WO2011043364A1 - 内燃機関用オイルリング - Google Patents

内燃機関用オイルリング Download PDF

Info

Publication number
WO2011043364A1
WO2011043364A1 PCT/JP2010/067521 JP2010067521W WO2011043364A1 WO 2011043364 A1 WO2011043364 A1 WO 2011043364A1 JP 2010067521 W JP2010067521 W JP 2010067521W WO 2011043364 A1 WO2011043364 A1 WO 2011043364A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil ring
internal combustion
combustion engine
ring
Prior art date
Application number
PCT/JP2010/067521
Other languages
English (en)
French (fr)
Inventor
云智 高
純一 高橋
暁 村松
亮 小原
哲司 宮下
忠彦 渡邉
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2011535414A priority Critical patent/JP5463364B2/ja
Priority to BR112012008116A priority patent/BR112012008116A2/pt
Priority to MX2012004115A priority patent/MX336491B/es
Priority to CN201080045309.2A priority patent/CN102639852B/zh
Priority to US13/500,223 priority patent/US9353864B2/en
Priority to DE112010003953.4T priority patent/DE112010003953B4/de
Publication of WO2011043364A1 publication Critical patent/WO2011043364A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings
    • F16J9/203Oil-scraping rings

Definitions

  • the present invention relates to an oil ring for an internal combustion engine, and more specifically, an oil ring for an internal combustion engine that can effectively prevent adhesion and accumulation of oil sludge caused by modification of engine lubricating oil, and sticking between members due to them. About.
  • oil sludge In an internal combustion engine, as the engine is operated for a long time, the lubricating oil is heated and exposed to blow-by gas, whereby hydrocarbon unburned products and modified oil additives are mixed in the lubricating oil. It becomes a state. Further, in the diesel engine, carbon fine particles are also mixed in the lubricating oil. Such unburned products, modified oil additives and fine carbon particles are generally referred to as “oil sludge”. If oil sludge adheres to and accumulates on the engine parts, it may interfere with the function of the engine parts such as the oil ring by wearing the parts or blocking the passage of the lubricating oil.
  • FIG. 1 shows a part (right half) of a cross section of an oil control ring (2-piece type oil ring) 1 with a coil expander.
  • the two-piece type oil ring 1 is composed of a pair of rail portions 2 formed vertically in the axial direction and a web 3 connecting between the rail portions 2.
  • An annular oil ring body 4 having a joint, The coil expander 5 is configured to press outward in the radial direction.
  • An inner peripheral groove portion 6 is formed on the inner peripheral surface side of the oil ring body 4, and an outer peripheral groove portion 8 is formed on the outer peripheral surface side. Further, oil holes 7 penetrating in the radial direction are formed in the web 3 at a predetermined interval in the circumferential direction.
  • oil sludge accumulates in the outer peripheral surface and pitch of the coil expander 5 and in the inner peripheral groove portion 6 of the oil ring main body 4 and blocks the passage of the lubricating oil. is there. Oil sludge also accumulates in the oil hole 7 and the outer peripheral groove 8 and may block the oil hole 7. If the lubricating oil passage such as the oil hole 7 is blocked, the oil control function is not exhibited and the consumption of the lubricating oil may increase. Moreover, when oil sludge accumulates between the pitches of the coil expander 5, the stretchability of the coil expander 5 may be lost.
  • the oil sludge accumulated between the pitches reduces the force pressing the oil ring body 4 against the cylinder inner wall surface, and the cylinder wall surface of the two-piece type oil ring 1 There is a risk that the follow-up performance with respect to will decrease.
  • FIG. 2 shows a part (right half) of a cross section of the steel combined oil control ring (3-piece type oil ring) 10.
  • the three-piece oil ring 10 includes a pair of annular side rails 11 having a joint and a spacer expander 12 that supports the side rails 11.
  • the spacer expander 12 has an ear portion 13 formed on the inner peripheral side, and a projection portion 16 that supports the side rail 11 formed on the outer peripheral side.
  • a flat base dent 14 is provided at a portion connecting the ear 13 and the protrusion 16.
  • the side rail 11 is pressed by the radial and axial component forces depending on the angle of the ear 13 of the spacer expander 12, and exhibits a sealing function on the cylinder wall surface and the upper and lower surfaces of the ring groove.
  • the three-piece oil ring with a reduced width in the axial direction that is, the h1 dimension, has good followability to the cylinder wall surface and also has a side seal function, which increases oil consumption even at low tension. Friction loss can be reduced.
  • liquid repellent treatment with a fluorine-containing film or the like has been studied as a method for preventing the adhesion and accumulation of oil sludge to the oil ring described above. This is intended to prevent oil sludge from adhering to the lubricating oil by forming an oil repellent film on the surface of the oil ring.
  • the material for the fluorine-containing film used for the oil repellent treatment include polytetrafluoroethylene and fluorinated alkylsilane.
  • Patent Document 1 proposes a method of forming a liquid repellent film by a sol-gel method from a metal alkoxide and a fluoroalkyl group-substituted metal alkoxide in which a part of the alkoxy group (alkoxyl group) is substituted with a fluoroalkyl group. ing.
  • a substance containing a fluoroalkyl group is known to have water and oil repellency. Therefore, by providing a coating film having the fluoroalkyl group on the surface, liquid repellency is imparted to the engine component to prevent oil sludge from adhering and accumulating.
  • Patent Document 2 discloses a technique for increasing the effect of oil sludge adhesion and deposition prevention by thickening a fluorine-containing film.
  • Patent Document 3 discloses that deposit (oil sludge) is improved by covering a member for an internal combustion engine with a carbon-based film having a predetermined surface free energy and coating roughness. -It is described that sticking is suppressed, and that efficient combustion operation is maintained with little performance deterioration.
  • the carbon-based film polypropylene resin, perfluoroethylenepropylene (FEP) resin, polytetrafluoroethylene (PTFE), fluorinated alkylsilane, and the like are shown.
  • JP 2000-27995 A Japanese Patent Laid-Open No. 10-157013 JP 2006-291844 A
  • an object of the present invention is to provide an oil ring for an internal combustion engine that can prevent oil sludge from adhering and accumulating even during long-term engine operation, and can maintain an excellent oil control function without causing sticking between members. Is to provide.
  • the oil ring of the present invention is an oil ring for an internal combustion engine in which a metal film is coated on at least a part of the oil ring surface, and the surface free energy at 60 ° C. of the metal film surface is 40 mJ / m 2 or less.
  • the hydrogen bonding force is 1.0 mJ / m 2 or less.
  • the surface of the oil ring for an internal combustion engine is coated with a metal film having low surface free energy and low hydrogen bonding force.
  • the adhesion force of the oil sludge on the oil ring surface can be greatly reduced, the oil sludge can be prevented from adhering, the accumulation following the adhesion can be suppressed, and the occurrence of sticking between the components of the oil ring can be prevented. It can be effectively prevented.
  • a metal film having excellent heat resistance is employed, the effect of preventing oil sludge from adhering and depositing is exhibited even during long-term operation without the film being decomposed or deteriorated. As a result, the oil ring of the present invention can maintain an excellent oil control function over a long period of time.
  • the oil ring for an internal combustion engine of the present invention will be described in detail below.
  • the metal film covering the surface of the oil ring for an internal combustion engine of the present invention has a surface free energy at 60 ° C. of 40 mJ / m 2 or less and a hydrogen bonding force at 60 ° C. of 1.0 mJ / m 2 or less. If it has the physical property of this range, material will not be specifically limited.
  • the metal material that can form the metal film include Ni, Cu, Ni, or an alloy containing Cu.
  • the method for forming the film is not particularly limited, and electrolytic plating, electroless plating, a CVD (Chemical Vapor Deposition) method, a sputtering method, or the like is used. Among these, electrolytic plating is preferable as a method for efficiently coating a metal film on components having complicated shapes such as spacer expanders, coil expanders, and oil ring bodies of oil rings for internal combustion engines.
  • the surface free energy and hydrogen bonding force of the metal film can be measured by the following methods. (1) Using an automatic contact angle meter (Drop Master 500 manufactured by Kyowa Interface Science Co., Ltd.), the contact angles of distilled water, ethylene glycol, and 1-bromonaphthalene are measured for the target sample. Here, the measurement sample is fixed to an aluminum hot stage provided with a heater, and the temperature of the sample surface is measured with a thermocouple and adjusted to 60 ⁇ 2 ° C. (2) Using the obtained contact angle, surface free energy and hydrogen bonding force can be obtained according to Young-Dupre's equation using surface free energy analysis add-in software (FAMAS) manufactured by Kyowa Interface Science Co., Ltd.
