WO2011048765A1 - 半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤 - Google Patents

半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤 Download PDF

Info

Publication number
WO2011048765A1
WO2011048765A1 PCT/JP2010/006011 JP2010006011W WO2011048765A1 WO 2011048765 A1 WO2011048765 A1 WO 2011048765A1 JP 2010006011 W JP2010006011 W JP 2010006011W WO 2011048765 A1 WO2011048765 A1 WO 2011048765A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
carbon atoms
group
semiconductor
Prior art date
Application number
PCT/JP2010/006011
Other languages
English (en)
French (fr)
Inventor
田部井純一
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN2010800472267A priority Critical patent/CN102575085A/zh
Priority to US13/499,923 priority patent/US9040606B2/en
Priority to KR1020127012878A priority patent/KR101719021B1/ko
Priority to KR1020167030198A priority patent/KR101779314B1/ko
Priority to JP2011537117A priority patent/JP5737183B2/ja
Publication of WO2011048765A1 publication Critical patent/WO2011048765A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Definitions

  • the present invention relates to an epoxy resin composition for semiconductor encapsulation, a semiconductor device, and a release agent.
  • thermocompression bonding In a semiconductor package assembling process, a method of electrically connecting a gold wire between an aluminum electrode and an inner lead of a semiconductor chip by thermocompression bonding is currently mainstream.
  • the integration of electronic components and the increase in the number of pins are progressing year by year.
  • more complex wire bonding processes are required than before, and when copper lead frames are used, the copper surface is further oxidized by exposure to high temperatures of 200-250 ° C for a long time. Is starting to do. Under such circumstances, even a conventional semiconductor encapsulant having excellent adhesion to an unoxidized copper surface is often inferior in adhesion to copper oxide having a different surface state.
  • the present invention has been made in view of such a situation, and includes an epoxy resin composition for semiconductor encapsulation that has good adhesion to copper oxide and has excellent releasability and continuous moldability, and an element encapsulated thereby.
  • a semiconductor device and a release agent are provided.
  • the present invention is as follows. [1] (A) epoxy resin, (B) a curing agent, (C) containing an inorganic filler, and a release agent,
  • the release agent comprises (D) a compound obtained by esterifying a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a long-chain aliphatic alcohol having 10 to 25 carbon atoms.
  • An epoxy resin composition for sealing [2] The epoxy resin composition for semiconductor encapsulation according to [1], further comprising a modified siloxane addition polymer represented by the following general formula (I).
  • R 1 to R 2 are selected from a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 55 carbon atoms, an alkyleneoxyglycidyl ether group, and an alkylene oxide group, all of which are the same or different.
  • R 3 to R 4 may be a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms, an amino group, a carboxyl group, a glycidyl ether group, and an alkylcarboxylic acid-4,4 ′-(1- (Methyl ethylidene) bisphenol diglycidyl ether group, all may be the same or different, n represents an integer of 1 to 100.) [3] The content of the compound obtained by esterifying (D) a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a long-chain aliphatic alcohol having 10 to 25 carbon atoms is The epoxy resin composition for semiconductor encapsulation according to [1] or [2], which is 55% by mass to 100% by mass with respect to a total amount of 100% by mass.
  • the release agent according to [8] which is used for an epoxy resin composition for semiconductor encapsulation.
  • the said epoxy resin composition for semiconductor sealing is a mold release agent as described in [9] used for sealing of the semiconductor element in a semiconductor device provided with a copper containing lead frame.
  • the epoxy resin composition for semiconductor encapsulation of the present invention is excellent in adhesiveness to copper oxide, releasability during molding and continuous moldability, and using this epoxy resin composition for semiconductor encapsulation, IC, LSI, etc. If an electronic component is sealed, a highly reliable semiconductor device can be obtained.
  • FIG. 3 is a schematic diagram showing a cross-sectional structure of a portion A in the vicinity of a middle-sized molded product of FIG.
  • the epoxy resin composition for semiconductor encapsulation according to the present invention preferably contains (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, and a release agent.
  • This mold release agent contains (D) a compound obtained by esterifying a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a long-chain aliphatic alcohol having 10 to 25 carbon atoms. preferable.
  • the (A) epoxy resin used in the present invention is generally used in an epoxy resin composition for semiconductor encapsulation and is not particularly limited. For example, a phenol novolac epoxy resin or an orthocresol novolak epoxy resin is used.
  • Phenols such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicyl Epoxidized novolak resin obtained by condensation or cocondensation with a compound having an aldehyde group such as aldehyde under an acidic catalyst, bisphenol A, bisphenol F, bisphenol From diglycidyl ethers such as Nord S and bisphenol A / D, diglycidyl ethers of alkyl-substituted or unsubstituted biphenols, phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Epoxy products of synthesized phenol a
  • Dicyclopentadiene an epoxidized product of glycidylamine-type epoxy resin obtained by reaction of polyamine and epichlorohydrin, co-condensation resin of dicyclopentadiene and phenols Type epoxy resin, epoxy resin having naphthalene ring, triphenolmethane type epoxy resin, trimethylolpropane type epoxy resin, terpene modified epoxy resin, linear aliphatic epoxy obtained by oxidizing olefin bond with peracid such as peracetic acid Resins, alicyclic epoxy resins, and epoxy resins obtained by modifying these epoxy resins with silicone, acrylonitrile, butadiene, isoprene rubber, polyamide resin, etc. May be used.
  • R 1 to R 4 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different.
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 20.
  • R 5 to R 13 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. Represents an integer of 0 to 3.
  • R 1 to R 4 in the general formula (II) are each a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group or other alkyl group having 1 to 10 carbon atoms, a methoxy group, an ethoxy group Group, an alkoxyl group having 1 to 10 carbon atoms such as propoxy group and butoxy group, an aryl group having 6 to 10 carbon atoms such as phenyl group, tolyl group and xylyl group, and 6 to 6 carbon atoms such as benzyl group and phenethyl group.
  • biphenyl type epoxy resin represented by the general formula (II) examples include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3. Reaction of epoxy resin based on ', 5,5'-tetramethylbiphenyl, epichlorohydrin and 4,4'-biphenol or 4,4'-(3,3 ', 5,5'-tetramethyl) biphenol Epoxy resin obtained by the above-mentioned process.
  • an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is more preferable.
  • YX-4000K, YX-4000H (trade name of Japan Epoxy Resin Co., Ltd.) and the like are commercially available.
  • adhesion to copper oxide is improved.
  • the blending amount is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more based on the total amount of the epoxy resin in order to exhibit the performance.
  • R in the general formula (III) is a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group or the like, an alkyl group having 1 to 10 carbon atoms, a methoxy group, an ethoxy group, or a propoxy group.
  • An alkoxyl group having 1 to 10 carbon atoms such as butoxy group, an aryl group having 6 to 10 carbon atoms such as phenyl group, tolyl group and xylyl group, and an aralkyl group having 6 to 10 carbon atoms such as benzyl group and phenethyl group Among them, a hydrogen atom or a methyl group is preferable.
  • NC2000 trade name, manufactured by Nippon Kayaku Co., Ltd.
  • the blending amount is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance.
  • R 5 to R 13 in the general formula (IV) are each an alkyl group having 1 to 10 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group, a methoxy group, and an ethoxy group.
  • a hydrogen atom or a methyl group is preferable.
  • NC-3000L trade name, manufactured by Nippon Kayaku Co., Ltd.
  • Etc. are available as commercial products.
  • its blending amount is preferably 10% by mass or more, more preferably 20% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance. .
  • the biphenyl type epoxy resin represented by the general formula (II), the paraxylylene type epoxy resin represented by the general formula (III), and the phenol aralkyl type epoxy resin having a biphenylene skeleton represented by the general formula (IV) are respectively It may be used alone or in combination of two or more. When using 2 or more types together, it is preferable that those compounding quantities shall be 50 mass% or more in total with respect to the whole quantity of (A) epoxy resin, and 70 mass% or more is more preferable.
  • content of (A) epoxy resin which concerns on this invention is not specifically limited with respect to 100 mass% of total amounts of the epoxy resin composition for semiconductor sealing, it is 0.8 mass% or more and 12 mass% or less. Preferably, it is 1.5 mass% or more and 10 mass% or less.
  • the (B) curing agent used in the present invention is generally used in an epoxy resin composition for semiconductor encapsulation, and is not particularly limited.
  • a phenol resin can be used.
  • Such phenol resin-based curing agents are monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited.
  • phenol novolak resin Phenols such as cresol novolac resin, phenols such as cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and formaldehyde A compound synthesized from a resin, phenols and / or naphthols obtained by condensation or cocondensation with a compound having an aldehyde group, such as an acid catalyst, and dimethoxyparaxylene or bis (methoxymethyl) biphenyl.
  • Phenols such as cresol novolac resin
  • phenols such as cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxy
  • Examples include enolic aralkyl resins, which may be used alone or in combination of two or more.
  • a phenol aralkyl resin having a biphenylene skeleton represented by the following general formula (V) is preferred from the viewpoint of lowering viscosity and lowering hygroscopicity.
  • R 14 to R 22 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. Represents an integer of 0 to 10.
  • R 14 to R 22 in the formula (V) may all be the same or different, and have 1 to 10 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group.
  • Examples of the phenol aralkyl resin having a biphenylene skeleton represented by the general formula (V) include compounds in which R 14 to R 22 are all hydrogen atoms. Among them, from the viewpoint of melt viscosity, n is 1 or more. A mixture of condensates containing 50% by mass or more of condensates is preferred. As such a compound, MEH-7851SS (trade name, manufactured by Meiwa Kasei Co., Ltd.) is commercially available.
  • the blending amount is preferably 50% by mass or more, and 70% by mass or more with respect to the total amount of the (B) curing agent in order to exhibit its performance. More preferred.
  • curing agent (B) based on this invention is not specifically limited, 0.8 mass% or more and 12 mass% or less with respect to 100 mass% of total amounts of the epoxy resin composition for semiconductor sealing. It is preferable that it is 1.5 mass% or more and 10 mass% or less.
  • the equivalent ratio of (A) epoxy resin to (B) curing agent is not particularly limited. In order to keep the reaction amount small, it is preferably set in the range of 0.5 to 2, more preferably 0.6 to 1.5. In order to obtain an epoxy resin composition for semiconductor encapsulation excellent in moldability and reflow resistance, it is more preferably set in the range of 0.8 to 1.2.
