WO2011046144A1 - 有機エレクトロルミネッセンス光源装置 - Google Patents

有機エレクトロルミネッセンス光源装置 Download PDF

Info

Publication number
WO2011046144A1
WO2011046144A1 PCT/JP2010/067958 JP2010067958W WO2011046144A1 WO 2011046144 A1 WO2011046144 A1 WO 2011046144A1 JP 2010067958 W JP2010067958 W JP 2010067958W WO 2011046144 A1 WO2011046144 A1 WO 2011046144A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
concavo
convex structure
light source
source device
Prior art date
Application number
PCT/JP2010/067958
Other languages
English (en)
French (fr)
Inventor
井上 弘康
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011536155A priority Critical patent/JPWO2011046144A1/ja
Priority to US13/502,024 priority patent/US8476825B2/en
Publication of WO2011046144A1 publication Critical patent/WO2011046144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0289Diffusing elements; Afocal elements characterized by the use used as a transflector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Definitions

  • the present invention relates to an organic electroluminescence (hereinafter sometimes abbreviated as “organic EL”) light source device.
  • organic EL organic electroluminescence
  • An organic EL light source device is an element in which an organic light emitting layer is provided between a plurality of electrodes to obtain light emission. About the organic EL light source device, the utilization as a display element replaced with a liquid crystal cell is examined. The organic EL light source device is also being considered for use as a planar light source such as a flat illumination and a backlight for a liquid crystal display device, taking advantage of its high luminous efficiency, low voltage drive, light weight, and low cost. .
  • the organic EL light source device When the organic EL light source device is used as a surface light source, it becomes a problem to extract useful light from the organic EL light source device with high efficiency. For example, although the light emitting layer itself of the organic EL light source device has high luminous efficiency, the amount of light is reduced due to interference in the layer until it emits light through the laminated structure constituting the element. It is required to reduce such light loss as much as possible.
  • Patent Document 1 discloses that the luminance in the front direction (0 °) of the element is suppressed and the luminance at an angle of 50 to 70 ° is increased to increase the overall luminance. It is disclosed.
  • the light source device is required to further improve the light extraction efficiency.
  • an object of the present invention is to provide an organic EL light source device with higher light extraction efficiency.
  • the inventors of the present application have studied.
  • the pair of electrodes constituting the light-emitting element are both transparent electrodes, and the reflective surface has a concavo-convex structure. It is found that the above-mentioned problem can be solved by providing a layer, and further setting the relationship between the inclination angle of the concavo-convex structure and the refractive index of the structural layer provided in contact with the reflecting surface. It came to be completed. Therefore, according to the present invention, the following [1] to [7] are provided.
  • the first transparent electrode layer, the light emitting layer, the second transparent electrode layer, and the reflective layer having a reflective surface are arranged in this order from the light exit surface side, and further, the second transparent electrode layer and the An organic electroluminescence light source device having a structural layer X located between and in contact with a reflective surface,
  • the reflective surface has an uneven structure;
  • the concavo-convex structure has a plurality of concavo-convex structure units consisting of depressions or protrusions,
  • the refractive index n of the structural layer X, the inclination angle ⁇ x1 (°) of the concavo-convex structure unit, and the average inclination angle ⁇ x2 (°) of the concavo-convex structure on the reflection surface are expressed by the following equations (1) and (2): ⁇ x1 ⁇ sin ⁇ 1 (1 / n) (1) ⁇ 90 ⁇ sin ⁇ 1 (1 / n) ⁇ / 3 ⁇ ⁇ x2 ⁇ sin ⁇ 1 (1 /
  • the organic electroluminescence light source device according to [1], The refractive index n of the structural layer X and the average inclination angle ⁇ x2 (°) of the concavo-convex structure of the reflecting surface are expressed by the following formula (3): ⁇ 90 ⁇ sin ⁇ 1 (1 / n) ⁇ / 2 ⁇ ⁇ x2 ⁇ sin ⁇ 1 (1 / n) (3) An organic electroluminescence light source device that satisfies the requirements.
  • the organic electroluminescence light source device according to [1] or [2],
  • the refractive index n of the structural layer X and the average inclination angle ⁇ x2 (°) of the concavo-convex structure of the reflecting surface are expressed by the following formula (4): ( ⁇ 90 + sin ⁇ 1 (1 / n) ⁇ / 4) ⁇ 5 ⁇ ⁇ x2 ⁇ ( ⁇ 90 + sin ⁇ 1 (1 / n) ⁇ / 4) +5 (4)
  • An organic electroluminescence light source device that satisfies the requirements.
  • the organic electroluminescence light source device according to any one of [1] to [3], The organic electroluminescence light source device, wherein the concavo-convex structure unit of the reflecting surface is a pyramid or a truncated pyramid shape.
  • the organic electroluminescence light source device according to any one of [1] to [4], The organic electroluminescence light source device, wherein the concavo-convex structure has recesses provided as concavo-convex structure units, and a flat gap portion is provided between adjacent recesses.
  • the organic electroluminescence light source device according to any one of [1] to [5], The organic electroluminescence light source device, wherein the reflective layer is a stacked body of a first metal layer containing a first metal and a second metal layer containing a second metal different from the first metal.
  • the organic electroluminescence light source device according to any one of [1] to [6], The organic electroluminescent light source device which further has the light-diffusion layer provided in the light emission surface side from the said reflection layer.
  • the light source device of the present invention has high light extraction efficiency and can be highly durable even with a simple thin structure, it is useful as a light source for backlights of liquid crystal display devices, illumination devices, and the like.
  • FIG. 1 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view schematically showing the concavo-convex structure portion 141 of the reflector composite substrate 140 shown in FIG.
  • FIG. 3 is a partial cross-sectional view showing a surface obtained by cutting the concavo-convex structure unit 14Z of the reflector composite substrate 140 shown in FIG. 2 along a plane that passes through the line 2a parallel to the base 14E and is parallel to the Z-axis direction.
  • FIG. 4 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the second embodiment of the present invention.
  • FIG. 4 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the second embodiment of the present invention.
  • FIG. 5 is an elevational sectional view schematically showing a layer structure of an organic EL light source device according to the third embodiment of the present invention.
  • FIG. 6 is an elevational cross-sectional view schematically showing the layer structure of the organic EL light source device according to the fourth embodiment of the present invention.
  • FIG. 7 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the fifth embodiment of the present invention.
  • FIG. 8 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the sixth embodiment of the present invention.
  • FIG. 9 is an elevational cross-sectional view schematically showing the layer structure of the organic EL light source device according to the seventh embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view schematically showing an example of light reflection on the reflection surface.
  • FIG. 11 is a perspective view schematically showing a modified example of the reflector composite substrate 140 having the concavo-convex structure 141 in the first embodiment.
  • FIG. 12 is a partial cross-sectional view of the concavo-convex structure unit 24Z of the reflector composite substrate 240 shown in FIG. 11 cut along a plane that passes through the line 3a parallel to the base 24E and is parallel to the Z-axis direction.
  • FIG. 13 is a partial cross-sectional view schematically showing a modification of the concavo-convex structure unit 14Z of the reflector composite substrate 140 having the concavo-convex structure part 141 in the first embodiment.
  • FIG. 14 is a partial cross-sectional view schematically showing a modified example of the concavo-convex structure unit 14Z of the reflector composite substrate 140 having the concavo-convex structure part 141 in the first embodiment.
  • FIG. 15 is a partial cross-sectional view schematically showing a modification of the concavo-convex structure unit 14Z of the reflector composite substrate 140 having the concavo-convex structure part 141 in the first embodiment.
  • FIG. 16 is a perspective view schematically showing a further modification of the reflector composite substrate 140 having the concavo-convex structure 141 in the first embodiment.
  • FIG. 17 is a perspective view schematically showing a further modification of the reflector composite substrate 140 having the concavo-convex structure 141 in the first embodiment.
  • FIG. 18 is a graph showing the examination results in Example 2.
  • FIG. 19 is a graph showing the examination results in Reference Example 1.
  • FIG. 1 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the first embodiment of the present invention.
  • the light source device will be described in a state where the light emitting layer is placed horizontally and the light emitting surface of the device is placed upward. Therefore, unless otherwise specified, in the following description, the “horizontal plane” is a plane parallel to the main surface of the light emitting layer, the upper side of the light source device is the light exit surface side, and the lower side is the opposite side of the light exit surface. This is merely for convenience of explanation of the positional relationship.
  • the state of installation of the light source device when using the light source device is not limited to this horizontal mounting state at all.
  • the incident angle, the outgoing angle, the reflection angle, and the critical angle of light at the interface are all angles at which incident, outgoing, or reflected light forms a perpendicular to the interface.
  • the inclination angle of the concavo-convex structure is an angle formed by a surface on the concavo-convex structure with a horizontal plane.
  • the direction of the perpendicular to the horizontal plane may be simply referred to as “Z-axis direction”.
  • an apparatus 100 is bonded to a substrate 101, a light emitting element 120 provided below the substrate 101, a sealing substrate 102 provided below the light emitting element 120 with a sealing layer 131 interposed therebetween. And a reflecting portion composite body 144 provided below the sealing substrate 102 with the layer 132 interposed therebetween.
  • the light emitting element 120 is sealed with the sealing layer 131, the sealing substrate 102, and the substrate 101. Accordingly, when the light source device 100 is used, the light emitting element 120 deteriorates due to contact with oxygen, moisture, or the like in the outside air. This can be prevented.
  • the reflective part composite body 144 includes a reflective part composite substrate 140 on which the concavo-convex structure part 141 is formed, and a reflective layer 142 provided on the concavo-convex structure part 141.
  • the reflective layer 142 is bonded to the lower side of the sealing substrate 102 through the adhesive layer 132.
  • the upper surface of the reflective layer 142 is a reflective surface.
  • the reflecting surface has a plurality of concavo-convex structural units composed of depressions or protrusions.
  • the reflective layer 142 is provided along the surface of the concavo-convex structure portion 141.
  • substrate and sealing substrate As the substrate 101 and the sealing substrate 102, a substrate that can be normally used as a substrate of an organic EL light emitting element, such as a glass substrate, quartz glass, and a plastic substrate, can be adopted.
  • the material constituting the substrate 101 may be the same as or different from the material constituting the sealing substrate 102.
  • the thickness of both the substrate and the sealing substrate can be 0.01 to 5 mm.
  • the light emitting element 120 includes a first transparent electrode layer 111, a light emitting layer 121, and a second transparent electrode layer 112 in this order from the light output side.
  • the light-emitting layer 121 is not particularly limited and can be appropriately selected from known ones. However, in order to suit the use as a light source, a predetermined peak wavelength, which will be described later, may be used by combining a single layer or a combination of a plurality of layers. It is possible to emit light containing.
  • the first transparent electrode layer 111 is located closer to the light exit surface than the light emitting layer 121, and the second transparent electrode layer 112 is located closer to the reflective layer.
  • each of the transparent electrode layers 111 and 112 is not particularly limited, and a known material used as an electrode of the organic EL light-emitting element can be appropriately selected. Either one is an anode and the other is a cathode. Can do.
  • the electrode may further include other layers such as a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a gas barrier layer.
  • Examples of the materials of the first transparent electrode layer 111 and the second transparent electrode layer 112 include a metal thin film, ITO, IZO, SnO 2 and the like.
  • Specific layer configurations of the light-emitting element include anode / hole transport layer / light-emitting layer / cathode configuration, anode / hole transport layer / light-emitting layer / electron injection layer / cathode configuration, anode / hole injection layer / Composition of light emitting layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode composition, anode / hole transport layer / light emitting layer / electron injection layer / equipotential Structure of surface forming layer / hole transport layer / light emitting layer / electron injection layer / cathode, anode / hole transport layer / light emitting layer / electron injection layer / charge generation layer / hole transport layer / light emitting layer / electron injection layer / Examples include the configuration of the cathode.
  • the light-emitting element in the organic EL light source device of the present invention can have one or more light-emitting layers between the anode and the cathode, and as the light-emitting layer, a laminate of a plurality of layers having different emission colors, or A certain dye layer may have a mixed layer doped with different dyes.
  • the material of each layer is not particularly limited.
  • examples of the material constituting the light emitting layer include materials such as polyparaphenylene vinylene, polyfluorene, and polyvinyl carbazole.
  • Examples of the hole injection layer and the hole transport layer include phthalocyanine-based, arylamine-based, and polythiophene-based materials.
  • Examples of the electron injection layer and the electron transport layer include aluminum complexes and lithium fluoride.
  • examples of the equipotential surface forming layer or the charge generation layer include transparent electrodes such as ITO, IZO, and SnO 2, and metal thin films such as Ag and Al.
  • the first transparent electrode layer 111, the light emitting layer 121, the second transparent electrode layer 112, and other arbitrary layers constituting the light emitting element 120 can be provided by sequentially laminating them on the substrate 101.
  • the thickness of each of these layers can be 10 to 1000 nm.
  • the material constituting the sealing layer 131 has a function of adhering the second transparent electrode layer 112 and the sealing substrate 102, and the light emitting element 120 is deteriorated due to moisture, oxygen, etc. in the air during use of the device.
  • Various resins that can prevent the above can be used.
  • the material forming the sealing layer 131 is not limited to a solid, and for example, an inert liquid such as fluorinated hydrocarbon or silicon oil, or a liquid crystal material such as a nematic liquid crystal or a smectic liquid crystal can be used.
  • Examples of the material constituting the sealing layer 131 include an energy ray curable resin such as acrylate and methacrylate, an adhesive functional resin such as acrylic or olefin, or an adhesive functional resin.
  • a resin such as an adhesive functional resin can be used.
  • the adhesive functional resin as used herein can be a material having a shear storage modulus at a temperature of 23 ° C. of 0.1 to 10 MPa, and the adhesive functional resin is a material having a higher shear storage modulus. can do.
  • glass transition temperature As a heat melting type adhesive functional resin that is welded by heating and cured by cooling, its glass transition temperature (Tg) is usually ⁇ 50 to 200 ° C., preferably ⁇ 10 to 100 ° C., more preferably 20 to 90 ° C., particularly Those having a temperature of 50 to 80 ° C. can be preferably used.
  • Tg glass transition temperature
  • the adhesive functional resin or the adhesive functional resin is a conjugated diene polymer cyclized product obtained by cyclizing a conjugated diene polymer, and the conjugated diene polymer with respect to an unsaturated bond in the conjugated diene polymer.
  • a conjugated diene polymer cyclized product having a reduction rate of unsaturated bonds (unsaturated bond reduction rate) in the cyclized product of 30% or more can be used.
  • said adhesion functional resin or adhesive functional resin what contains the said conjugated diene polymer cyclization thing and alicyclic olefin resin can also be used.
  • the conjugated diene polymer cyclized product can be obtained by cyclizing the conjugated diene polymer in the presence of an acid catalyst.
  • an acid catalyst As the conjugated diene polymer, homopolymers and copolymers of conjugated diene monomers and copolymers of conjugated diene monomers and other monomers can be used.
  • the conjugated diene monomer is not particularly limited, and specific examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1, Examples include 3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene. These monomers may be used alone or in combination of two or more.
  • conjugated diene polymer examples include homopolymers or copolymers of conjugated dienes such as natural rubber, polyisoprene, butadiene-isoprene copolymer; styrene-butadiene copolymer, styrene-isoprene copolymer, isoprene.
  • conjugated dienes such as isobutylene copolymers, ethylene-propylene-diene copolymer rubbers, aromatic vinyl-conjugated diene block copolymers such as styrene-isoprene block copolymers with other monomers
  • a polymer can be mentioned.
  • natural rubber polyisoprene, and styrene-isoprene block copolymers are preferable, and polyisoprene and styrene-isoprene block copolymers are more preferable.
  • a modified conjugated diene polymer cyclized product modified with a polar group is preferably used as the conjugated diene polymer cyclized product.
  • the modified conjugated diene polymer cyclized product has an effect of developing tackiness or adhesion to an adherend. Further, when fine particles are contained in the adhesive functional resin or the adhesive functional resin, the modified conjugated diene polymer cyclized product has an effect of improving the dispersibility of the fine particles.
  • One kind of the modified conjugated diene polymer cyclized product containing a polar group may be contained in the pressure-sensitive adhesive resin or adhesive functional resin, and a plurality of types having different polar groups may be the pressure-sensitive adhesive resin or adhesive. It may be contained in the functional resin. Further, a conjugated diene polymer cyclized product having two or more kinds of functional groups may be used.
  • the polar group is not particularly limited, and examples thereof include an acid anhydride group, carboxyl group, hydroxyl group, thiol group, ester group, epoxy group, amino group, amide group, cyano group, silyl group, and halogen. Can be mentioned.
  • Examples of the acid anhydride group or carboxyl group include maleic anhydride, itaconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, vinyl carboxylic acid compounds such as acrylic acid, methacrylic acid, and maleic acid.
  • Examples include a group having a structure added to a cyclized product of a polymer, and among them, a group having a structure in which maleic anhydride is added to a cyclized product of a conjugated diene polymer is preferable in terms of reactivity and economy.
  • Amide group is introduced by grafting conjugated diene polymer cyclized product using unsaturated compound containing amide group; introducing functional group using unsaturated compound containing functional group Then, it can be introduced by a method of reacting the introduced functional group with a compound having an amide group.
  • the unsaturated compound containing an amide group include acrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, and N-benzylacrylamide.
  • hydroxyl group examples include hydroxyalkyl esters of unsaturated acids such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, N-methylol (meth) acrylamide, and N- (2 -Unsaturated acid amides having hydroxyl groups such as hydroxyethyl) (meth) acrylamide, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and poly (ethylene glycol-propylene glycol) mono (meth) acrylate Groups of structures in which polyalkylene glycol monoesters of unsaturated acids such as, and polyhydric alcohol monoesters of unsaturated acids such as glycerol mono (meth) acrylate are added to the conjugated diene polymer cyclized product, Among these, hydroxyalkyl esters of an unsaturated acid are preferred, particularly 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate
  • vinyl compounds containing other polar groups include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl ( And (meth) acrylate, (meth) acrylamide, and (meth) acrylonitrile.
  • the content of the polar group in the modified conjugated diene polymer cyclized product, particularly the polar group-containing conjugated diene polymer cyclized product is not particularly limited, but is usually 0.1 to 15 mol%, preferably 0.5 to 10 mol. %, More preferably in the range of 1 to 7 mol%. If the content is too small or too large, the oxygen absorption function tends to be inferior. In addition, content of a polar group makes 1 mol the molecular weight equivalent amount of the polar group couple
  • a method for producing a modified conjugated diene polymer cyclized product (1) a method in which a conjugated diene polymer cyclized product obtained by the above-described method is subjected to an addition reaction with a polar group-containing vinyl compound, and (2) a polar group is contained.
  • a method of obtaining a conjugated diene polymer by cyclization reaction by the above-mentioned method (3) An addition reaction of a vinyl compound containing a polar group to a conjugated diene polymer not containing a polar group, followed by a cyclization reaction.
  • the point of said (1) is preferable from the point which can adjust an unsaturated bond decreasing rate more easily.
  • the polar group-containing vinyl compound is not particularly limited as long as it is a compound that can introduce a polar group into a conjugated diene polymer cyclized product.
  • an acid anhydride group, a carboxyl group, a hydroxyl group, a thiol group Preferred examples include vinyl compounds having polar groups such as ester groups, epoxy groups, amino groups, amide groups, cyano groups, silyl groups, and halogens.
  • Examples of the vinyl compound having an acid anhydride group or a carboxyl group include maleic anhydride, itaconic anhydride, aconitic anhydride, norbornene dicarboxylic acid anhydride, acrylic acid, methacrylic acid, and maleic acid.
  • Maleic anhydride can be preferably used in terms of reactivity and economy.
  • the vinyl compound containing a hydroxyl group for example, hydroxyalkyl esters of unsaturated acids are preferable, and 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate are particularly preferable vinyl compounds.
  • the method for adding a polar group-containing vinyl compound to a conjugated diene polymer cyclized product and introducing a polar group derived from the polar group-containing vinyl compound is not particularly limited, but is generally an ene addition reaction or a graft polymerization reaction. What is necessary is just to follow the well-known reaction called.
  • This addition reaction is carried out by contacting the conjugated diene polymer cyclized product with the polar group-containing vinyl compound in the presence of a radical generator, if necessary.
  • the radical generator include peroxides such as di-tert-butyl peroxide, dicumyl peroxide, and benzoyl peroxide, and azonitriles such as azobisisobutyronitrile.
  • the conjugated diene polymer cyclized product has at least two kinds of unsaturated bonds, ie, a linear unsaturated bond inherent to the conjugated diene and a cyclic unsaturated bond of the cyclized portion, except for a 100% cyclized product. ing.