  • the metal film of the present invention has a surface free energy at 60 ° C. obtained by this measuring method of 40 mJ / m 2 or less and a hydrogen bonding force at 60 ° C. of 1.0 mJ / m 2 or less.
  • the film thickness of the metal film of the present invention is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the film thickness of the metal film can usually be controlled by adjusting the plating time and the current value.
  • the surface roughness Ra of the metal film of the present invention is preferably 0.005 ⁇ m to 0.4 ⁇ m, more preferably 0.005 ⁇ m to 0.3 ⁇ m.
  • the surface roughness Ra of the metal film is adjusted to 0.005 ⁇ m to 0.4 ⁇ m, preferably 0.005 ⁇ m to 0.3 ⁇ m. Is desirable.
  • the surface roughness Ra of the constituent member can be adjusted by polishing.
  • a spacer expander which will be described later, is usually manufactured by gear molding, but the surface roughness can also be controlled by adjusting the surface roughness of the gear at this time.
  • the configuration of the oil ring for an internal combustion engine of the present invention is not particularly limited, but the following (1) 2-piece oil ring and (2) 3-piece oil ring are preferably used.
  • FIG. 1 is a sectional view showing a part (right half) of a two-piece oil ring.
  • the oil ring 1 includes an oil ring body 4 and a coil expander 5.
  • the oil ring main body 4 includes a pair of rail portions 2 that are spaced apart in the axial direction and having a contact surface (sliding surface) that slides against the cylinder inner wall, and a web 3 that connects the rail portions. Having an annular shape.
  • An inner peripheral groove portion 6 is formed on the inner peripheral surface side of the oil ring body 4, and an outer peripheral groove portion 8 is formed on the outer peripheral surface side.
  • oil holes 7 penetrating in the radial direction are formed in the web 3 at a predetermined interval.
  • the coil expander 5 is attached to the inner circumferential groove 6 of the oil ring main body 4 and presses the main body 4 radially outward.
  • the material of the oil ring main body 4 and the coil expander 5 and the surface treatment applied thereto may be known ones and are not particularly limited.
  • carbon steel, silicon chrome steel, martensitic stainless steel, spheroidal graphite cast iron or the like is used as the material for the oil ring body.
  • martensitic stainless steel that has undergone nitriding treatment, carbon steel with a hard chromium plating film on the sliding surface or a CrN film formed by ion plating, and silicon chromium steel have excellent seizure resistance over a long period of time. This is preferable because it can be maintained.
  • carbon steel, silicon chrome steel, austenitic stainless steel, or the like is used as a material of the coil expander. If necessary, wear resistance can be imparted to the coil expander by performing chromium plating, nitriding treatment, or the like.
  • the metal film of the present invention is provided on at least a part or all of the oil ring main body 4 and the coil expander 5 to obtain the effects of the present invention.
  • it may be formed only on the coil expander 5, and if it is formed on at least the surface of the coil expander 5 that faces the inner circumferential groove 6 of the oil ring body 4, a certain oil sludge adhesion and accumulation preventing effect can be obtained. can get.
  • a metal film can also be formed on the entire surface of the coil expander 5.
  • the oil sludge adherence and accumulation prevention effect can be obtained between the pitches of the coil expanders 5 and between the inner peripheral groove 6 of the oil ring body 4 and the coil expander 5, and excellent oil control over a long period of time.
  • the function can be demonstrated.
  • a metal film can be formed only on the inner peripheral surface of the oil ring body 4. Oil sludge easily adheres to and accumulates on the inner circumferential groove 6 of the oil ring body 4 in addition to the coil expander 5. By forming a metal film on the inner circumferential surface of the oil ring body 4, excellent oil sludge adhesion is achieved. And the deposition preventing effect is obtained. At this time, it is more preferable to form a metal film on both the inner peripheral surface of the oil ring body 4 and the coil expander 5. Furthermore, a metal film may be formed on the entire surface other than the sliding surface including the wall surface of the oil hole 7 of the oil ring body 4.
  • the above-described configuration further improves the effect of preventing oil sludge from adhering and accumulating.
  • a metal film formed on the entire surface of the oil ring main body 4 and the coil expander 5, a further excellent effect can be obtained.
  • FIG. 2 is a cross-sectional view showing a part (right half) of a three-piece type oil ring.
  • the oil ring 10 includes a pair of annular side rails 11 having joints and a spacer expander 12 that supports the side rails 11.
  • the spacer expander 12 is provided with an ear 13 on the inner peripheral side and a protrusion 16 for supporting the side rail 11 on the outer peripheral side.
  • a flat middle portion 14 is provided at a connection portion between the ear portion 13 and the projection portion 16.
  • the material of the side rail 11 and the spacer expander 12 and the surface treatment applied to them may be known ones and are not particularly limited.
  • the spacer expander 12 a material obtained by nitriding austenitic stainless steel such as SUS304 is preferably used because of excellent abrasion resistance of the ear portion.
  • a base material made of martensitic stainless steel is nitrided by providing a hard chromium plating film or a CrN film by an ion plating method on the outer peripheral surface of a commonly used spring steel base material. Processed ones are suitable.
  • Example 1 A flat plate made of stainless steel (SUS304) was prepared, and the surface was polished so that the surface roughness Ra (centerline average roughness) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and then degreased in acetone. Next, the degreased plate was immersed in a 60 ° C. plating bath containing 300 g / L of nickel chloride and 30 g / L of boric acid, and a current was applied at a current density of 10 A / dm 2 for 90 seconds to A Ni plating film was formed on the sample for evaluation.
  • SUS304 stainless steel
  • the film thickness of the Ni plating film was about 0.5 ⁇ m, and the surface roughness Ra after the film formation was 0.02 ⁇ m.
  • surface roughness is represented by the centerline average roughness Ra, and is a value measured by the following method.
  • ⁇ Surface roughness measuring machine Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.
  • JIS standard JIS B0601-1982 Cut-off value ⁇ c: 0.08mm
  • Example 2 In the same manner as in Example 1, the surface roughness Ra of a flat plate made of stainless steel (SUS304) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and then degreased. The obtained plate material was immersed in a plating bath containing copper sulfate 220 g / L, sulfuric acid 60 g / L, and chlorine ions 50 mg / L, and the cathode current density was 3 A / dm 2 and the anode current density was 2 A / dm 2 . An electric current was applied for 70 seconds to form a Cu plating film on the surface to obtain an evaluation sample. The surface free energy and hydrogen bonding force at 60 ° C. of the obtained sample were measured in the same manner as in Example 1. The results are shown in Table 1. The film thickness of the Cu plating film was about 0.5 ⁇ m, and the surface roughness Ra after the film formation was 0.02 ⁇ m.
  • Comparative Example 1 In the same manner as in Example 1, the surface was polished so that the surface roughness Ra of a flat plate made of stainless steel (SUS304) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and degreased in acetone. Subsequent plating treatment was not performed, and a comparative sample in which no film was formed was produced.
  • SUS304 stainless steel
  • Example 2 In the same manner as in Example 1, the surface was polished so that the surface roughness Ra of a flat plate made of stainless steel (SUS304) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and degreased in acetone. After that, the degreased plate material was put in a muffle furnace and treated with 550 ° C. for 30 minutes while flowing a mixed gas of ammonia and nitrogen at a flow rate of 2 L / min, and a nitride layer was formed on the entire surface of the sample. A sample was used.
  • SUS304 stainless steel
  • Example 3 In the same manner as in Example 1, the surface was polished so that the surface roughness Ra of a flat plate made of stainless steel (SUS304) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and degreased in acetone. Thereafter, the degreased plate material was immersed in a treatment solution to be described later, dried at room temperature, and then heat-treated in an electric furnace at 250 ° C. for 1 hour. Through the above treatment, a sample having a flat plate surface coated with a fluorine-containing thin film was produced.
  • SUS304 stainless steel
  • the treatment solution was 300 g tetraethoxysilane, 9 g heptadecafluoro-1,1,2,2-tetrahydrodecyltriethoxysilane and 648 g ethanol in a beaker, stirred for 20 minutes, then 123 g water and 158 g 0.1N hydrochloric acid was added, and the mixture was further stirred for 2 hours and then allowed to stand at 25 ° C. for 24 hours in a sealed state.
  • Comparative Examples 1, 2, and 3 the surface free energy and hydrogen bonding force of each were measured in the same manner as in Example 1. The results are shown in Table 1.