  • the epoxy resin composition for semiconductor encapsulation of the present invention may further contain (E) a curing accelerator.
  • the curing accelerator is generally used in an epoxy resin composition for semiconductor encapsulation and is not particularly limited.
  • 1,8-diaza-bicyclo (5,4,0) undecene-7 Cycloamidine compounds such as 1,5-diaza-bicyclo (4,3,0) nonene, 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, and benzyldimethylamine Tertiary amine compounds such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and the like; These derivatives, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, Organic
  • an organic phosphorus compound is preferable, an organic phosphine and an adduct of an organic phosphine and a quinone compound are more preferable, and triphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris ( More preferred are adducts of tertiary phosphines such as 4-methoxyphenyl) phosphine and quinone compounds such as p-benzoquinone and 1,4-naphthoquinone.
  • the blending amount of the (E) curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but (A) 0.1 to 10 mass with respect to 100 mass% of the total amount of the epoxy resin. %, More preferably 1 to 5% by mass. If it is less than the lower limit, the curability in a short time tends to be inferior, and if it exceeds the upper limit, the curing rate tends to be too high, and it tends to be difficult to obtain a good molded product due to unfilling or the like.
  • the (C) inorganic filler used in the present invention is blended in a molding material for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement, for example, fused silica, crystalline silica, alumina , Zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titania, etc.
  • a molding material for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement for example, fused silica, crystalline silica, alumina , Zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite,
  • examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate. These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic fillers (C) fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. A spherical shape is preferable from the point.
  • the blending amount of the inorganic filler is 80% by mass or more with respect to 100% by mass of the total amount of the epoxy resin composition for semiconductor encapsulation. The range of 82 to 96% by mass is more preferable, and 86 to 92% by mass is more preferable. If it is less than the lower limit, the reliability tends to decrease, and if it exceeds the upper limit, the moldability tends to decrease.
  • the mold release agent used in the present invention includes (D) a compound obtained by esterifying a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a long-chain aliphatic alcohol having 10 to 25 carbon atoms (hereinafter referred to as “C”). , (D) may be referred to as a compound).
  • This (D) compound has a high dispersibility in the epoxy resin (A), and is effective in improving the adhesion to copper oxide and the releasability.
  • the ⁇ -olefin having 28 to 60 carbon atoms used in the compound is not particularly limited, and examples thereof include 1-octacosene, 1-triacontene, 1-hentriaconten, 1-dotriacontene, Tritria content, 1-tetratria, 1-pentatria, 1-hexatria, 1-tetrat, 1-hentetra, 1-detetra, 1-tetratetra, 1-tetratetra , 1-pentacontene, 1-heptapentene, 1-dopentacontene, 1-tripentacontene, 1-pentapentaten, 1-hexaconten and other linear ⁇ -olefins, 3-methyl-1-tria Content, 3,4-dimethyl-triacontene, 3-methyl-1-tetracontene, 3,4-dimethyl -Branched ⁇ -olefins such as tetracontain are mentioned, and these may be used alone or in combination of two or
  • the monovalent alcohol having 10 to 25 carbon atoms used in the compound is not particularly limited.
  • a linear alcohol having 10 to 22 carbon atoms is preferable, and a linear aliphatic saturated alcohol having 15 to 20 carbon atoms is more preferable.
  • D If the number of carbon atoms of the monohydric alcohol used in the compound is less than the lower limit value, the continuous moldability (release property) is inferior, and if it exceeds the upper limit value, the adhesion to copper oxide decreases.
  • the copolymer of the ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride in the compound (D) according to the present invention is not particularly limited, but examples thereof include compounds represented by the following general formula (VI), Examples of the compound represented by the formula (VII) include a diamond carna using 1-octacocene, 1-triacontene, 1-tetracontane, 1-pentacontene, 1-hexacontene and the like as raw materials. (Registered trademark) 30 (trade name, manufactured by Mitsubishi Chemical Corporation) is available. R in the general formulas (VI) and (VII) represents a monovalent aliphatic hydrocarbon group having 26 to 56 carbon atoms, and n is an integer of 1 or more.
  • m represents a copolymerization ratio of ⁇ -olefin and maleic anhydride, and is not particularly limited. However, when ⁇ -olefin is X mol and maleic anhydride is Y mol, X / Y, that is, m is 1 / It is preferably 2 to 10/1, more preferably about 1/1 of about equimolar amount.
  • the method for producing a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride is not particularly limited, and a general copolymerization method such as reaction of raw materials can be used.
  • a general copolymerization method such as reaction of raw materials can be used.
  • an organic solvent in which ⁇ -olefin and maleic anhydride can be dissolved may be used.
  • an organic solvent Toluene is preferable and an aromatic solvent, an ether solvent, a halogen-type solvent etc.
  • the reaction temperature varies depending on the type of organic solvent used, but is preferably 50 to 200 ° C., more preferably 100 to 150 ° C. from the viewpoint of reactivity and productivity.
  • the reaction time is not particularly limited as long as a copolymer can be obtained, but it is preferably 1 to 30 hours, more preferably 2 to 15 hours, and further preferably 4 to 10 hours from the viewpoint of productivity.
  • unreacted components, solvents and the like can be removed as necessary under heating and reduced pressure.
  • the conditions are as follows: temperature is 100 to 220 ° C., more preferably 120 to 180 ° C., pressure is 13.3 ⁇ 10 3 Pa or less, more preferably 8 ⁇ 10 3 Pa or less, and time is 0.5 to 10 hours. It is preferable.
  • a radical polymerization initiator such as azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) may be added to the reaction as necessary.
  • AIBN azobisisobutyronitrile
  • BPO benzoyl peroxide
  • the reaction molar ratio of the copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride and the monohydric alcohol is not particularly limited and can be arbitrarily set. However, by adjusting the reaction molar ratio, Since it is possible to control the degree of hydrophilicity, it is preferable to set appropriately according to the target sealing molding material.
  • an organic solvent in which ⁇ -olefin and maleic anhydride can be dissolved may be used.
  • an organic solvent Toluene is preferable and an aromatic solvent, an ether solvent, a halogen-type solvent etc. can also be used.
  • the reaction temperature varies depending on the type of organic solvent used, but is preferably 50 to 200 ° C., more preferably 100 to 150 ° C. from the viewpoint of reactivity and productivity.
  • the reaction time is not particularly limited as long as a copolymer can be obtained, but it is preferably 1 to 30 hours, more preferably 2 to 15 hours, and further preferably 4 to 10 hours from the viewpoint of productivity.
  • reaction catalyst such as an amine catalyst such as ethylamine, N, N dimethylaminopyridine, or an acid catalyst such as sulfuric acid or paratoluenesulfonic acid may be added to the reaction as necessary.
  • the compound (D) for example, one or more selected from diesters represented by the following formula (a) or (b) and monoesters represented by the formulas (c) to (f) are used as repeating units.
  • diesters represented by the following formula (a) or (b) and monoesters represented by the formulas (c) to (f) are used as repeating units.
  • the compound etc. which are included in a structure are mentioned, The nonester shown by Formula (g) or (h) may be included.
  • Examples of such compounds include those in which the main chain skeleton is composed of any one of (1) (a) to (f), and (2) any two or more of (a) to (f) Including at random, including regularly, including in block form, (3) any one or more of (a) to (f) and (g) and / or (h) at random Including, including regularly, including in block form, and the like may be used, and these may be used alone or in combination of two or more. Also, (4) (g) and (h) randomly included, regularly included, block included, and / or (5) (g) or (h) each independently Things may be included.
  • the esterification rate of the component (D) is preferably 20 mol% or more from the viewpoint of releasability and adhesiveness, and the compounds (D) are monoesters represented by the formulas (c) to (f).
  • the compound which contains 20 mol% or more combining these 1 type (s) or 2 or more types is preferable, and the compound containing 30 mol% or more is more preferable.
  • R 1 represents a monovalent aliphatic hydrocarbon group having 26 to 56 carbon atoms
  • R 2 represents a monovalent hydrocarbon group having 10 to 25 carbon atoms
  • m represents the copolymerization molar ratio X / Y of ⁇ -olefin (X) and maleic anhydride (Y), preferably 1/2 to 10/1, more preferably about 1/1.
  • the number average molecular weight of the compound (D) is not particularly limited as long as the repeating unit is 1 or more, and good adhesion and releasability to copper oxide can be realized in any molecular weight region, but preferably the number average molecular weight is 2000. ⁇ 10000. Even if 0 to 33% by mass of unreacted ⁇ -olefin is contained in the compound (D), the continuous moldability and the adhesion to copper oxide do not change. However, if the content exceeds the upper limit, the surface of the molded product will become dirty (package) Dirt) tends to be prominent.
  • the compounding amount of the compound (D) is not particularly limited, but is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the total amount of the (A) epoxy resin. If the blending amount is less than the lower limit value, the releasability tends to decrease, and if it exceeds the upper limit value, the adhesion to copper oxide tends to be insufficient.
  • carnauba wax, montanic acid, stearic acid, higher fatty acid, higher fatty acid metal salt, and montanic acid ester are used as a release agent within the range where the effects of the present invention can be achieved.
  • a conventionally known release agent such as an ester wax such as polyethylene wax or polyolefin wax can be used in combination with the compound (D).
  • the content of the compound (D) is not particularly limited with respect to the total amount of the release agent of 100% by mass, but is preferably 55% by mass or more and 100% by mass or less.
  • the modified siloxane addition polymer used in the present invention includes a part of the methyl substituent of dimethylsiloxane represented by the following general formula (I), a substituent such as an alkyl group, an epoxy group, a carboxyl group, and an amino group. It is a modified silicone oil substituted with the above, and since it has excellent affinity with the resin, it is possible to obtain an epoxy resin composition for semiconductor encapsulation having good solder stress resistance and fluidity. Furthermore, there is an effect of dispersing the release agent in the resin, and an effect of enhancing the release effect can be expected without lowering the adhesiveness.
  • the siloxane addition polymer-modified product may be used alone or in combination of two or more, and used in an amount of 0.1 to 2% by weight based on the total epoxy resin composition for semiconductor encapsulation. However, if the siloxane addition polymer modified product exceeds the upper limit value, surface contamination is likely to occur and the resin bleed may be lengthened. When used below the lower limit value, a sufficiently low elastic modulus and a release agent Dispersibility may not be obtained.
