に行い得るので、回転電機の組立作業、メンテナンス作業の簡便化にも貢献できる永久磁石式回転電機を提供することができる。
本発明の第1実施例となる車両用永久磁石式発電機の軸方向断面図。 図1の車両用永久磁石式発電機の右側面図。 上記第1実施例に用いるL字金具12aの断面図。 上記L字金具12aの上面図。 上記第1実施例の他の態様を示す軸方向部分断面図。 本発明の第2実施例となる車両用永久磁石式発電機の軸方向断面図。 図6の車両用永久磁石式発電機の右側面図。 上記第2実施例の他の態様を示す軸方向部分断面図。 本発明の第3実施例となる、車両用永久磁石式発電機の軸方向部分断面図。 図9の車両用永久磁石式発電機の右側面図。 本発明の第4実施例となる、車両用永久磁石式発電機の軸方向部分断面図。 本発明の第1実施例に係る車両用永久磁石式発電機と原動機との連結作業の途中状態を示す説明図。 本発明の第1実施例に係る車両用永久磁石式発電機と原動機との連結作業の完了状態を示す説明図。 本発明の第5実施例に係る車両用永久磁石式発電機と原動機との連結作業の途中状態を示す説明図。 本発明の第5実施例に係る車両用永久磁石式発電機と原動機との連結作業の完了状態を示す説明図。 本発明の第6実施例に係る車両用永久磁石式発電機と原動機との連結作業の途中状態を示す説明図。 本発明の第6実施例に係る車両用永久磁石式発電機と原動機との連結作業の完了状態を示す説明図。 本発明の上記実施例1~6の車両用永久磁石式発電機を鉄道車両に搭載した例を示す図。
 以下本発明の具体的な形態を、下記実施例およびその図面を参照しながら説明する。なお、各図において同一部分は同じ番号を付与している。
 図1は、本発明の第1実施例となる車両用永久磁石式発電機の軸方向断面図である。数MW級の鉄道車両車用発電機に使用され、600~2500min-1の範囲で回転する。
 発電機ケーシング2の中に、回転子3と固定子4が内装されている。回転子3には回転子鉄心5に界磁極となる永久磁石6が埋設され、回転子鉄心5と回転子シャフト7は締結されている。
 固定子4には、回転子の回転により励起される電力を取り出すための固定子コイル8が装着されている。
 発電機ケーシング2は、円筒状のヨーク(円筒フレーム)2aとその一端に配置した軸受け内装のエンドブラケット2bともう一端に配置した開口形のブラケット2cからなる。
ケーシング一端側となるブラケット2c側が原動機101(図11、図12に示す)との連結側となり、発電機単体では原動機連結側の端部には、軸受けは配置されない構造となる。すなわち、本実施例に係る発電機は、回転子3のシャフト一端側のみをケーシングの片側(エンドブラケット)2bに設けた軸受け9を介して支持する片持ち支持構造を採用し、軸受け9により支持されていない側のシャフト一端が原動機の出力シャフトの一端と連結可能になる。
 回転子シャフト7のうち原動機の出力シャフトと連結する側は、その一端がケーシング一端面(すなわちエンドブラケット2cの外側端面2c´)と面一になるような長さを有しており、このシャフト一端にフランジ部10が設けられている。フランジ部10の原動機連結側の一端もケーシング一端面2c´と面一になる。ここで、面一とは、寸法誤差、組立誤差による多少の面ずれ分も含むものである。
 フランジ部10の原動機連結と反対側端面には、発電機を冷却するためのファン11が設けられている。
 回転子3のシャフト7は、図1に示すように、原動機の出力シャフト102と非連結状態にある時に、その軸方向、径方向、周方向の動きが拘束されるように、軸受け9で支持されていない側(本実施例ではフランジ10の原動機連結側の端面10´)がケーシング2の一端面(ブラケット端面)2c´に複数個の拘束用連結部材12を介して連結されている。