  • test oil Used for engine operation, deteriorated lubricating oil mixed with oil sludge was adopted as test oil. This test deteriorated oil was put in an oil tank and adjusted to an oil temperature of 80 ° C. Moreover, the furnace temperature of the vertical electric furnace was set to 190 ° C. A sample whose mass was measured in advance was fixed to the moving part of the vertical moving mechanism, immersed in an oil bath for 1 minute, then pulled up, placed in an electric furnace, and heat treated for 4 minutes, which was taken as one cycle. The cycle of immersion in an oil bath and heat treatment in an electric furnace was repeated for 35 hours. After the treatment, the sample was removed and washed with acetone.
  • the sample was dried in an electric furnace at 120 ° C. for 1 hour, allowed to cool to room temperature in a desiccator, and then the mass of the sample was measured. From the mass difference before and after the oil sludge adhesion test, the oil sludge adhesion amount of each sample was determined. Similarly, the amount of oil sludge attached to the sample after 100 hours of treatment was measured. The results of the oil sludge adhesion test for each sample are shown in Table 1. In addition, the oil sludge adhesion amount of each sample was expressed as a relative value with the oil sludge adhesion amount per unit area of Comparative Example 1 after the 35 hour test as 100.
  • Comparative Example 1 where no film was formed, both the surface free energy and the hydrogen bonding force were high, and a large amount of oil sludge adhered to almost the entire surface after 35 hours. After 100 hours, the amount of oil sludge adhered further increased.
  • Comparative Example 2 subjected to the gas nitriding treatment, both the surface free energy and the hydrogen bonding force increased from those in Comparative Example 1, and the amount of oil sludge adhered increased.
  • Comparative Example 3 in which the fluorine-containing film was coated, both the surface free energy and the hydrogen bonding force were reduced as compared with Comparative Examples 1 and 2, and the oil sludge adhesion amount after 35 hours was significantly reduced.
  • Example 1 coated with the Ni plating film of the present invention has a surface free energy of about 30 mJ / m 2, which is higher than Comparative Example 3, but lower than Comparative Examples 1 and 2, and the hydrogen bond strength is Comparative Example. It was 0.0 mJ / m 2 which is the same as 3. The amount of oil sludge adhering after 35 hours in Example 1 was further reduced compared to Comparative Example 3, and the amount of oil sludge adhering was kept low even after 100 hours, indicating that the effect of preventing adhesion and accumulation was maintained. It was.
  • Example 2 which coat
  • the surface free energy fell further from Example 1, and the oil sludge adhesion amount after 35 hours and 100 hours also reduced further from Example 1.
  • FIG. The film of the present invention is a metal film, and is excellent in heat resistance. Therefore, it is considered that high oil sludge adhesion and deposition preventing effect were maintained for a long time.
  • Example 2 (Examples 3 to 5 and Comparative Example 4)
  • the surface roughness Ra of the flat plate made of stainless steel (SUS304) is 0.1 ⁇ m (Example 3), 0.3 ⁇ m (Example 4), 0.35 ⁇ m (Example 5), and 0.45 ⁇ m (Comparative Example 4), respectively.
  • the surface was polished so that it was degreased in acetone.
  • the degreased plate material was dipped in the same plating bath as in Example 1, and a Ni plating film was formed under the same conditions as in Example 1 to obtain an evaluation sample.
  • Table 2 shows the measurement results of the surface roughness Ra, the surface free energy and the hydrogen bonding force at 60 ° C. of the metal film of each sample.
  • the film thickness of the Ni plating film was about 0.5 ⁇ m.
  • Table 2 also shows the results of determining the amount of oil sludge adhering after 35 hours as in Example 1.
  • the surface free energy and the hydrogen bonding at 60 ° C. is 40 mJ / m 2 or less and 1.0 mJ / m 2 or less of the film is a specified range of the present invention, can be obtained adhesion and deposition preventing effect superior oil sludge Okay (Examples 1 and 3-5).
  • the oil sludge adhesion amount increased rapidly (Comparative Example 4).
  • the smaller the surface roughness of the film the better the oil sludge adhesion and deposition preventing effect.
  • Example 3 (Examples 6 to 11 and Comparative Examples 5 and 6)
  • the surface roughness Ra of a flat plate made of stainless steel (SUS304) was 0.02 ⁇ m ⁇ 0.01 ⁇ m, and then degreased in acetone.
  • the degreased plate was immersed in the same plating bath as in Example 1 to form a Ni plating film.
  • the film thicknesses were 0.01 ⁇ m (Comparative Example 5), 0.05 ⁇ m (Comparative Example 6), 0.1 ⁇ m (Example 6), 0.5 ⁇ m (Example 7), and 1.0 ⁇ m (implemented), respectively.
  • Example 8 5.0 ⁇ m (Example 9), 8.0 ⁇ m (Example 10), current value and plating time were adjusted to 10 ⁇ m (Example 11), Ni plating film was formed and evaluated.
  • a sample was prepared.
  • Table 3 shows the results of measurement of the metal film thickness, surface free energy and hydrogen bonding force at 60 ° C. of each sample. The surface roughness of the Ni plating film was about 0.02 ⁇ m.
  • Table 3 also shows the results of determining the amount of oil sludge adhering after 35 hours as in Example 1.
  • the surface free energy and the hydrogen bonding at 60 ° C. is 40 mJ / m 2 or less and 1.0 mJ / m 2 or less of the film is a specified range of the present invention, can be obtained adhesion and deposition preventing effect superior oil sludge Okay (Examples 6 to 11).
  • the oil sludge adhesion amount increased rapidly (Comparative Examples 5 and 6).
  • Example 12 (1) Production of side rails After adjusting the surface roughness of a wire made of 17Cr martensitic stainless steel, Ni plating treatment was performed using a wire plating apparatus while winding at a speed of 3 m / min. gave. A nickel sulfamate bath was used as the plating bath. The thickness of the obtained plating film was about 2 ⁇ m, the surface free energy at 60 ° C. was 37 mJ / m 2 , and the hydrogen bond strength was 0.3 mJ / m 2 . After the treated wire was formed into a perfect circle, the outer peripheral surface was coated with a chromium nitride film by an ion plating method, and then cut to form a side rail.
  • Example 13 (1) Production of side rail A side rail was produced in the same manner as in Example 12. (2) Production of spacer expander After adjusting the surface roughness of the rolled strip material (SUS304 material) for spacer expander having a width of 2.3 mm and a thickness of 0.3 mm and having an end R shape, a wire plating apparatus is used. Then, the Ni plating process was performed while winding at a speed of 3 m / min. A nickel sulfamate bath was used as the plating bath. The thickness of the obtained Ni plating film was about 5 ⁇ m, the surface free energy at 60 ° C. was 38 mJ / m 2 , and the hydrogen bond strength was 0.4 mJ / m 2 .
  • the processed wire was formed into a vertical waveform by gear forming. Thereafter, an ear portion was formed by shearing in the vertical direction at one end portion of the wire, and then a spacer expander was formed by forming and cutting into a ring shape so that the ear portion was on the inner peripheral side.
  • Measurement of oil sludge adhesion amount Measure the mass of the oil ring immediately after operation, calculate the difference from the pre-assembly oil ring mass before assembly, and calculate the average value of the three actual machine tests as the oil sludge adhesion amount. did.
  • FIGS. 3 and 4 show the joint gap and oil sludge adhesion amount after actual machine tests of Examples 12 and 13 and Comparative Example 7, respectively.
  • the abutment gap was expressed as a relative value with f 2 / f 1 of Comparative Example 7 being 100, and the oil sludge adhesion amount was 100 with the carbon sludge adhesion amount of Comparative Example 7 being 100.
  • Example 12 the joint gap is about 1.5 times larger than the joint gap after the actual machine test of Comparative Example 7.
  • Comparative Example 7 where Ni plating was not applied, the side rail was restrained due to the accumulation of oil sludge, so it was considered that the abutment was less likely to return (expand) even when the piston was removed from the cylinder. It is done.
  • Example 12 in which the side rails were plated with Ni, since oil sludge adhesion and deposition were reduced, the oil ring restraint was reduced, so that the state before the operation was closer than that in Comparative Example 7. It seems to have spread.
  • Example 13 in which both the side rail and the spacer expander were plated with Ni, the joint gap was further widened and approached to the original state as compared with Example 12, and the oil sludge adhesion and accumulation preventing effect was achieved. It turned out that it improved further. From FIG. 4, the oil sludge adhesion amounts of Examples 12 and 13 were reduced to about 50% and 30% of Comparative Example 7, respectively, and the oil sludge adhesion and deposition preventing effect by Ni plating was confirmed.
  • Oil control ring with coil expander (2-piece oil ring) 2 ... Rail part 3 ... Web 4 ... Oil ring body 5 . Coil expander 6 ; Inner peripheral groove part 7 ... Oil hole 8 ... Outer peripheral groove part 10 ... Steel combination Oil control ring (3-piece oil ring) DESCRIPTION OF SYMBOLS 11 ... Side rail 12 ... Spacer expander 13 ... Ear part 14 ... Middle hand part 15 ... Space 16 ... Projection part h1 ... Axial width