  • the conjugated diene polymer cyclized product it is considered that the cyclic unsaturated bond portion greatly contributes to oxygen absorption, and the linear unsaturated bond portion hardly contributes to oxygen absorption.
  • a conjugated diene polymer cyclized product having a reduction rate of unsaturated bonds (unsaturated bond reduction rate) in the conjugated diene polymer cyclized product with respect to unsaturated bonds in the conjugated diene polymer of 30% or more is It is preferable as a material for the oxygen absorbing member in the light emitting device of the invention.
  • the unsaturated bond reduction rate of the conjugated diene polymer cyclized product is preferably 40 to 75%, more preferably 55 to 70%. If the unsaturated bond reduction rate is too low, oxygen absorption tends to deteriorate.
  • the conjugated diene polymer cyclized product prevents the conjugated diene polymer cyclized product from becoming brittle by making the unsaturated bond reduction rate less than or equal to the upper limit of the above preferred range, facilitates production, and causes gelation during production. Progression is suppressed, transparency is improved, and it can be used for many purposes. Further, when the unsaturated bond reduction rate exceeds 50%, tackiness or adhesiveness is exhibited, and this property can be utilized.
  • the unsaturated bond reduction rate is an index representing the degree to which the unsaturated bond is reduced by the cyclization reaction in the conjugated diene monomer unit site in the conjugated diene polymer, and is a numerical value obtained as follows. is there. That is, by proton NMR ( 1 H-NMR) analysis, the ratio of the peak area of protons directly bonded to double bonds to the peak area of all protons in the conjugated diene monomer unit portion in the conjugated diene polymer is Calculate the reduction rate before and after the chemical reaction.
  • the total proton peak area before the cyclization reaction is SBT
  • the peak area of the proton directly bonded to the double bond is SBU
  • the total proton after the cyclization reaction is SAU
  • SA SAU / SAT
  • SA unsaturated bond reduction rate
  • the oxygen absorption amount of the conjugated diene polymer cyclized product used in the present invention is 5 ml / g or more, preferably 10 ml / g or more, more preferably 50 ml / g or more.
  • the oxygen absorption amount is the amount of oxygen absorbed by 1 g of the conjugated diene polymer cyclized product when the conjugated diene polymer cyclized product is sufficiently absorbed as a powder or thin film to reach a saturated state at 23 ° C. If the amount of oxygen absorbed is small, a large amount of conjugated diene polymer cyclized product is required to stably absorb oxygen for a long period of time.
  • the amount of oxygen absorbed is mainly correlated with the unsaturated bond reduction rate in the conjugated diene polymer cyclized product.
  • the conjugated diene polymer cyclized product used has an oxygen absorption rate from the surface of 1.0 ml / m 2 ⁇ day or more, preferably 5.0 ml / m 2 ⁇ day or more, more preferably 10 ml / m 2. ⁇ It is more than a day. Even if the conjugated diene polymer cyclized product has a large oxygen absorption ability, if the oxygen absorption rate is too slow, oxygen entering from the outside may not be sufficiently absorbed and transmitted. Further, when used as a sealing layer of a light-emitting element, oxygen that has existed or entered in the sealing space for some reason must be quickly absorbed and removed by the conjugated diene polymer cyclized product layer. From this point of view, those having the above-described oxygen absorption rate are desirable.
  • the content of the conjugated diene polymer cyclized product in the adhesive functional resin or adhesive functional resin is usually 5 to 90% by weight, preferably 15 to 70% by weight.
  • the content of the conjugated diene polymer cyclized product is lower than the lower limit value, there may be a disadvantage that the oxygen absorption capacity and the adhesion force at room temperature (25 ° C.) are lowered. There is a possibility that the strength is lowered.
  • the alicyclic olefin resin is an amorphous resin having an alicyclic structure such as a cycloalkane structure or a cycloalkene structure in the main chain and / or side chain. From the viewpoint of mechanical strength and heat resistance, a polymer containing an alicyclic structure in the main chain is preferred. Examples of the alicyclic structure include monocycles and polycycles (condensed polycycles, bridged rings, etc.). Among the alicyclic structures, a cycloalkane structure is preferable. The number of carbon atoms constituting one unit of the alicyclic structure is not particularly limited, but is usually in the range of 4-30, preferably 5-20, more preferably 5-15.
  • the alicyclic olefin resin include (1) norbornene polymer, (2) monocyclic olefin polymer, (3) cyclic conjugated diene polymer, and (4) vinyl alicyclic hydrocarbon. Examples thereof include a polymer and a mixture thereof. Among these, a norbornene polymer and a vinyl alicyclic hydrocarbon polymer are preferable from the viewpoints of optical properties, heat resistance, and mechanical strength. Further, when an alicyclic olefin resin having a polar group is used as the alicyclic olefin resin, the affinity with an inorganic substance can be improved without impairing the light transmittance.
  • the formation method of the sealing layer 131 is not particularly limited, but a layer of an adhesive functional resin or an adhesive functional resin such as those described above is provided on the sealing substrate 102 and / or the second transparent electrode layer 112,
  • the sealing substrate 102 and the second transparent electrode layer 112 can be pasted through the adhesive functional resin or the adhesive functional resin layer, and further heated and welded as necessary.
  • the thickness of the sealing layer can be 1 to 1000 ⁇ m.
  • such an adhesive functional resin or an adhesive functional resin itself does not have the ability to shield moisture and oxygen in the air, and shielding itself from the outside air can be performed by the substrate 101 and the sealing substrate 102.
  • a material that can absorb oxygen and moisture as the material of the sealing layer 131 sealed between the sealing substrates 102, the light emitting layer 120 can be more effectively prevented from being deteriorated, and the life of the layer can be increased. It can be set as a light source device.
  • the shape of the reflective surface of the reflective layer and the refractive index of the structural layer X located between and in contact with the second transparent electrode layer and the reflective surface are predetermined.
  • the refractive index n of the structural layer X, the inclination angle ⁇ x1 of the concavo-convex structure unit, and the average inclination angle ⁇ x2 of the concavo-convex structure of the reflecting surface are expressed by the following equations (1) and (2): ⁇ x1 ⁇ sin ⁇ 1 (1 / n) (1) ⁇ 90 ⁇ sin ⁇ 1 (1 / n) ⁇ / 3 ⁇ ⁇ x2 ⁇ sin ⁇ 1 (1 / n) (2) Meet.
  • the element corresponding to the structural layer X is the adhesive layer 132. Further, the surface of the reflective layer 142 in contact with the adhesive layer 132 becomes the reflective surface of the reflective layer.
  • the reflecting portion composite substrate 140 is a member that defines the uneven structure of the reflecting surface. That is, since the reflective layer 142 is provided along the concavo-convex structure of the concavo-convex structure part 141 of the reflective part composite substrate 140, the concavo-convex structure of the reflective surface of the reflective layer 142 has the same shape as the concavo-convex structure of the concavo-convex structure part 141 It becomes.
  • the reflective part composite substrate 140 is formed so that the surface shape of the concavo-convex structure part 141 satisfies the relationship of the above formulas (1) and (2), and the reflective layer 142 having a uniform film thickness is formed thereon.
  • a desired shape of the reflecting surface can be obtained.
  • the aspect of the reflective layer in the present invention is not limited to a uniform film thickness, and for example, a metal layer having irregularities may be formed on a flat substrate.
  • FIG. 2 shows an example of a more detailed structure of the concavo-convex structure portion 141 in the first embodiment.
  • FIG. 2 is an enlarged perspective view schematically showing the concavo-convex structure portion 141 of the reflector composite substrate 140 shown in FIG.
  • the shape of the reflective surface of the reflective layer 142 is the same as the surface shape of the concavo-convex structure portion 141.
  • the concavo-convex structure of the reflector composite substrate 140 is a structure in which a plurality of concavo-convex structure units 14Z, which are quadrangular pyramid-shaped depressions, are arranged.
  • the concavo-convex structure units 14 ⁇ / b> Z are continuously arranged in two planes (X-axis direction and Y-axis direction in FIG. 2) that intersect each other.
  • the concavo-convex structure unit 14Z has four slopes 14A to 14D and a vertex 14T. The angles formed by the four inclined surfaces 14A to 14D and the horizontal plane are equal.
  • the bottom surface of the quadrangular pyramid shape of the concavo-convex structure unit 14Z is a square.
  • the quadrangular pyramid base 14E of the concavo-convex structure unit 14Z is in contact with the base of the other concavo-convex structure unit 14Z, whereby the concavo-convex structure unit 14Z is continuously arranged on the concavo-convex structure without a gap.
  • the concavo-convex structure units 14Z are continuously arranged without gaps, but the adjacent concavo-convex structure units 14Z may be arranged apart from each other.
  • the (gap) is preferably a flat surface.
  • FIG. 3 is a partial cross-sectional view showing a surface obtained by cutting the concavo-convex structure unit 14Z of the reflector composite substrate 140 along a plane that passes through the line 2a parallel to the base 14E and is parallel to the Z-axis direction.
  • the angle ⁇ 14 formed by the inclined surfaces 14B and 14D and the horizontal plane is the inclination angle ⁇ x1 of the concavo-convex structure unit 14Z.
  • the inclination angle ⁇ 14 of the concavo-convex structure unit 14Z is also the average inclination angle ⁇ x2 of the concavo-convex structure of the reflective surface.
  • the inclination angle ⁇ x1 is the largest angle among the plurality of concavo-convex structures.
  • the average inclination angle is obtained by excluding the flat part.
  • the average inclination angle ⁇ x2 when the concavo-convex structure has a plurality of types of inclinations or curved surfaces that are more complicated than the above example is defined as follows. That is, when the reflecting surface is divided into n minute areas that are sufficiently smaller than the concavo-convex structure unit, and each minute area is ⁇ Si, the average inclination is defined by ⁇ i as the value of the angle between the aforementioned ⁇ Si and the substrate plane.
  • the angle is given by the following formula (5):
  • ⁇ Si represents the total surface area of the reflective layer.
  • high light extraction efficiency can be realized when the average inclination angle of the reflective layer defined as described above satisfies the predetermined requirement.
  • the reflective part composite substrate 140 can be formed by integrally forming the concavo-convex structure part 141 and the part below it with a common material.
  • the concavo-convex structure portion 141 and the portion below it can be formed of different materials.
  • the concave-convex structure portion 141 and a portion below the concave-convex structure portion 141 are integrally formed with a common material
  • examples of the material include the same materials as those constituting the substrate 101 and the sealing substrate 102.
  • a plastic substrate is preferable. More specifically, for example, those made of the above-described alicyclic olefin resin or the like can be used.
  • the same material as described above can be used for the lower portion.
  • a resin that can be cured by energy rays such as ultraviolet rays is preferable from the viewpoint of ease of molding.
  • materials such as (meth) acrylate energy beam curable resins can be used.
  • Such a resin is applied onto the surface of a predetermined substrate constituting a part of the lower part, and a mold having a desired shape is further pressed thereon, and energy rays are irradiated from the sealing substrate 102 side.
  • the concavo-convex structure portion 141 having a desired concavo-convex structure can be easily formed by curing.
  • the thickness of the reflective part composite substrate 140 can be 25 to 500 ⁇ m.
  • the height of the unevenness of the uneven structure can be 0.3 to 100 ⁇ m.
  • the width of the unevenness of the uneven structure can be 0.6 to 200 ⁇ m.
  • the reflective layer 142 can be provided, for example, by forming one or more metal layers on a member that defines a concavo-convex structure, such as a reflector composite substrate.
  • a metal such as aluminum or an alloy thereof, silver or an alloy thereof can be used.
  • silver having a high reflectance is preferable.
  • the reflective layer is a laminate of a first metal layer containing a first metal and a second metal layer containing a second metal different from the first metal. More specifically, when silver having a high reflectivity is provided with a thickness that provides a sufficient reflectivity, the manufacturing cost increases, so that the first metal and the second metal are silver and reflectivity, respectively.
  • Adopts inexpensive aluminum which is inferior to silver and can be a reflective layer in which an aluminum layer and a silver layer are laminated. More specifically, a silver layer can be provided on the upper side of the aluminum layer, and the silver layer can be used as a reflection layer. Preferably, the silver layer can be provided directly on the aluminum layer.
  • the reflective layer 142 when the reflective layer 142 is made of metal, in particular, the reflective layer 142 can play a role of blocking oxygen and moisture in the air from entering the light emitting element in addition to the sealing substrate 102.
  • the material constituting the adhesive layer 132 that bonds the sealing substrate 102 and the reflective layer 142 is the same material as the resin exemplified as the material of the sealing layer 131 (various adhesive functional resins or Adhesive functional resin or the like) can be used, but not limited thereto, various known adhesives used for bonding optical members and the like can be used. Specifically, for example, Aron Alpha (registered trademark) manufactured by Toagosei Co., Ltd. can be used.
  • the refractive index thereof is preferably within a preferable range as the refractive index n of the structural layer X described below.
  • the method for forming the adhesive layer 132 is not particularly limited, and a composition for forming an adhesive layer is applied to the surface of the sealing substrate 102 and / or the reflective layer 142, and the sealing substrate 102 and the reflective layer 142 are applied to the composition. It can be formed by pasting through a coating layer, and photocuring, heating, drying, etc., if necessary.
  • the thickness of the adhesive layer can be 1 to 1000 ⁇ m.
  • the adhesive layer 132 is preferably provided on the reflective surface so as to fill the uneven shape of the reflective surface and have a flat surface.
  • the organic EL light source device of the present invention further includes an optional layer in addition to the first transparent electrode layer, the light emitting layer, the second transparent electrode layer, the structural layer X, and the reflective layer, which are essential components. Can do. For example, it can further include a light diffusion layer provided closer to the light exit surface than the reflective layer.
  • the diffusing layer can be provided at an arbitrary position on the light-emitting surface side of the reflective layer, and may be provided as a layer different from the layer that is the essential component, or an essential configuration such as the structural layer X, for example.
  • the element layer may also serve as the diffusion layer.
  • the diffusion layer may be a layer provided with a function as a diffusion layer on any of the above-described layers such as a substrate, a sealing substrate, a sealing layer, an adhesive layer, and an adhesive layer.
  • the diffusion layer can be a layer below the light emitting element and located near the light emitting element and made of a material such as a resin to which a diffusing agent can be easily added.
  • the sealing layer 131 with a function as a diffusion layer to form a diffusion layer.
  • the material of the diffusion layer is not particularly limited, but it is preferable that the diffusion layer is added to the resin constituting the sealing layer and the like.
  • a structure in which a material having a higher refractive index than glass is used for the sealing layer and a diffusing agent is added to the material is preferable in that the metallic luster of the reflective layer can be suppressed and the light extraction efficiency can be improved.
  • the haze of the diffusion layer can be 25 to 95%. More preferably, it can be made 70 to 90%. By setting the haze range to the above lower limit or more, the effect of the diffusion layer can be obtained. Moreover, it can be set as thin layer thickness by making the range of haze below the said upper limit.
  • the light emitting layer 121 emits light when a voltage is applied to the first transparent electrode layer 111 and the second transparent electrode layer 112. The generated light is emitted from the light emitting layer 121 in an arbitrary direction.
  • Part of the light emitted upward passes through the first transparent electrode layer 111, passes through the substrate 101, and exits from the light exit surface 100A. However, the light reflected at the interface travels downward. In particular, light incident on one of the interfaces at an angle larger than the critical angle of the interface is totally reflected, and all of the light travels downward.
  • the reflection at the layer interface in the device is repeated many times, the light energy is lost due to interference and absorption. Therefore, from the viewpoint of increasing the light extraction efficiency, it is preferable to reflect the light emitted downward in a direction in which total reflection is not repeated.
  • the light that reaches the structural layer X (the adhesive layer 132 in the first embodiment) and is reflected by the reflecting surface exits from the device light emitting surface, it is further between the device light emitting surface and the structural layer X. Even if other layers are present, the reflected light eventually exits from the device towards the outside, which is the air layer.
  • the light reflected at the reflecting surface and directed toward the device exit surface side is left as it is (that is, the optical path change other than refraction (diffusion by a diffusing agent, refraction and reflection at a surface non-parallel to the device exit surface, etc.)
  • the range of angles that can be emitted from the light exit surface of the device depends on the relative refractive index of the refractive index between the structural layer X that is in contact with the reflective surface and the air layer.
  • the relative refractive index can be approximated simply to the refractive index n of the structural layer X.
  • the angle formed with the Z-axis direction is larger than the critical angle at the interface when the structural layer X and air have an interface (hereinafter simply referred to as “the critical angle of the structural layer X”).
  • the critical angle of the structural layer X In the case where the light traveling downward in the structural layer X is reflected by the reflecting surface and travels upward, as much of the reflected light as possible is in a direction in which the angle formed with the Z-axis direction is smaller than the critical angle of the structural layer X. It is required to proceed.
  • the reflecting surface satisfies the above formulas (1) and (2), the ratio of such desired reflection increases, so that the extraction efficiency can be improved.
  • the average inclination angle ⁇ x2 preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
  • the structural layer X can be obtained even in two successive reflections as indicated by the arrows in FIG. 10 by satisfying the above formula (3).
  • most of the reflected light has an angle with the Z-axis direction smaller than the critical angle of the structural layer X It is particularly preferable because it proceeds in the direction.
  • the value of the refractive index n of the structural layer X is preferably equal to or higher than the refractive index of the substrate and the sealing substrate.
  • the lower limit of the refractive index n of the structural layer X is preferably 1.5 or more, and more preferably 1.6 or more. preferable.
  • the upper limit of the refractive index of the structural layer X need not be equal to or higher than the refractive index of the light emitting element, and is preferably 1.9 or lower.
  • the refractive index can be a refractive index based on light having a wavelength of 550 nm.
  • FIG. 4 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the second embodiment of the present invention.
  • an apparatus 400 is provided below the sealing substrate 102 via an adhesive layer 432, and has a transparent concavo-convex layer 440 having a concavo-convex structure portion 441 on the lower surface, and a lower surface of the concavo-convex structure portion 441. It differs from 1st Embodiment by the point provided with the reflective layer 442 provided.
  • the transparent concavo-convex layer 440 is a member that defines the concavo-convex structure of the reflective surface of the reflective layer.
  • the reflective surface of the reflective layer 442 has a shape having the predetermined concave-convex structure of the present invention.
  • the adhesive layer 432 but the transparent uneven layer 440 corresponds to the structural layer X. Further, the surface of the reflective layer 442 in contact with the concavo-convex structure portion 441 of the transparent concavo-convex layer 440 becomes the reflective surface of the reflective layer. Even with such a configuration, the requirements of the present invention can be satisfied, and high light extraction efficiency and other desired effects can be obtained.
  • the transparent concavo-convex layer 440 can be formed by integrally forming the concavo-convex structure portion 441 and a portion above the concavo-convex structure portion 441 in the same manner as the reflective portion composite substrate 140.
  • the concavo-convex structure portion 441 and the portion above it can be formed of different materials.
  • the same materials as those mentioned above as the material of the reflecting portion composite substrate 140 can be used.
  • the thickness of the transparent uneven layer 440 can be 1 to 500 ⁇ m.
  • the height of the unevenness of the transparent unevenness layer can be set to 0.3 to 100 ⁇ m.
  • the width of the unevenness of the transparent uneven layer can be 0.6 to 200 ⁇ m.
  • FIG. 5 is an elevational sectional view schematically showing a layer structure of an organic EL light source device according to the third embodiment of the present invention.
  • the third embodiment is a further modification of the second embodiment shown in FIG.
  • an apparatus 500 includes a concavo-convex structure portion 541 made of a transparent resin directly without an adhesive layer and a reflective layer 542 provided along the concavo-convex structure portion 541 on the lower surface of the sealing substrate 102. This is different from the second embodiment.
  • the uneven structure portion 541 corresponds to the structure layer X. Further, the surface of the reflective layer 542 in contact with the concavo-convex structure portion 541 becomes the reflective surface of the reflective layer. Further, the concavo-convex structure portion 541 is a member that defines the concavo-convex structure of the reflective surface of the reflective layer. Even with such a configuration, the reflective layer 542 can have the predetermined concavo-convex structure of the present invention, so that the structural requirements of the present invention can be satisfied and high light extraction efficiency and other desired effects can be obtained. it can.
  • FIG. 6 is an elevational cross-sectional view schematically showing the layer structure of the organic EL light source device according to the fourth embodiment of the present invention.
  • the light source device 600 of the fourth embodiment is configured by laminating a second transparent electrode layer 612, a light emitting layer 621, and a first transparent electrode layer 611 in this order on a substrate 601.
  • a reflective layer 142 provided on the concavo-convex structure portion 141 on the upper surface of the reflective portion composite substrate 140 is provided on the lower surface of the substrate 601 via the adhesive layer 132, as in the first embodiment.
  • the upper surface 602A of the sealing substrate 602 serves as the light exit surface of the light source device.