 拘束用連結部材12は、種々の形態のものが考えられる。本実施例では、各拘束用連結部材12は、一対のL字形金具12a,12bからなり、L字形金具12a,12bの一辺12a´,12b´同士を突き合せて、この突き合せ辺同士を、螺子部材14を介して結合している。またL字形金具12a,12bは、回転子のシャフト7の軸受けされていない側の端面(本実施例ではフランジ端面10´)とケーシングの一端面2c´とに螺子部材(本実施例ではボルト)14を介して取り付けられている。L字形金具12a,12b同士を回転子3の軸方向にずらし調整できるように、一方のL字形金具12aの突き合せ辺12a´に設けたボルト通し穴(螺子部材通し穴)121に遊びを設けてある。この突き合せ辺同士のずらし調整により回転子3のシャフト7の一端面(フランジ端面10´)とケーシング端面2c´とのL字形金具取付箇所同士に、部品(例えば回転子シャフト7とケーシング2)との軸方向の組立誤差や寸法誤差により軸方向のずれが生じた場合にも、そのずれを吸収できる構造にしてある。
 例えば、L字形金具12aのボルト通し穴121は、図3及び図4に示すように回転子の軸方向に延びる長穴形状、すなわち長穴方向の穴径をボルト14の直径よりも大きくして、回転子の軸方向に遊びを確保している。図4の一点鎖線に示すようにボルト14のヘッド14´の径は長穴121の短手方向の幅よりも大きくしてある。このボルト通し穴121は、長穴に代えてボルトの直径より大きくして遊びを設けるようにしてもよい(図示省略)。一対のL字形金具12は、本実施例では、図2に示すように、ケーシング2の一端開口周縁に沿って等間隔に4箇所配置した構成としているが、これに限定するものではなく、その他の個数としても問題ない。なお、図3の符号122は、L字金具12aをケーシング端面2c´にボルト14により螺子止めする場合のボルト通し穴である。
 なお、図5に示すように、回転子シャフト7とケーシング2との軸方向の組立誤差や寸法誤差による回転子3のフランジ端面10´とケーシング端面2c´との間に軸方向の組立誤差や寸法誤差により軸方向のずれが生じた場合に、図8に示すように、フランジ端面10´とケーシング端面2c´との間にスペーサ20を介在させて、そのずれを吸収する構造にしてもよい。
 なお、図2に示すように、回転子シャフト7端部のフランジ部端面10´には、L字金具(拘束用連結部材)12(12b)の一端側をボルト14を介して取り付けるための螺子穴(図2では、L字金具12bにより隠れている)が、回転子シャフト7のフランジ10を原動機の出力シャフトと連結する場合の複数の螺子穴30と共に併設されている。
 本実施例によれば、回転子3と固定子4との間に磁気吸引力が作用している場合に外的力などが作用しても、回転子3の移動を軸方向、径方向、周方向(回転)の全ての方向に対して拘束することが可能となる。これにより、原動機101と連結するまでの発電機1の輸送中に、回転子3が移動して損傷することを防止でき、且つ、原動機101との連結作業中も回転子3の回転を拘束していることから、カップリグ等の位置決めがやりやすくなり、作業性が向上する。また、発電機1と原動機101の連結後にメンテナンスする際にも、連結した状態のままで、回転子3の移動を拘束するためのL字形金具(拘束用連結部材)12を取り付けることのできる構成としているため、メンテナンス性も向上する(以下に図12を参照して述べている)。
 図12に、本実施例に係る車両用永久磁石式発電機1と原動機101を連結した図である。原動機101としては、例えば電動機や内燃機関(例えばディーゼルエンジン)がある。図12に示すように、発電機1の回転子片持ち支持構造の回転子シャフト7に設けたフランジ部10を原動機101の出力シャフト102に設けたフランジ103と直結状態で連結している。