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】長期間のエンジン運転においても、オイルスラッジの付着及び堆積が防止され、構成部材間の固着が発生することなく、優れたオイルコントロール機能を維持し得る内燃機関用オイルリングを提供する。 【解決手段】内燃機関用オイルリング表面の少なくとも一部に表面自由エネルギーが40mJ/m以下で、且つ水素結合力が1.0mJ/m以下の金属皮膜を被覆する。金属皮膜としては、Ni、Cu、Ni又はCuを含む合金皮膜が用いられる。

Description

内燃機関用オイルリング
 本発明は、内燃機関用オイルリングに関し、更に詳しくは、エンジンの潤滑油の変性により生じるオイルスラッジの付着、堆積、及びそれらに起因する部材間の固着を有効に防止し得る内燃機関用オイルリングに関する。
 内燃機関においては、エンジンの長時間の運転に伴い、潤滑油が加熱され、ブローバイガスに曝されることにより、潤滑油中に炭化水素の未燃焼生成物やオイル添加剤の変性物が混在する状態となる。また、ディーゼルエンジンでは潤滑油中にカーボンの微粒子も混在する状態となる。このような未燃焼生成物、オイル添加剤変性物及びカーボン微粒子を総じて、一般に「オイルスラッジ」と言う。オイルスラッジがエンジン部品に付着し更に堆積すると、部品を摩耗させたり、潤滑油の通路を塞いだりすることにより、オイルリング等のエンジン部品の機能に支障を及ぼすことがある。
 ここで、図1及び2を参照して、代表的な2種のオイルリングの構造における上記問題点について更に詳細に説明する。
 図1にはコイルエキスパンダ付きオイルコントロールリング(2ピース型オイルリング)1の断面の一部(右半部)を示す。この2ピース型オイルリング1は、軸方向上下に形成された一対のレール部2とその間を連結するウェブ3とから構成され、合口を有する円環状のオイルリング本体4と、オイルリング本体4を半径方向外方に押圧するコイルエキスパンダ5からなる。オイルリング本体4の内周面側には、内周溝部6が形成され、外周面側には外周溝部8が形成される。また、ウェブ3には、径方向に貫通するオイル孔7が周方向に所定間隔離間して形成される。
 このような2ピース型オイルリング1では、オイルスラッジが、コイルエキスパンダ5の外周面やピッチ間、またオイルリング本体4の内周溝部6に堆積して、潤滑油の通路を塞ぐ可能性がある。オイルスラッジは、オイル孔7や外周溝部8にも堆積し、オイル孔7を塞ぐ可能性もある。オイル孔7等の潤滑油通路が塞がれるとオイルコントロール機能が発揮されず、潤滑油の消費量が増大する恐れがある。また、コイルエキスパンダ5のピッチ間にオイルスラッジが堆積した場合には、コイルエキスパンダ5の伸縮性が失われることもある。特に、コイルエキスパンダ5を低張力仕様とした場合には、ピッチ間に堆積したオイルスラッジにより、オイルリング本体4をシリンダ内壁面に押圧する力が減少し、2ピース型オイルリング1のシリンダ壁面に対する追従性が低下する恐れがある。
 図2にはスチール組合せオイルコントロールリング(3ピース型オイルリング)10の断面の一部(右半部)を示す。この3ピース型オイルリング10は、合口を有する一対の円環状サイドレール11と、サイドレール11を支持するスペーサエキスパンダ12とからなる。スペーサエキスパンダ12の、内周側には耳部13が形成され、外周側にはサイドレール11を支持する突起部16が形成されている。また耳部13と突起部16を連結する部分に平坦な中手部(base dent)14が設けられている。
 スペーサエキスパンダ12とサイドレール11とを組合せると、耳部13,突起部16,中手部14とサイドレール11との間に空間15が形成される。3ピース型オイルリング10ではスペーサエキスパンダ12の耳部13の角度により、サイドレール11が半径方向及び軸方向の分力によって押圧され、シリンダ壁面及びリング溝の上下面においてシール機能を発揮する。特に、軸方向幅、即ちh1寸法を小さくした薄幅化3ピース型オイルリングは、シリンダ壁面に対する追従性が良く、サイドシール機能もあることから、低張力であってもオイル消費を増加させることなく摩擦損失を低減できる。しかし、3ピース型オイルリング10でも、特にスペーサエキスパンダ12の耳部13より外周側の中手部14と、サイドレール11との間の空間15に、オイルスラッジが堆積しやすい。特に、薄幅化した場合には、堆積したオイルスラッジによってサイドレール11がスペーサエキスパンダ12に固着する可能性がある。この場合には、サイドレール11のシリンダ内周面への追従性が低下して、オイル消費量が増大しやすい。
 上述したオイルリングへのオイルスラッジの付着及び堆積防止法として、従来、フッ素含有皮膜等による撥液処理が検討されてきた。これは、オイルリングの表面に撥油性皮膜を形成することにより、潤滑油中のオイルスラッジの付着を防止しようとするものである。撥油処理に用いられるフッ素含有皮膜の材料としては、ポリテトラフルオロエチレン、フッ化アルキルシラン等が挙げられる。例えば、特許文献1では、金属アルコキシドと、アルコキシ基(アルコキシル基)の一部がフルオロアルキル基により置換されたフルオロアルキル基置換金属アルコキシドからゾル-ゲル法により撥液膜を形成する方法が提案されている。フルオロアルキル基を含む物質は撥水撥油性を有することが知られている。そこで、このフルオロアルキル基が表面に存在する被覆膜を設けることでエンジン部品に撥液性を付与し、オイルスラッジの付着及び堆積の防止を図っている。特許文献2では、フッ素含有皮膜を厚膜化してオイルスラッジの付着及び堆積防止効果を高める技術が開示されている。厚膜化のためには、コーティング溶液を基材に塗布する前にフルオロアルキル基置換アルコキシドの重合を促進させている。
 また、特許文献3には、所定の表面自由エネルギー及び被覆粗さを有する炭素系膜を内燃機関用部材に被覆することにより、デポジッド(オイルスラッジ)の弾き性が良好となるため、デポジットの堆積・固着が抑制され、性能劣化が少なく効率の良い燃焼運転の持続が実現されることが記載されている。ここで、炭素系膜としては、ポリプロピレン樹脂、パーフルオロエチレンプロピレン(FEP)樹脂、ポリテトラフルオロエチレン(PTFE)、フッ化アルキルシラン等が示されている。
 このようにオイルスラッジの付着及び堆積防止法としては、これまで、オイルリングの表面をフッ素含有薄膜等で撥油処理する方法が検討されてきた。しかし、運転中のエンジン内は高温に曝されるため、長時間の運転により、フッ素含有薄膜の熱分解が生じ、オイルスラッジの付着及び堆積防止効果が低下することが確認されている。そして、最終的には、フッ素含有薄膜は消失し、付着及び堆積防止効果も失われることが懸念される。このように、現状では、長期間にわたる運転においても、オイルスラッジの付着及び堆積防止効果を維持し得る耐熱性に優れた皮膜を有する内燃機関用オイルリングは得られていない。
特開2000-27995号公報 特開平10-157013号公報 特開2006-291884号公報
 従って、本発明の目的は、長期間のエンジン運転においても、オイルスラッジの付着及び堆積が防止され、部材間の固着が発生することなく、優れたオイルコントロール機能を維持し得る内燃機関用オイルリングを提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者らは、表面自由エネルギー及び水素結合力が低い金属皮膜では、オイルスラッジの付着力が大幅に低減するため、このような金属皮膜をオイルリング表面に被覆することにより、長期間の運転においても優れたオイルスラッジの付着及び堆積防止効果が維持できることを見出し、本発明に想到した。
 即ち、本発明のオイルリングは、オイルリング表面の少なくとも一部に金属皮膜が被覆された内燃機関用オイルリングであって、金属皮膜表面の60℃における表面自由エネルギーが、40mJ/m以下で、且つ水素結合力が、1.0mJ/m以下であることを特徴とする。
 本発明では、内燃機関用オイルリング表面に表面自由エネルギー及び水素結合力の低い金属皮膜を被覆している。これにより、オイルリング表面におけるオイルスラッジの付着力を大幅に低減させ、オイルスラッジの付着を抑制し、付着に続く堆積を抑制することができ、更にはオイルリングの構成部材間の固着の発生を効果的に防止することができる。また、本発明では、耐熱性に優れる金属皮膜を採用しているため、長期間の運転においても、皮膜が分解又は劣化することなく、オイルスラッジの付着及び堆積防止効果が発揮される。その結果、本発明のオイルリングは優れたオイルコントロール機能を長期間にわたって維持できる。
 以下に本発明の内燃機関用オイルリングについて詳細に説明する。
 本発明の内燃機関用オイルリング表面に被覆する金属皮膜は、60℃における表面自由エネルギーが40mJ/m以下で、且つ60℃における水素結合力が1.0mJ/m以下である。この範囲の物性を備えれば、特に材料は限定されない。
 金属皮膜を構成しうる具体的な金属材料の例としては、Ni、Cu、Ni又はCuを含む合金等が挙げられる。
 皮膜の形成方法は、特に限定されず、電解めっき、無電解めっき、CVD(Chemical Vapor Deposition) 法、スパッタリング法等が用いられる。この中でも、内燃機関用オイルリングのスペーサエキスパンダ、コイルエキスパンダ及びオイルリング本体のように複雑な形状の構成部材に金属皮膜を効率的に被覆する方法としては、電解めっきが好ましい。
(表面自由エネルギー及び水素結合力の測定)
 金属皮膜の表面自由エネルギー及び水素結合力は以下の方法により測定することができる。
(1)自動接触角計(協和界面科学(株)製 Drop Master 500)を用いて、対象試料について蒸留水、エチレングリコール、及び1-ブロモナフタレンの接触角をそれぞれ測定する。ここで、測定試料は、ヒーターが設置されたアルミニウム製のホットステージに固定し、試料表面の温度を熱電対により測定し、60±2℃になるように調整する。
(2)得られた接触角を用いて、協和界面科学(株)製表面自由エネルギー解析アドインソフトウェア(FAMAS)により、Young-Dupreの式に従い、表面自由エネルギー及び水素結合力を求めることができる。
 本発明の金属皮膜は、この測定方法により得られた60℃における表面自由エネルギーが40mJ/m以下で、且つ60℃における水素結合力が1.0mJ/m以下である。
 本発明の金属皮膜の膜厚は、0.1μm~10μmとするのが好ましい。金属皮膜の膜厚を0.1μm以上とすることにより、表面自由エネルギー及び水素結合力が十分低下して、優れたオイルスラッジの付着及び堆積防止効果が得られる。一方、金属皮膜の厚さを10μmより厚くしても、オイルスラッジの付着及び堆積防止効果は得られるが、厚膜化によるオイルリングの組合せ張力の増加や膜形成時間の増加、材料コストの上昇等の不都合が生じる可能性がある。したがってこれらを考慮すると上限値は10μmとするのが好ましい。電解めっき法においては、通常、めっき時間や電流値を調整することにより膜厚を制御することができる。