  • the adhesive layer 132 corresponds to the structural layer X, and the surface of the reflective layer 142 in contact with the adhesive layer 132 becomes the reflective surface of the reflective layer.
  • the first transparent electrode layer The present invention can satisfy the requirement of the present invention to have the layer, the second transparent electrode layer, and the reflective layer having a predetermined reflective surface in this order. As a result, the requirements of the present invention can be satisfied, and the high light extraction efficiency and other A desired effect can be obtained.
  • the refractive index of the substrate 601 is not particularly limited, but is preferably 1.5 or more, and more preferably a substrate having a high refractive index of 1.6 or more.
  • the lower limit of the refractive index of the adhesive layer 132 (the structural layer X in this example) is preferably 1.5 or more, similarly to the substrate, and is 1.6 or more. Is more preferable.
  • the upper limit of the refractive index of the adhesive layer 132 need not be equal to or higher than the refractive index of the light emitting element, and is preferably 1.9 or lower.
  • FIG. 7 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the fifth embodiment of the present invention.
  • the fifth embodiment is a modification of the first embodiment shown in FIG.
  • the device 700 includes a sealing adhesive layer 732 instead of the sealing layer 131, the sealing substrate 102, and the adhesive layer 132 below the second transparent electrode layer 112. It is different from the embodiment. That is, in the fifth embodiment, the sealing adhesive layer 732 is in direct contact with both the second transparent electrode layer 112 and the reflective layer 142. In the fifth embodiment, the sealing adhesive layer 732 corresponds to the structural layer X. Further, the surface of the reflective layer 142 in contact with the sealing adhesive layer 732 becomes the reflective surface of the reflective layer.
  • the reflective layer 142 replaces the sealing substrate 102 with oxygen and moisture in the air, and the light emitting element 120 (the first transparent electrode layer 111, the light emitting layer 121, and the second transparent electrode layer). 112), the deterioration can be prevented with a simpler layer structure, and the light source device can be thin, inexpensive and have a long life.
  • the material constituting the reflective layer 142 includes a layer of metal such as aluminum or silver. It is preferable.
  • the metal layer may be composed of a single layer of one kind of metal, or may be composed of a plurality of layers. In the reflective layer composed of a plurality of layers, each layer constituting the reflective layer may be made of the same metal or different metals.
  • the reflective layer may have a configuration in which a functional layer such as an inorganic thin film or an organic thin film is laminated with a metal layer. More preferably, as described above, a silver layer can be provided on the aluminum layer, and the silver layer can be used as a reflective surface.
  • the thickness of the reflective layer 142 is preferably 0.1 to 10 ⁇ m.
  • a water vapor barrier property of 10 ⁇ 5 g / m 2 -day or less is required, but in the present invention, a sealing adhesive layer and a reflective part composite
  • a barrier layer may be formed between the sealing adhesive layer 732 and the transparent electrode layer 112 from the viewpoint of securing barrier performance.
  • barrier layer examples include various metal oxides such as SiO 2 , SiON, SiN, SiOC, and Al 2 O 3 , metal nitrides, and the like.
  • energy ray curable resins such as acrylates and methacrylates used as sealing layers
  • adhesive functional resins such as acrylic and olefin based adhesive functional resins
  • hot melt adhesive functions that are cured by heating and cured by cooling
  • An inert liquid such as a resin, a fluorinated hydrocarbon, or silicon oil, or a liquid crystal material such as a nematic liquid crystal or a smectic liquid crystal may be used.
  • a material having high fluidity it becomes easy to fill the uneven structure of the reflective layer with the sealing layer.
  • the refractive index of the sealing adhesive layer 732 (the structural layer X in this example) is preferably equal to or higher than the refractive index of the substrate and the sealing substrate.
  • the lower limit of the refractive index n of the sealing adhesive layer 732 is preferably 1.5 or more, and is 1.6 or more. Is more preferable.
  • the upper limit of the refractive index n of the sealing adhesive layer 732 does not need to be equal to or higher than the refractive index of the light emitting element, and is preferably 1.9 or lower.
  • FIG. 8 is an elevational sectional view schematically showing a layer configuration of an organic EL light source device according to the sixth embodiment of the present invention.
  • the sixth embodiment is a further modification of the fifth embodiment shown in FIG.
  • the device 800 is provided on the lower side of the second transparent electrode layer 112 via the sealing adhesive layer 832, and the transparent uneven layer 840 in which the uneven structure portion 841 is formed on the lower surface.
  • a reflective layer 842 provided on the lower surface of the concavo-convex structure portion 841 formed on the lower surface of the transparent concavo-convex layer 840, which is different from the fifth embodiment.
  • the transparent uneven layer 840 corresponds to the structural layer X.
  • the surface of the reflective layer 842 in contact with the concavo-convex structure portion 841 of the transparent concavo-convex layer 840 becomes the reflective surface of the reflective layer.
  • the reflective layer 842 can have the predetermined concavo-convex structure of the present invention.
  • the reflective layer can block oxygen and moisture in the air from entering the light emitting element. Therefore, with such a configuration, light extraction efficiency can be increased, and a light source device that is thin, inexpensive, and has a long life can be obtained.
  • FIG. 9 is an elevational cross-sectional view schematically showing the layer structure of the organic EL light source device according to the seventh embodiment of the present invention.
  • the seventh embodiment is a further modification of the sixth embodiment shown in FIG.
  • the device 900 is different from that of the sixth embodiment in that a sealing metal layer 943 and its substrate 944 are provided below the reflective layer 842 via a sealing layer 933.
  • the transparent uneven layer 840 corresponds to the structural layer X.
  • the surface of the reflective layer 842 in contact with the concavo-convex structure portion 841 of the transparent concavo-convex layer 840 becomes the reflective surface of the reflective layer.
  • the sealing layer 933, the sealing metal layer 943, and the substrate 944 are not involved in light transmission or reflection.
  • the material constituting the reflective layer 842 and the material constituting the metal layer 943 may be the same or different, and the film thickness may be the same or different.
  • the reflection is performed as the metal layer 943.
  • the reflective performance can be improved better than in the sixth embodiment, and oxygen and moisture in the air are prevented from entering the light emitting element. be able to. Therefore, with such a configuration, light extraction efficiency can be increased, and a light source device that is thin, inexpensive, and has a long life can be obtained.
  • the concavo-convex structure of the reflective layer is exemplified by the periodic structure in which the concavo-convex structure units of the quadrangular pyramids as shown in FIG. 2 are continuous in two directions.
  • the relationship between the refractive index of the structural layer X, the inclination angle ⁇ x1 of the concavo-convex structure unit, and the average inclination angle of the concavo-convex structure is within the above range, various shapes can be employed.
  • the concavo-convex structure unit includes an arbitrary pyramid, a truncated pyramid shape, a truncated pyramid apex and / or side shape, a partial shape of a sphere or an elliptical sphere, etc.
  • Various shapes of indentations and / or protrusions, such as combinations of shapes, can be used.
  • a concavo-convex structure can be configured by arranging a plurality of concavo-convex structure units having a columnar shape such as a part of a cylinder or a prism so that the longitudinal direction of the columnar shape is horizontal and parallel to each other.
  • the concavo-convex structure is not limited to those in which the concavo-convex structure units are arranged without gaps, and is composed of a plurality of concavo-convex structure units that are depressions and / or protrusions and flat portions provided in the gaps between the concavo-convex structure units. It may be.
  • a specific example of the concavo-convex structure of the reflective layer other than the examples shown in FIG. 2 and FIG. 3 is exemplified below by showing a reflector composite substrate having a concavo-convex structure corresponding thereto.
  • FIG. 11 is a perspective view schematically showing a modification of the reflector composite substrate 140 having the concavo-convex structure 141 in the first embodiment.
  • the concavo-convex structure of the reflector composite substrate 24X is a structure in which concavo-convex structure units 24Z, which are quadrangular pyramid-shaped projections, are continuously provided in two in-plane directions.
  • the concavo-convex structure unit 24Z has four slopes 24A to 24D and a vertex 24T. The angles formed by the four inclined surfaces 24A to 24D and the horizontal plane are equal.
  • the bottom surface of the quadrangular pyramid shape of the uneven structure unit 24Z is a square.
  • the base 24E of the quadrangular pyramid shape of the concavo-convex structure unit 24Z is in contact with the base of another concavo-convex structure unit 24Z, whereby the concavo-convex structure unit 24Z is continuously provided on the concavo-convex structure without a gap.
  • FIG. 12 is a partial cross-sectional view of the concavo-convex structure unit 24Z of the reflector composite substrate 240 shown in FIG. 11 cut along a plane parallel to the Z-axis direction through the line 3a parallel to the base 24E.
  • the angle ⁇ 24 formed by the inclined surfaces 24B and 24D with the horizontal plane is the inclination angle ⁇ x1 of the concavo-convex structure unit 24Z.
  • the inclination angle ⁇ 24 of the concavo-convex structure unit 24Z is also the average inclination angle ⁇ x2 of the concavo-convex structure on the reflecting surface.
  • FIG. 13, FIG. 14 and FIG. 15 are partial cross-sectional views schematically showing modifications of the concavo-convex structure unit 14Z of the reflector composite substrate 140 having the concavo-convex structure part 141 in the first embodiment. 13, 14, and 15, the cross sections of the reflecting portion composite substrates 34 ⁇ / b> X, 44 ⁇ / b> X, and 54 ⁇ / b> X are cross sections of one concavo-convex structure unit, similar to the cross section of the reflecting portion composite substrate 140 shown in FIG. 3. It is a partial cross section shown in figure.
  • the concavo-convex structure unit 34Z of the reflecting portion composite substrate 34X includes a regular quadrangular pyramid having four slopes including slopes 34F and 34H and a vertex 34T, and a regular square pyramid comprising four slopes including the slope 34B and slope 34D. It has a shape combined with the shape excluding the top of the table.
  • the inclination angle ⁇ x1 of the concavo-convex structure employs the angle formed by the inclined surface 34F or the inclined surface 34H with the horizontal plane, that is, the largest angle among all the inclined surfaces. Further, the average inclination angle ⁇ x2 is obtained by the above formula (5).
  • the concavo-convex structure unit 44Z of the reflector composite substrate 44X is formed of a curved surface including a slope 44B.
  • the inclination angle ⁇ x1 of the concavo-convex structure is the largest angle among the angles formed by the horizontal plane and the curved surface, that is, the angle ⁇ 44 formed by the tangent 44Q and the horizontal plane in the portion 44P having the largest angle of the inclined surface 44B is ⁇ x1.
  • the average inclination angle ⁇ x2 is obtained by the above formula (5).
  • the concavo-convex structure unit 54Z of the reflecting portion composite substrate 54X is a combination of a shape excluding the top of a regular quadrangular pyramid composed of four slopes including a slope 54B and a slope 54D, and a horizontal square surface 54T. It has a truncated pyramid shape.
  • the inclination angle ⁇ x1 of the concavo-convex structure employs an angle formed by the inclined surface 54B or the inclined surface 54D with the horizontal plane, that is, the largest angle among all the inclined surfaces. Further, the average inclination angle ⁇ x2 is obtained by the above formula (5).
  • FIGS. 16 and 17 are perspective views schematically showing further modifications of the reflector composite substrate 140 having the concavo-convex structure 141 in the first embodiment, respectively.
  • the concavo-convex structure of the reflector composite substrate 64X has the same concavo-convex structure unit 14Z as that of the first embodiment.
  • the concavo-convex structure units 14Z are arranged without gaps in both the X-axis direction and the Y-axis direction.
  • the concavo-convex structure units 14Z are arranged between the concavo-convex structure units 14Z. Clearances 64J and 64K are provided in both the direction and the Y-axis direction, respectively.
  • the inclination angle ⁇ x1 of the concavo-convex structure is the same as that of the reflector complex 140. Further, the average inclination angle ⁇ x2 is obtained by the above formula (5). In determining the average inclination angle, the average inclination angle is determined excluding the flat portion.
  • the concavo-convex structure of the reflecting portion composite substrate 74X has the same concavo-convex structure unit 14Z as that of the first embodiment.
  • the concavo-convex structure units 14Z are continuously arranged without a gap in the Y-axis direction, but are not continuously arranged in the X-axis direction, and a gap 74J is provided.
  • the inclination angle ⁇ x1 of the concavo-convex structure is the same as that of the reflector complex 140. Further, the average inclination angle ⁇ x2 is obtained by the above formula (5).
  • the same deformation as that in which the concave-convex concavo-convex structure unit 14Z shown in FIG. 2 is inverted to form the projecting concavo-convex structural unit 24Z shown in FIG. What was performed about the structure of this shape is mentioned.
  • the concave and convex structure units 34Z, 44Z, 54Z, 64Z, and 74Z are inverted to form a projecting concave and convex structure. Mention can also be made of units.
  • the members transparent uneven layer, under the sealing substrate
  • the members transparent uneven layer, under the sealing substrate
  • the same structure as the above-described reflecting portion composite substrate can be employed in the member.
  • the transparent concavo-convex layer 440 having a concavo-convex structure similar to that of the reflector composite substrate 140 shown in FIG. 2 can be used.
  • the concavo-convex structure of the reflecting surface is a structure obtained by inverting the structure of the first embodiment (in the first embodiment, the reflecting portion composite substrate 140 is below the reflecting surface, whereas in the second embodiment, (Because it is on the upper side of the transparent uneven layer 440).
  • the uneven structure on the surface of the member that defines the uneven structure of the reflection surface such as the reflection part composite substrate or the transparent uneven layer is separated.
  • a concave-convex concavo-convex structure unit, and a flat gap portion between the concavo-convex structure unit are preferable from the viewpoint of increasing the mechanical strength of the light source device during manufacture and use.
  • the height of the concavo-convex structure on the reflective surface of the reflective layer is not particularly limited, but is 0.3 to 100 ⁇ m as the difference between the highest part and the lowest part (for example, the height indicated by the arrow 14H in the example shown in FIG. 3). It is particularly preferable that
  • the use of the organic EL light source device of the present invention is not particularly limited, but it can be used as a light source for a backlight of a liquid crystal display device, an illumination device, etc. by taking advantage of high light extraction efficiency and the like.
  • the light source device of the present invention includes not only those specifically described above, but also those belonging to the scope of the claims of the present application and their equivalents.
  • the light source device of the present invention includes a first transparent electrode layer, a light emitting layer, a second transparent electrode layer, a structural layer X, and a reflective layer as essential constituent elements.
  • the diffuser plate, the sealing layer, and the reflection exemplified above as optional constituent elements at any position of the position closer to the light emitting surface than the electrode layer and the position farther from the light emitting surface than the reflecting layer (opposite the light emitting surface).
  • an arbitrary layer can be further provided.
  • sealing the light emitting element examples include layers above and below the substrate, a sealing substrate, and a sealing layer.
  • a sealing member that seals the edge of the light emitting element is provided. Furthermore, it can be provided.
  • other optional components necessary for configuring the light source device such as energization means for energizing the electrodes, can be provided.
  • ⁇ Production Example 1 Preparation of adhesive for sealing layer> After 300 parts by weight of polyisoprene was completely dissolved in 700 parts by weight of toluene, 2.4 parts by weight of p-toluenesulfonic acid was added to perform a cyclization reaction to obtain a polymer cyclized product solution. An addition reaction was performed by adding 2.5 parts by weight of maleic anhydride to 100 parts by weight of the polymer cyclized product in the obtained solution. A portion of toluene in the solution is distilled off, an antioxidant is added, and then vacuum drying is performed to remove toluene and unreacted maleic anhydride, thereby modifying the conjugated diene polymer cyclized adhesive. Got.
  • Example 1 An organic EL light source device having the configuration of the first embodiment shown in FIG. 1 was manufactured.
  • An organic EL light emitting element including the first transparent electrode layer 111, the organic light emitting layer 121, and the second transparent electrode 112 was provided on one surface of a glass substrate 101 having a thickness of 0.7 mm.
  • a metal mold having a predetermined shape is pressed onto the coating film, and ultraviolet rays are irradiated from the base film side with an integrated light amount of 1000 mJ / cm 2 to cure the coating film, and the uneven structure portion is formed on the base film. Formed. Next, the mold was peeled off from the concavo-convex structure portion to obtain a reflecting portion composite substrate 140 composed of a base film and the concavo-convex structure portion.
  • the concavo-convex structure on the surface of the concavo-convex structure portion of the obtained reflector composite substrate 140 was composed of a plurality of regular quadrangular pyramid-shaped concave portions 14Z schematically shown in FIG.
  • the angle formed by the inclined surfaces 14A to 14D constituting the recess 14Z with the surface of the base film was 30 °.
  • the length of the bottom 14E of the recess 14Z was 20 ⁇ m, and the recess 14Z had a structure arranged at a pitch of 20 ⁇ m in two orthogonal directions on the surface of the concavo-convex structure portion.
  • the total thickness of the reflection part composite substrate 140 was 200 ⁇ m.
  • a metallic reflective layer is formed by vapor-depositing silver to a thickness of 200 nm on the surface of the reflective portion composite substrate 140 obtained in (1-3), and the reflective portion composite substrate 140 and the concavo-convex structure are formed.
  • the sealing adhesive obtained in Production Example 1 was applied to the surface on the reflective layer 142 side of the reflective part composite 144 obtained in (1-4), and this was laminated in (1-2).
  • the adhesive layer 132 having a thickness of 18 ⁇ m (distance from the highest portion of the reflective surface uneven structure to the sealing substrate 102) is formed by attaching the substrate 101 to the sealing substrate 102 side of the body, whereby the substrate 101 and the first transparent electrode
  • An organic EL light source device having the layer 111, the organic light emitting layer 121, the second transparent electrode layer 112, the sealing layer 131, the sealing substrate 102, the adhesive layer 132, the reflective layer 142, and the composite substrate 140 was obtained.
  • the refractive indexes of the sealing layer 131 and the adhesive layer 132 were both 1.5.
  • Example 1 An organic EL light source device was manufactured in the same manner as in Example 1 except that the mold was changed in the step (1-3).
  • the concavo-convex structure on the surface of the concavo-convex structure portion of the reflector composite substrate 140 was composed of a plurality of regular quadrangular pyramid-shaped concave portions 14Z schematically shown in FIG.
  • the angle formed by the slopes 14A to 14D constituting the recess 14Z with the surface of the base film was 60 °.
  • the length of the bottom 14E of the recess 14Z was 20 ⁇ m, and the recess 14Z had a structure arranged at a pitch of 20 ⁇ m in two orthogonal directions on the surface of the uneven structure portion.
  • the total thickness of the reflection part composite substrate 140 was 200 ⁇ m.
  • both ⁇ x1 and ⁇ x2 are 60 °. For this reason, in this comparative example, these formulas (1) to (4) are not satisfied.
  • Example 1 showed a value that the total light quantity was 11% larger.
  • the light emitting layer 121 and the first and second transparent electrode layers (ITO) have a refractive index of 1.8
  • the sealing layer 131 and the adhesive layer 132 have a refractive index of 1.53
  • the substrate 101 the refractive index of the sealing substrate 102 is 1.53
  • the reflectance of the reflecting surface of the reflecting layer 142 is 100%
  • the light absorptivity by the light emitting element 120 of the light transmitted through the optical density of the light emitting element 120 from the front direction is 10%.
  • the shape of the concavo-convex structure unit on the reflecting surface is the square pyramid shape shown in FIG.
  • the alignment characteristics (initial alignment characteristics) of light emitted from the light emitting element 120 to the substrate 101 and the sealing layer 131 are as follows: In the case of the street, the relationship between the average inclination angle (°) of the slope of the quadrangular pyramid and the light extraction efficiency (%) from the light exit surface 100A is expressed by a program (program names: Light Tools, Optical Re and a simulation by a search associates). The examination results are shown in FIG.
  • is an angle (°) formed by the normal direction of the main surface of the light emitting layer and the observation direction, and the luminous intensity ( ⁇ ) indicates the luminous intensity when observed from this angle.
  • n 1.53 in the equations (1) to (4), that is, according to the equation (1), ⁇ x1 ⁇ 40.8, According to 2), 16.4 ⁇ ⁇ x2 ⁇ 40.8, according to equation (3), 24.6 ⁇ ⁇ x2 ⁇ 40.8, and according to equation (4), 27.7 ⁇ ⁇ x2 ⁇ 37.7. .
  • both ⁇ x1 and ⁇ x2 coincide with the average inclination angle.
  • ⁇ Reference Example 1> The reflectance of the reflecting surface was calculated when a metal layer was used as the reflecting layer.
  • the refractive index of aluminum was set to 1.29
  • the complex refractive index was set to 7.23
  • the refractive index of silver was set to 0.13
  • the complex refractive index was calculated to be 3.34.
  • (I) when silver is used as the reflective layer (ii) when aluminum is used as the reflective layer, and (iii) when aluminum and silver are used as the reflective layer, and the layer is configured such that silver is the reflective surface.
  • Three types were examined. In each of (i) and (ii), the thickness of the reflective layer is variously changed. In (iii), the thickness of the aluminum is 100 nm, and the thickness of the silver is variously changed. The examination result is shown in FIG.
  • Organic EL light source device 101 601 Substrate 102, 602 Sealing substrate 111, 611 First transparent electrode layer 112, 612 Second transparent electrode layer 120, 620 Light emitting element 121, 621 Light emitting layer 131, 631, 933 Sealing layer 132, 432 Adhesive layer 140, 24X, 34X, 44X, 54X, 64X, 74X Reflective part composite substrate 141, 441, 541, 841 Concavity and convexity structure parts 142, 442, 542, 842 Reflective layer 144 Reflector complex 14A-14D, 24A-24D, 34B, 34D, 34F, 34H, 44B, 54B, 54D Slope 14E, 24E Bottom 14T, 24T, 34T Vertex 14Z, 24Z, 34Z, 44Z, 54Z Uneven structure unit 440, 840 Transparent uneven layer 54T plane 64J, 64K, 74J Gaps 732, 832 Sealing adhesive layer 943 Seal