 図12には、発電機1と原動機101のシャフト7,102同士を、フランジ10,103を介して連結した状態で、回転子3の移動を拘束するためのL字金具12(12a,12b)を取外す直前の状態が示されている。このような構成にすることで、発電機1と原動機101とを連結した状態にて、拘束用の連結部材(L字金具12a,12b)の取り付け、取り外しが可能となりメンテナンス性が向上する。図13は、図12の状態、すなわち、回転子シャフト7に設けたフランジ部10と原動機出力シャフト102に設けたフランジ103とをボルト14により連結した後にL字金具12a,12bを取り外した状態を示すものである。この図13の状態では、発電機の回転子シャフト7のうち、軸受けを無くした側のシャフト部が、直結対象の原動機側出力シャフト102の軸受けによって支持される。
 図6は本発明の第2実施例となる、車両用永久磁石式発電機の軸方向断面図、図7はその右側面図(軸受けでシャフトが支持されていない側から見た側面図)である。
 本実施例と第1実施例との相違点は、本実施例では、発電機のケーシング2の端面2c´と回転子シャフト7のフランジ端面10´間を連結する回転子シャフト拘束用の連結部材として、第1実施例のようなL字金具12a,12bに代えて、板形状の金具15を使用した。本実施例でも、発電機部品の回転子シャフト及びケーシング間の軸方向の組立誤差分を吸収する方法として、実施例1と同様にスペーサ20(図8参照)を設けても良い。このような構成にすることで、部品点数を最小限にして回転子3と固定子4に働く磁気吸引力による、回転子3の移動を軸方向、径方向、周方向(回転)の全ての方向に対して拘束することが可能となり、実施例1と同様の効果を得られる。
 図9に本発明の第3実施例となる、車両用永久磁石式発電機の軸方向断面図を示す。本実施例の構成は第1実施例で示した発電機の構成に加えて、次のような構成をさらに付加したものである。
 すなわち、本実施例では、第1実施例の構成に加えて、発電機ケーシング2の外周からケーシング径方向すなわち回転子3の軸受け9で支持されていない側のシャフト部位に向けて、雄螺子16a付きの複数のシャフト押さえロッド16がケーシング2に設けた螺子穴201を通して装着され、このシャフト押さえロッド16により回転子シャフトの一部(本実施例ではフランジ部10の外周面)を挟み込むように押さえることにより、回転子3の径方向、軸方向、周方向の拘束を補強している。シャフト押さえロッド16は、例えばボルト状のものであり、その雄螺子部16aが螺子穴201に対応して設けられ、ロッド先端がフランジ部10の外周面へ接触する位置までねじ込まれている。図10に本実施例の発電機の右側面図を示す。図10に示すように、シャフト押さえロッド16は4本使用し、2本1組で対向するように配置される。図10中ではロッド16は、4本としているが、4本以上の偶数本のロッド16を対向するよう配置すればその数を限定するものではない。このような構成にすることで、拘束用の連結部材12(L字金具或いは板状金具など)を固定しているボルト14の変形、破損が生じた場合でも、シャフト押さえロッド16を設けることで、回転子3の移動を軸方向、径方向に対して拘束することが可能となる。また、かようなロッド16を設けることで回転子3と固定子4の磁気吸引力による接触を回避することができる。更に、拘束用の連結部材12が無くても回転子3を拘束できることから、発電機1を原動機101とカップリング等の連結する際に、ロッド16の螺子込み量を調整することで、回転子の径方向微調整が可能となり、回転子3の芯出し精度を向上することができる。無論、この実施例3の構成は実施例2にも適用可能であり同様の効果を得られる。
 図11に本発明の第4実施例となる、車両用永久磁石式発電機の軸方向断面図を示す。