 また、本発明の金属皮膜の表面粗さRaは、0.005μm~0.4μmとするのが好ましく、0.005μm~0.3μmとするのがより好ましい。金属皮膜の表面粗さを上記範囲に調整することにより、皮膜表面でのオイルの流動性が向上し、オイルスラッジの排出機能が促進される。このため、さらに優れたオイルスラッジの付着及び堆積防止効果が得られる。金属皮膜の表面粗さRaを上記範囲に制御するためには、オイルリングを構成する部材の表面粗さRaを0.005μm~0.4μm、好ましくは、0.005μm~0.3μmに調整するのが望ましい。構成部材の表面粗さRaは、研磨加工により、調整することができる。また、後述するスペーサエキスパンダは、通常、ギア成形により製造されるが、この時のギアの面粗さを調整することにより、表面粗さを制御することもできる。
 本発明の内燃機関用オイルリングの構成は、特に限定されないが、以下の(1)2ピース型オイルリング及び(2)3ピース型オイルリングが好適に用いられる。
(1)2ピース型オイルリング(コイルエキスパンダ付きオイルコントロールリング)
 図1は2ピース型オイルリングの一部(右半部)を示す断面図である。このオイルリング1は、オイルリング本体4とコイルエキスパンダ5とからなる。オイルリング本体4は、シリンダ内壁と摺動する当たり面(摺動面)を有する軸方向上下に離間して位置する一対のレール部2と、レール部を連結するウェブ3とから構成され、合口を有する円環状の形状を有する。オイルリング本体4の内周面側には、内周溝部6が形成され、外周面側には外周溝部8が形成される。またウェブ3には、径方向に貫通するオイル孔7が所定間隔離間して形成される。コイルエキスパンダ5は、オイルリング本体4の内周溝部6に装着されて、本体4を半径方向外方に押圧する。
 オイルリング本体4及びコイルエキスパンダ5の材質やこれらに施す表面処理は公知のものでよく、特に制限されない。例えばオイルリング本体の材料としては、炭素鋼、シリコンクロム鋼、マルテンサイト系ステンレス鋼、球状黒鉛鋳鉄等が用いられる。特に、窒化処理を施したマルテンサイト系ステンレス鋼や摺動面に硬質クロムめっき皮膜、又はイオンプレーティング法によるCrN皮膜を形成した炭素鋼、シリコンクロム鋼は、長期間にわたって優れた耐焼付性を維持でき好ましい。また、コイルエキスパンダの材料としては、炭素鋼、シリコンクロム鋼、オーステナイト系ステンレス鋼等が用いられる。必要に応じて、クロムめっき、窒化処理等を行うことにより、コイルエキスパンダに耐摩耗性を付与することができる。
 前記2ピース型オイルリングにおいては、本発明の金属皮膜を、オイルリング本体4,コイルエキスパンダ5の少なくとも一部または全部に設けることで本発明の効果を得ることができる。例えば、コイルエキスパンダ5にのみ形成してもよく、コイルエキスパンダ5の少なくともオイルリング本体4の内周溝部6に対向する表面に形成されていれば、一定のオイルスラッジ付着及び堆積防止効果が得られる。また、コイルエキスパンダ5の全表面に金属皮膜を形成することもできる。この場合、コイルエキスパンダ5のピッチ間、及びオイルリング本体4の内周溝部6とコイルエキスパンダ5の間においてもオイルスラッジの付着及び堆積防止効果が得られ、長期間にわたり、優れたオイルコントロール機能を発揮できる。
 一方、本発明では、オイルリング本体4の内周面にのみ金属皮膜を形成することもできる。オイルスラッジは、コイルエキスパンダ5の他、オイルリング本体4の内周溝部6に付着及び堆積し易いので、オイルリング本体4の内周面に金属皮膜を形成することにより、優れたオイルスラッジ付着及び堆積防止効果が得られる。この時、オイルリング本体4の内周面及びコイルエキスパンダ5ともに金属皮膜を形成するのがより好ましい。
 さらに、オイルリング本体4のオイル孔7の壁面を含め、摺動面以外の全表面に金属皮膜を形成してもよい。オイルスラッジはオイル孔7の壁面にも付着し易いので、前記構成により、オイルスラッジの付着及び堆積防止効果が一層向上する。オイルリング本体4の全表面及びコイルエキスパンダ5ともに金属皮膜を形成することにより、さらに優れた効果が得られる。
(2)3ピース型オイルリング(スチール組合せオイルコントロールリング)
 図2は3ピース型オイルリングの一部(右半部)を示す断面図である。このオイルリング10は、合口を有する一対の円環状サイドレール11と、サイドレール11を支持するスペーサエキスパンダ12とからなる。スペーサエキスパンダ12の、内周側には耳部13が設けられ、外周側には、サイドレール11を支持する突起部16が設けられている。また耳部13と突起部16との連結部分に平坦な中手部14が設けられている。スペーサエキスパンダ12とサイドレール11とを組合せると、耳部13,突起部16,中手部14とサイドレール11との間に空間15が形成される。
 サイドレール11及びスペーサエキスパンダ12の材質やこれらに施す表面処理は公知のものでよく、特に制限されない。スペーサエキスパンダ12として、SUS304等のオーステナイト系ステンレス鋼を窒化処理した材料を用いると、耳部の耐摩耗性に優れ好ましい。サイドレール11としては、一般的に使用されるバネ鋼からなる母材の外周面に硬質クロムめっき皮膜やイオンプレーティング法によるCrN皮膜を設けたもの、マルテンサイト系ステンレス鋼からなる母材を窒化処理したもの等が適している。
 オイルスラッジは、スペーサエキスパンダ12の耳部13と突起部16の間の中手部14と、サイドレール11のスペーサエキスパンダ12と対向する面との間に形成される空間15に堆積しやすい。そのため、サイドレール11のスペーサエキスパンダ12に対向する面、又はスペーサエキスパンダ12の上下面に金属皮膜を形成すれば、オイルスラッジの付着及び堆積防止効果が得られる。また、サイドレール11及びスペーサエキスパンダ12の全表面、即ち3ピース型オイルリングの全表面に金属皮膜を形成すると、オイルリングへのオイルスラッジの付着及び堆積防止効果が一層向上する。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[試験例1]
(実施例1)
 ステンレス(SUS304)製平板を用意し、この表面粗さRa(中心線平均粗さ)が0.02μm±0.01μmとなるように表面研磨した後、アセトン中で脱脂処理した。次に、脱脂処理した板材を、塩化ニッケル300g/L及びホウ酸30g/Lを含有する60℃のめっき浴中に浸漬し、電流密度10A/dmで90秒間、電流を印加して、表面にNiめっき皮膜を形成して評価用試料とした。得られた試料について、60℃における表面自由エネルギー及び水素結合力を測定した。結果を表1に示す。なお、Niめっき皮膜の膜厚は約0.5μm、皮膜形成後の表面粗さRaは、0.02μmであった。
 なお、本明細書において「表面粗さ」とは中心線平均粗さRaで表し、以下の方法で測定した値とする。
・表面粗さ測定機:(株)東京精密製 サーフコム1400D
・JIS規格:JIS B0601-1982
・カットオフ値λc:0.08mm
・評価長さ(3λc以上):0.25mm
(実施例2)
 実施例1と同様にステンレス(SUS304)製平板の表面粗さRaが0.02μm±0.01μmとなるように表面研磨した後、脱脂処理した。得られた板材を、硫酸銅220g/L、硫酸60g/L、及び塩素イオン50mg/Lを含有するめっき浴中に浸漬し、陰極電流密度3A/dm、陽極電流密度2A/dmで、70秒間、電流を印加して、表面にCuめっき皮膜を形成して評価用試料とした。得られた試料の60℃における表面自由エネルギー及び水素結合力を実施例1と同様に測定した。結果を表1に示す。なお、Cuめっき皮膜の膜厚は約0.5μm、皮膜形成後の表面粗さRaは0.02μmであった。
(比較例1)
 実施例1と同様に、ステンレス(SUS304)製平板の表面粗さRaが0.02μm±0.01μmとなるように表面研磨し、アセトン中で脱脂処理した。その後のめっき処理は行わず、皮膜を形成しない比較試料を作製した。
(比較例2)
 実施例1と同様に、ステンレス(SUS304)製平板の表面粗さRaが0.02μm±0.01μmとなるように表面研磨し、アセトン中で脱脂処理した。その後脱脂処理した板材をマッフル炉中に入れ、アンモニアと窒素の混合ガスを流速毎分2Lで流しながら、550℃で30分間処理することにより、試料の全面に窒化層を形成し、これを比較試料とした。
(比較例3)
 実施例1と同様に、ステンレス(SUS304)製平板の表面粗さRaが0.02μm±0.01μmとなるように表面研磨し、アセトン中で脱脂処理した。その後、後述する処理溶液に脱脂処理した板材を浸漬し、室温で乾燥させた後、250℃の電気炉中で1時間熱処理した。以上の処理により、平板表面にフッ素含有薄膜を被覆した試料を作製した。
 処理溶液は、300gのテトラエトキシシラン、9gのヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン及び648gのエタノールをビーカーに入れ、20分間攪拌した後、123gの水及び158gの0.1N塩酸を加え、さらに2時間攪拌し、その後密封状態にて25℃で24時間放置することにより調整した。
 比較例1、2、及び3、それぞれの表面自由エネルギー及び水素結合力を実施例1と同様に測定した。結果を表1に示す。
(オイルスラッジ付着試験)
 エンジンの運転に使用して、オイルスラッジが混在した劣化潤滑油を試験用オイルとして採用した。この試験用劣化オイルをオイル槽に入れ、油温80℃に調整した。また、縦型電気炉の炉内温度を190℃に設定した。予め質量を測定した試料を垂直移動機構の移動部に固定し、オイル槽中に1分間浸漬した後、引き上げて、電気炉中に入れ、4分間熱処理して、これを一サイクルとした。オイル槽への浸漬と電気炉中での熱処理のサイクルを35時間繰り返した。処理終了後、試料を取りはずし、アセトンで洗浄した。洗浄後、電気炉中、120℃で1時間乾燥し、デシケータ中で室温まで冷却させ、その後の試料の質量を測定した。オイルスラッジ付着試験前後の質量の差より、各試料のオイルスラッジ付着量を求めた。また100時間処理後の試料についても同様にオイルスラッジ付着量を測定した。それぞれの試料のオイルスラッジ付着試験の結果を表1に示す。なお、各試料のオイルスラッジ付着量は、35時間試験後の比較例1の単位面積当たりのオイルスラッジ付着量を100として、相対値で表した。
