WO2011043308A1 - 水素充填システムの水素用熱交換器 - Google Patents

水素充填システムの水素用熱交換器 Download PDF

Info

Publication number
WO2011043308A1
WO2011043308A1 PCT/JP2010/067392 JP2010067392W WO2011043308A1 WO 2011043308 A1 WO2011043308 A1 WO 2011043308A1 JP 2010067392 W JP2010067392 W JP 2010067392W WO 2011043308 A1 WO2011043308 A1 WO 2011043308A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
heat exchanger
supply path
pressure
filling system
Prior art date
Application number
PCT/JP2010/067392
Other languages
English (en)
French (fr)
Inventor
保之 高田
村上 敬宜
ピーター ウッドフィールド,ロイド
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to EP10821978A priority Critical patent/EP2487401A1/en
Priority to CA2776739A priority patent/CA2776739A1/en
Priority to US13/500,447 priority patent/US20120216915A1/en
Publication of WO2011043308A1 publication Critical patent/WO2011043308A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/037Quick connecting means, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/026Improving properties related to fluid or fluid transfer by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a heat exchanger for hydrogen in a hydrogen filling system. More specifically, for example, the present invention relates to a hydrogen heat exchanger of a hydrogen filling system for cooling and supplying hydrogen to a hydrogen tank mounted on a hydrogen fuel cell vehicle.
  • Vehicles that use hydrogen as fuel are known as the ultimate eco-car that does not generate carbon dioxide.
  • a hydrogen station In order to fill a hydrogen tank mounted on an automobile with hydrogen, it is necessary to install a hydrogen station at a necessary place like a gas station for an existing gasoline engine vehicle.
  • Various systems have been proposed for filling hydrogen into a hydrogen tank of an automobile from a hydrogen station.
  • a technique is known in which hydrogen gas in a high-pressure gas storage tank is introduced into a vortex tube, separated into a high-temperature gas and a low-temperature gas, and the separated high-temperature gas is cooled with a heat exchanger (see, for example, Patent Document 1). ).
  • a connection unit is known in which a heat exchanger is built in a path for supplying hydrogen from a hydrogen supply tank to an in-vehicle tank and cooled (see, for example, Patent Document 2).
  • the charged hydrogen gas in the storage tank When the high-pressure gas in the storage tank is filled in another lower filling tank, the charged hydrogen gas is adiabatically compressed in the filling tank by the hydrogen gas that enters later. Is known to rise and generate heat. This means that when the high-pressure hydrogen gas is filled, the temperature rises and the heat resistance temperature of the filling tank structure (generally 85 ° C.) may be exceeded, and the filling amount of hydrogen gas is insufficient. means. For this reason, temperature rise must be suppressed.
  • a precooler is installed in the part of the dispenser to precool the hydrogen in order to reduce the temperature, reduce the volume, and increase the hydrogen filling rate per fixed time.
  • the 70 MPa class hydrogen station is equipped with a heat exchanger that cools the hydrogen in the precooler.
  • Various heat exchangers have been proposed. For example, a heat exchanger that uses the cold heat of the liquid hydrogen tank on the filling side as a refrigerant is also proposed.
  • a hydrogen gas supply facility provided with a heat exchanger for cooling the pressurized hydrogen gas in order to cool the hydrogen gas pressurized in the liquefied hydrogen storage space.
  • the thing of the structure which uses and supplies hydrogen gas through this hydrogen gas supply equipment is known (for example, refer patent document 3).
  • a technology related to a heat exchanger there is known a configuration in which a heat exchanger of a housing is provided in a path for supplying hydrogen gas to a hydrogen automobile and cooled (for example, see Patent Document 4).
  • the present invention is also applied to a hydrogen fuel cell vehicle, in which a refrigerant pipe is provided in a hydrogen tank or a hydrogen supply path with a double pipe configuration to cool hydrogen (for example, see Patent Documents 3 and 5). ).
  • a precooler is installed in the part of the dispenser to supply hydrogen at ⁇ 30 ° C. Pre-cooled to the extent. Since the precool heat exchanger piping has a pressure resistance of 70 MPa, the wall thickness becomes thicker and the heat transfer performance deteriorates. For this reason, in order to increase the heat transfer efficiency of the heat exchanger, it is necessary to lengthen the pipe to increase the heat transfer area, and there is a problem that the apparatus is increased in size and pressure loss is increased.
  • the automobile to be applied is a moving body, it is desirable to reduce the weight of the cooling device as much as possible. For this reason, it is desirable that the equipment such as the cooling device is not mounted on the vehicle side but is attached to a fixed stand or the like such as a dispenser. Furthermore, it is desired that the supplied hydrogen is efficiently cooled in a short time and filled in a hydrogen tank of an automobile in a short time in a stable state.