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 出光面側から順に、第1の透明電極層、発光層、第2の透明電極層、及び反射面を有する反射層をこの順に有し、さらに、前記第2の透明電極層と前記反射面との間に位置し且つ前記反射面に接して設けられる構造層Xを有する有機エレクトロルミネッセンス光源装置であって、前記反射面が凹凸構造を有し、前記凹凸構造は、くぼみ、突起及びこれらの組み合わせからなる群より選択される凹凸構造単位を有し、前記構造層Xの屈折率n、前記凹凸構造単位の傾斜角θx1(°)、及び前記反射面の前記凹凸構造の平均傾斜角θx2(°)が、θx1≦sin-1(1/n)及び{90-sin-1(1/n)}/3≦θx2≦sin-1(1/n)を満たす、有機エレクトロルミネッセンス光源装置。

Description

有機エレクトロルミネッセンス光源装置
 本発明は、有機エレクトロルミネッセンス(以下「有機EL」と略す場合がある。)光源装置に関する。
 有機EL光源装置は、複数層の電極間に有機発光層を設け、電気的に発光を得る素子である。有機EL光源装置については、液晶セルに代わる表示素子としての利用が検討されている。有機EL光源装置についてはまた、その高発光効率、低電圧駆動、軽量、低コスト等の特徴を生かした、平面型照明、液晶表示装置用バックライト等の面光源としての利用も検討されている。
 有機EL光源装置を面光源として利用する場合、有用な態様の光を有機EL光源装置から高効率で取り出すことが課題となる。例えば、有機EL光源装置の発光層自体は発光効率が高いものの、それが素子を構成する積層構造を透過して出光するまでの間に、層中における干渉等により光量が低減してしまうので、そのような光の損失を可能な限り低減することが求められる。
 光取り出し効率を高めるための方法として、例えば特許文献1には、素子の正面方向(0°)の輝度を抑制し、角度50~70°の輝度を増加させることで、全体的な輝度を高めることが開示されている。
特開2004-296423号公報
 しかしながら、光源装置においては、光取り出し効率をさらに向上させることが求められている。
 したがって本発明の課題は、光取り出し効率がより高い有機EL光源装置を提供することにある。
 上記課題を解決するために、本願発明者が検討を行った結果、有機EL光源装置において、発光素子を構成する一対の電極をいずれも透明電極とすると共に、凹凸構造を有する反射面を有する反射層を設け、さらにかかる凹凸構造の傾斜角と、反射面に接して設けられる構造層の屈折率との関係を所定のものとすることにより、上記課題を解決しうることを見出し、本願発明を完成するに至った。
 したがって、本発明によれば、下記〔1〕~〔7〕が提供される。
〔1〕 出光面側から順に、第1の透明電極層、発光層、第2の透明電極層、及び反射面を有する反射層をこの順に有し、さらに、前記第2の透明電極層と前記反射面との間に位置し且つ前記反射面に接して設けられる構造層Xを有する有機エレクトロルミネッセンス光源装置であって、
 前記反射面が凹凸構造を有し、
 前記凹凸構造は、くぼみ、または突起からなる凹凸構造単位を複数有し、
 前記構造層Xの屈折率n、前記凹凸構造単位の傾斜角θx1(°)、及び前記反射面における前記凹凸構造の平均傾斜角θx2(°)が、以下の式(1)及び(2):
 θx1≦sin-1(1/n)  ・・・(1)
 {90-sin-1(1/n)}/3≦θx2≦sin-1(1/n)  ・・・(2)
を満たす、有機エレクトロルミネッセンス光源装置。
〔2〕 〔1〕に記載の有機エレクトロルミネッセンス光源装置であって、
 前記構造層Xの屈折率n、及び前記反射面の前記凹凸構造の平均傾斜角θx2(°)が、以下の式(3):
 {90-sin-1(1/n)}/2≦θx2≦sin-1(1/n)  ・・・(3)
を満たす、有機エレクトロルミネッセンス光源装置。
〔3〕 〔1〕又は〔2〕に記載の有機エレクトロルミネッセンス光源装置であって、
 前記構造層Xの屈折率n、及び前記反射面の前記凹凸構造の平均傾斜角θx2(°)が、以下の式(4):
 ({90+sin-1(1/n)}/4)-5≦θx2≦({90+sin-1(1/n)}/4)+5 ・・・(4)
を満たす、有機エレクトロルミネッセンス光源装置。
〔4〕 〔1〕~〔3〕のいずれか1項に記載の有機エレクトロルミネッセンス光源装置であって、
 前記反射面の前記凹凸構造単位が、角錐、または角錐台形状である、有機エレクトロルミネッセンス光源装置。
〔5〕 〔1〕~〔4〕のいずれか1項に記載の有機エレクトロルミネッセンス光源装置であって、
 前記凹凸構造は、凹凸構造単位として離隔して設けられたくぼみを有し、且つ隣り合う前記くぼみ間には、平坦な隙間部分が設けられている、有機エレクトロルミネッセンス光源装置。
〔6〕 〔1〕~〔5〕のいずれか1項に記載の有機エレクトロルミネッセンス光源装置であって、
 前記反射層が、第1の金属を含む第1の金属層と、前記第1の金属とは異なる第2の金属を含む第2の金属層との積層体である有機エレクトロルミネッセンス光源装置。
〔7〕 〔1〕~〔6〕のいずれか1項に記載の有機エレクトロルミネッセンス光源装置であって、
 前記反射層より出光面側に設けられた光拡散層をさらに有する有機エレクトロルミネッセンス光源装置。
 本発明の光源装置は、光取り出し効率が高く、しかも単純な薄型の構造でも耐久性が高いものとしうるので、液晶表示装置のバックライト、照明装置などの光源として有用である。
図1は、本発明の第1実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図2は、図1に示す反射部複合体基板140の凹凸構造部141を拡大して概略的に示す斜視図である。 図3は、図2に示す反射部複合体基板140の凹凸構造単位14Zを、底辺14Eに平行な線2aを通りZ軸方向に平行な面で切断した面を示す部分断面図である。 図4は、本発明の第2実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図5は、本発明の第3実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図6は、本発明の第4実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図7は、本発明の第5実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図8は、本発明の第6実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図9は、本発明の第7実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。 図10は、反射面における光の反射の一例を概略的に示す部分断面図である。 図11は、第1実施形態における凹凸構造部141を有する反射部複合体基板140の変形例を概略的に示す斜視図である。 図12は、図11に示す反射部複合体基板240の凹凸構造単位24Zを、底辺24Eに平行な線3aを通りZ軸方向に平行な面で切断した部分断面図である。 図13は、第1実施形態における凹凸構造部141を有する反射部複合体基板140の、凹凸構造単位14Zの変形例を概略的に示す部分断面図である。 図14は、第1実施形態における凹凸構造部141を有する反射部複合体基板140の、凹凸構造単位14Zの変形例を概略的に示す部分断面図である。 図15は、第1実施形態における凹凸構造部141を有する反射部複合体基板140の、凹凸構造単位14Zの変形例を概略的に示す部分断面図である。 図16は、第1実施形態における凹凸構造部141を有する反射部複合体基板140のさらなる変形例を概略的に示す斜視図である。 図17は、第1実施形態における凹凸構造部141を有する反射部複合体基板140のさらなる変形例を概略的に示す斜視図である。 図18は、実施例2における検討結果を示すグラフである。 図19は、参考例1における検討結果を示すグラフである。
 以下、本発明の好ましい実施形態を、図面を参照して説明する。各図は、本発明が理解できる程度に、構成要素の形状、大きさおよび配置が概略的に示されているに過ぎない。本発明は以下の説明によって限定されるものではなく、各構成要素は特許請求の範囲及びその均等の範囲を逸脱しない範囲において適宜変更可能である。また、以下の説明に用いる各図において、同様の構成要素については同一の符号を付して示し、重複する説明を省略する場合がある。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。なお、本願においては、別に断らない限り、光源装置はその発光層を水平にして装置の出光面を上に向けて載置した状態において説明する。従って、別に断らない限り、以下の記載において「水平面」は発光層の主面と平行な面であり、光源装置の上側は出光面側となり、下側は出光面と反対側となる。これは単に位置関係の説明の便宜のためである。光源装置の使用に際しての光源装置の設置の状態は、この水平な載置の状態には全く限定されない。
 さらに、以下の記載において、界面における光の入射角、出射角、反射角及び臨界角は、いずれも、入射、出射又は反射する光が、界面の垂線となす角度である。また、以下の記載において、凹凸構造の傾斜角は、凹凸構造上の面が水平面となす角度である。また、当該水平面に対する垂線の方向を、単に「Z軸方向」ということがある。
 図1において、装置100は、基板101と、基板101の下側に設けられた発光素子120と、封止層131を介して発光素子120の下側に設けられた封止基板102と、接着層132を介して封止基板102の下側に設けられた反射部複合体144とを備えている。封止層131及び封止基板102、ならびに基板101で発光素子120を封止しており、これにより、光源装置100の使用に際し発光素子120が外気の酸素、水分等と接触することにより劣化することを防止することができる。
 反射部複合体144は、凹凸構造部141が形成された反射部複合体基板140と、凹凸構造部141上に設けられる反射層142とを備えている。反射層142は、接着層132を介して封止基板102の下側に接着されている。第1実施形態では、反射層142の上側の面が反射面となる。反射面は、くぼみ、または突起からなる凹凸構造単位を複数有している。反射層142は、該凹凸構造部141の表面に沿って設けられている。
 (基板及び封止基板)
 基板101及び封止基板102には、ガラス基板、石英ガラス、およびプラスチック基板などの、有機EL発光素子の基板として通常用いうる基板を採用することができる。基板101を構成する材料は、封止基板102を構成する材料と同一でもよく、異なっていてもよい。基板及び封止基板の厚さは、いずれも0.01~5mmとすることができる。
 (発光素子)
 本実施形態において、発光素子120は、出光側から、第1の透明電極層111、発光層121、及び第2の透明電極層112をこの順に備えている。
 発光層121としては、特に限定されず既知のものを適宜選択することができるが、光源としての用途に適合すべく、一種の層単独又は複数種類の層の組み合わせにより、後述する所定のピーク波長を含む光を発光するものとすることができる。
 第1の透明電極層111は、発光層121より出光面に近い位置に位置し、第2の透明電極層112は、反射層に近い位置に位置する。各透明電極層111,112を構成する材料は、特に限定されず有機EL発光素子の電極として用いられる既知の材料を適宜選択することができ、どちらか一方を陽極とし、他方を陰極とすることができる。また、電極間には、発光層に加えてホール注入層、ホール輸送層、電子輸送層、電子注入層及びガスバリア層等の他の層をさらに有することもできる。
 第1の透明電極層111と第2の透明電極層112のそれぞれの材料としては、金属薄膜、ITO、IZO、SnOなどを挙げることができる。
 発光素子の具体的な層構成としては、陽極/正孔輸送層/発光層/陰極の構成、陽極/正孔輸送層/発光層/電子注入層/陰極の構成、陽極/正孔注入層/発光層/陰極の構成、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極の構成、陽極/正孔輸送層/発光層/電子注入層/等電位面形成層/正孔輸送層/発光層/電子注入層/陰極の構成,陽極/正孔輸送層/発光層/電子注入層/電荷発生層/正孔輸送層/発光層/電子注入層/陰極の構成などが挙げられる。本発明の有機EL光源装置における発光素子は、一層以上の発光層を陽極と陰極との間に有するものとすることができるが、発光層として、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。各層の材料は特に限定されるものではない。例えば発光層を構成する材料には、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系などの材料を挙げることができる。また正孔注入層や正孔輸送層にはフタロシアニン系、アリールアミン系、およびポリチオフェン系などの材料を挙げることができる。電子注入層や電子輸送層には、アルミ錯体およびフッ化リチウムなどが挙げられる。また、等電位面形成層、あるいは電荷発生層としては、ITO、IZO、SnOなどの透明電極、あるいはAg、Alなどの金属薄膜が挙げられる。
 第1の透明電極層111、発光層121、第2の透明電極層112、及び発光素子120を構成するその他の任意の層は、基板101上にこれらを順次積層することにより設けることができる。これら各層の厚さは、10~1000nmとすることができる。
 (封止層)
 封止層131を構成する材料としては、第2の透明電極層112及び封止基板102を接着する機能を有し、且つ装置の使用時において発光素子120を空気中の水分及び酸素等による劣化を防ぎ得る各種の樹脂を用いることができる。封止層131を構成する材料としては、固体に限らず、例えば、フッ化炭化水素、シリコンオイルなどの不活性液体、ネマチック液晶やスメクチック液晶などの液晶材料を用いることができる。
 封止層131を構成する材料としては、例えばアクリレート、メタクリレート等のエネルギー線硬化型樹脂、アクリル系やオレフィン系等の粘着機能樹脂又は接着機能樹脂、加熱により溶着し冷却により硬化する熱溶融型の接着機能樹脂等の樹脂を用いることができる。ここでいう粘着機能樹脂とは、温度23℃におけるせん断貯蔵弾性率が0.1~10MPaである材料とすることができ、接着機能樹脂とは、それよりも高いせん断貯蔵弾性率を有する材料とすることができる。
 加熱により溶着し冷却により硬化する熱溶融型の接着機能樹脂としては、そのガラス転移温度(Tg)が通常-50~200℃、好ましくは-10~100℃、より好ましくは20~90℃、特に好ましくは50~80℃であるものを用いることができる。ガラス転移温度を上記好適な範囲とすることにより、十分な耐熱性を有する光源装置を得ることができ、また、光源装置を構成する発光層を損なうことなく貼付を行なうことができる。
 前記粘着機能樹脂又は接着機能樹脂としては、共役ジエン重合体を環化反応させることにより得られる共役ジエン重合体環化物であって、前記共役ジエン重合体中の不飽和結合に対する前記共役ジエン重合体環化物中に存在する不飽和結合の減少率(不飽和結合減少率)が30%以上である共役ジエン重合体環化物を用いることができる。また、前記粘着機能樹脂又は接着機能樹脂としては、前記共役ジエン重合体環化物と脂環式オレフィン樹脂とを含有してなるものを用いることもできる。
 前記共役ジエン重合体環化物は、共役ジエン重合体を、酸触媒の存在化に環化反応させて得られる。共役ジエン重合体としては、共役ジエン単量体の単独重合体及び共重合体並びに共役ジエン単量体と他の単量体との共重合体を使用することができる。
 共役ジエン単量体は、特に限定されず、その具体例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン等が挙げられる。これらの単量体は、単独で使用しても2種類以上を組み合わせて用いてもよい。
 共役ジエン重合体の具体例としては、天然ゴム、ポリイソプレン、ブタジエン-イソプレン共重合体等の共役ジエンの単独重合体又は共重合体;スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、イソプレン-イソブチレン共重合体、エチレン-プロピレン-ジエン系共重合体ゴム、スチレン-イソプレンブロック共重合体等の芳香族ビニル-共役ジエンブロック共重合体、等の共役ジエンと他の単量体との共重合体を挙げることができる。中でも、天然ゴム、ポリイソプレン、及びスチレン-イソプレンブロック共重合体が好ましく、ポリイソプレン及びスチレン-イソプレンブロック共重合体がより好ましい。
 また、共役ジエン重合体環化物としては、極性基で変性された変性共役ジエン重合体環化物を用いることが好ましい。変性共役ジエン重合体環化物は、被着物に対する粘着性又は接着性を発現させる効果がある。また、前記粘着機能樹脂又は接着機能樹脂中に微粒子が含まれる場合には、変性共役ジエン重合体環化物は、その微粒子の分散性を向上させる効果がある。極性基を含有する変性共役ジエン重合体環化物は、その一種類が前記粘着機能樹脂又は接着機能樹脂中に含まれていてもよく、また、極性基が異なる複数種類が前記粘着機能樹脂又は接着機能樹脂中に含まれていてもよい。また、2種類以上の官能基を有する共役ジエン重合体環化物を用いてもよい。
 極性基としては、特に限定されるものではなく、例えば、酸無水物基、カルボキシル基、水酸基、チオール基、エステル基、エポキシ基、アミノ基、アミド基、シアノ基、シリル基、及びハロゲンなどが挙げられる。