 皮膜を形成していない比較例1では、表面自由エネルギー及び水素結合力とも高く、35時間後には、ほぼ全面に多量のオイルスラッジが付着した。100時間後にはさらにオイルスラッジ付着量が増加した。ガス窒化処理した比較例2では、表面自由エネルギー及び水素結合力とも比較例1より上昇し、オイルスラッジ付着量も増加した。また、フッ素含有皮膜を被覆した比較例3では、比較例1及び2に比べ表面自由エネルギー及び水素結合力とも低下して、35時間後のオイルスラッジ付着量も大幅に減少した。しかしながら、さらに試験を続けると、100時間後には、比較例1及び2よりは少ないものの、多量のオイルスラッジが付着したことが確認された。これは、時間経過とともに、フッ素含有皮膜が熱分解したことにより、付着及び堆積防止効果が大幅に低減したためと考えられる。
 一方、本発明のNiめっき皮膜を被覆した実施例1は、表面自由エネルギーが30mJ/m程度で、比較例3よりは高いが、比較例1及び2より低下し、水素結合力は比較例3と同じ0.0mJ/mであった。実施例1の35時間後のオイルスラッジ付着量は比較例3よりさらに低減し、100時間後も、オイルスラッジ付着量は低く抑えられており、付着及び堆積防止効果が維持されていることがわかった。また、Cuめっき皮膜を被覆した実施例2では、表面自由エネルギーが実施例1よりさらに低下し、35時間及び100時間後のオイルスラッジ付着量とも実施例1よりさらに低減した。本発明の皮膜は金属皮膜であり、耐熱性に優れるため、高いオイルスラッジの付着及び堆積防止効果が長時間にわたり維持されたためと考えられる。
Figure JPOXMLDOC01-appb-T000001
[試験例2]
(実施例3~5及び比較例4)
 ステンレス(SUS304)製平板の表面粗さRaがそれぞれ0.1μm(実施例3)、0.3μm(実施例4)、0.35μm(実施例5)、及び0.45μm(比較例4)となるように表面研磨した後、アセトン中で脱脂処理した。次に、脱脂処理した板材を、実施例1と同様のめっき浴中に浸漬し、実施例1と同様の条件でNiめっき皮膜を形成して評価用試料とした。それぞれの試料の金属皮膜の表面粗さRa、60℃における表面自由エネルギー及び水素結合力を測定した結果を表2に示す。なお、Niめっき皮膜の膜厚は約0.5μmであった。また、実施例1と同様に35時間後のオイルスラッジ付着量を求めた結果も表2に示す。
Figure JPOXMLDOC01-appb-T000002
 60℃における表面自由エネルギー及び水素結合力が本発明の規定範囲である40mJ/m以下及び1.0mJ/m以下の皮膜では、優れたオイルスラッジの付着及び堆積防止効果が得られることがわかった(実施例1、及び3~5)。一方、前記範囲を越えた皮膜では、オイルスラッジ付着量が急激に増加した(比較例4)。実施例1、及び3~5では、皮膜の表面粗さが小さいほど、より優れたオイルスラッジの付着及び堆積防止効果が得られた。
[試験例3]
(実施例6~11及び比較例5、6)
 実施例1と同様に、ステンレス(SUS304)製平板の表面粗さRaが0.02μm±0.01μmとなるように表面研磨した後、アセトン中で脱脂処理した。次に、脱脂処理した板材を、実施例1と同様のめっき浴に浸漬し、Niめっき皮膜を形成した。この時、その膜厚がそれぞれ、0.01μm(比較例5)、0.05μm(比較例6)、0.1μm(実施例6)、0.5μm(実施例7)、1.0μm(実施例8)、5.0μm(実施例9)、8.0μm(実施例10)、10μm(実施例11)となるように電流値とめっき時間を調整して、Niめっき皮膜を形成して評価用試料とした。それぞれの試料の金属皮膜の膜厚、60℃における表面自由エネルギー及び水素結合力を測定した結果を表3に示す。なお、Niめっき皮膜の表面粗さは約0.02μmであった。また、実施例1と同様に35時間後のオイルスラッジ付着量を求めた結果も表3に示す。
Figure JPOXMLDOC01-appb-T000003
 60℃における表面自由エネルギー及び水素結合力が本発明の規定範囲である40mJ/m以下及び1.0mJ/m以下の皮膜では、優れたオイルスラッジの付着及び堆積防止効果が得られることがわかった(実施例6~11)。一方、前記範囲を越えた皮膜では、オイルスラッジ付着量が急激に増加した(比較例5,6)。
[試験例4]
 以下の方法で3ピース型オイルリング(図2参照)の構成部材を製造し、組み立て、得られたオイルリングを内燃機関に装着してオイルスラッジの付着及び堆積防止効果を評価した。
(実施例12)(1)サイドレールの作製
 17Crマルテンサイトステンレス鋼からなる線材の表面粗さを調整した後、線材めっき装置を用いて、速度3m/minの速度で巻き取りながらNiめっき処理を施した。めっき浴にはスルファミン酸ニッケル浴を用いた。得られためっき膜の厚さは約2μmで、60℃における表面自由エネルギーは37mJ/m、水素結合力は0.3mJ/mであった。処理後の線材を真円に成形した後、外周面にイオンプレーティング法により、窒化クロム皮膜を被覆し、次いで切断することにより、サイドレールを成形した。
(2)スペーサエキスパンダの作製
 幅2.3mm、厚さ0.3mmで端部R状のスペーサエキスパンダ用の圧延帯材(SUS304材)を、ギア成形で上下方向波形に成形した。その後、線材の一端部に上下方向の剪断で耳部を形成し、次いで耳部が内周側になるようにリング状に成形し切断することにより、スペーサエキスパンダを成形した。
(3)3ピース型オイルリングの作製
 作製したサイドレール及びスペーサエキスパンダを組み合わせ3ピース型オイルリングとした。リング呼び径(d1)は71mm、組み合わせ呼び幅(h1)は1.5mm、組合せ厚さ(a1)は1.9mm、張力は8.1Nであった。
(実施例13)
(1)サイドレールの作製
 実施例12と同様にサイドレールを作製した。
(2)スペーサエキスパンダの作製
 幅2.3mm、厚さ0.3mmで端部R状のスペーサエキスパンダ用の圧延帯材(SUS304材)の表面粗さを調整した後、線材めっき装置を用いて、速度3m/minの速度で巻き取りながらNiめっき処理を施した。めっき浴にはスルファミン酸ニッケル浴を用いた。得られたNiめっき膜の厚さは約5μmで、60℃における表面自由エネルギーは38mJ/m、水素結合力は0.4mJ/mであった。
 処理後の線材を、ギア成形で上下方向波形に成形した。その後、線材の一端部に上下方向の剪断で耳部を形成し、次いで耳部が内周側になるようにリング状に成形切断することにより、スペーサエキスパンダを成形した。
(3)3ピース型オイルリングの作製
 作製したサイドレール及びスペーサエキスパンダを組み合わせて3ピース型オイルリングとした。リング呼び径(d1)は71mm、組み合わせ呼び幅(h1)は1.5mm、組合せ厚さ(a1)は1.9mm、張力は8.0Nであった。
(比較例7)
 サイドレールにNiめっき処理を行わなかった他はすべて実施例12と同様に作製したサイドレール及びスペーサエキスパンダを組み合わせて3ピース型オイルリングとした。d1、h1、a1は実施例12と同じ値で、張力は8.1Nであった。
(実機試験)
 実施例12、13及び比較例7の3ピース型オイルリングを1リットル3気筒エンジンの1番気筒から3番気筒にそれぞれ装着した。このエンジンを用いて、パターン運転を繰り返して実機試験を行った。250時間後に以下の評価方法に従い、各評価項目について測定した。さらに実施例12、13及び比較例7のオイルリングを装着する気筒を代え、同一運転条件で、合計3回実機試験を行った。ここで、トップリング及びセカンドリングは以下の仕様のものを用いた。
a.トップリング
 材質:SWOSC-V、外周面窒化クロムイオンプレーティング処理
 サイズ:d1=71mm、h1=1.0mm、a1=2.3mm
b.セカンドリング
 材質:SWOSC-V、全面リン酸亜鉛処理
 サイズ:d1=71mm、h1=1.0mm、a1=2.3mm
(4)評価方法
 実機試験終了後に以下の評価を行った。
a.サイドレール合い口隙間の測定
 実機テスト終了後、ピストンをシリンダから抜いた状態で、3ピース型オイルリングの上下のサイドレールの合い口隙間(f)を測定し、実機試験前のピストンに組み付けた状態の合い口隙間(f)との比(f/f)を求めた。上下それぞれのサイドレールについてf/fを求め、3回の実機試験の平均値を算出した。
b.オイルスラッジ付着量の測定
 運転直後のオイルリングの質量を測定し、予め測定した組み付け前のオイルリングの質量との差を算出し、3回の実機試験の平均値をオイルスラッジ付着量とした。
(5)評価結果
 図3及び図4に、それぞれ実施例12、13及び比較例7の実機試験後の合い口隙間及びオイルスラッジ付着量を示す。なお、合い口隙間は比較例7のf/ fを100とし、オイルスラッジ付着量は、比較例7のカーボンスラッジ付着量を100として、相対値で表した。
 図3より、比較例7の実機試験後の合い口隙間に比べ、実施例12では、合い口隙間が、1.5倍程度大きくなっているのがわかる。Niめっきを施していない比較例7では、オイルスラッジの堆積により、サイドレールが拘束されたため、ピストンをシリンダから抜いた状態でも合い口が元の状態に戻り(広がり)にくくなっているためと考えられる。これに対して、サイドレールにNiめっきを施した実施例12では、オイルスラッジの付着、堆積が低減されたため、オイルリングの拘束が低減したため、比較例7に比べより運転前の状態に近づいて広がったと考えられる。また、サイドレール及びスペーサエキスパンダの両方にNiめっきを施した実施例13では、実施例12よりさらに、合い口隙間が広がり、元の状態に近づいており、オイルスラッジの付着及び堆積防止効果がさらに向上したことがわかった。
 図4より、実施例12及び13のオイルスラッジ付着量は、それぞれ比較例7の50%、及び30%程度に減少しており、Niめっきによるオイルスラッジの付着及び堆積防止効果が確認された。
コイルエキスパンダ付きオイルコントロールリング(2ピース型オイルリング)の一例を示す断面図であって、その一部(右半部)を示す。 スチール組合せオイルコントロールリング(3ピース型オイルリング)の一例を示す断面図であって、その一部(右半部)を示す。 実機試験前後のサイドレールの合い口隙間の変化を示すグラフである(比較例7を100とした相対値)。 実機試験後のオイルリングへのオイルスラッジ付着量を示すグラフである(比較例7を100とした相対値)。
1・・・コイルエキスパンダ付きオイルコントロールリング(2ピース型オイルリング)
2・・・レール部
3・・・ウェブ
4・・・オイルリング本体
5・・・コイルエキスパンダ
6・・・内周溝部
7・・・オイル孔
8・・・外周溝部
10・・・スチール組合せオイルコントロールリング(3ピース型オイルリング)
11・・・サイドレール
12・・・スペーサエキスパンダ
13・・・耳部
14・・・中手部
15・・・空間
16・・・突起部
h1・・・軸方向幅
 