  • An object of the present invention is to reduce the wall thickness of the heat transfer tube at the boundary between the hydrogen supply path and the refrigerant supply path by increasing the refrigerant supply path pressure to the same level as the hydrogen supply path pressure.
  • An object of the present invention is to provide a heat exchanger for hydrogen of a hydrogen filling system that enhances the heat transfer effect and is miniaturized.
  • Another object of the present invention is to increase the pressure on the refrigerant side to the same level as that on the hydrogen side, thereby reducing the thickness of the heat transfer tube, thereby shortening the length of the flow path and increasing the heat transfer rate.
  • An object of the present invention is to provide a hydrogen heat exchanger for a hydrogen filling system with reduced pressure loss.
  • Still another object of the present invention is to reduce the heat transfer resistance during heat exchange and shorten the cooling time by reducing the thickness of the heat transfer tube by increasing the pressure on the refrigerant side to the same level as the hydrogen side. It is another object of the present invention to provide a hydrogen heat exchanger for a hydrogen filling system with an improved cooling effect.
  • the hydrogen heat exchanger of the hydrogen filling system includes a pressure vessel that stores hydrogen at a high pressure, and a portable pressure that is provided so as to be relatively movable with respect to the pressure vessel and is filled with the hydrogen from the pressure vessel.
  • the heat exchanger of the cooling device includes a hydrogen supply passage having a hydrogen supply passage for supplying high-pressure hydrogen from the pressure vessel to the hydrogen filling device, and the hydrogen supply
  • the refrigerant supply path includes a refrigerant supply path that is provided on the outer periphery or inside of the body and supplies a refrigerant having substantially the same pressure as that of the hydrogen via a pressure increasing device.
  • the hydrogen heat exchanger of the hydrogen filling system according to the second aspect of the present invention is the heat exchanger for hydrogen according to the first aspect, wherein the thickness of the supply path body at the boundary portion between the hydrogen supply path and the refrigerant supply path is the hydrogen supply path or the refrigerant supply path.
  • the thickness of the outer tube is relatively thinner than the thickness of the outer tube.
  • the hydrogen heat exchanger of the hydrogen filling system according to the present invention 3 is characterized in that, in the present invention 1, the portable pressure vessel is mounted on a vehicle.
  • a hydrogen heat exchanger for a hydrogen filling system according to a fourth aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the heat exchanger of the cooling device has a double pipe configuration in which the hydrogen supply path is embedded in the refrigerant supply path. It is characterized by becoming.
  • the hydrogen heat exchanger of the hydrogen filling system according to the fifth aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the heat exchanger of the cooling device has a double tube configuration and the refrigerant supply path is embedded in the hydrogen supply path. It is characterized by becoming.
  • the hydrogen heat exchanger of the hydrogen filling system of the present invention 6 is characterized in that, in the present invention 1, the pressure of hydrogen in the hydrogen supply path and the refrigerant in the refrigerant supply path is 70 MPa.
  • the hydrogen heat exchanger of the hydrogen filling system according to the seventh aspect of the present invention is configured such that, in the first aspect, the hydrogen in the hydrogen supply path and the refrigerant in the refrigerant supply path are supplied in opposite directions. It is characterized by being.
  • a high-pressure supply path is constructed in which the pressure on the hydrogen supply path side and the pressure on the refrigerant supply path side are increased to the same extent.
  • FIG. 1 is a configuration diagram of an embodiment showing an overall configuration of a hydrogen filling system of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the cooling device of the embodiment of FIG.
  • FIG. 3 is an enlarged partial cross-sectional view of the heat exchanger portion of FIG.
  • FIG. 4 is an explanatory diagram showing the configuration of the heat exchanger in comparison with the conventional configuration.
  • FIG. 5 is a cross-sectional view showing another embodiment of the heat exchanger.
  • FIG. 6 is a diagram showing a calculation example of the heat exchanger length that demonstrates the improvement effect of the present invention.
  • FIG. 7 is a diagram showing a calculation example of pressure loss that demonstrates the improvement effect of the present invention.
  • FIG. 1 is a configuration diagram showing an outline of the hydrogen filling system 1.
  • Hydrogen is produced by a known hydrogen production apparatus 2 and stored in a buffer tank 3 which is a hydrogen storage tank.
  • the hydrogen in the buffer tank 3 is supplied to the compressor 4 through piping, valves, and the like, and is compressed and increased in pressure by the compressor 4.
  • the hydrogen compressed to a high pressure is stored in the accumulator 5.
  • the pressure accumulator 5 includes a plurality of cylinders, and a required amount of hydrogen can be continuously taken out by sequentially switching the valves of the cylinders.
  • the capacity, pressure, hydrogen flow rate, etc. in each cylinder are displayed on a display device (not shown) provided in the hydrogen filling system.