 本実施例は、第3実施例で示した発電機の構成に加えて、発電機ケーシング2の外周側の原動機連結側と反対側にも、シャフト押さえ用のシャフト押さえロッド16を装着したものである。ロッド16は、回転子シャフト7に接触する位置までねじ込まれている。ロッド16を配置する周方向位置は実施例3で示した位置と同じである。このような構成にすることで、原動機の連結側と反対側にもロッド16があることから、ロッド16でシャフト7を押さえた状態で、ブラケット2bをヨーク2から取外すことで、軸受け9の交換が可能となりメンテナンス性が向上する。無論、この実施例4の構成は実施例2にも適用可能であり同様の効果を得られる。
 図14に本発明の第5実施例となる、車両用永久磁石式発電機と原動機を連結した図を示している。図14は、図12同様に、発電機1と原動機101のシャフト7,102同士を、フランジ10,103を介して連結した状態で、回転子3の移動を拘束するためのL字金具12(12a,12b)を取外す直前の状態が示されている。
 本実施例では、発電機シャフト7を発電機ケーシング2の端面2c´よりさらに外側に伸びる構造とし、その伸びたシャフト7の先端に設けた原動機連結用のフランジ部(第1のフランジ部)10と、シャフト途中に設けた拘束用連結部材を取り付けるフランジ部(第2のフランジ部)17を設け、その第2のフランジ部17の一端面17´とケーシング端面2c´とを拘束用の連結部材12(L字金具12a,12b)を介して連結している。本実施例の発電機の回転子シャフト7に設けた第1のフランジ部10は、原動機101の出力シャフト102に設けたフランジ103との連結に専ら使用される。このように構成にすることで、原動機101と連結した状態にて、拘束用連結部材12の取り付け、取り外しが可能となりメンテナンス性が向上する。図15は、図14の状態、すなわち、回転子シャフト7に設けたフランジ部10と原動機出力シャフト102に設けたフランジ103とをボルト14により連結した後に、もう一つのフランジ17と発電機ケーシング端面2c´から拘束用連結部材12(L字金具12a,12b)を取り外した状態を示すものである。
 図16に本発明の第6実施例となる車両用永久磁石式発電機と原動機を連結した図を示す。図16に示すように、本実施例では、発電機1の回転子3から伸びたシャフト7と原動機101とを、継手による連結部材18を介して連結している。図16では、発電機1の回転子シャフト7と原動機101の出力シャフト102を、継手18を介して連結した状態で、回転子3の移動を拘束するための拘束用の連結部材12(12a,12b)を取り外す直前の状態を示すものである。このような構成にすることで、発電機1と原動機101と連結した状態にて、拘束用の連結部材12(12a,12b)取り外しが可能となりメンテナンス性が向上する。また、継手18を用いて発電機回転子シャフト7と原動機出力シャフト102を連結することで、発電機1と原動機101の軸方向長さを調節することができる。
 図17は、図16の状態、すなわち、回転子シャフト7と原動機出力シャフト102とを継手18を介して連結した後に、フランジ17と発電機ケーシング端面2c´から拘束用連結部材12(L字金具12a,12b)を取り外した状態を示すものである。
 図18は、本発明の上記実施例1~6の車両用永久磁石式発電機を鉄道車両に搭載したシステム例を示す。電車100は、第1実施例から第7実施例で示した発電機1と原動機101、変換機105、電池106を備え、原動機101が駆動することで、発電機1で発電し変換機105を介して電池106に充電する。また、本発明では、原動機101を動力減としているが例えば、水車、風力、タービンでも十分適用が可能である。
1…発電機、2…発電機ケーシング、3…回転子、4…固定子、5…回転子鉄心、6…永久磁石、7…回転子シャフト、9…軸受け、10、17…フランジ部、12、13、15…拘束用連結具、12a、12b…L字金具、14…ボルト、16…シャフト拘束用ロッド、18…発電機・原動機連結用継手、スペーサ、100…電車、101…エンジン、102…原動機出力シャフト、103…フランジ、105…変換機、106…電池。