  • R 1 and R 2 are selected from a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 55 carbon atoms, an alkyleneoxyglycidyl ether group, and an alkylene oxide group, all of which are the same.
  • R 3 to R 4 are each a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms, an amino group, a carboxyl group, a glycidyl ether group, and an alkylcarboxylic acid-4,4 ′. (Selected from-(1-methylethylidene) bisphenol diglycidyl ether groups, all of which may be the same or different. N represents an integer of 1 to 100.)
  • An anion exchanger can also be added to the epoxy resin composition for semiconductor encapsulation of the present invention from the viewpoint of improving the moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC.
  • the anion exchanger is not particularly limited and conventionally known anion exchangers can be used.
  • hydrotalcite, hydrous oxide of an element selected from antimony, bismuth, zirconium, titanium, tin, magnesium, and aluminum can be used, and these can be used alone or in combination of two or more.
  • hydrotalcite and bismuth hydrous oxide represented by the following general formula (VIII) are preferable.
  • the amount of the anion exchanger is not particularly limited as long as it is sufficient to capture ionic impurities such as halogen ions, but (A) 0.1 to 30% by mass with respect to 100% by mass of the total amount of epoxy resin. %, More preferably 1 to 10% by mass, still more preferably 2 to 5% by mass.
  • the blending amount is less than the lower limit value, the trapping of ionic impurities tends to be insufficient, and if the blending amount exceeds the upper limit value, it is economically disadvantageous because there is no large difference in effect compared to the lower limit value.
  • epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, etc. if necessary, in order to enhance the adhesion between the resin component and the inorganic filler
  • Various known coupling agents such as various silane compounds, titanium compounds, aluminum chelates, and aluminum / zirconium compounds can be added.
  • vinyltriethoxysilane vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltri Methoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxy Silane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltri
  • the blending amount of the coupling agent is preferably 0.05 to 5% by mass, more preferably 0.1 to 2.5% by mass with respect to 100% by mass of the total amount of (C) inorganic filler. If it is less than the lower limit, the moisture resistance tends to decrease, and if it exceeds the upper limit, the moldability of the package tends to decrease.
  • the epoxy resin composition for semiconductor encapsulation of the present invention includes, as other additives, halogen atoms such as brominated epoxy resin, antimony trioxide, antimony tetroxide, and antimony pentoxide, antimony atoms, nitrogen atoms, or phosphorus.
  • halogen atoms such as brominated epoxy resin, antimony trioxide, antimony tetroxide, and antimony pentoxide, antimony atoms, nitrogen atoms, or phosphorus.
  • the epoxy resin composition for semiconductor encapsulation of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed. As a general method, a raw material having a predetermined blending amount is mixed with a raw material. And a method of cooling and pulverizing after melt-kneading with a mixing roll, kneader, extruder or the like. It is easy to use if it is tableted with dimensions and mass that match the molding conditions. Moreover, the epoxy resin composition for semiconductor encapsulation of the present invention can be dissolved in various organic solvents and used as an epoxy resin composition for liquid semiconductor encapsulation. It can also be used as a sheet or film-like epoxy resin composition for semiconductor encapsulation obtained by coating thinly on a film and dispersing an organic solvent under conditions that do not allow the resin curing reaction to proceed so much.
  • an active element such as a semiconductor chip, transistor, diode, thyristor, capacitor
  • examples thereof include a semiconductor device in which elements such as resistors and passive elements such as coils are mounted and necessary portions are sealed with the epoxy resin composition for semiconductor sealing of the present invention.
  • a semiconductor device for example, a semiconductor element is fixed on a copper lead frame, and the terminal part of the element such as a bonding pad and the lead part are connected by wire bonding or bump, and then the epoxy for semiconductor encapsulation of the present invention is used.
  • FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition for semiconductor encapsulation according to the present invention.
  • the semiconductor element 1 is laminated and fixed in two stages via a die bond material cured body 2.
  • the electrode pad of the semiconductor element 1 and the copper lead frame 5 are connected by a gold wire 4.
  • the semiconductor element 1 is sealed with a cured body 6 of a sealing resin composition.
  • the copper lead frame 5 is preferably a general-purpose copper-containing lead frame generally used in the technical field of semiconductor devices.
  • the copper-containing lead frame is not particularly limited as long as it contains copper, and a lead frame containing at least copper on the surface, a copper alloy lead frame, or a lead frame made of copper is preferable.
  • a low-pressure transfer molding method is the most common, but an injection molding method, a compression molding method, or the like may be used.
  • the epoxy resin composition for semiconductor encapsulation is liquid or pasty at room temperature, a dispensing method, a casting method, a printing method, and the like can be given.
  • a hollow package system in which an epoxy resin composition for semiconductor sealing is not in direct contact with the element. It can be suitably used as an epoxy resin composition.
  • the epoxy resin composition for semiconductor encapsulation of the present invention is excellent in adhesion to copper oxide, mold release property, continuous moldability, etc., and using this epoxy resin composition for semiconductor encapsulation, electronic such as IC and LSI is used. If the components are sealed, a highly reliable semiconductor device can be obtained.
  • Synthesis Example 1 Synthesis of compound (D) obtained by esterifying a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a monovalent alcohol having 18 carbon atoms.
  • 1-octacosene, 1-triacontene, A copolymer of maleic anhydride and a mixture of 1-tetracontane, 1-pentacontene, 1-hexacontene and the like (trade name Diacarna (registered trademark) 30 manufactured by Mitsubishi Chemical Corporation), 300 g and stearyl alcohol, 140 g was dissolved in 500 ml of toluene and reacted at 110 ° C.
  • the compound 1, 100 g was dissolved in acetone 400 ml, and n-hexane 300 ml was added. The deposited precipitate was separated by filtration and dried to obtain 70 g of Compound 1 high molecular weight product.
  • the molecular weight was measured by polystyrene gel permeation chromatography using tetrahydrofuran as an eluent.
  • the number average molecular weight (Mn) was 5600 and the molecular weight distribution (Mw / Mn) was 1.82.
  • the solvent was distilled off from the supernatant and dried to obtain 20 g of Compound 1 low molecular weight product.
  • the molecular weight was determined by gel permeation chromatography in terms of polystyrene using tetrahydrofuran as an eluent.
  • Synthesis Example 3 Synthesis of compound (D) obtained by esterifying a copolymer of an ⁇ -olefin having 28 to 60 carbon atoms and maleic anhydride with a monovalent alcohol having 22 carbon atoms, instead of stearyl alcohol, behenyl alcohol (Kao Co., Ltd.)
  • a product made by the company, trade name Calcol 220-80 458 g of Compound 3 having a monoesterification rate of 100 mol% was obtained.
  • the molecular weight was measured by polystyrene-permeated gel permeation chromatography using tetrahydrofuran as an eluent.
  • Synthesis Example 4 Synthesis of a compound obtained by esterifying a copolymer of an ⁇ -olefin having 20 to 24 carbon atoms and maleic anhydride with a monovalent alcohol having 18 carbon atoms.
  • 1-eicosene, 1-docosene, 1-tetracosene Mixture (made by Idemitsu Kosan Co., Ltd., trade name “Linearene 2024”), 180 g and maleic anhydride, 58 g dissolved in 500 ml of toluene, and BPO, 0.16 g divided into 3 portions every 20 minutes while heating at 110 ° C. Added. After completion of the addition of BPO, the reaction solution was heated at 110 ° C. for an additional 7 hours.
  • biphenyl aralkyl type epoxy resin (abbreviated as biphenyl aralkyl type epoxy resin) (Nippon Kayaku Co., Ltd., trade name NC-3000L)
  • Component curing agent Phenol aralkyl type phenol resin having a biphenylene skeleton having a hydroxyl equivalent of 199 and a softening point of 64 ° C.
  • Component (C) inorganic filler Spherical fused silica having an average particle size of 10.8 ⁇ m and a specific surface area of 5.1 m 2 / g (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka fused silica (DF) spherical powder type (grade FB-105))
  • Component release agent Compounds 1 to 6 obtained in the above synthesis examples, as other mold release agents, oxidized polyethylene wax (Clariant, trade name PED191), montanic acid wax (Clariant, trade name Lycowax E), ⁇ -olefin Monomer (product name Alpha Olefin C30 +, manufactured by Chevron Phillips Chemical Company)
  • Component curing accelerator Adduct of triphenylphosphine
  • FIG. 2 shows a schematic plan view of the middle mold after molding.
  • the shape of the molded product that adheres to the middle mold after molding is 14.0 mm in diameter and 1.5 mm in height.
  • 11 indicates a medium size
  • 12 indicates a cal
  • 13 indicates a runner.
  • Reference numeral 14 denotes a molded product
  • 15 denotes an air vent.
  • Reference numeral 16 denotes a handle
  • 17 denotes a hole for inserting a push-pull gauge.
  • the evaluation material was transfer molded using a mold for load release evaluation shown in FIG.
  • a pushbull gauge was applied to the circular molded product 14 attached to the middle mold 11 after molding from the hole 17 in the upper part of the middle mold (see FIG. 3), and the load applied when the molded product was projected was measured. Subsequently, measurement was performed on a 10-shot molded product in the latter half of the evaluation material formed by 20 shots, and the average value was evaluated as a mold release load.
  • D Spread of dirt is more than 20 area% of package surface to 50 Area% or less
  • For package dirt a 400-shot package was observed, and the following five levels were evaluated from the extent of the spread of dirt from the gate opening.
  • Examples 1 to 5 had good adhesion strength to copper oxide and release properties (release load).
  • Examples 6 and 7 containing a silicone oil component as a modified siloxane addition polymer also have good adhesion strength to copper oxide, release properties (release force), and continuous moldability (mold contamination) is further improved. It was.
  • the total amount of the epoxy resin is a biphenyl type epoxy resin or a phenol aralkyl type epoxy resin having a biphenylene skeleton (biphenyl aralkyl type epoxy resin), and Examples 8 and 9 including a silicone oil component are also releasable. (Release load) was good, and the adhesive strength to copper oxide was further improved.
  • Example 10 containing 35% by mass of the ⁇ -olefin monomer in the compound (D), the adhesion strength to copper oxide and the release property (release force) were good as compared with the comparative example.
  • Comparative Examples 1 to 3 were inferior in releasability (releasing load).
  • Comparative Examples 4 to 5 and Comparative Example 7 in which oxidized polyethylene wax is used in combination as a release agent component show that the continuous moldability (air vent block) is not good, and adhesion to copper oxide is significantly inhibited.
  • the comparative example 5 corresponds to the example 1 described in Patent Document 1 or 2.
  • Comparative Examples 8 and 9 containing a montanic acid type release agent the adhesive strength to copper oxide was weak, and the release properties (release load) were also inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