 酸無水物基又はカルボキシル基としては、例えば、無水マレイン酸、無水イタコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、アクリル酸、メタクリル酸、及びマレイン酸などのビニルカルボン酸化合物などが共役ジエン重合体環化物に付加した構造の基が挙げられ、なかでも、無水マレイン酸が共役ジエン重合体環化物に付加した構造の基が反応性、経済性の点で好ましい。
 アミド基は、アミド基を含有する不飽和化合物を用いて共役ジエン重合体環化物にグラフト化することにより、アミド基を導入する方法;官能基を含有する不飽和化合物を用いて官能基を導入し、導入した官能基とアミド基を有する化合物を反応させる方法等により導入できる。アミド基を含有する不飽和化合物としては、アクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N-ベンジルアクリルアミドなどが挙げられる。
 水酸基としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、及び(メタ)アクリル酸2-ヒドロキシプロピルなどの不飽和酸のヒドロキシアルキルエステル類、N-メチロール(メタ)アクリルアミド、及びN-(2-ヒドロキシエチル)(メタ)アクリルアミドなどのヒドロキシル基を有する不飽和酸アミド類、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、及びポリ(エチレングリコール-プロピレングリコール)モノ(メタ)クリレートなどの不飽和酸のポリアルキレングリコールモノエステル類、並びにグリセロールモノ(メタ)アクリレートなどの不飽和酸の多価アルコールモノエステル類などが共役ジエン重合体環化物に付加した構造の基が挙げられ、これらの中でも、不飽和酸のヒドロキシアルキルエステル類が好ましく、特にアクリル酸2-ヒドロキシエチル、又はメタクリル酸2-ヒドロキシエチルが共役ジエン重合体環化物に付加した構造の基が好ましい。
 その他の極性基を含有するビニル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、(メタ)アクリルアミド、及び(メタ)アクリロニトリルなどが挙げられる。
 変性共役ジエン重合体環化物、特に極性基含有共役ジエン重合体環化物中の極性基の含有量は、特に制限されないが、通常、0.1~15モル%、好ましくは0.5~10モル%、より好ましくは1~7モル%の範囲である。この含有量が少なすぎても多すぎても、酸素吸収機能が劣る傾向がある。なお、極性基の含有量は、変性共役ジエン重合体環化物の分子に結合している極性基の分子量相当量を1モルとしている。
 変性共役ジエン重合体環化物を製造する方法としては、(1)上述の方法で得られた共役ジエン重合体環化物に極性基含有ビニル化合物を付加反応させる方法、(2)極性基を含有する共役ジエン重合体を、上述の方法で環化反応させて得る方法、(3)極性基を含有しない共役ジエン重合体に極性基を含有するビニル化合物を付加反応させた後、環化反応させて得る方法、及び(4)前記(2)又は(3)の方法で得たものにさらに極性基含有ビニル化合物を付加反応させる方法等が挙げられる。中でも、不飽和結合減少率をより調整しやすい点からは、前記(1)の方法が好ましい。
 極性基含有ビニル化合物としては、共役ジエン重合体環化物に極性基を導入することができる化合物であれば特に限定されるものではなく、例えば、酸無水物基、カルボキシル基、水酸基、チオール基、エステル基、エポキシ基、アミノ基、アミド基、シアノ基、シリル基、及びハロゲンなどの極性基を有するビニル化合物が好ましく挙げられる。
 酸無水物基又はカルボキシル基を有するビニル化合物としては、例えば、無水マレイン酸、無水イタコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、アクリル酸、メタクリル酸、及びマレイン酸などが挙げられ、なかでも、無水マレイン酸が反応性及び経済性の点で好ましく使用できる。水酸基を含有するビニル化合物としては、例えば、不飽和酸のヒドロキシアルキルエステル類が好ましく、特にアクリル酸2-ヒドロキシエチル、及びメタクリル酸2-ヒドロキシエチルが好ましいビニル化合物として挙げられる。
 共役ジエン重合体環化物に、極性基含有ビニル化合物を付加反応させて、この極性基含有ビニル化合物に由来する極性基を導入する方法は、特に限定されないが、一般にエン付加反応又はグラフト重合反応と呼ばれる公知の反応に従えばよい。この付加反応は、共役ジエン重合体環化物と極性基含有ビニル化合物とを、必要に応じて、ラジカル発生剤の存在下に、接触反応させることによって行われる。ラジカル発生剤としては、例えば、ジ-tert-ブチルパーオキシド、ジクミルパーオキシド、及びベンゾイルパーオキシドのようなパーオキシド類、並びにアゾビスイソブチロニトリルのようなアゾニトリル類などが挙げられる。
 共役ジエン重合体環化物は、100%環化したものを除けば、少なくとも共役ジエン本来の直鎖状不飽和結合と環化した部分の環状不飽和結合との2種類の不飽和結合を有している。共役ジエン重合体環化物は、環状不飽和結合部分が酸素吸収に大きく寄与し、直鎖状不飽和結合部分はほとんど酸素吸収に寄与しないと考えられる。そのため、共役ジエン重合体中の不飽和結合に対する前記共役ジエン重合体環化物中に存在する不飽和結合の減少率(不飽和結合減少率)が30%以上の共役ジエン重合体環化物が、本発明の発光素子における酸素吸収部材の素材として好ましい。共役ジエン重合体環化物の不飽和結合減少率は、好ましくは40~75%、より好ましくは55~70%である。不飽和結合減少率が低すぎると、酸素吸収性が劣化する傾向がある。共役ジエン重合体環化物は、不飽和結合減少率を上記好ましい範囲の上限以下とすることで、共役ジエン重合体環化物が脆くなることを防ぎ、製造を容易にすると共に、製造時にゲル化の進行を抑え、透明性が向上し多くの用途に使用できる。また、不飽和結合減少率が50%を超えると、粘着性又は接着性が発現するので、この性質を活用することもできる。
 ここで不飽和結合減少率は、共役ジエン重合体中の共役ジエン単量体単位部位において、不飽和結合が環化反応によって減少した程度を表す指標であり、以下のようにして求められる数値である。すなわち、プロトンNMR(H-NMR)分析により、共役ジエン重合体中の共役ジエン単量体単位部分において、全プロトンのピーク面積に対する二重結合に直接結合したプロトンのピーク面積の比率を、環化反応前後について、それぞれ求め、その減少率を計算する。
 いま、共役ジエン重合体中の共役ジエン単量体単位部位において、環化反応前の全プロトンピーク面積をSBT,二重結合に直接結合したプロトンのピーク面積をSBU,環化反応後の全プロトンピーク面積をSAT,二重結合に直接結合したプロトンピークのピーク面積をSAUとすると環化反応前の二重結合に直接結合したプロトンのピーク面積比率(SB)は、SB=SBU/SBTとして、環化反応後の二重結合に直接結合したプロトンのピーク面積比率(SA)は、SA=SAU/SATとして表される。従って、不飽和結合減少率は、
 不飽和結合減少率(%)=100×(SB-SA)/SB
として求められる。
 本発明に用いる共役ジエン重合体環化物の酸素吸収量は、5ml/g以上、好ましくは10ml/g以上,より好ましくは50ml/g以上である。酸素吸収量とは、23℃において、共役ジエン重合体環化物を粉末または薄膜として十分に酸素を吸収させて飽和状態になったときの共役ジエン重合体環化物1gの吸収した酸素量である。酸素吸収量が少ないと、長期間安定して酸素を吸収させるためには、大量の共役ジエン重合体環化物が必要となる。酸素吸収量はおもに共役ジエン重合体環化物中の不飽和結合減少率と相関がある。
 本発明においては、用いる共役ジエン重合体環化物は、表面からの酸素吸収速度が1.0ml/m・日以上、好ましくは5.0ml/m・日以上、さらに好ましくは10ml/m・日以上である。共役ジエン重合体環化物に大きな酸素吸収能力があったとしても、酸素吸収速度が遅すぎると外部から侵入してくる酸素を十分に吸収できず透過させてしまうことがある。また、発光素子の封止層として使用した際、何らかの理由で封止空間内に存在、または侵入してきた酸素は、速やかに共役ジエン重合体環化物層により吸収除去されねばならない。このような観点からも上述の酸素吸収速度を持つものが望ましい。
 前記共役ジエン重合体環化物の前記粘着機能樹脂又は接着機能樹脂中の含有量は、通常の場合、5~90重量%であり、好ましくは15~70重量%である。この共役ジエン重合体環化物の含有量が前記下限値を下回ると、常温(25℃)における酸素吸収力及び密着力が低下するといった不都合を生じることがあり、また前記上限値を超えると機械的強度が低下するといった不都合を生じることがある。
 前記脂環式オレフィン樹脂とは、主鎖及び/または側鎖にシクロアルカン構造やシクロアルケン構造などの脂環式構造を有する非晶性の樹脂である。機械的強度や耐熱性などの観点から、主鎖に脂環式構造を含有する重合体が好適である。また、脂環式構造としては、単環、多環(縮合多環、橋架け環など)が挙げられる。脂環式構造の中では、シクロアルカン構造が好ましい。脂環式構造の一単位を構成する炭素原子数は、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、機械的強度、耐熱性、及び成形性の諸特性が高度にバランスされ好適である。前記脂環式オレフィン樹脂の具体例としては、(1)ノルボルネン重合体、(2)単環の環状オレフィンの重合体、(3)環状共役ジエンの重合体、(4)ビニル脂環式炭化水素重合体及びこれらの混合物などが挙げられる。これらの中でも、光学特性、耐熱性、及び機械的強度の観点から、ノルボルネン重合体、ビニル脂環式炭化水素重合体が好ましい。また、脂環式オレフィン樹脂として極性基を有する脂環式オレフィン樹脂を用いると、光線透過率を損なうことなく無機物との親和性を向上させ得ることができる。
 封止層131の形成方法は、特に限定されないが、上に述べたものなどの粘着機能樹脂又は接着機能樹脂の層を、封止基板102及び/又は第2の透明電極層112上に設け、かかる粘着機能樹脂又は接着機能樹脂の層を介して封止基板102及び第2の透明電極層112を貼付し、さらに必要に応じて加熱して溶着させることにより行なうことができる。封止層の厚さは、1~1000μmとすることができる。
 通常このような粘着機能樹脂又は接着機能樹脂自体は空気中の水分及び酸素を遮蔽する能力は持たず、外気との遮蔽自体は基板101及び封止基板102により行うことができるが、基板101及び封止基板102の間に封止された封止層131の材料として酸素及び水分を吸収しうるものを用いることにより、より有効に発光層120の劣化を防止することができ、より長寿命な光源装置とすることができる。
 (反射層)
 本発明の光源装置は、反射層の反射面の形状と、第2の透明電極層と反射面との間に位置し且つ反射面に接して設けられる構造層Xの屈折率とが、所定の関係を有する。即ち、構造層Xの屈折率n、凹凸構造単位の傾斜角θx1、及び前記反射面の前記凹凸構造の平均傾斜角θx2が、以下の式(1)及び(2):
 θx1≦sin-1(1/n)  ・・・(1)
 {90-sin-1(1/n)}/3≦θx2≦sin-1(1/n)  ・・・(2)
を満たす。
 第1実施形態において構造層Xに相当する要素は、接着層132である。また、接着層132に接する反射層142の面が反射層の反射面となる。反射部複合体基板140は、反射面の凹凸構造を規定する部材となる。即ち、反射層142が反射部複合体基板140の凹凸構造部141の凹凸構造に沿って設けられることにより、反射層142の反射面の凹凸構造は、凹凸構造部141の凹凸構造と同一の形状となる。したがって、凹凸構造部141の表面の形状が上記式(1)及び(2)の関係を満たすよう反射部複合体基板140を形成し、その上に均等な膜厚の反射層142を形成することにより、所望の反射面の形状を得ることができる。しかしながら本発明における反射層の態様は均等な膜厚のものに限定されず、例えば平坦な基板の上に、凹凸を有する金属の層を形成したものともしうる。
 第1実施形態における、凹凸構造部141のより詳細な構造の例を、図2に示す。図2は、図1に示す反射部複合体基板140の凹凸構造部141を拡大して概略的に示す斜視図である。第1実施形態において、反射層142の反射面の形状は、凹凸構造部141の表面形状と同じ形状となる。
 反射部複合体基板140の凹凸構造は、四角錐形状のくぼみである凹凸構造単位14Zが複数並んだ構造である。この例において、凹凸構造単位14Zは、面内の、互いに交差する2方向(図2中のX軸方向及びY軸方向)に連続して配列されている。
 凹凸構造単位14Zは、4つの斜面14A~14D及び頂点14Tを有する。4つの斜面14A~14Dのそれぞれが水平面となす角は等しい。凹凸構造単位14Zの四角錐形状の底面は正方形である。凹凸構造単位14Zの四角錐形状の底辺14Eは、他の凹凸構造単位14Zの底辺と接し、それにより凹凸構造単位14Zは凹凸構造上に隙間無く連続して配置されている。なお、本実施形態では、凹凸構造単位14Zが隙間無く連続して配置された態様となっているが、隣接する凹凸構造単位14Zが離間して配置されていてもよく、この場合、離間した部分(間隙部)は平坦面となっていることが好ましい。
 図3は、反射部複合体基板140の凹凸構造単位14Zを、底辺14Eに平行な線2aを通りZ軸方向に平行な面で切断した面を示す部分断面図である。斜面14B及び14Dが水平面となす角度θ14が、凹凸構造単位14Zの傾斜角θx1となる。また、凹凸構造部141の凹凸構造を有する面全体において、凹凸構造単位14Zの形状は一様であるので、凹凸構造単位14Zの傾斜角θ14はまた反射面の凹凸構造の平均傾斜角θx2となる。
 本発明において、凹凸構造が形状の異なる複数種類の凹凸構造単位を有している場合、その傾斜角θx1は、複数の凹凸構造のうち最も大きい角度のものとする。なお、凹凸構造単位の間に平坦部を含む場合において、平均傾斜角を求めるにあたっては、平坦部を除いて求めるものとする。
 本発明において、凹凸構造が上記の例より複雑な、複数種類の傾斜あるいは曲面を有するときの平均傾斜角θx2は、以下の通り規定する。即ち、反射面を、凹凸構造単位より十分に小さいn個の微小面積に分割し、それぞれの微小面積をΔSiとした場合に、前述のΔSiが基板平面となす角度の値をθiとして、平均傾斜角は、下記式(5):
Figure JPOXMLDOC01-appb-M000001
 で規定する。ここでΣΔSiは反射層の全表面積を表す。本発明の光源装置では、このように定義される反射層の平均傾斜角が、前記所定の要件を満たすことにより、高い光取り出し効率を実現することができる。
 反射部複合体基板140は、凹凸構造部141と、それより下の部分とを、共通する材料で一体に成形することができる。または、凹凸構造部141と、それより下の部分とを、別々の材料で成形することもできる。
 凹凸構造部141と、それより下の部分とを、共通する材料で一体に成形する場合、かかる材料としては、基板101及び封止基板102を構成する材料と同様のものを挙げることができる。凹凸構造部141の形成の容易さから、プラスチック基板であることが好ましい。より具体的には例えば、前述した脂環式オレフィン樹脂等からなるものを用いることができる。
 凹凸構造部141と、それより下の部分とを、別々の材料で成形する場合、かかる下の部分については上記と同様の材料を用いることができる。一方、凹凸構造部141を形成する材料としては、紫外線等のエネルギー線で硬化しうる樹脂が、成形の容易さの観点から好ましい。具体的には、(メタ)アクリレート系エネルギー線硬化型樹脂等の材料を用いることができる。このような樹脂を、前記下の部分の一部を構成する所定の基板の面上に塗布し、その上にさらに所望の形状を有する型を押し当て、封止基板102側からエネルギー線を照射し硬化させ、所望の凹凸構造を有する凹凸構造部141を容易に形成することができる。
 反射部複合体基板140の厚さは、25~500μmとすることができる。凹凸構造の凹凸の高さは、0.3~100μmとすることができる。凹凸構造の凹凸の幅寸法は、0.6~200μmとすることができる。
 反射層142は、例えば、反射部複合体基板等の凹凸構造を規定する部材上に、金属の層を1層又は複数層形成することにより設けることができる。かかる金属の層の材料としては、アルミニウムやその合金、銀やその合金等の金属を用いることができる。特に、反射率が高い銀が好ましい。
 反射層は、第1の金属を含む第1の金属層と、第1の金属とは異なる第2の金属を含む第2の金属層との積層体であることがより好ましい。具体的に説明すると、反射率が高い銀を、十分な反射率が得られる厚さで設けた場合、製造コストが上昇するので、第1の金属及び第2の金属としてそれぞれ銀、及び反射率は銀に劣るが安価なアルミニウムを採用し、アルミニウムの層と、銀の層とを積層した反射層とすることができる。より具体的には、アルミニウムの層の上側に銀の層を設け、当該銀の層を反射面とした反射層とすることができる。好ましくは、銀の層は、アルミニウムの層の上に直接接して設けることができる。
 また、反射層142が金属製である場合、特に、空気中の酸素及び水分が発光素子へ侵入することを遮断する役割を、封止基板102に加えて反射層142においても果たすことができる。
 (接着層)