  • hydrogen produced by the hydrogen production apparatus 2 is transported by a hydrogen transport vehicle and stored in a hydrogen storage tank of a hydrogen station.
  • the hydrogen production apparatus 2 is not intended to be the gist of the present invention, in general, hydrogen is produced from a fossil fuel, biomass, natural energy, nuclear energy or the like by a production method such as a catalytic method or an electrolysis method.
  • the produced hydrogen is transported in a state where it is directly supplied by piping, a dedicated hydrogen tanker truck, or filled in a cylinder and stored in a storage tank in the hydrogen station, or the same cylinder as the storage cylinder. Stored in.
  • the high-pressure hydrogen in the cylinder is filled into the hydrogen tank 8 mounted on the hydrogen fuel cell vehicle 7 via the dispenser 6 of the hydrogen filling device.
  • the dispenser 6 is fixedly disposed at a hydrogen station installed at a specific location. This hydrogen station is provided adjacent to a road or the like, similar to a gasoline station, and is a facility for filling the hydrogen fuel cell vehicle 7 with hydrogen.
  • the dispenser 6 of the hydrogen filling device is a device for filling the hydrogen tank 8 of the fuel cell vehicle 7 with high-pressure hydrogen stored in the accumulator 5.
  • the hydrogen fuel cell vehicle 7 of this example drives a motor by a fuel cell that generates electricity using an electrochemical reaction between hydrogen and oxygen. Hydrogen gas as normal fuel is stored in the hydrogen tank 8 at a high pressure, and the hydrogen tank 8 is mounted and installed near the fuel cell, and moves along with the movement of the hydrogen fuel cell vehicle 7.
  • the hydrogen tank 8 is filled with high-pressure hydrogen by inserting the nozzle body 9 into the filling port from the dispenser 6 of the hydrogen station.
  • a plurality of hydrogen tanks 8 are mounted, and when the amount of hydrogen is insufficient, the hydrogen tank 8 is used with the valves of the other hydrogen tanks 8 opened. The remaining amount of hydrogen in the hydrogen tank 8 can be confirmed on the display panel of the driver's seat.
  • a precool device 11 for cooling the filled hydrogen is attached to the dispenser 6, that is, a cooling device is arranged.
  • This cooling device has an effect of suppressing an increase in the temperature of the hydrogen fuel cell automobile 7 as well as improving the efficiency of the hydrogen supply amount, that is, increasing the filling amount per unit time.
  • the dispenser 6 is a device for filling the hydrogen tank 8 of the hydrogen fuel cell automobile 7 with a high-pressure, for example, 70 MPa high-pressure hydrogen gas by a safe and easy operation.
  • the hydrogen filling apparatus is provided with a flow meter, a coupling, a display device such as temperature and pressure, a control device, a valve and the like.
  • the cooled hydrogen is guided to the nozzle body 9 provided in the dispenser 6 and supplied to the filling port on the hydrogen fuel cell vehicle 7 side.
  • hydrogen is supplied to the fuel cell vehicle through the coupler type nozzle body 9.
  • the nozzle 9 is connected to the dispenser 6 through a tube, when the hydrogen fuel cell vehicle 7 is installed in the vicinity of the nozzle 9, the operator manually operates the nozzle as in the case of a known gasoline vehicle. 9 can be connected to the hydrogen filling port of the hydrogen fuel cell vehicle 7. When hydrogen is supplied from the pressure accumulator 5 through the piping by adjusting the valve 10, the hydrogen is heated to hydrogen gas and led to the dispenser 6.
  • a precooling device 11 is provided along with the dispenser 6.
  • the precool device 11 of the cooling device has a heat exchanger 12 for cooling the heated hydrogen gas.
  • the portion of the heat exchanger 12 of the precool device 11 is downsized to increase the heat transfer efficiency.
  • FIG. 2 is a configuration diagram showing the configuration of the heat exchanger 12, and FIG. 3 is a partially enlarged view of part A in FIG.
  • a part of a pipe body that becomes a flow path for cooling supplied hydrogen is formed into a spiral coil tube made of stainless steel.
  • This coil tube forms a hydrogen and refrigerant supply path by a double pipe structure of a hydrogen supply path 13 and a refrigerant supply path 14 for cooling the hydrogen.
  • the hydrogen gas from the pressure accumulator 5 is led to the hydrogen supply port 16 of the heat exchanger 12 through the pipe 15 and supplied to the inner pipe of the coil pipe.
  • the supplied hydrogen is discharged from the hydrogen discharge port 17 and guided to the dispenser 6.
  • the space inside the pipe outside the hydrogen supply path 13 embedded in a double pipe configuration is the refrigerant supply path 14 as described above. After the refrigerant is cooled by the refrigerator 18, the refrigerant is pressurized by the boosting pump 19, supplied from the refrigerant supply port 20, and discharged from the refrigerant discharge port 21.