 半導体封止用に用いるエポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)無機充填材、及び離型剤を含有し、前記離型剤が(D)炭素数28~60のα-オレフィンと無水マレイン酸の共重合体を炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を、含有する。

Description

半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤
 本発明は、半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤に関する。
 半導体パッケージ組立工程において、半導体チップのアルミニウム電極とインナーリードとの間に金線を熱圧着することで電気的に接続する手法が現在は主流である。また近年、電子機器の小型化、軽量化、高性能化の市場動向に伴い、電子部品の高集積化、多ピン化が年々進んできている。そのため、以前より複雑なワイヤーボンディング工程が要求されるようになっており、銅製リードフレームを使用する場合、200~250℃の高温状態に長時間曝されることで、銅表面の酸化がより進行するようになってきている。
 このような状況下、従来の未酸化の銅表面に対する接着性が優れている半導体封止材でも、表面状態の異なる酸化銅に対しては接着性が劣る場合が多く、樹脂封止後の型抜き時や半田リフロー時に剥離を起こす問題が出てきている。
 剥離を抑制するためのインサート品と封止材樹脂との接着性は、金型に対する離型性と相反する指標であるため、接着性を向上させると離型性が劣り、成形性が低下するといった問題があった。電子部品の高集積化による、銅フレームの酸化が問題になる以前は接着性と離型性を両立するために、酸化ポリエチレンワックス及び、αオレフィンとマレイン酸との共重合体の半エステル化物を離型剤として添加する手法が提案されている。(例えば、特許文献1、2参照。)この手法によれば、未酸化の銅に対する接着性と離型性には優れるものの、酸化ポリエチレンワックスを併用しているため、酸化された銅フレームに対する封止樹脂の接着力が低下する問題点があった。またαオレフィン部分が炭素原子25個分以下と短い共重合体離型剤(例えば、特許文献3参照。)では連続成形性(エアベントブロック等の離型性)が劣る問題点があった。
特許第3975386号公報 特許第4010176号公報 特公昭61-52862号公報
 本発明はかかる状況に鑑みなされたもので、酸化銅に対する接着性が良好でかつ離型性、連続成形性にも優れた半導体封止用エポキシ樹脂組成物、及びこれにより封止した素子を備えた半導体装置及び離型剤を提供しようとするものである。
 発明者らは上記の課題を解決するために鋭意検討を重ねた結果、半導体封止用エポキシ樹脂組成物に、特定の離型剤を使用することにより上記の目的を達成しうることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]
 (A)エポキシ樹脂、
 (B)硬化剤、
 (C)無機充填材、及び
 離型剤、を含有し、
 前記離型剤は、(D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を含有する、半導体封止用エポキシ樹脂組成物。
[2]
 更に下記一般式(I)で示される、シロキサン付加重合体変性物を含む、[1]に記載の半導体封止用エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは水素原子、炭素数1~55の置換又は非置換の炭化水素基、アルキレンオキシグリシジルエーテル基、及びアルキレンオキシド基、から選ばれ、全てが同一でも異なっていてもよい。R~Rは水素原子、炭素数1~10の置換又は非置換の炭化水素基、アミノ基、カルボキシル基、グリシジルエーテル基、及びアルキルカルボン酸-4,4'-(1-メチルエチリデン)ビスフェノールジグリシジルエーテル基から選ばれ、全てが同一でも異なっていてもよい。nは1~100の整数を示す。)
[3]
 前記(D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物の含有量が、前記離型剤の総量100質量%に対して、55質量%以上100質量%以下である、[1]または[2]に記載の半導体封止用エポキシ樹脂組成物。
[4]
 前記シロキサン付加重合体変性物の含有量が、前記半導体封止用エポキシ樹脂組成物の総量100質量%に対して、0.1質量%以上2質量%以下である、[2]に記載の半導体封止用エポキシ樹脂組成物。
[5]
 前記(A)エポキシ樹脂が、ビフェニル型エポキシ樹脂、パラキシリレン型エポキシ樹脂、及びビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂からなる群から選択される少なくとも一種を含む、[1]から[4]のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
[6]
 銅含有リードフレームを備える半導体装置における半導体素子の封止に用いる、[1]から[5]のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
[7]
 [1]から[6]のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物で、半導体素子が封止されていることを特徴とする半導体装置。
[8]
 (D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を含有する、離型剤。
[9]
 半導体封止用エポキシ樹脂組成物に用いる、[8]に記載の離型剤。
[10]
 前記半導体封止用エポキシ樹脂組成物は、銅含有リードフレームを備える半導体装置における半導体素子の封止に用いる、[9]に記載の離型剤。
 本発明の半導体封止用エポキシ樹脂組成物は、酸化銅に対する接着性、及び成形時の離型性や連続成形性に優れ、この半導体封止用エポキシ樹脂組成物を用いてIC、LSI等の電子部品を封止すれば信頼性に優れた半導体装置を得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。 本発明の半導体封止用エポキシ樹脂組成物の離型時荷重を評価するための評価用金型で成形後の中型の状態を示す平面概略図である。 図2の中型の成形品付近のA部の断面構造を示す概略図である。
 本発明に係る半導体封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)無機充填材、及び離型剤、を含有することが好ましい。この離型剤は、(D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を含有するのが好ましい。
 以下、各成分について詳述する。
 本発明において用いられる(A)エポキシ樹脂としては、半導体封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールA/D等のジグリシジルエーテル、アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂のエポキシ化物、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノ-ル類の共縮合樹脂のエポキシ化物であるジシクロペンタジエン型エポキシ樹脂、ナフタレン環を有するエポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、及びこれらのエポキシ樹脂をシリコーン、アクリロニトリル、ブタジエン、イソプレン系ゴム、ポリアミド系樹脂等により変性したエポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 これらの中でも、酸化銅に対する接着性の観点から、下記一般式(II)で示されるビフェニル型エポキシ樹脂、下記一般式(III)で示されるパラキシリレン型エポキシ樹脂、及び下記一般式(IV)で示されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000002
(一般式(II)中、R~Rは水素原子及び炭素数1~10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(一般式(III)中、Rは水素原子及び炭素数1~10の置換又は非置換の一価の炭化水素基から選ばれ、nは0~20の整数を示す。)
Figure JPOXMLDOC01-appb-C000004
(一般式(IV)中、R~R13は水素原子及び炭素数1~10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0~3の整数を示す。)
 上記一般式(II)中のR~Rは、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1~10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6~10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6~10のアラルキル基等から選ばれるが、中でも水素原子又はメチル基が好ましい。上記一般式(II)で示されるビフェニル型エポキシ樹脂としては、4,4'-ビス(2,3-エポキシプロポキシ)ビフェニル又は4,4'-ビス(2,3-エポキシプロポキシ)-3,3',5,5'-テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4'-ビフェノール又は4,4'-(3,3',5,5'-テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられ、中でも、4,4'-ビス(2,3-エポキシプロポキシ)-3,3',5,5'-テトラメチルビフェニルを主成分とするエポキシ樹脂がより好ましく、例えば、YX-4000K、YX-4000H(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。このビフェニル型エポキシ樹脂を使用する場合、酸化銅に対する接着性が向上する。その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して20質量%以上とすることが好ましく、30質量%以上がより好ましく、50質量%以上がさらに好ましい。
 上記一般式(III)中のRは、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1~10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6~10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6~10のアラルキル基等から選ばれるが、中でも水素原子又はメチル基が好ましい。上記一般式(III)で示されるパラキシリレン型エポキシ樹脂としては、n=0を主成分とするエポキシ樹脂がより好ましく、例えば、NC2000(日本化薬株式会社製商品名)等が市販品として入手可能である。このパラキシリレン型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して10質量%以上とすることが好ましく、20質量%以上がより好ましい。
 上記一般式(IV)中のR~R13は、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1~10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6~10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6~10のアラルキル基等から選ばれるが、中でも水素原子又はメチル基が好ましい。上記一般式(IV)で示されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂としては、n=0を主成分とするエポキシ樹脂がより好ましく、例えば、NC-3000L(日本化薬株式会社製商品名)等が市販品として入手可能である。このビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して10質量%以上とすることが好ましく、20質量%以上がより好ましい。
 上記一般式(II)で示されるビフェニル型エポキシ樹脂、上記一般式(III)で示されるパラキシリレン型エポキシ樹脂、及び上記一般式(IV)で示されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂は、それぞれ単独で用いても2種以上を併用してもよい。2種以上を併用する場合には、それらの配合量は(A)エポキシ樹脂の全量に対して合計で50質量%以上とすることが好ましく、70質量%以上がより好ましい。
 本発明に係る(A)エポキシ樹脂の含有量は、半導体封止用エポキシ樹脂組成物の総量100質量%に対して、とくに限定されないが、0.8質量%以上12質量%以下であることが好ましく、1.5質量%以上10質量%以下であることがより好ましい。