 第1実施形態において、封止基板102と反射層142とを接着する接着層132を構成する材料としては、上記封止層131の材料として例示した樹脂と同様の材料(各種の粘着機能樹脂又は接着機能樹脂等)を用いることができるが、それに限らず、光学部材等の接着に用いる既知の各種の接着剤を用いることができる。具体的には例えば、東亞合成社製アロンアルファ(登録商標)などを用いることができる。接着層が、本発明における構造層Xに相当する場合は、その屈折率は、下に述べる構造層Xの屈折率nとして好ましい範囲であることが好ましい。
 接着層132を形成する方法は特に限定されず、封止基板102及び/又は反射層142の表面に接着層形成用の組成物を塗布し、封止基板102及び反射層142を、かかる組成物の塗布層を介して貼付し、さらに必要に応じて光硬化、加熱、乾燥等することにより形成することができる。接着層の厚さは1~1000μmとすることができる。接着層132は、前記反射面の凹凸形状を埋めてその表面が平坦面となるように、前記反射面上に設けられることが好ましい。
 (拡散層)
 本発明の有機EL光源装置は、必須の構成要素である第1の透明電極層、発光層、第2の透明電極層、構造層X、及び反射層に加えて、さらに任意の層を有することができる。例えば、反射層より出光面側に設けられた光拡散層をさらに有することができる。
 前記拡散層は、反射層より出光面側の任意の位置に設けることができ、前記必須の構成要素である層と別の層として設けられてもよく、又は例えば構造層X等の必須の構成要素である層が拡散層を兼ねていてもよい。拡散層は、上述した任意の層、例えば基板、封止基板、封止層、粘着層、接着層といった層に拡散層としての機能を付与した層であってもよい。具体的には、拡散層は、発光素子の下であって発光素子に近い位置にある層であって、且つ樹脂等の、拡散剤を添加しやすい材料からなる層とすることができる。例えば第1実施形態においては封止層131に拡散層としての機能を付与し、拡散層とすることが好ましい。拡散層の材料は、特に限定されないが、封止層等を構成する樹脂に、拡散剤を添加したものであることが好ましい。特に封止層にガラスより高屈折率の材料を用い、その材料に拡散剤を添加した構成は、反射層の金属光沢を抑える同時に、光取り出し効率を向上させることができる点で好ましい。拡散層のヘイズは25~95%とすることができる。さらに好ましくは70~90%とすることができる。ヘイズの範囲を上記下限以上とすることにより、拡散層の効果を得ることができる。また、ヘイズの範囲を上記上限以下とすることにより、薄い層厚とすることができる。光源装置が前記拡散層を有することにより、装置内の光の干渉をさらに低減し、より高い取り出し効率を実現することができる。
 (光の経路)
 第1実施形態の有機EL光源装置において、発光層121は、第1の透明電極層111及び第2の透明電極層112に電圧が印加されることにより発光する。生じた光は、発光層121から任意の方向に出射する。
 上向きに出射した光の一部分は第1の透明電極層111を透過し、基板101を透過して出光面100Aから出光する。しかしながら、界面において反射した光は下向きに進む。特に界面の臨界角よりも大きな角度でいずれかの界面に入射した光は全反射し、その全てが下向きに進む。
 発光層から下向きに出射した光の多くは、第2の透明電極層112を透過した後、封止層131、封止基板102及び接着層132を透過して反射層142の反射面に達する。
 一般に、装置内の層界面での反射を多く繰り返すと、干渉や吸収により光のエネルギーが失われる。したがって、光取り出し効率を高める観点から、下向きに出射した光を、全反射を繰り返さない方向に反射させることが好ましい。
 ここで、構造層X(第1実施形態においては接着層132)に到達し反射面で反射する光が装置出光面から出光する場合について考えると、装置出光面と構造層Xとの間に更に他の層が存在していても、反射光は結局空気層である外界に向かって装置から出光する。そのため、反射面で反射して装置出光面側に向かう様々な角度の光のうちそのまま(即ち屈折以外の光路変更(拡散剤による拡散、並びに装置出光面と非平行な面での屈折及び反射等)を受けずに)装置出光面から出射できる角度範囲は、結局、反射面に接する層である構造層Xと空気層との屈折率の相対屈折率に依存する。そしてかかる相対屈折率は単に構造層Xの屈折率nに近似できる。
 より具体的には、Z軸方向となす角が、構造層Xと空気とが界面を有した場合におけるかかる界面における臨界角(以下、単に「構造層Xの臨界角」という。)より大きい方向で、構造層X内を下向きに進む光が、反射面において反射して上向きに進む場合において、反射光のうちなるべく多くが、Z軸方向となす角が構造層Xの臨界角より小さい方向に進むことが求められる。ここで、反射面が前記式(1)及び(2)を充足する場合、そのような所望の反射の割合が大きくなるため、取り出し効率の向上を図ることができる。
 本発明においては、平均傾斜角θx2が、下記式(3)を満たすことがより好ましく、下記式(4)を満たすことがさらにより好ましい。
 {90-sin-1(1/n)}/2≦θx2≦sin-1(1/n)  ・・・(3)
 ({90+sin-1(1/n)}/4)-5≦θx2≦({90+sin-1(1/n)}/4)+5 ・・・(4)
 反射面が、角錐が隙間無く並んでいる形状を有している場合、上記式(3)を満たすことにより、図10中の矢印で示すような2回の連続する反射においても、構造層Xの臨界角より大きい角度で構造層X内を下向きに進む光が反射面で反射して上向きに進む際に、反射光の多くが、Z軸方向となす角が構造層Xの臨界角より小さい方向に進むため特に好ましい。
 また、上記式(4)を満たす場合、Z軸方向となす角度が構造層Xの臨界角から90°までの範囲の中間の角度である方向の光(例えばn=1.53、臨界角40.8°である場合、Z軸となす角が40.8~90°の中間の65.4°である方向の光)をZ軸方向に近い方向に反射することができるため、さらにより好ましい反射を達成することができる。
 屈折率nが各種の代表的な屈折率値である場合における、上記式(2)~(4)の範囲を、以下に示す。
 n=1.5のとき、式(2):16.1≦θx2≦41.8、式(3):24.1≦θx2≦41.8、式(4):28.0≦θx2≦38.0。
 n=1.6のとき、式(2)17.1≦θx2≦38.7、式(3):25.7≦θx2≦38.7、式(4):27.2≦θx2≦37.2。
 n=1.8のとき、式(2)18.8≦θx2≦33.7、式(3):28.1≦θx2≦33.7、式(4):25.9≦θx2≦35.9。
 n=1.9のとき、式(2)19.4≦θx2≦31.8、式(3):29.1≦θx2≦31.8、式(4):25.4≦θx2≦35.4。
 構造層Xの屈折率nの値は、基板及び封止基板の屈折率と同等かそれ以上であることが好ましい。基板及び封止基板が一般的なガラスやフィルム等の材料であるとすると、構造層Xの屈折率nの下限は、1.5以上であることが好ましく、1.6以上であることがさらに好ましい。一方構造層Xの屈折率の上限は、発光素子の屈折率以上である必要はないことから、1.9以下であることが好ましい。本発明において、屈折率は波長550nmの光を基準とした屈折率とすることができる。
 (第2実施形態)
 図4は、本発明の第2実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。図4において、装置400は、封止基板102より下側に、接着層432を介して設けられ、下側の面に凹凸構造部441を有する透明凹凸層440と、凹凸構造部441の下面に設けられる反射層442とを備える点で、第1実施形態と異なっている。図4に示す第2実施形態においては、透明凹凸層440が反射層の反射面の凹凸構造を規定する部材となる。即ち、透明凹凸層440の凹凸構造部441に沿って反射層442が設けられることにより、反射層442の反射面が本発明の所定の凹凸構造を有する形状となる。
 第2実施形態では、接着層432ではなく透明凹凸層440が、構造層Xに相当する。また、透明凹凸層440の凹凸構造部441に接する反射層442の面が反射層の反射面となる。このような構成によっても、本発明の構成要件を満たし、高い光取り出し効率及びその他の所望の効果を得ることができる。
 透明凹凸層440は、反射部複合体基板140と同様に、凹凸構造部441と、それより上の部分とを、共通する材料で一体に成形することができる。または、凹凸構造部441と、それより上の部分とを、別々の材料で成形することもできる。透明凹凸層440の材料及び製造方法としては、反射部複合体基板140の材料として上に挙げたものと同様のものを用いることができる。透明凹凸層440の厚さは、1~500μmとすることができる。透明凹凸層の凹凸の高さは、0.3~100μmとすることができる。透明凹凸層の凹凸の幅寸法は、0.6~200μmとすることができる。
 (第3実施形態)
 図5は、本発明の第3実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。第3実施形態は、図4に示す第2実施形態のさらなる変形例である。図5において、装置500は、封止基板102の下側の面に、接着層を介さず直接透明樹脂からなる凹凸構造部541と、凹凸構造部541に沿って設けられる反射層542とを備える点で、第2実施形態と異なっている。
 第3実施形態では、凹凸構造部541が、構造層Xに相当する。また、凹凸構造部541に接する反射層542の面が反射層の反射面となる。また、凹凸構造部541が、反射層の反射面の凹凸構造を規定する部材となる。このような構成によっても、反射層542が本発明の所定の凹凸構造を有するものとすることができるので、本発明の構成要件を満たし、高い光取り出し効率及びその他の所望の効果を得ることができる。
 (第4実施形態)
 図6は、本発明の第4実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。図6に示すように、第4実施形態の光源装置600は、基板601上に、第2の透明電極層612、発光層621及び第1の透明電極層611をこの順に積層して構成される発光素子620と、発光素子620の上に封止層631を介して設けられる封止基板602とを備えている。一方、基板601の下側の面には、第1実施形態と同様に、反射部複合体基板140の上面の凹凸構造部141上に設けられる反射層142が、接着層132を介して設けられている。第4実施形態では、封止基板602の上面602Aが光源装置の出光面となる。また、第1実施形態と同様に、接着層132が構造層Xに相当し、接着層132に接する反射層142の面が反射層の反射面となる。
 このように、発光素子をその上に形成する基板である基板601とは反対側の基板である封止基板602の面602Aから出光するように構成した場合でも、第1の透明電極層、発光層、第2の透明電極層、及び所定の反射面を有する反射層をこの順に有するという本発明の要件を満たすことができ、その結果本発明の構成要件を満たし、高い光取り出し効率及びその他の所望の効果を得ることができる。基板601の屈折率は特に限定しないが1.5以上であることが好ましく1.6以上である屈折率の高い基板であることがさらに好ましい。このような屈折率の基板を用いる場合、接着層132(この例における構造層X)の屈折率の下限は、基板と同様に1.5以上であることが好ましく、1.6以上であることがさらに好ましい。一方接着層132の屈折率の上限は、発光素子の屈折率以上である必要はないことから、1.9以下であることが好ましい。
 (第5実施形態)
 図7は、本発明の第5実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。第5実施形態は、図1に示す第1実施形態の変形例である。図7において、装置700は、第2の透明電極層112の下側に、封止層131、封止基板102及び接着層132を有する代わりに、封止接着層732を有する点で、第1実施形態と異なっている。すなわち、第5実施形態においては、封止接着層732が第2の透明電極層112及び反射層142の両方に直接接している。
 第5実施形態においては、封止接着層732が構造層Xに該当する。また、封止接着層732に接する反射層142の面が、反射層の反射面となる。
 第5実施形態においては、反射層142が、封止基板102に代わって、空気中の酸素及び水分等が発光素子120(第1の透明電極層111、発光層121及び第2の透明電極層112)へ浸入することを遮断することで、より単純な層構成で劣化を防止することができ、薄型で安価で長寿命な光源装置とすることができる。
 第5実施形態のように、反射層142が空気中の酸素及び水分等を遮断するためのバリアとして機能する場合において、反射層142を構成する材料は、アルミニウム、銀等の金属の層を含むことが好ましい。また、この金属の層は一種類の金属の単層からなるものであってもよいが、複数の層からなってもよい。複数の層からなる反射層は、反射層を構成するそれぞれの層は同一の金属からなってもよく、異なる金属からなってもよい。また、反射層は、無機薄膜や有機薄膜等の機能層を金属の層と積層した構成としてもよい。より好ましくは、上で述べたように、アルミニウムの層の上に銀の層を設け、当該銀の層を反射面とすることができる。
 反射性能及びバリア性能を確保する観点から、反射層142の厚さは0.1~10μmであることが好ましい。一般的に有機EL発光素子を金属膜でバリアする場合、10-5g/m-day以下の水蒸気バリア性が必要とされるが、本発明においては、封止接着層及び反射部複合体基板を適宜選択することにより、容易に製造しうる薄い金属反射膜で、高いバリア性能を得ることができる。また、図示を省略するが、同じくバリア性能を確保する観点から、封止接着層732と透明電極層112の間に、バリア層が形成されていてもよい。このようなバリア層としては、SiOやSiON、SiN、SiOC、Alなどの各種金属酸化物や金属窒化物等が挙げられる、また、同じく図示を省略するが、封止接着層732の代わりに、封止層として用いられるアクリレート、メタクリレート等のエネルギー線硬化型樹脂、アクリル系やオレフィン系等の粘着機能樹脂又は接着機能樹脂、加熱により溶着し冷却により硬化する熱溶融型の接着機能樹脂、フッ化炭化水素、シリコンオイルなどの不活性液体、ネマチック液晶やスメクチック液晶などの液晶材料を用いてもよい。特に流動性の高い材料を用いることで反射層の凹凸構造を封止層で充填することが容易になる。
 封止接着層732(この例における構造層X)の屈折率は、基板及び封止基板の屈折率と同等かそれ以上であることが好ましい。基板及び封止基板が一般的なガラスやフィルム等の材料であるとすると、封止接着層732の屈折率nの下限は、1.5以上であることが好ましく、1.6以上であることがさらに好ましい。一方封止接着層732の屈折率nの上限は、発光素子の屈折率以上である必要はないことから、1.9以下であることが好ましい。
 (第6実施形態)
 図8は、本発明の第6実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。第6実施形態は、図7に示す第5実施形態のさらなる変形例である。図8において、装置800は、第2の透明電極層112の下側に、封止接着層832を介して設けられるとともに、その下側の面に凹凸構造部841が形成された透明凹凸層840と、透明凹凸層840の下側の面に形成された凹凸構造部841の下面に設けられる反射層842とを備える点で、第5実施形態と異なっている。第6実施形態においては、透明凹凸層840が構造層Xに該当する。また、透明凹凸層840の凹凸構造部841に接する反射層842の面が、反射層の反射面となる。
 第6実施形態においては、透明凹凸層840の凹凸構造部の凹凸構造に沿って反射層842が設けられることにより、反射層842が本発明の所定の凹凸構造を有するものとすることができ、且つ第5実施形態と同様に反射層が、空気中の酸素及び水分等が発光素子へ浸入することを遮断することができる。よって、このような構成によって、光取り出し効率を高めることができ、且つ薄型で安価で長寿命な光源装置とすることができる。
 (第7実施形態)
 図9は、本発明の第7実施形態に係る有機EL光源装置の層構成を概略的に示す立面断面図である。第7実施形態は、図8に示す第6実施形態のさらなる変形例である。図9において、装置900は、反射層842のさらに下側に、封止層933を介して、封止用金属層943及びその基板944を有する点で、第6実施形態と異なっている。第7実施形態においては、透明凹凸層840が構造層Xに該当する。また、透明凹凸層840の凹凸構造部841に接する反射層842の面が、反射層の反射面となる。封止層933、封止用金属層943及びその基板944は、光の透過や反射には関与しない。
 反射層842を構成する材料及び金属層943を構成する材料は、同一であっても異なっていてもよく、またその膜厚も、同一であっても異なっていてもよい。第7実施形態においては、反射層842に加えてさらに別の金属層943を有することにより、反射層842として反射性能が高いが封止性能の低い層を用いた場合でも、金属層943として反射性能に関わらず封止性能の高い層を採用することで、第6実施形態以上に良好に、反射性能を高めることができ且つ空気中の酸素及び水分等が発光素子へ浸入することを遮断することができる。よって、このような構成によって、光取り出し効率を高めることができ、且つ薄型で安価で長寿命な光源装置とすることができる。
 (他の変形例:凹凸構造)
 上に説明した実施形態においては、反射層が有する凹凸構造として、図2に示すような四角錐の凹凸構造単位が2方向に連続した周期的構造を例示したが、本発明における凹凸構造はこれらに限られず、構造層Xの屈折率、凹凸構造単位の傾斜角θx1及び凹凸構造の平均傾斜角の関係が上記範囲内である限りにおいて、種々の形状をとることができる。