Claims (9)

  1.  固定子と回転子とそれらを内装するケーシングとを有し、前記回転子のシャフト一端側のみを前記ケーシングの片側に設けた軸受けを介して支持する回転子片持ち支持構造で、前記回転子のシャフトの前記軸受けにより支持されていない側の一端が原動機のシャフト一端と連結可能な永久磁石式回転電機において、
     前記回転子のシャフトは、前記原動機のシャフトと非連結状態にある時にその軸方向、径方向、周方向の動きが拘束されるように、前記軸受けで支持されていない側が前記ケーシングの一端面に拘束用連結部材を介して連結されていることを特徴とする永久磁石式回転電機。
  2.  請求項1記載の永久磁石式回転電機において、
     前記拘束用連結部材の一端側は、前記回転子のシャフトの軸受けで支持されていない側のシャフト端面に螺子部材を介して取り付けられ、もう一端側は、前記ケーシングの一端面に螺子部材を介して取り付けられている永久磁石式回転電機。
  3.  請求項1記載の永久磁石式回転電機において、
     前記回転子のシャフトには、前記軸受けで支持されていない側のシャフト端部に前記原動機のシャフトと直結するためのフランジ部が一体に設けられており、
     前記拘束用連結部材の一端側は、前記シャフト端部の前記フランジ部の一端面に螺子部材を介して取り付けられ、もう一端側は、前記ケーシングの一端面に螺子部材を介して取り付けられている永久磁石式回転電機。
  4.  請求項1記載の永久磁石式回転電機において、
     前記回転子のシャフトには、前記軸受けで支持されてない側のシャフトに、第1のフランジ部と第2のフランジとが設けられており、
     前記第1のフランジ部は、前記原動機のシャフトと直結するために前記回転子のシャフト一端に設けられ、前記第2のフランジ部は、前記拘束用連結部材に対応して設けられ、
     前記拘束用連結部材の一端側は、前記第2のフランジ部の一端面に螺子部材を介して取り付けられ、もう一端側は前記ケーシングの一端面に螺子部材を介して取り付けられている永久磁石式回転電機。
  5.  請求項3記載の永久磁石式回転電機において、
     前記回転子のシャフト端部のフランジ部端面には、前記拘束用連結部材の一端側を螺子部材を介して取り付けるための螺子穴が、前記回転子のシャフトを前記原動機のシャフトと連結する場合の螺子穴と共に併設されている永久磁石式回転電機。
  6.  請求項1ないし5のいずれか1項記載の永久磁石式回転電機において、
     前記拘束用連結部材は複数個であり、それぞれが一対のL字形金具からなり、その一対のL字形金具の一辺同士を突き合せて、この突き合せ辺同士を、螺子部材を介して結合し、また前記一対のL字形金具は、前記回転子のシャフトの軸受けされていない側と前記ケーシングの一端面とに螺子部材を介して取り付けられており、
     前記L字形金具同士を前記回転子の軸方向にずらし調整できるように、前記突き合せ辺の一方に設けた螺子部材通し穴に遊びを設けてあり、この突き合せ辺同士のずらし調整により前記回転子のシャフトと前記ケーシング端面とのL字形金具取付部の軸方向のずれを吸収できる構造にしてある永久磁石式回転電機。
  7.  請求子6記載の永久磁石式回転電機において、
     前記突き合せ辺の一方に設けた螺子部材通し穴は、該穴に通される雄ねじ部材の直径より大きくして前記遊びを設けるか、或いは回転子の軸方向に延びる長穴形状にして前記遊びを確保している永久磁石式回転電機。
  8.  請求項1ないし7のいずれか1項記載の永久磁石式回転電機において、
     前記ケーシングの外周からケーシング径方向すなわち前記回転子の前記軸受けで支持されていない側のシャフト部位に向けて、雄螺子付きの複数のシャフト押さえロッドが前記ケーシングに設けた螺子穴を通して装着されており、このシャフト押さえロッドにより、前記回転子のシャフトを挟み込むように押さえることにより、前記回転子の径方向、軸方向、周方向の拘束を補強している永久磁石式回転電機。
  9.  請求項1から8のいずれか1項記載の片持ち支持構造を有する永久磁石式回転電機が、前記拘束用連結部材を除去した状態で鉄道車両用原動機に直結されて、鉄道車両に搭載されていることを特徴とする車両用永久磁石式回転電機システム。
PCT/JP2009/005631 2009-10-26 2009-10-26 永久磁石式回転電機及び車両用永久磁石式回転電機システム WO2011051996A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/503,992 US8994245B2 (en) 2009-10-26 2009-10-26 Permanent magnet type electrical rotating machine and permanent magnet type electrical rotating machine system for vehicle
PCT/JP2009/005631 WO2011051996A1 (ja) 2009-10-26 2009-10-26 永久磁石式回転電機及び車両用永久磁石式回転電機システム
JP2011538105A JP5383817B2 (ja) 2009-10-26 2009-10-26 永久磁石式回転電機及び車両用永久磁石式回転電機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005631 WO2011051996A1 (ja) 2009-10-26 2009-10-26 永久磁石式回転電機及び車両用永久磁石式回転電機システム