 本発明において用いられる(B)硬化剤は、半導体封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、たとえばフェノール樹脂とすることができる。このようなフェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂をはじめとするフェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 中でも、低粘度化、低吸湿性の観点から、下記一般式(V)で示されるビフェニレン骨格を有するフェノールアラルキル樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(V)中、R14~R22は水素原子及び炭素数1~10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0~10の整数を示す。)
 上記式(V)中のR14~R22は全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1~10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6~10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6~10のアラルキル基などの炭素数1~10の置換又は非置換の一価の炭化水素基から選ばれるが、中でも水素原子及びメチル基が好ましい。上記一般式(V)で示されるビフェニレン骨格を有するフェノールアラルキル樹脂としては、例えば、R14~R22が全て水素原子である化合物等が挙げられ、中でも溶融粘度の観点から、nが1以上の縮合体を50質量%以上含む縮合体の混合物が好ましい。このような化合物としては、MEH-7851SS(明和化成株式会社製商品名)が市販品として入手可能である。このビフェニレン骨格を有するフェノールアラルキル樹脂を使用する場合、その配合量は、その性能を発揮するために(B)硬化剤の全量に対して50質量%以上とすることが好ましく、70質量%以上がより好ましい。
 本発明に係る硬化剤(B)の含有量は、特に限定されるものではないが、半導体封止用エポキシ樹脂組成物の総量100質量%に対して、0.8質量%以上12質量%以下であることが好ましく、1.5質量%以上10質量%以下であることがより好ましい。
 (A)エポキシ樹脂と(B)硬化剤との当量比、すなわち、(A)エポキシ樹脂中のエポキシ基数/(B)硬化剤中の水酸基数の比は、特に制限はないが、それぞれの未反応分を少なく抑えるために0.5~2の範囲に設定されることが好ましく、0.6~1.5がより好ましい。成形性、耐リフロー性に優れる半導体封止用エポキシ樹脂組成物を得るためには0.8~1.2の範囲に設定されることがさらに好ましい。
 本発明の半導体封止用エポキシ樹脂組成物は、更に(E)硬化促進剤を含有しても良い。(E)硬化促進剤は、半導体封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザ-ビシクロ(4,3,0)ノネン、5、6-ジブチルアミノ-1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等のシクロアミジン化合物及び、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物及びこれらの誘導体、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン、及びこれらの有機ホスフィンに1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物等の有機リン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。中でも成形性の観点から、有機リン化合物が好ましく、有機ホスフィン及び有機ホスフィンとキノン化合物との付加物がより好ましく、トリフェニルホスフィン、及び、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン等の第三ホスフィンとp-ベンゾキノン、1,4-ナフトキノン等のキノン化合物との付加物がさらに好ましい。
 (E)硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、(A)エポキシ樹脂の総量100質量%に対して0.1~10質量%が好ましく、より好ましくは1~5質量%である。下限値未満では短時間での硬化性に劣る傾向があり、上限値を超えると硬化速度が速すぎて未充填等により良好な成形品を得ることが困難になる傾向がある。
 本発明において用いられる(C)無機充填剤は、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上のために成形材料に配合されるものであり、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。上記の(C)無機充填剤の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填剤形状は成形時の流動性及び金型摩耗性の点から球形が好ましい。
 (C)無機充填剤の配合量は、成形性、吸湿性、線膨張係数の低減及び強度向上の観点から、半導体封止用エポキシ樹脂組成物の総量100質量%に対して80質量%以上が好ましく、82~96質量%の範囲がより好ましく、86~92質量%がさらに好ましい。下限値未満では信頼性が低下する傾向があり、上限値を超えると成形性が低下する傾向がある。
 本発明において用いられる離型剤には、(D)炭素数28~60のα-オレフィンと無水マレイン酸の共重合体を炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物(以下、(D)化合物と称することもある)を含有する。この(D)化合物は、(A)エポキシ樹脂中での分散性が高く、酸化銅に対する接着力や離型性の向上に有効である。
 (D)化合物に用いられる炭素数28~60のα-オレフィンとしては、特に制限はないが、例えば、1-オクタコセン、1-トリアコンテン、1-ヘントリアコンテン、1-ドトリアコンテン、1-トリトリアコンテン、1-テトラトリアコンテン、1-ペンタトリアコンテン、1-ヘキサトリアコンテン、1-テトラコンテン、1-ヘンテトラコンテン、1-ドテトラコンテン、1-トリテトラコンテン、1-テトラテトラコンテン、1-ペンタコンテン、1-ヘンペンタコンテン、1-ドペンタコンテン、1-トリペンタコンテン、1-ペンタペンタコンテン、1-ヘキサコンテン等の直鎖型α-オレフィン、3-メチル-1-トリアコンテン、3,4-ジメチル-トリアコンテン、3-メチル-1-テトラコンテン、3,4-ジメチル-テトラコンテン等の分岐型α-オレフィンなどが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
(D)化合物に用いられるα-オレフィンの炭素数が下限値未満では、連続成形性(離型性)が劣り、上限値を超えると酸化銅に対する接着性が低下する。
 (D)化合物に用いられる炭素数10~25の一価のアルコールとしては、特に制限はないが、例えば、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール等の直鎖型又は分岐型の脂肪族飽和アルコール、ヘキセノール、2-ヘキセン-1-オール、1-ヘキセン-3-オール、ペンテノール、2-メチル-1ペンテーノール等の直鎖型又は分岐型の脂肪族不飽和アルコール、シクロペンタノール、シクロヘキサノール等の脂環式アルコール、ベンジルアルコール、シンナミルアルコール等の芳香族アルコール、フルフリルアルコール等の複素環式アルコールなどが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。炭素数10~22の直鎖型アルコールが好ましく、炭素数15~20の直鎖型脂肪族飽和アルコールがより好ましい。
(D)化合物に用いられる一価のアルコールの炭素数が下限値未満では、連続成形性(離型性)が劣り、上限値を超えると酸化銅に対する接着性が低下する。
 本発明に係る(D)化合物における炭素数28~60のα-オレフィンと無水マレイン酸との共重合物は、特に制限はないが、例えば、下記一般式(VI)で示される化合物、下記一般式(VII)で示される化合物等が挙げられ、市販品としては、1-オクタコセン、1-トリアコンテン、1-テトラコンテン、1-ペンタコンテン、1-ヘキサコンテン等を原料として用いたダイヤカルナ(登録商標)30(三菱化学株式会社製商品名)が入手可能である。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(VI)及び(VII)中のRは、炭素数26~56の一価の脂肪族炭化水素基を示し、nは1以上の整数である。mは、α-オレフィンと無水マレイン酸の共重合比を示し、特に制限はないが、α-オレフィンをXモル、無水マレイン酸をYモルとした場合、X/Y、すなわち、mは1/2~10/1が好ましく、ほぼ等モル程度の1/1前後がより好ましい。
 炭素数28~60のα-オレフィンと無水マレイン酸との共重合物の製造方法としては、特に制限はなく、原材料を反応させる等の一般的な共重合方法を用いることができる。反応には、α-オレフィンと無水マレイン酸が溶解可能な有機溶剤等を用いてもよい。有機溶剤としては特に制限はないが、トルエンが好ましく、芳香族系溶剤、エーテル系溶剤、ハロゲン系溶剤等も使用できる。反応温度は、使用する有機溶剤の種類によっても異なるが、反応性、生産性の観点から、50~200℃とすることが好ましく、100~150℃がより好ましい。反応時間は、共重合物が得られれば特に制限はないが、生産性の観点から1~30時間とするのが好ましく、より好ましくは2~15時間、さらに好ましくは4~10時間である。反応終了後、必要に応じて、加熱減圧下等で未反応成分、溶剤等を除去することができる。その条件は、温度を100~220℃、より好ましくは120~180℃、圧力を13.3×10Pa以下、より好ましくは8×10Pa以下、時間を0.5~10時間とすることが好ましい。また、反応には、必要に応じてアゾビスイソブチロニトリル(AIBN)や過酸化ベンゾイル(BPO)等のラジカル重合系開始剤を加えてもよい。
 炭素数28~60のα-オレフィンと無水マレイン酸の共重合物を炭素数10~25の一価のアルコールでエステル化する方法としては、特に制限はなく、共重合物に一価アルコールを付加反応させる等の一般的手法を挙げることができる。炭素数28~60のα-オレフィンと無水マレイン酸の共重合物と一価アルコールとの反応モル比は、特に制限はなく、任意に設定可能であるが、この反応モル比を調整することによって、親水性の程度をコントロールすることが可能であるので、目的の封止用成形材料に合わせて適宜設定することが好ましい。反応には、α-オレフィンと無水マレイン酸が溶解可能な有機溶剤等を用いてもよい。有機溶剤としては特に制限はないが、トルエンが好ましく、芳香族系溶剤、エーテル系溶剤、ハロゲン系溶剤等も使用できる。反応温度は、使用する有機溶剤の種類によっても異なるが、反応性、生産性の観点から、50~200℃とすることが好ましく、100~150℃がより好ましい。反応時間は、共重合物が得られれば特に制限はないが、生産性の観点から1~30時間とするのが好ましく、より好ましくは2~15時間、さらに好ましくは4~10時間である。反応終了後、必要に応じて、加熱減圧下等で未反応成分、溶剤等を除去することができる。その条件は、温度を100~220℃、より好ましくは120~180℃、圧力を13.3×10Pa以下、より好ましくは8×10Pa以下、時間を0.5~10時間とすることが好ましい。また、反応には、必要に応じてとりエチルアミン、N、Nジメチルアミノピリジン等のアミン系触媒、硫酸、パラトルエンスルホン酸等の酸触媒等の反応触媒を加えてもよい。
 (D)化合物としては、例えば、下記の式(a)又は(b)で示されるジエステル、及び、式(c)~(f)で示されるモノエステルから選ばれる1種以上を、繰り返し単位として構造中に含む化合物等が挙げられ、式(g)又は(h)で示されるノンエステルを含んでいても良い。このような化合物としては、主鎖骨格中に(1)(a)~(f)のいずれか1種単独で構成されるもの、(2)(a)~(f)のいずれか2種以上をランダムに含むもの、規則的に含むもの、ブロック状に含むもの、(3)(a)~(f)のいずれか1種又は2種以上と(g)及び/又は(h)をランダムに含むもの、規則的に含むもの、ブロック状に含むもの、等が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。また、(4)(g)及び(h)をランダムに含むもの、規則的に含むもの、ブロック状に含むもの、及び/又は、(5)(g)又は(h)それぞれ単独で構成されるものを含んでいてもよい。(D)成分のエステル化率は、離型性及び接着性の観点から、20モル%以上とすることが好ましく、(D)化合物としては、式(c)~(f)で示されるモノエステルのいずれか1種又は2種以上を合わせて20モル%以上含む化合物が好ましく、30モル%以上含む化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記式(a)~(h)中のRは炭素数26~56の一価の脂肪族炭化水素基、Rは炭素数10~25の一価の炭化水素基を示す。mは、α-オレフィン(X)と無水マレイン酸(Y)の共重合モル比X/Yを示し、1/2~10/1が好ましく、1/1前後がより好ましい。