 凹凸構造単位は、上に例示した四角錐の形状に加えて、任意の角錐、角錐台の形状、角錐の頂点及び/又は辺を面取りした形状、球又は楕円球の一部の形状等、これらの形状の組み合わせ等の種々の形状のくぼみ及び/又は突起とすることができる。さらには、円柱の一部、又は角柱等の柱状の形状の凹凸構造単位を、かかる柱状の形状の長手方向が水平方向となり互いに平行となるよう複数配列し、凹凸構造を構成することもできる。
 さらに、凹凸構造は、凹凸構造単位が隙間無く配列されたものに限られず、くぼみ及び/又は突起である複数の凹凸構造単位と、かかる凹凸構造単位の隙間に設けられた平坦な部分から構成されたものであってもよい。
 図2及び図3に示す例以外の、反射層の凹凸構造の具体例を、それに対応する凹凸構造を有する反射部複合体基板を示すことにより、以下に例示する。
 図11は、第1実施形態における凹凸構造部141を有する反射部複合体基板140の変形例を概略的に示す斜視図である。図11において、反射部複合体基板24Xの凹凸構造は、四角錐形状の突起である凹凸構造単位24Zが面内の2方向に連続して設けられた構造である。この例において、凹凸構造単位24Zは、4つの斜面24A~24D及び頂点24Tを有する。4つの斜面24A~24Dのそれぞれが水平面となす角は等しい。凹凸構造単位24Zの四角錐形状の底面は正方形である。凹凸構造単位24Zの四角錐形状の底辺24Eは、他の凹凸構造単位24Zの底辺と接し、それにより凹凸構造単位24Zは凹凸構造上に隙間無く連続して設けられている。
 図12は、図11に示す反射部複合体基板240の凹凸構造単位24Zを、底辺24Eに平行な線3aを通りZ軸方向に平行な面で切断した部分断面図である。斜面24B及び24Dが水平面となす角度θ24が、凹凸構造単位24Zの傾斜角θx1となる。また、凹凸構造部241の凹凸構造を有する面全体において、凹凸構造単位24Zの形状は一様であるので、凹凸構造単位24Zの傾斜角θ24はまた反射面の凹凸構造の平均傾斜角θx2となる。
 図13、図14及び図15は、それぞれ、第1実施形態における凹凸構造部141を有する反射部複合体基板140の、凹凸構造単位14Zの変形例を概略的に示す部分断面図である。図13、図14及び図15のそれぞれにおいて、反射部複合体基板34X、44X及び54Xの断面は、図3に示す反射部複合体基板140の断面と同様に、一つの凹凸構造単位の断面を図示する部分断面である。
 図13において、反射部複合体基板34Xの凹凸構造単位34Zは、斜面34F及び34Hを含む4つの斜面からなり頂点34Tを有する正四角錐と、斜面34B及び斜面34Dを含む4つの斜面からなる正四角錐台の頂部を除いた形状とが組み合わされた形状を有している。このような形状の場合、凹凸構造の傾斜角θx1は、斜面34Fまたは斜面34Hが水平面とのなす角度、すなわちすべての斜面のうち最も大きい角度を採用する。また、平均傾斜角θx2は上記式(5)で求められる。
 図14において、反射部複合体基板44Xの凹凸構造単位44Zは、斜面44Bを含む曲面からなる。このような形状の場合、凹凸構造の傾斜角θx1は、水平面と曲面がなす角度のうち最も大きい角度、すなわち斜面44Bの最も角度が大きい部分44Pにおける接線44Qと水平面とがなす角θ44がθx1となる。また、平均傾斜角θx2は上記式(5)で求められる。
 図15において、反射部複合体基板54Xの凹凸構造単位54Zは、斜面54B及び斜面54Dを含む4つの斜面からなる正四角錐の頂部を除いた形状と、水平な正方形の面54Tとが組み合わされた角錐台状の形状を有している。このような形状の場合、凹凸構造の傾斜角θx1は、斜面54Bまたは斜面54Dが水平面となす角度、すなわちすべての斜面のうち最も大きい角度を採用する。また、平均傾斜角θx2は上記式(5)で求められる。
 図16及び図17は、それぞれ、第1実施形態における凹凸構造部141を有する反射部複合体基板140のさらなる変形例を概略的に示す斜視図である。図16において、反射部複合体基板64Xの凹凸構造は、第1実施形態のものと同一の凹凸構造単位14Zを有している。反射部複合体基板140においては、凹凸構造単位14ZはX軸方向及びY軸方向共に隙間無く配置されていたが、反射部複合体基板64Xにおいては、凹凸構造単位14Zの間には、X軸方向及びY軸方向共に、それぞれ隙間64J及び64Kが設けられている。このような形状の場合、凹凸構造の傾斜角θx1は、反射部複合体140のそれと同一である。また、平均傾斜角θx2は上記式(5)で求められる。なお、平均傾斜角を求めるにあたっては、平坦部を除いて求めるものとする。
 図17において、反射部複合体基板74Xの凹凸構造は、第1実施形態のものと同一の凹凸構造単位14Zを有している。反射部複合体基板74Xにおいては、凹凸構造単位14Zは、Y軸方向には隙間無く連続して配列されているが、X軸方向には連続して配列されておらず、隙間74Jが設けられた態様で配置されている。このような形状の場合、凹凸構造の傾斜角θx1は、反射部複合体140のそれと同一である。また、平均傾斜角θx2は上記式(5)で求められる。
 さらなる反射部複合体基板の変形例としては、図2に示したくぼみ状の凹凸構造単位14Zを反転させて図11に示した突起状の凹凸構造単位24Zとするのと同様の変形を、他の形状の構造について行ったものが挙げられる。例えば、図12~図17に示した反射部複合体基板34X、44X、54X、64X及び74Xにおいて、くぼみ状の凹凸構造単位34Z、44Z、54Z、64Z及び74Zを反転させて突起状の凹凸構造単位としたものをも挙げることができる。
 さらに、図4、図5、図8及び図9に示す第2、第3、第6及び第7実施形態のように、反射層よりも上側にある部材(透明凹凸層、封止基板の下側に直接設けられた凹凸構造部等)により反射面の形状が規定される場合においても、当該部材において、上に例示した反射部複合体基板と同様の構造を採用することができる。例えば、図4に示す第2実施形態において、透明凹凸層440として、図2に示す反射部複合体基板140と同様の凹凸構造を有するものを用いることができる。この場合、反射面の凹凸構造は、第1実施形態のものが反転した構造となる(第1実施形態では反射部複合体基板140は反射面の下側にあるのに対し第2実施形態では透明凹凸層440の上側にあるため)。
 図16及び図17で示す反射部複合体基板64X及び74Xで示される例では、反射部複合体基板又は透明凹凸層等の反射面の凹凸構造を規定する部材の表面の凹凸構造が、離隔して設けられたくぼみ状の凹凸構造単位と、かかる凹凸構造単位間の平坦な隙間部分を有する。これらの例は、製造時及び使用時における光源装置の機械的強度を高める観点から好ましい。かかる構造を有することにより、製造時及び使用時において、凹凸構造が擦傷により劣化することを効果的に防止し、且つ良好な光取り出し効率を達成しうる反射面凹凸構造を設けることができる。
 反射層の反射面の凹凸構造の高さは、特に限定されないが、最も高い部分と低い部分との差(例えば図3に示す例では矢印14Hで示される高さ)として、0.3~100μmとすることが特に好ましい。
 (用途)
 本発明の有機EL光源装置の用途は、特に限定されないが、高い光取り出し効率等の利点を生かし、液晶表示装置のバックライト、照明装置などの光源とすることができる。
 本発明の光源装置には、上記に具体的に説明したもののみならず、本願の特許請求の範囲内及びその均等の範囲に属するものも含まれる。例えば、本発明の光源装置は第1の透明電極層、発光層、第2の透明電極層、構造層X及び反射層を必須の構成要素としているが、これらの層の間、第1の透明電極層より出光面に近い位置、及び反射層より出光面から遠い位置(出光面と反対側)のいずれかの場所に、任意の構成要素として、上で例示した拡散板、封止層、反射部複合体基板等のほかに、さらに任意の層を有することができる。また、発光素子を封止するものとして、その上下の基板及び封止基板並びに封止層等の層が例示されたが、それに加えて、発光素子の辺縁部を封止する封止部材をさらに備えることができる。また、電極へ通電するための通電手段等、光源装置を構成するために必要なその他の任意の構成要素を備えることができる。
 以下、実施例に基づき、本発明についてさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。
 <製造例1:封止層用の接着剤の調製>
 ポリイソプレン300重量部を、トルエン700重量部に完全に溶解した後、p-トルエンスルホン酸2.4重量部を投入し、環化反応を行い重合体環化物の溶液を得た。
 得られた溶液中の重合体環化物100重量部に対して無水マレイン酸2.5重量部を添加し付加反応を行なった。
 溶液中のトルエンの一部を留去し、酸化防止剤を添加した後、さらに真空乾燥を行って、トルエンおよび未反応の無水マレイン酸を除去して、変性共役ジエン重合体環化物系接着剤を得た。
 <実施例1>
 図1に示す第1実施形態の構成を有する有機EL光源装置を製造した。
 (1-1:発光素子の調製)
 厚さ0.7mmのガラス製の基板101の一方の面上に、第1の透明電極層111、有機発光層121及び第2の透明電極112を含む有機EL発光素子を設けた。
 (1-2:発光素子を封止した積層体の調製)
 厚さ0.7mmのガラス製の封止基板102の一方の面上に、製造例1で得た封止層用接着剤を塗布し、これを(1-1)で得た発光素子の第2の透明電極層側の面に貼付し、素子の周辺部に電極層への通電手段を設け周辺封止部材で封止して(図1において不図示)、厚さ15μmの封止層131を形成し、これにより基板101、第1の透明電極層111、有機発光層121、第2の透明電極層112、封止層131及び封止基板102を有する積層体を得た。
 (1-3:反射部複合体基板)
 脂環式構造を有する樹脂(日本ゼオン(株)製、商品名「ゼオノアフィルム」、)からなる基材フィルムの一方の面に、紫外線硬化型樹脂(アクリレート系樹脂、屈折率n=1.53)を塗布し、塗膜を形成した。当該塗膜上に、所定の形状の金属型を圧接し、基材フィルム側から紫外線を1000mJ/cmの積算光量で照射して、塗膜を硬化させ、基材フィルム上に凹凸構造部を形成した。次いで、凹凸構造部から金型を剥がして、基材フィルム及び凹凸構造部からなる反射部複合体基板140を得た。
 得られた反射部複合体基板140の凹凸構造部の表面の凹凸構造は、図2に模式的に示す複数の正四角錐形状の凹部14Zからなるものであった。凹部14Zを構成する斜面14A~14Dが基材フィルムの面となす角度は30°であった。凹部14Zの底辺14Eの長さは20μmであり、凹部14Zは凹凸構造部表面の直交する2方向に20μmピッチで配列した構造であった。反射部複合体基板140全体の厚さは200μmであった。
 (1-4:凹凸構造を有する反射層)
 (1-3)で得られた反射部複合体基板140の条列が形成された面上に、銀を200nm蒸着することにより、金属反射層を形成し、反射部複合体基板140及び凹凸構造を有する反射層142からなる反射部複合体144を得た。
 (1-5:光源装置の製造)
 (1-4)で得られた反射部複合体144の反射層142側の面に、製造例1で得た封止用接着剤を塗布し、これを、(1-2)で得た積層体の封止基板102側に貼付し、厚さ18μm(反射面凹凸構造の最も高い部分から封止基板102までの距離)の接着層132を形成し、これにより基板101、第1の透明電極層111、有機発光層121、第2の透明電極層112、封止層131、封止基板102、接着層132、反射層142及び複合体基板140を有する有機EL光源装置を得た。封止層131及び接着層132の屈折率はいずれも1.5であった。
 本実施例においては、接着層132が構造層Xに該当するので、式(1)~(4)においてn=1.5となり、即ち、式(1)によればθx1≦41.8、式(2)によれば16.1≦θx2≦41.8、式(3)によれば24.1≦θx2≦42.8、式(4)によれば28.0≦θx2≦38.0となる。また、本実施例では、θx1もθx2もともに30°である。このため、本実施例はこれらの式(1)~(4)を満たしている。
 (1-6:評価)
 得られた有機EL光源装置に定電流を通電して発光させ、光度をELDIM社製EZ-contrastを用いて測定し、全光量を求めた。
 <比較例1>
 工程(1-3)において金型を変更した他は、実施例1と同様にして、有機EL光源装置を製造した。得られた有機EL光源装置において、反射部複合体基板140の凹凸構造部の表面の凹凸構造は、図2に模式的に示す複数の正四角錐形状の凹部14Zからなるものであった。凹部14Zを構成する斜面14A~14Dが基材フィルムの面となす角度は60°であった。凹部14Zの底辺14Eの長さは20μmであり、凹部14Zは凹凸構造部表面の直交する2方向に20μmピッチで配列した構造であった。反射部複合体基板140全体の厚さは200μmであった。
 本比較例においては、接着層132が構造層Xに該当し、式(1)~(4)においてn=1.5となり、即ち、式(1)によればθx1≦41.8、式(2)によれば16.1≦θx2≦41.8、式(3)によれば24,1≦θx2≦41.8、式(4)によれば28.0≦θx2≦38.0となる。また、本実施例では、θx1もθx2もともに60°である。このため、本比較例では、これらの式(1)~(4)を満たしていない。
 得られた有機EL光源装置に定電流を通電して発光させ、光度をELDIM社製EZ-contrastを用いて測定し、全光量を求めた。その結果、比較例1に比べて、実施例1は全光量が11%大きい値を示した。
 <実施例2>
 図1に示す有機EL光源装置において、発光層121及び第1及び第2の透明電極層(ITO)の屈折率1.8、封止層131及び接着層132の屈折率1.53、基板101及び封止基板102の屈折率1.53、反射層142の反射面の反射率100%、及び発光素子120の光学密度を正面方向から透過する光の発光素子120による吸収率が10%となるように設定し、反射面の凹凸構造単位の形状を図2に示す四角錘形状とし、さらに発光素子120から基板101及び封止層131へ出射する光の配向特性(初期配向特性)を下記の通りとした場合について、四角錐の斜面の平均傾斜角(°)と、出光面100Aからの光取り出し効率(%)との関係を、プログラム(プログラム名:Light Tools、Optical Research Associates社製)によりシミュレーションして検討した。検討結果を図18に示す。
 初期配向特性:光度(θ)=1
 ここで、θは、発光層の主面の法線方向と、観察方向とがなす角度(°)であり、光度(θ)は、かかる角度から観察した場合の光度を示す。
 本実施例においては、接着層が構造層Xに該当するので、式(1)~(4)においてn=1.53となり、即ち、式(1)によればθx1≦40.8、式(2)によれば16.4≦θx2≦40.8、式(3)によれば24.6≦θx2≦40.8、式(4)によれば27.7≦θx2≦37.7となる。また、本実施例では、θx1もθx2も、平均傾斜角に一致する。
 図18の結果より、平均傾斜角を種々変更した場合において、式(1)及び式(2)を満たす場合に好ましい取り出し効率を得ることができ、式(3)を満たす場合により好ましい取り出し効率を得ることができ、式(4)を満たす場合にさらにより好ましい取り出し効率を得ることができることが分かる。
 <参考例1>
 反射層に金属層を採用した場合の、反射面の反射率を計算した。計算にあたっては、アルミニウムの屈折率を1.29、複素屈折率を7.23に設定し、銀の屈折率を0.13、複素屈折率を3.34として計算した。(i)反射層として銀を用いた場合、(ii)反射層としてアルミニウムを用いた場合、及び(iii)反射層としてアルミニウム及び銀を用い、銀が反射面となるよう層を構成した場合の3種類について検討した。(i)及び(ii)のそれぞれにおいて反射層の膜厚を種々変更し、(iii)においてアルミニウムの膜厚を100nmとし銀の膜厚を種々変更した場合における、膜厚と反射率との関係の検討結果を図19に示す。
 図19の結果より、(ii)の場合では90%未満で反射率が飽和し、膜厚を高めても(i)の場合ほど反射率を高めることができない一方、(iii)の場合では銀の膜厚50nm程度で(i)の厚い銀の反射層に相当する高い反射率が得られることが分かる。このことから、(iii)の場合、安価なアルミニウムの膜と、高価な銀を少量用いた膜で、全体的なコストが低く且つ反射率の高い反射層が得られることが分かる。
 <参考例2>
 参考例1の検討結果に基づき、実際に(i)銀100nmの反射層、(ii)アルミニウム100nmの反射層及び(iii)アルミニウム100nmと銀20nmとの組み合わせで、銀が反射面となる反射層をそれぞれ作成し、反射率を測定した。その結果、(i)は98.8%、(ii)は88.3%、(iii)は94.2%であった。
 100、400、500、600、700、800、900 有機EL光源装置
 101、601 基板
 102、602 封止基板
 111、611 第1の透明電極層
 112、612 第2の透明電極層
 120、620 発光素子
 121、621 発光層
 131、631、933 封止層
 132、432 接着層
 140、24X、34X、44X、54X、64X、74X 反射部複合体基板
 141、441、541、841 凹凸構造部
 142、442、542、842 反射層
 144 反射部複合体
 14A~14D、24A~24D、34B、34D、34F、34H、44B、54B、54D 斜面
 14E、24E 底辺
 14T、24T、34T 頂点
 14Z、24Z、34Z、44Z、54Z 凹凸構造単位
 440、840 透明凹凸層
 54T 平面
 64J、64K、74J 隙間
 732、832 封止接着層
 943 封止金属層
 944 基板