Publications (1)

Publication Number Publication Date
WO2011051996A1 true WO2011051996A1 (ja) 2011-05-05

Family

ID=43921443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005631 WO2011051996A1 (ja) 2009-10-26 2009-10-26 永久磁石式回転電機及び車両用永久磁石式回転電機システム

Country Status (3)

Country Link
US (1) US8994245B2 (ja)
JP (1) JP5383817B2 (ja)
WO (1) WO2011051996A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108504A1 (ja) * 2012-01-17 2013-07-25 株式会社日立産機システム 片持ち軸電動機
CN111555522A (zh) * 2020-05-25 2020-08-18 重庆有法数控设备有限责任公司 一种便于拆卸机器人专用伺服电机
JP2020137318A (ja) * 2019-02-22 2020-08-31 株式会社明電舎 回転電機の仮固定治具及びこれを使用する回転電機の組立方法
JP2021000689A (ja) * 2019-06-21 2021-01-07 ファナック株式会社 固定部材および主軸装置
WO2022085482A1 (ja) * 2020-10-23 2022-04-28 株式会社 東芝 回転電機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994245B2 (en) * 2009-10-26 2015-03-31 Hitachi, Ltd. Permanent magnet type electrical rotating machine and permanent magnet type electrical rotating machine system for vehicle
FR3049548B1 (fr) * 2016-03-30 2019-06-14 Alstom Transport Technologies Moteur de vehicule ferroviaire et procede d'installation d'un moteur
US20220247270A1 (en) 2021-02-02 2022-08-04 Black & Decker Inc. High-power motor for a body-grip power tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629734U (ja) * 1985-07-03 1987-01-21
JPH0923624A (ja) * 1995-07-06 1997-01-21 Nabco Ltd 鉄道車両用車軸発電機
JP2007325426A (ja) * 2006-06-01 2007-12-13 Mitsubishi Electric Corp 片持ち軸回転電動機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2070843A (en) * 1934-01-18 1937-02-16 Rice Charles De Los Dynamo and drive therefor
US4235489A (en) * 1978-08-15 1980-11-25 Skf Industries, Inc. External device for selectively converting a pillow block between free and held positions
JPS6240035A (ja) 1985-08-14 1987-02-21 Erekutora Eng:Kk 直結型電動機
US6133659A (en) * 1999-03-26 2000-10-17 Synchrotek, Inc. Vehicle in-line generator
JP4463898B2 (ja) * 1999-06-04 2010-05-19 三菱電機株式会社 片持ち軸回転電動機
DE10103538B4 (de) * 2001-01-26 2007-11-22 Siemens Ag Elektromotorisch angetriebenes Schienenfahrzeug mit Verbrennungsmotor
US20060103245A1 (en) * 2004-11-12 2006-05-18 Siemens Vdo Automotive Inc. Engine cooling motor-module ventilation configuration
JP4823769B2 (ja) 2006-06-02 2011-11-24 三菱電機株式会社 片持ち軸回転電動機
US7883131B2 (en) * 2007-10-30 2011-02-08 Machining And Welding By Olsen, Inc. Crane hook assemblies and methods of use
US8994245B2 (en) * 2009-10-26 2015-03-31 Hitachi, Ltd. Permanent magnet type electrical rotating machine and permanent magnet type electrical rotating machine system for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629734U (ja) * 1985-07-03 1987-01-21
JPH0923624A (ja) * 1995-07-06 1997-01-21 Nabco Ltd 鉄道車両用車軸発電機
JP2007325426A (ja) * 2006-06-01 2007-12-13 Mitsubishi Electric Corp 片持ち軸回転電動機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108504A1 (ja) * 2012-01-17 2013-07-25 株式会社日立産機システム 片持ち軸電動機
US9853518B2 (en) 2012-01-17 2017-12-26 Hitachi Industrial Equipment Systems Co., Ltd. Cantilevered-shaft electric motor
JP2020137318A (ja) * 2019-02-22 2020-08-31 株式会社明電舎 回転電機の仮固定治具及びこれを使用する回転電機の組立方法
JP2022092065A (ja) * 2019-02-22 2022-06-21 株式会社明電舎 回転電機の組立方法
JP7099361B2 (ja) 2019-02-22 2022-07-12 株式会社明電舎 回転電機の仮固定治具
JP7343002B2 (ja) 2019-02-22 2023-09-12 株式会社明電舎 回転電機の組立方法
JP2021000689A (ja) * 2019-06-21 2021-01-07 ファナック株式会社 固定部材および主軸装置
JP7306889B2 (ja) 2019-06-21 2023-07-11 ファナック株式会社 固定部材および主軸装置
CN111555522A (zh) * 2020-05-25 2020-08-18 重庆有法数控设备有限责任公司 一种便于拆卸机器人专用伺服电机
WO2022085482A1 (ja) * 2020-10-23 2022-04-28 株式会社 東芝 回転電機