 (D)化合物の数平均分子量は、繰り返し単位が1以上であれば特に制限はなく、どの分子量領域でも良好な酸化銅に対する接着性と離型性が実現できるが、好ましくは数平均分子量が2000~10000である。
 (D)化合物には、未反応のα-オレフィンを0~33質量%含んでも連続成形性及び酸化銅に対する接着性は変化しないが、含有量が上限値を超えると成形品表面の汚れ(パッケージ汚れ)が顕著になる傾向がある。
 (D)化合物の配合量は、特に制限はないが、(A)エポキシ樹脂の総量100質量%に対して0.5~10質量%が好ましく、1~5質量%がより好ましい。配合量が下限値未満では離型性が低下する傾向があり、上限値を超えると、酸化銅に対する接着性が不十分となる傾向がある。
 本発明の半導体封止用エポキシ樹脂組成物には、離型剤として、本発明の効果が達成できる範囲内で、カルナバワックス、モンタン酸、ステアリン酸、高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、ポリエチレン、又はポリオレフィン系ワックスなどの従来公知の離型剤を、(D)化合物と併用することができる。
 また、(D)化合物の含有量は、離型剤の総量100質量%に対して、特に限定されないが、55質量%以上100質量%以下が好ましい。このような範囲とすることにより、良好な酸化銅に対する接着性と離型性が実現できる。
 本発明において用いられるシロキサン付加重合体変性物は、下記一般式(I)で示される、ジメチルシロキサンのメチル置換基の一部を、アルキル基、エポキシ基、カルボキシル基、及びアミノ基等の置換基で置換した変性シリコーンオイルであり、樹脂との親和性に優れるため耐半田ストレス性と、流動性の良好な半導体封止用エポキシ樹脂組成物を得ることができる。さらに樹脂中に離型剤を分散させる効果があり、接着性を低下させることなく、離型効果を高める効果も期待できる。前記シロキサン付加重合体変性物は1種又は2種以上混合して、半導体封止用エポキシ樹脂組成物全体に対し0.1~2質量%を使用することができる。但し、シロキサン付加重合体変性物が上限値を超える場合には、表面汚染が発生しやすく、レジンブリードが長くなる恐れがあり、下限値未満で使用する時には、十分な低弾性率、離型剤の分散性を得ることができなくなることがある。
Figure JPOXMLDOC01-appb-C000010
(一般式(I)中、R~Rは水素原子、炭素数1~55の置換又は非置換の炭化水素基、アルキレンオキシグリシジルエーテル基、及びアルキレンオキシド基、から選ばれ、全てが同一でも異なっていてもよい。R~Rは水素原子、炭素数1~10の置換又は非置換の炭化水素基、アミノ基、カルボキシル基、グリシジルエーテル基、及びアルキルカルボン酸-4,4'-(1-メチルエチリデン)ビスフェノールジグリシジルエーテル基から選ばれ、全てが同一でも異なっていてもよい。nは1~100の整数を示す。)
 本発明の半導体封止用エポキシ樹脂組成物には、IC等の半導体素子の耐湿性、高温放置特性を向上させる観点から陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、例えば、ハイドロタルサイトや、アンチモン、ビスマス、ジルコニウム、チタン、スズ、マグネシウム、アルミニウムから選ばれる元素の含水酸化物等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。中でも、下記一般式(VIII)で示されるハイドロタルサイト及びビスマスの含水酸化物が好ましい。
 Mg1-XAl(OH)(COX/2・mHO (VIII)
(0<X≦0.5、mは正の整数)
 陰イオン交換体の配合量は、ハロゲンイオン等のイオン性不純物を捕捉できる十分な量であれば特に制限はないが、(A)エポキシ樹脂の総量100質量%に対して0.1~30質量%が好ましく、1~10質量%がより好ましく、2~5質量%がさらに好ましい。配合量が下限値未満ではイオン性不純物の捕捉が不十分になる傾向があり、上限値を超えた場合それ以下に比べて効果に大差がないため経済的に不利である。
 本発明の半導体封止用エポキシ樹脂組成物には、樹脂成分と無機充填剤との接着性を高めるために、必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を添加することができる。これらを例示すると、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記カップリング剤の配合量は、(C)無機充填剤の総量100質量%に対して0.05~5質量%であることが好ましく、0.1~2.5質量%がより好ましい。下限値未満では耐湿性が低下する傾向があり、上限値を超えるとパッケージの成形性が低下する傾向がある。
 さらに、本発明の半導体封止用エポキシ樹脂組成物には、その他の添加剤として、臭素化エポキシ樹脂、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等のハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機又は無機の化合物、金属水酸化物などの難燃剤、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の着色剤、イミダゾール、トリアゾール、テトラゾール、トリアジン等及びこれらの誘導体、アントラニル酸、没食子酸、マロン酸、リンゴ酸、マレイン酸、アミノフェノール、キノリン等及びこれらの誘導体、脂肪族酸アミド化合物、ジチオカルバミン酸塩、チアジアゾール誘導体等の接着促進剤などを必要に応じて配合することができる。
 本発明の半導体封止用エポキシ樹脂組成物は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。成形条件に合うような寸法及び質量でタブレット化すると使いやすい。
 また、本発明の半導体封止用エポキシ樹脂組成物は、各種有機溶剤に溶かして液状半導体封止用エポキシ樹脂組成物として使用することもでき、この液状半導体封止用エポキシ樹脂組成物を板又はフィルム上に薄く塗布し、樹脂の硬化反応が余り進まないような条件で有機溶剤を飛散させることによって得られるシートあるいはフィルム状の半導体封止用エポキシ樹脂組成物として使用することもできる。
 本発明で得られる半導体封止用エポキシ樹脂組成物により素子を封止して得られる半導体装置としては、銅リードフレームの支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の半導体封止用エポキシ樹脂組成物で封止した、半導体装置などが挙げられる。このような半導体装置としては、例えば、銅リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤーボンディングやバンプで接続した後、本発明の半導体封止用エポキシ樹脂組成物を用いてトランスファー成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型ICが挙げられる。
 図1は、本発明に係る半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が2段に積層されて固定されている。半導体素子1の電極パッドと銅リードフレーム5との間は金線4によって接続されている。半導体素子1は、封止用樹脂組成物の硬化体6によって封止されている。銅リードフレーム5としては、半導体装置の技術分野において一般的に使用される汎用の銅含有リードフレームが好ましい。この銅含有リードフレームとしては、銅を含む限り特に限定されず、少なくとも表面に銅を含むリードフレームや、銅合金のリードフレームまたは銅からなるリードフレームなどが好ましい。
 本発明の半導体封止用エポキシ樹脂組成物を用いて素子を封止する方法としては、低圧トランスファー成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。半導体封止用エポキシ樹脂組成物が常温で液状又はペースト状の場合は、ディスペンス方式、注型方式、印刷方式等が挙げられる。
 また、素子を直接樹脂封止する一般的な封止方法ばかりではなく、素子に直接半導体封止用エポキシ樹脂組成物が接触しない形態である中空パッケージの方式もあり、中空パッケージ用の半導体封止用エポキシ樹脂組成物としても好適に使用できる。
 また、本発明の半導体封止用エポキシ樹脂組成物は、酸化銅に対する接着性、離型性、連続成形性等に優れ、この半導体封止用エポキシ樹脂組成物を用いてIC、LSI等の電子部品を封止すれば信頼性に優れた半導体装置を得ることができる。
 以下、本発明について実施例を挙げて詳細に説明するが、本発明はなんらこれらに限定されない。
 合成例1:炭素数28~60のα-オレフィンと無水マレイン酸との共重合物を炭素数18の一価のアルコールでエステル化した化合物(D)の合成
 1-オクタコセン、1-トリアコンテン、1-テトラコンテン、1-ペンタコンテン、1-ヘキサコンテン等の混合物と無水マレイン酸との共重合物(三菱化学株式会社製、商品名ダイヤカルナ(登録商標)30)、300g及びステアリルアルコール、140gをトルエン、500mlに溶解して110℃で8時間反応させた後、160℃まで段階的に昇温しながらトルエンを除去し、減圧下160℃で6時間反応を行うことにより未反応成分を除去し、目的のモノエステル化率100モル%の化合物1、489gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=4100、分子量分布(Mw/Mn)=3.52であり、未反応のステアリルアルコール残留量は化合物1全体の1%以下であった。
 前記化合物1、100gをアセトン400mlに溶解し、n-ヘキサン300mlを添加した。析出した沈殿物を濾別乾燥し、化合物1高分子量体、70gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=5600、分子量分布(Mw/Mn)=1.82であった。さらに上澄み液から溶剤を留去、乾燥して化合物1低分子量体、20gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=2400、分子量分布(Mw/Mn)=2.21であった。
 合成例2:炭素数28~60のα-オレフィンと無水マレイン酸との共重合物を炭素数12の一価のアルコールでエステル化した化合物(D)の合成
 ステアリルアルコールの代わりに1-ドデカノール97gを添加したことを除いては合成例1に記載の方法によって、モノエステル化率100モル%の化合物2、385gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=3800、分子量分布(Mw/Mn)=3.81であり、未反応の1-ドデカノール残留量は化合物2全体の1%以下であった。
 合成例3:炭素数28~60のα-オレフィンと無水マレイン酸との共重合物を炭素数22の一価のアルコールでエステル化した化合物(D)の合成
 ステアリルアルコールの代わりにベヘニルアルコール(花王株式会社製、商品名カルコール220-80)170gを添加したことを除いては合成例1に記載の方法によって、モノエステル化率100モル%の化合物3、458gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=4400、分子量分布(Mw/Mn)=3.55であり、未反応のベヘニルアルコール残留量は化合物3全体の1%以下であった。
 合成例4:炭素数20~24のα-オレフィンと無水マレイン酸との共重合物を炭素数18の一価のアルコールでエステル化した化合物の合成
 1-エイコセン、1-ドコセン、1-テトラコセンの混合物(出光興産株式会社製、商品名リニアレン2024)、180gと無水マレイン酸、58gをトルエン、500mlに溶解し、110℃で加熱しながら20分毎にBPO、0.16gを3回に分けて添加した。BPOを添加終了後、反応溶液をさらに7時間110℃で加熱した。この共重合物のトルエン溶液にステアリルアルコール162gを添加して110℃で8時間反応させた後、160℃まで段階的に昇温しながらトルエンを除去し、減圧下160℃で6時間反応を行うことにより未反応成分を除去し、目的のモノエステル化率100モル%の化合物4、380gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=9800、分子量分布(Mw/Mn)=2.63であり、未反応のステアリルアルコール残留量は化合物4全体の1%以下であった。
 合成例5:炭素数28~60のα-オレフィンと無水マレイン酸との共重合物を炭素数8の一価のアルコールでエステル化した化合物の合成
 ステアリルアルコールの代わりに1-オクタノール、68gを添加したことを除いては合成例1に記載の方法によって、モノエステル化率100モル%の化合物5、340gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=3700、分子量分布(Mw/Mn)=3.80であり、未反応の1-オクタノール残留量は化合物5全体の1%以下であった。
 合成例6:炭素数28~60のα-オレフィンと無水マレイン酸との共重合物を炭素数28の一価のアルコールでエステル化した化合物(D)の合成