Claims (6)

  1.  オイルリング表面の少なくとも一部に金属皮膜が被覆された内燃機関用オイルリングであって、前記金属皮膜表面の60℃における表面自由エネルギーが、40mJ/m以下で、且つ水素結合力が、1.0mJ/m以下であることを特徴とする内燃機関用オイルリング。
  2.  前記金属皮膜が、Ni、Cu、Ni又はCuを含む合金からなる群から選ばれる一種を含有する金属皮膜であることを特徴とする請求項1に記載の内燃機関用オイルリング。
  3.  前記金属皮膜の膜厚が0.1~10μmであることを特徴とする請求項1又は2に記載の内燃機関用オイルリング。
  4.  前記金属皮膜の表面粗さRaが0.005~0.4μmであることを特徴とする請求項1~3の何れかに記載の内燃機関用オイルリング。
  5.  前記内燃機関用オイルリングが、
     軸方向上下に形成された一対のレール部及び前記レール部を連結するウェブから構成され、合口を有するオイルリング本体と、
     前記オイルリング本体の内周溝部に装着されるコイルエキスパンダと
    からなることを特徴とする請求項1~4の何れかに記載の内燃機関用オイルリング。
  6.  前記内燃機関用オイルリングが、
     スペーサエキスパンダと
     前記スペーサエキスパンダに支持される上下一対のサイドレールと
    からなることを特徴とする請求項1~4の何れかに記載の内燃機関用オイルリング。
     
PCT/JP2010/067521 2009-10-06 2010-10-06 内燃機関用オイルリング WO2011043364A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011535414A JP5463364B2 (ja) 2009-10-06 2010-10-06 内燃機関用オイルリング
BR112012008116A BR112012008116A2 (pt) 2009-10-06 2010-10-06 anel de óleo para motor de combustão interna
MX2012004115A MX336491B (es) 2009-10-06 2010-10-06 Anillo de engrase para motor de combustion interna.
CN201080045309.2A CN102639852B (zh) 2009-10-06 2010-10-06 内燃机用油环
US13/500,223 US9353864B2 (en) 2009-10-06 2010-10-06 Oil ring for internal combustion engine
DE112010003953.4T DE112010003953B4 (de) 2009-10-06 2010-10-06 Ölring für Verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232324 2009-10-06
JP2009-232324 2009-10-06