Also Published As

Publication number Publication date
US8994245B2 (en) 2015-03-31
JP5383817B2 (ja) 2014-01-08
US20120228990A1 (en) 2012-09-13
JPWO2011051996A1 (ja) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5383817B2 (ja) 永久磁石式回転電機及び車両用永久磁石式回転電機システム
CN101459354B (zh) 直接驱动发电机和风力涡轮机
KR100947518B1 (ko) 다단 회전자를 구비한 코어리스 모터 및 그 모터를 사용한구동장치
EP2385614B1 (en) An electrical machine and a method for assembling it
JP4661614B2 (ja) 冷却パイプの固定構造および電動車両
EP2958214B1 (en) Rotating electrical machine
WO2006121045A1 (ja) エンジンに搭載されるジェネレータ/モータ
KR101724787B1 (ko) 인휠모터시스템
US9379589B2 (en) Stator
JP6106660B2 (ja) 電気機械エネルギー変換器のステータとロータとの間の空隙を維持する機械組立体
JP2007306751A (ja) ステータの固定構造および車両
JP5757326B2 (ja) 動力伝達装置
JP2015228730A (ja) 回転電機
JP2013176231A (ja) 永久磁石式ポンプ電動機
TW201242224A (en) Rotating electrical machine and rotating apparatus
KR101168548B1 (ko) 풍력 발전 장치 및 그 조립 방법
JP2014068496A (ja) 車載用回転電機
CN105122611B (zh) 混合动力车辆用旋转电机的转子保持结构
JP2018191488A (ja) 回転電機
US20170126078A1 (en) Switched reluctance motor
WO2013003985A1 (zh) 一种大型盘式多定子永磁直驱风力发电机组
JP2007190945A (ja) 電動車両用のインホイールモータ
JP5062441B2 (ja) 回転電機
JP2010124661A (ja) 回転電機
WO2017193786A1 (zh) 铁路车辆用盘式发电机及铁路车辆模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538105

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13503992

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09850779

Country of ref document: EP

Kind code of ref document: A1