 ステアリルアルコールの代わりにオクタコサノール(株式会社素材機能研究所製、商品名ポリコサノール(米糠由来))、214gを添加したことを除いては合成例1に記載の方法によって、モノエステル化率100モル%の化合物6、506gを得た。分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=4800、分子量分布(Mw/Mn)=3.91であり、未反応のオクタコサノール残留量は化合物6全体の1%以下であった。
 実施例1~10及び比較例1~9で用いた成分について、以下に示す。
(A)成分のエポキシ樹脂:
 エポキシ当量185、融点108℃のビフェニル型エポキシ樹脂(ジャパンエポキシ株式会社製、商品名エピコートYX-4000K)、
 エポキシ当量237、軟化点52℃のパラキシリレン型エポキシ樹脂(日本化薬社製、商品名NC2000)、
 エポキシ当量273、軟化点52℃のビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂と略す)(日本化薬社製、商品名NC-3000L)
(B)成分の硬化剤:
 水酸基当量199、軟化点64℃のビフェニレン骨格を有するフェノールアラルキル型フェノール樹脂(ビフェニルアラルキル樹脂と略す)(明和化成株式会社製、商品名MEH-7851SS)
(C)成分の無機充填剤:
 平均粒径10.8μm、比表面積5.1m/gの球状溶融シリカ(電気化学工業株式会社製、商品名デンカ溶融シリカ(DF)球形粉末タイプ(グレード FB-105))
(D)成分の離型剤:
 上記合成例で得られた化合物1~6、その他の離型剤として酸化ポリエチレンワックス(クラリアント社製、商品名PED191)、モンタン酸系ワックス(クラリアント社製、商品名リコワックスE)、α-オレフィンモノマー(Chevron Phillips Chemical Company製、商品名Alpha Olefin C30+)
(E)成分の硬化促進剤:
 トリフェニルホスフィンとp-ベンゾキノンとの付加物(北興化学株式会社製、商品名TPP-BQ)
 シロキサン付加重合体変性物:
 シリコーンオイルA(下記式(IX)で表される化合物(東レ・ダウコーニング株式会社製、BY-750、分子量約1500)とビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、JER(登録商標)YL-6810(エポキシ当量172g/eq、融点45℃)12質量部を140℃で加温溶融し、G1-1を6質量部、トリフェニルホスフィンを0.15質量部添加して、140℃にて30分間溶融混合して得た溶融反応物)
Figure JPOXMLDOC01-appb-C000011
 シリコーンオイルB(下記式(X)で表される化合物、式(X)中、m、n、l、aおよびbは、同一または異なる整数である(東レダウコーニング株式会社製、商品名FZ-3730))
Figure JPOXMLDOC01-appb-C000012
 カップリング剤:γ-グリシドキシプロピルトリメトキシシラン(チッソ株式会社製、商品名S510=GPS-M)
 着色剤:カーボンブラック(三菱化学株式会社製、商品名カーボン#5)
上記成分をそれぞれ表1及び表2に示す質量部で配合し、混練温度100℃、混練時間30分の条件で二軸混練して冷却後粉砕し、半導体封止用エポキシ樹脂組成物を作製した。なお比較例4及び5の化合物1及び化合物4と酸化ポリエチレンワックスはビフェニル型エポキシ樹脂と170℃、6時間の条件で予備混練して用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 作製した実施例及び比較例の半導体封止用エポキシ樹脂組成物を、次の各試験により評価した。評価結果を表3及び表4に示す。
(1)接着性
 酸化銅基材とタブレット化した半導体封止用エポキシ樹脂組成物を175℃、70kg/cm、2分の条件で一体成形して切頭体状の成形品(上径2mm×下径3mm×厚さ3mm)を得た後、得られた各成形品の基材を固定し、半導体封止用エポキシ樹脂組成物の硬化部位を横方向から押し、そのトルク(N)を測定した。
(2)離型荷重
 離型時荷重評価用金型は、トランスファー成形型として上型、中型、下型からなる。図2に成形後の中型の平面概略図を示した。成形後に中型に付着する成形品の形状は、直径14.0mm、高さ1.5mm厚である。図2において、11は中型を示し、12はカルを示し、13はランナーを示す。14は成形品を示し、15はエアベントを示す。16は取っ手、17はプッシュプルゲージ挿入用の穴を、それぞれ示す。
 図2に示す離型時荷重評価用金型を用いて金型温度175℃、注入圧力6.9MPa、硬化時間1分で評価用材料をトランスファー成形した。成形後に中型11に付着した円形の成形品14に、中型の上部の穴17からプッシュブルゲージを当て(図3参照)、成形品を突き出した際にかかる荷重を測定した。続けて評価用材料を20ショット成形した後半の10ショットの成形品について測定を行い、その平均値を離型荷重として評価した。
(3)連続成形性(エアベントブロック、型汚れ及びパッケージ汚れ)
 低圧トランスファー自動成形機(第一精工株式会社製、GP-ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間70秒で、80ピンクワッドフラットパッケージ(80pQFP;Cu製リードフレーム、パッケージ外寸:14mm×20mm×2mm厚、パッドサイズ:6.5mm×6.5mm、チップサイズ6.0mm×6.0mm×0.35mm厚)を、連続で400ショットまで封止成形した。
 エアベントブロックは50ショット毎に金型を目視により観察することで、エアベントブロックの有無を確認し、次の4段階で評価した。
A:400ショットまで問題なし
B:300ショットまでにエアベントブロック発生
C:200ショットまでにエアベントブロック発生
D:100ショットまでにエアベントブロック発生
 型汚れについては、400ショットの金型を観察し、ゲート口からの汚れの広がり具合の程度から、次の5段階に評価した。
A:汚れなし
B:汚れの広がりがパッケージ表面の10面積%以下
C:汚れの広がりがパッケージ表面の10面積%超~20面積%以下
D:汚れの広がりがパッケージ表面の20面積%超~50面積%以下
E:汚れの広がりがパッケージ表面の50面積%超
 パッケージ汚れについては400ショットのパッケージを観察し、ゲート口からの汚れの広がり具合の程度から、次の5段階に評価した。
A:汚れなし
B:汚れの広がりがパッケージ表面の10面積%以下
C:汚れの広がりがパッケージ表面の10面積%超~20面積%以下
D:汚れの広がりがパッケージ表面の20面積%超~50面積%以下
E:汚れの広がりがパッケージ表面の50面積%超
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~5は酸化銅に対する接着強度、離型性(離型荷重)共に良好であった。シロキサン付加重合体変性物としてシリコーンオイル成分を含む実施例6及び7も酸化銅に対する接着強度、離型性(離型荷重)が良好であり、連続成形性(金型の汚れ)がさらに改善された。(A)エポキシ樹脂として全量をビフェニル型エポキシ樹脂またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂)を使用し、シリコーンオイル成分を含む実施例8及び、実施例9も離型性(離型荷重)が良好であり、酸化銅に対する接着強度がさらに改善された。α-オレフィンモノマーを(D)化合物に35質量%含む実施例10は、比較例と比較して、酸化銅に対する接着強度、離型性(離型荷重)は良好であった。比較例1~3は、離型性(離型荷重)が劣っていた。また、離型剤成分として酸化ポリエチレンワックスを併用した比較例4~5及び比較例7は連続成形性(エアベントブロック)が良好でなく、酸化銅に対する接着もかなり阻害されていることが示される。また、この比較例5は、特許文献1または2に記載の実施例1に相当する。モンタン酸系離型剤を含む比較例8及び9は酸化銅に対する接着強度が弱く、離型性(離型荷重)も劣っていた。
 この出願は、平成21年10月20日に出願された日本特許出願特願2009-241427、平成22年3月25日に出願された日本特許出願特願2010-070700及び平成22年4月27日に出願された日本特許出願特願2010-102429を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  (A)エポキシ樹脂、
     (B)硬化剤、
     (C)無機充填材、及び
     離型剤、を含有し、
     前記離型剤は、(D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を含有する、半導体封止用エポキシ樹脂組成物。
  2.  更に下記一般式(I)で示される、シロキサン付加重合体変性物を含む、請求項1に記載の半導体封止用エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式中、R~Rは水素原子、炭素数1~55の置換又は非置換の炭化水素基、アルキレンオキシグリシジルエーテル基、及びアルキレンオキシド基、から選ばれ、全てが同一でも異なっていてもよい。R~Rは水素原子、炭素数1~10の置換又は非置換の炭化水素基、アミノ基、カルボキシル基、グリシジルエーテル基、及びアルキルカルボン酸-4,4'-(1-メチルエチリデン)ビスフェノールジグリシジルエーテル基から選ばれ、全てが同一でも異なっていてもよい。nは1~100の整数を示す。)
  3.  前記(D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物の含有量が、前記離型剤の総量100質量%に対して、55質量%以上100質量%以下である、請求項1または2に記載の半導体封止用エポキシ樹脂組成物。
  4.  前記シロキサン付加重合体変性物の含有量が、前記半導体封止用エポキシ樹脂組成物の総量100質量%に対して、0.1質量%以上2質量%以下である、請求項2に記載の半導体封止用エポキシ樹脂組成物。
  5.  前記(A)エポキシ樹脂が、ビフェニル型エポキシ樹脂、パラキシリレン型エポキシ樹脂、及びビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂からなる群から選択される少なくとも一種を含む、請求項1から4のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
  6.  銅含有リードフレームを備える半導体装置における半導体素子の封止に用いる、請求項1から5のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
  7.  請求項1から6のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物で、半導体素子が封止されていることを特徴とする半導体装置。
  8.  (D)炭素数28~60のα-オレフィンと無水マレイン酸との共重合体を、炭素数10~25の長鎖脂肪族アルコールでエステル化した化合物を含有する、離型剤。
  9.  半導体封止用エポキシ樹脂組成物に用いる、請求項8に記載の離型剤。
  10.  前記半導体封止用エポキシ樹脂組成物は、銅含有リードフレームを備える半導体装置における半導体素子の封止に用いる、請求項9に記載の離型剤。
PCT/JP2010/006011 2009-10-20 2010-10-07 半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤 WO2011048765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800472267A CN102575085A (zh) 2009-10-20 2010-10-07 半导体封装用环氧树脂组合物、半导体装置及脱模剂
US13/499,923 US9040606B2 (en) 2009-10-20 2010-10-07 Epoxy resin composition for encapsulating semiconductor, semiconductor device, and mold releasing agent
KR1020127012878A KR101719021B1 (ko) 2009-10-20 2010-10-07 반도체 봉지용 에폭시 수지 조성물, 반도체 장치 및 이형제
KR1020167030198A KR101779314B1 (ko) 2009-10-20 2010-10-07 반도체 봉지용 에폭시 수지 조성물, 반도체 장치 및 이형제
JP2011537117A JP5737183B2 (ja) 2009-10-20 2010-10-07 半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-241427 2009-10-20
JP2009241427 2009-10-20
JP2010-070700 2010-03-25
JP2010070700 2010-03-25
JP2010-102429 2010-04-27
JP2010102429 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011048765A1 true WO2011048765A1 (ja) 2011-04-28