Claims (7)

  1.  出光面側から順に、第1の透明電極層、発光層、第2の透明電極層、及び反射面を有する反射層をこの順に有し、さらに、前記第2の透明電極層と前記反射面との間に位置し且つ前記反射面に接して設けられる構造層Xを有する有機エレクトロルミネッセンス光源装置であって、
     前記反射面が凹凸構造を有し、
     前記凹凸構造は、くぼみ、または突起からなる凹凸構造単位を複数有し、
     前記構造層Xの屈折率n、前記凹凸構造単位の傾斜角θx1(°)、及び前記反射面における前記凹凸構造の平均傾斜角θx2(°)が、以下の式(1)及び(2):
     θx1≦sin-1(1/n)  ・・・(1)
     {90-sin-1(1/n)}/3≦θx2≦sin-1(1/n)  ・・・(2)
    を満たす、有機エレクトロルミネッセンス光源装置。
  2.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記構造層Xの屈折率n、及び前記反射面の前記凹凸構造の平均傾斜角θx2(°)が、以下の式(3):
     {90-sin-1(1/n)}/2≦θx2≦sin-1(1/n)  ・・・(3)
    を満たす、有機エレクトロルミネッセンス光源装置。
  3.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記構造層Xの屈折率n、及び前記反射面の前記凹凸構造の平均傾斜角θx2(°)が、以下の式(4):
     ({90+sin-1(1/n)}/4)-5≦θx2≦({90+sin-1(1/n)}/4)+5 ・・・(4)
    を満たす、有機エレクトロルミネッセンス光源装置。
  4.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記反射面の前記凹凸構造単位が、角錐、または角錐台形状である、有機エレクトロルミネッセンス光源装置。
  5.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記凹凸構造は、凹凸構造単位として離隔して設けられたくぼみを有し、且つ隣り合う前記くぼみ間には、平坦な隙間部分が設けられている、有機エレクトロルミネッセンス光源装置。
  6.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記反射層が、第1の金属を含む第1の金属層と、前記第1の金属とは異なる第2の金属を含む第2の金属層との積層体である有機エレクトロルミネッセンス光源装置。
  7.  請求項1に記載の有機エレクトロルミネッセンス光源装置であって、
     前記反射層より出光面側に設けられた光拡散層をさらに有する有機エレクトロルミネッセンス光源装置。
PCT/JP2010/067958 2009-10-14 2010-10-13 有機エレクトロルミネッセンス光源装置 WO2011046144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011536155A JPWO2011046144A1 (ja) 2009-10-14 2010-10-13 有機エレクトロルミネッセンス光源装置
US13/502,024 US8476825B2 (en) 2009-10-14 2010-10-13 Organic electroluminescent light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009237169 2009-10-14
JP2009-237169 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011046144A1 true WO2011046144A1 (ja) 2011-04-21

Family

ID=43876193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067958 WO2011046144A1 (ja) 2009-10-14 2010-10-13 有機エレクトロルミネッセンス光源装置

Country Status (4)

Country Link
US (1) US8476825B2 (ja)
JP (1) JPWO2011046144A1 (ja)
TW (1) TW201121360A (ja)
WO (1) WO2011046144A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196329A1 (ja) * 2013-06-06 2014-12-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN113193141A (zh) * 2021-04-16 2021-07-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073301A1 (ja) * 2011-11-14 2013-05-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、面状発光体
CN104718263B (zh) * 2012-10-29 2017-11-10 琳得科株式会社 粘合剂组合物及粘合片
KR101413461B1 (ko) * 2012-10-31 2014-07-01 에스에프씨 주식회사 유기 전계 발광 소자 및 이의 제조방법
KR102189387B1 (ko) * 2012-11-30 2020-12-11 린텍 가부시키가이샤 접착제 조성물, 접착 시트, 전자 디바이스 및 그 제조 방법
KR101980771B1 (ko) * 2012-12-31 2019-05-21 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
FR3041772B1 (fr) * 2015-09-30 2018-09-21 St Microelectronics Sa Procede de fabrication d'un filtre spectral nanostructure
CN107507920B (zh) * 2017-09-22 2024-05-24 京东方科技集团股份有限公司 有机电致发光二极管、显示基板及其制作方法、显示装置
FR3099967B1 (fr) 2019-08-16 2021-07-30 Commissariat Energie Atomique Dispositif électroluminescent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036969A (ja) * 2000-10-25 2003-02-07 Matsushita Electric Ind Co Ltd 発光素子、及びそれを用いた表示装置と照明装置
JP2003332067A (ja) * 2002-05-14 2003-11-21 Casio Comput Co Ltd 発光パネル
JP2004119147A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd 発光モジュール、発光モジュール用基板及び発光モジュール用部材
JP2005347072A (ja) * 2004-06-02 2005-12-15 Seiko Epson Corp 有機el装置、電子機器
JP2006092936A (ja) * 2004-09-24 2006-04-06 Toyota Industries Corp 有機el装置
JP2007207529A (ja) * 2006-01-31 2007-08-16 Kyocera Corp 有機elディスプレイ
JP2008153243A (ja) * 2008-03-14 2008-07-03 Seiko Epson Corp 表示装置
JP2009087938A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 照明デバイス、照明器具およびディスプレイデバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527848B (en) 2000-10-25 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting element and display device and lighting device utilizing thereof
JP4350996B2 (ja) 2002-11-26 2009-10-28 日東電工株式会社 有機エレクトロルミネッセンス素子、面光源および表示装置
JP2005183265A (ja) * 2003-12-22 2005-07-07 Canon Inc 発光素子、並びに当該発光素子を用いた発光素子アレイ、表示装置、投光機、光書き込み装置、およびプリンタ
KR100704258B1 (ko) 2004-06-02 2007-04-06 세이코 엡슨 가부시키가이샤 유기 el 장치 및 전자 기기
JP2006347072A (ja) 2005-06-17 2006-12-28 Canon Inc 液体吐出ヘッドの製造方法、液体吐出ヘッド、および液体吐出記録装置
JP4240017B2 (ja) * 2005-07-20 2009-03-18 セイコーエプソン株式会社 発光装置及び電子機器
JP2008163243A (ja) 2006-12-28 2008-07-17 Lion Corp スターポリマーの合成方法
JP4861206B2 (ja) * 2007-01-26 2012-01-25 パナソニック電工株式会社 有機エレクトロルミネッセンス発光装置及び有機エレクトロルミネッセンス照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036969A (ja) * 2000-10-25 2003-02-07 Matsushita Electric Ind Co Ltd 発光素子、及びそれを用いた表示装置と照明装置
JP2003332067A (ja) * 2002-05-14 2003-11-21 Casio Comput Co Ltd 発光パネル
JP2004119147A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd 発光モジュール、発光モジュール用基板及び発光モジュール用部材
JP2005347072A (ja) * 2004-06-02 2005-12-15 Seiko Epson Corp 有機el装置、電子機器
JP2006092936A (ja) * 2004-09-24 2006-04-06 Toyota Industries Corp 有機el装置
JP2007207529A (ja) * 2006-01-31 2007-08-16 Kyocera Corp 有機elディスプレイ
JP2009087938A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 照明デバイス、照明器具およびディスプレイデバイス
JP2008153243A (ja) * 2008-03-14 2008-07-03 Seiko Epson Corp 表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196329A1 (ja) * 2013-06-06 2014-12-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JPWO2014196329A1 (ja) * 2013-06-06 2017-02-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN113193141A (zh) * 2021-04-16 2021-07-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Also Published As

Publication number Publication date
JPWO2011046144A1 (ja) 2013-03-07
US8476825B2 (en) 2013-07-02
US20120200221A1 (en) 2012-08-09
TW201121360A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2011046144A1 (ja) 有機エレクトロルミネッセンス光源装置
JP4506904B1 (ja) 有機エレクトロルミネッセンス光源装置
WO2005112514A1 (ja) エレクトロルミネッセンス素子、照明装置、および表示装置
JP5250949B2 (ja) 発光素子モジュール
JP2009526360A5 (ja)
TWI314025B (en) Method for fabricating active illumination apparatus
CN1499905A (zh) 显示体、显示面板及显示装置
TW201538586A (zh) 電子裝置密封用樹脂組成物及電子裝置
JP2003109747A (ja) 有機エレクトロルミネッセンス面発光体及び液晶表示装置
WO2005112513A1 (ja) エレクトロルミネッセンス素子、照明装置、および表示装置
JP2009158181A (ja) 面光源装置の製造方法
JP5251225B2 (ja) 有機エレクトロルミネッセンス光源装置
JP2004020746A (ja) 発光装置用基板およびこれを用いた発光装置
KR101658903B1 (ko) 유기전자소자용 기판
JP2005327687A (ja) エレクトロルミネッセンス素子、並びにこれを用いた照明装置および表示装置
WO2016136715A1 (ja) 有機エレクトロルミネッセンス表示素子用封止剤
TWI239221B (en) Organic light-emitting source
JP5216112B2 (ja) 面状発光体
KR101839787B1 (ko) 봉지 필름
JP2005327688A (ja) エレクトロルミネッセンス素子、並びにこれを用いた照明装置および表示装置
JP5515799B2 (ja) 面光源装置用積層体及び面光源装置
JP2005327686A (ja) エレクトロルミネッセンス素子、並びにこれを用いた照明装置および表示装置
TW201818782A (zh) 有機電激發光顯示元件用密封劑
WO2005112515A1 (ja) エレクトロルミネッセンス素子、照明装置、および表示装置
JP5870651B2 (ja) レンズシート及びそれを具備した有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536155

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13502024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823412

Country of ref document: EP

Kind code of ref document: A1