Publications (1)

Publication Number Publication Date
WO2011043364A1 true WO2011043364A1 (ja) 2011-04-14

Family

ID=43856817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067521 WO2011043364A1 (ja) 2009-10-06 2010-10-06 内燃機関用オイルリング

Country Status (7)

Country Link
US (1) US9353864B2 (ja)
JP (1) JP5463364B2 (ja)
CN (1) CN102639852B (ja)
BR (1) BR112012008116A2 (ja)
DE (1) DE112010003953B4 (ja)
MX (1) MX336491B (ja)
WO (1) WO2011043364A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180065A1 (ja) 2012-05-28 2013-12-05 株式会社リケン 組合せオイルコントロールリング
EP2693085A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Riken Multi-piece oil ring
EP2889517A1 (en) 2013-12-26 2015-07-01 Kabushiki Kaisha Riken Combined oil control ring
WO2019054355A1 (ja) * 2017-09-12 2019-03-21 株式会社リケン スペーサエキスパンダ
US10247306B2 (en) 2015-04-09 2019-04-02 Kabushiki Kaisha Riken Combined oil control ring
US10557551B2 (en) 2015-04-09 2020-02-11 Kabushiki Kaisha Riken Combined oil control ring
JP2020193666A (ja) * 2019-05-28 2020-12-03 Tpr株式会社 表面処理方法
JP2021092163A (ja) * 2019-12-06 2021-06-17 株式会社デンソー レーザ点火装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008946A1 (de) * 2012-05-05 2013-11-07 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE112015001071T5 (de) * 2014-03-01 2016-12-08 Mahle International Gmbh Ölabstreifringanordnung
JP6122901B2 (ja) * 2014-07-31 2017-04-26 日本ピストンリング株式会社 組合せオイルリング
JP5980966B2 (ja) 2015-01-09 2016-08-31 株式会社リケン 組合せオイルコントロールリング
JP6533670B2 (ja) * 2015-03-12 2019-06-19 株式会社リケン サイドレール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942451A (ja) * 1995-08-02 1997-02-14 Teikoku Piston Ring Co Ltd 組合せオイルリングおよびオイルリングの製造方法
JP2008057478A (ja) * 2006-08-31 2008-03-13 Nippon Piston Ring Co Ltd シリンダライナとピストンリングの組み合わせ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281156A (en) * 1963-12-12 1966-10-25 Ramsey Corp Piston ring assembly
US3771801A (en) * 1972-06-05 1973-11-13 Greene Tweed & Co Inc Sealing device
US5469616A (en) * 1990-11-15 1995-11-28 Teikoku Piston Ring Co., Ltd. Method of manufacturing a side rail of a combined oil ring
US5564699A (en) * 1995-02-15 1996-10-15 Caterpillar Inc. Side and gap sealed oil ring
JP3225860B2 (ja) 1996-11-29 2001-11-05 トヨタ自動車株式会社 撥液膜の形成方法
JP2000027995A (ja) * 1998-07-15 2000-01-25 Toyota Motor Corp ピストンリング
JP4382229B2 (ja) * 2000-01-20 2009-12-09 帝国ピストンリング株式会社 組合せオイルリング
JP2003028299A (ja) * 2001-07-11 2003-01-29 Riken Corp スペーサーエキスパンダおよびその製造方法
WO2004090318A1 (ja) * 2003-04-07 2004-10-21 Toyota Jidosha Kabushiki Kaisha 組合せオイルリング
GB0323948D0 (en) * 2003-10-13 2003-11-12 Imp College Innovations Ltd Wear-resisting surface structure
JP2006291884A (ja) 2005-04-13 2006-10-26 Nissan Motor Co Ltd 内燃機関用部材及びその表面処理方法
JP2006300224A (ja) * 2005-04-21 2006-11-02 Riken Corp 3ピース組合せオイルリング
WO2006125683A1 (en) * 2005-05-26 2006-11-30 Nv Bekaert Sa Piston ring having hard multi-layer coating
US8240676B2 (en) * 2006-02-28 2012-08-14 Nippon Piston Ring Co., Ltd. Piston ring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942451A (ja) * 1995-08-02 1997-02-14 Teikoku Piston Ring Co Ltd 組合せオイルリングおよびオイルリングの製造方法
JP2008057478A (ja) * 2006-08-31 2008-03-13 Nippon Piston Ring Co Ltd シリンダライナとピストンリングの組み合わせ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693085A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Riken Multi-piece oil ring
EP2693085A4 (en) * 2011-03-31 2014-11-26 Riken Kk MULTIPLE OIL TIP RING
US9657838B2 (en) 2012-05-28 2017-05-23 Kabushiki Kaisha Riken Combined oil control ring
WO2013180065A1 (ja) 2012-05-28 2013-12-05 株式会社リケン 組合せオイルコントロールリング
EP2889517A1 (en) 2013-12-26 2015-07-01 Kabushiki Kaisha Riken Combined oil control ring
JP2015124805A (ja) * 2013-12-26 2015-07-06 株式会社リケン 組合せオイルコントロールリング
US9303765B2 (en) 2013-12-26 2016-04-05 Kabushiki Kaisha Riken Combined oil control ring
EP3076053A1 (en) 2013-12-26 2016-10-05 Kabushiki Kaisha Riken Combined oil control ring
US10247306B2 (en) 2015-04-09 2019-04-02 Kabushiki Kaisha Riken Combined oil control ring
US10557551B2 (en) 2015-04-09 2020-02-11 Kabushiki Kaisha Riken Combined oil control ring
WO2019054355A1 (ja) * 2017-09-12 2019-03-21 株式会社リケン スペーサエキスパンダ
JP2019049334A (ja) * 2017-09-12 2019-03-28 株式会社リケン スペーサエキスパンダ
JP2020193666A (ja) * 2019-05-28 2020-12-03 Tpr株式会社 表面処理方法
JP7053531B2 (ja) 2019-05-28 2022-04-12 Tpr株式会社 表面処理方法
JP2021092163A (ja) * 2019-12-06 2021-06-17 株式会社デンソー レーザ点火装置
JP7358955B2 (ja) 2019-12-06 2023-10-11 株式会社デンソー レーザ点火装置

Also Published As

Publication number Publication date
DE112010003953T5 (de) 2012-11-29
BR112012008116A2 (pt) 2017-10-10
CN102639852A (zh) 2012-08-15
JPWO2011043364A1 (ja) 2013-03-04
US9353864B2 (en) 2016-05-31
MX2012004115A (es) 2012-08-23
DE112010003953B4 (de) 2017-11-23
JP5463364B2 (ja) 2014-04-09
MX336491B (es) 2016-01-21
US20120235359A1 (en) 2012-09-20
CN102639852B (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5463364B2 (ja) 内燃機関用オイルリング
US8123227B2 (en) Sliding member
JP5342711B2 (ja) 組合せオイルリング
JP6340014B2 (ja) 摺動エレメント
US8746976B2 (en) Sliding element with DLC coating
KR20110073557A (ko) 내연 기관의 활주 요소, 특히 피스톤 링
EP3048287A1 (en) Combination of cylinder bore and piston ring
WO2007099968A1 (ja) ピストンリング
JP2006300224A (ja) 3ピース組合せオイルリング
JP7284700B2 (ja) 摺動機構
JP5376668B2 (ja) ピストンリング
JP5719031B2 (ja) ピストンリング
RU2727466C2 (ru) Имеющее покрытие поршневое кольцо с защитным слоем
US2873154A (en) Piston packing rings and method of producing same
JP5981013B1 (ja) 内燃機関用ピストンリング
WO2016163497A1 (ja) 組合せオイルコントロールリング
JP5980966B2 (ja) 組合せオイルコントロールリング
JP2006242297A (ja) 組合せオイルコントロールリング
CN111133235A (zh) 活塞环
JP2016194373A (ja) 組合せオイルコントロールリング
WO2019054355A1 (ja) スペーサエキスパンダ
JP5826958B1 (ja) 内燃機関用ピストンリング
JP6889692B2 (ja) アルコール燃料用ピストン
JP7219537B2 (ja) ピストンリングセット
Shuster et al. Piston ring microwelding phenomenon and methods of prevention

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045309.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011535414

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2715/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004115

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1120100039534

Country of ref document: DE

Ref document number: 112010003953

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13500223

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10822034

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012008116

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012008116

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012008116

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120409