Family

ID=43900010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006011 WO2011048765A1 (ja) 2009-10-20 2010-10-07 半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤

Country Status (8)

Country Link
US (1) US9040606B2 (ja)
JP (1) JP5737183B2 (ja)
KR (2) KR101779314B1 (ja)
CN (2) CN102575085A (ja)
MY (1) MY157584A (ja)
SG (1) SG10201406600RA (ja)
TW (1) TWI500688B (ja)
WO (1) WO2011048765A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118157A1 (ja) * 2010-03-25 2011-09-29 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置
JP2011246544A (ja) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
US20120168969A1 (en) * 2010-12-31 2012-07-05 Han Seung Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with an encapsulant prepared from the composition
CN102863936A (zh) * 2012-10-09 2013-01-09 株洲时代新材料科技股份有限公司 一种加热固化型双组分环氧灌封胶及其制备方法
JP2014062173A (ja) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd 樹脂組成物および電子部品装置
JP2016023279A (ja) * 2014-07-23 2016-02-08 住友ベークライト株式会社 封止用樹脂組成物、半導体装置および構造体
JP2018016761A (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 封止用エポキシ樹脂組成物、硬化物、及び半導体装置
JPWO2020195883A1 (ja) * 2019-03-27 2021-04-08 住友ベークライト株式会社 封止用樹脂組成物および半導体装置
JP2021120462A (ja) * 2016-04-20 2021-08-19 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂封止基板、および電子装置
WO2022118749A1 (ja) * 2020-12-03 2022-06-09 住友ベークライト株式会社 封止用樹脂組成物および半導体装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205822A1 (en) * 2009-10-26 2012-08-16 Yusuke Tanaka Resin composition for encapsulating semiconductor and semiconductor device using the resin composition
TWI494339B (zh) 2012-10-23 2015-08-01 Ind Tech Res Inst 部分酯化環氧樹脂及應用其製成之環氧樹脂組成物及其製法
WO2014116996A1 (en) * 2013-01-25 2014-07-31 Washington State University Research Foundation Derivatives of fatty esters, fatty acids and rosins
CN106608008B (zh) * 2016-11-28 2018-11-23 西安空间无线电技术研究所 一种脱模剂及其制备方法和在环氧树脂灌封中的应用
KR102056303B1 (ko) 2017-05-15 2019-12-16 주식회사 엘지화학 반도체 패키지용 수지 조성물과 이를 사용한 프리프레그 및 금속박 적층판
EP3632982A4 (en) * 2017-05-24 2020-04-08 Mitsubishi Chemical Corporation MOLDING MATERIAL, AND FIBER REINFORCED COMPOSITE MATERIAL
CN111261527B (zh) * 2020-02-11 2021-10-01 深圳市法本电子有限公司 一种半导体封装构件及其制备方法
CN111619046A (zh) * 2020-05-25 2020-09-04 余姚市远东化工有限公司 一种耐储存的脱模剂及其制备方法
CN112759891A (zh) * 2020-12-28 2021-05-07 广东盈骅新材料科技有限公司 环氧树脂组合物及含有其的透明复合材料、层压板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017045A (ja) * 1998-06-30 2000-01-18 Hitachi Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び該樹脂組成物で封止された半導体装置
JP2006028264A (ja) * 2004-07-13 2006-02-02 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2006104415A (ja) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP3975386B2 (ja) * 1999-12-28 2007-09-12 日立化成工業株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
JP4010176B2 (ja) * 2001-06-15 2007-11-21 日立化成工業株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
JP2008024757A (ja) * 2006-07-18 2008-02-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、及び電子部品装置
JP2008179791A (ja) * 2006-12-25 2008-08-07 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2727329C2 (de) 1977-06-16 1984-03-01 Akzo Gmbh, 5600 Wuppertal Olefin-Maleinsäure-Copolymerisat-Ester
JPS6152862A (ja) 1984-08-24 1986-03-15 松下電器産業株式会社 超音波探触子の製造方法
US4871823A (en) * 1987-09-11 1989-10-03 S. C. Johnson & Son, Inc. 1-Alkene/excess maleic anhydride polymers
JPH06299180A (ja) * 1993-04-14 1994-10-25 Nippon Steel Corp 塑性加工用固体潤滑剤及び固体潤滑層を有する金属板
JP3542311B2 (ja) * 2000-01-28 2004-07-14 株式会社ルネサステクノロジ 半導体装置
JP4966457B2 (ja) * 2001-06-11 2012-07-04 新日本製鐵株式会社 ハイドロフォーム用固体潤滑剤および固体潤滑層を有する金属管
JP2009144107A (ja) * 2007-12-18 2009-07-02 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物及び半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017045A (ja) * 1998-06-30 2000-01-18 Hitachi Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び該樹脂組成物で封止された半導体装置
JP3975386B2 (ja) * 1999-12-28 2007-09-12 日立化成工業株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
JP4010176B2 (ja) * 2001-06-15 2007-11-21 日立化成工業株式会社 封止用エポキシ樹脂成形材料及び電子部品装置
JP2006028264A (ja) * 2004-07-13 2006-02-02 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2006104415A (ja) * 2004-10-08 2006-04-20 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2008024757A (ja) * 2006-07-18 2008-02-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、及び電子部品装置
JP2008179791A (ja) * 2006-12-25 2008-08-07 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725016B2 (ja) * 2010-03-25 2015-05-27 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置
WO2011118157A1 (ja) * 2010-03-25 2011-09-29 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置
JPWO2011118157A1 (ja) * 2010-03-25 2013-07-04 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置
US9048187B2 (en) 2010-03-25 2015-06-02 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
JP2011246544A (ja) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
US8531044B2 (en) * 2010-12-31 2013-09-10 Cheil Industries, Inc. Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with an encapsulant prepared from the composition
US20120168969A1 (en) * 2010-12-31 2012-07-05 Han Seung Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with an encapsulant prepared from the composition
JP2014062173A (ja) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd 樹脂組成物および電子部品装置
CN102863936A (zh) * 2012-10-09 2013-01-09 株洲时代新材料科技股份有限公司 一种加热固化型双组分环氧灌封胶及其制备方法
CN102863936B (zh) * 2012-10-09 2014-07-02 株洲时代新材料科技股份有限公司 一种加热固化型双组分环氧灌封胶及其制备方法
JP2016023279A (ja) * 2014-07-23 2016-02-08 住友ベークライト株式会社 封止用樹脂組成物、半導体装置および構造体
JP2021120462A (ja) * 2016-04-20 2021-08-19 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂封止基板、および電子装置
JP2018016761A (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 封止用エポキシ樹脂組成物、硬化物、及び半導体装置
JPWO2020195883A1 (ja) * 2019-03-27 2021-04-08 住友ベークライト株式会社 封止用樹脂組成物および半導体装置
JP6992914B2 (ja) 2019-03-27 2022-01-13 住友ベークライト株式会社 封止用樹脂組成物および半導体装置
WO2022118749A1 (ja) * 2020-12-03 2022-06-09 住友ベークライト株式会社 封止用樹脂組成物および半導体装置
JPWO2022118749A1 (ja) * 2020-12-03 2022-06-09

Also Published As

Publication number Publication date
SG10201406600RA (en) 2014-11-27
JP5737183B2 (ja) 2015-06-17
KR101779314B1 (ko) 2017-09-18
KR20120099044A (ko) 2012-09-06
CN107033540A (zh) 2017-08-11
KR20160128463A (ko) 2016-11-07
US20120199992A1 (en) 2012-08-09
TW201120129A (en) 2011-06-16
CN107033540B (zh) 2022-02-08
US9040606B2 (en) 2015-05-26
CN102575085A (zh) 2012-07-11
KR101719021B1 (ko) 2017-03-22
MY157584A (en) 2016-06-30
TWI500688B (zh) 2015-09-21
JPWO2011048765A1 (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5737183B2 (ja) 半導体封止用エポキシ樹脂組成物、半導体装置及び離型剤
KR102013533B1 (ko) 밀봉용 에폭시 수지 조성물 및 전자 부품 장치
JP5400267B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
TWI647275B (zh) 密封用環氧樹脂成形材料及電子零件裝置
JP5874633B2 (ja) 半導体封止用エポキシ樹脂組成物の製造方法およびこれを用いる半導体装置の製造方法
JP5906673B2 (ja) 封止用エポキシ樹脂成形材料、及びこの成形材料で封止した素子を備えた電子部品装置
JP4010176B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP3975386B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2009102622A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP6171274B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP5725016B2 (ja) 半導体封止用エポキシ樹脂組成物およびこれを用いた半導体装置
JP2013237855A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2006193618A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2006028264A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2017106034A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2005350500A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP5522461B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2005232268A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2013108024A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2011021166A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2004346226A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2005232266A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2005255978A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2005272811A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2005232267A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047226.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537117

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499923

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127012878

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10824619

Country of ref document: EP

Kind code of ref document: A1