  • the refrigerant referred to in the present embodiment is one generally used as a refrigerant such as Freon, HCFC, HFC, carbon dioxide, ammonia, propane and the like.
  • a refrigerant such as Freon, HCFC, HFC, carbon dioxide, ammonia, propane and the like.
  • the refrigerant is in a gaseous state, the refrigerant is compressed by a compressor.
  • the refrigerant is described as a liquid state.
  • the refrigerant supply port 20 is provided in the vicinity of the hydrogen discharge port 17, and the refrigerant discharge port 21 is provided in the vicinity of the hydrogen supply port 16. Therefore, the flow of hydrogen is opposite to the direction of supply of refrigerant.
  • the main part of the heat exchanger 12 has a double pipe configuration of a supply path for hydrogen and refrigerant.
  • the hydrogen supply path 22 is a double-pipe structure tube embedded in the refrigerant supply path 23.
  • This tube is configured in a coil shape as described above.
  • the hydrogen filling system 1 is provided with a temperature sensor or the like where necessary and measures the temperature of the fluid flowing therethrough, and for operation control of the compressor, pump, etc.
  • a control device for temperature control and pressure control is provided.
  • the hydrogen fuel cell vehicle 7 is equipped with a hydrogen tank 8 which is a portable pressure vessel, and is configured to move as the hydrogen fuel cell vehicle 7 moves. Since the function of the hydrogen tank 8 on the hydrogen fuel cell vehicle 7 side is well known, detailed description is omitted, but this hydrogen tank 8 is provided adjacent to the fuel cell, and is on the anode electrode (fuel electrode) side of the fuel cell. To supply hydrogen gas.
  • a hydrogen tank 8 which is a portable pressure vessel, and is configured to move as the hydrogen fuel cell vehicle 7 moves. Since the function of the hydrogen tank 8 on the hydrogen fuel cell vehicle 7 side is well known, detailed description is omitted, but this hydrogen tank 8 is provided adjacent to the fuel cell, and is on the anode electrode (fuel electrode) side of the fuel cell. To supply hydrogen gas.
  • FIG. 4 (a) and 4 (b) are partial cross-sectional views showing a comparison between this configuration and a conventional example, and are explanatory diagrams of a heat exchanger.
  • Fig.4 (a) shows the structure of the conventional heat exchanger
  • FIG.4 (b) has shown the structure of the heat exchanger of this Embodiment.
  • the arrows that intersect the tube at right angles indicate the pressure direction and the heat transfer direction.
  • the wall thickness of the heat transfer tube of the hydrogen supply path 50 is a thick tube.
  • the wall thickness of the pipe wall of the hydrogen supply path 51 is set to a thickness that can withstand a hydrogen supply pressure, for example, a high pressure of 70 MPa.
  • the pressure of the refrigerant supply path 52 is atmospheric pressure, and the outer pipe of the refrigerant supply path 53 is also in contact with atmospheric pressure.
  • the thickness of the pipe wall of the hydrogen supply passage 50 is made thick so that it can withstand high pressure.
  • this configuration is configured to supply the refrigerant supply pressure at a pressure comparable to the hydrogen supply pressure. That is, the hydrogen pressure in the hydrogen supply path 13 and the refrigerant pressure in the refrigerant supply path 14 are made the same as 70 MPa.
  • the supply pressure of the refrigerant is increased by the booster pump 19. Since the refrigerant pressurizes and raises the pressure of the liquid, less power is required for this purpose. Thereby, the pressure of the hydrogen supply path 13 and the refrigerant supply path 14 becomes the same, and the pressure difference is eliminated, so that the thickness of the pipe at the boundary between the hydrogen supply path 22 and the refrigerant supply path 23 can be reduced.
  • the thickness By reducing the thickness, heat can be easily transmitted and heat transfer efficiency is improved. As a result, the heat transfer resistance is greatly reduced as compared with the conventional case, the heat exchanger can shorten the length of the heat exchange portion, and the apparatus can be miniaturized. In this downsizing, the apparatus can be made 1/2 to 1/3 smaller than the conventional one by shortening the length. Furthermore, pressure loss due to deformation, vibration, etc. caused by a large pressure difference between hydrogen and the refrigerant is reduced as compared with the conventional configuration.
  • the wall thickness of the outer pipe wall of the refrigerant supply path 23 is set to a thickness that can withstand high pressure.
  • the inner pipe path of the double pipe configuration has been described as a hydrogen supply path.
  • the configuration is not necessarily limited to this configuration.
  • the supply pipe 31 forms a refrigerant supply path 30 in the inner hole
  • the outer supply path is a hydrogen supply pipe 33
  • the space between the inner hole and the outer peripheral surface of the refrigerant supply pipe 31 is a hydrogen supply path 32.
  • the reverse configuration may be adopted such that hydrogen flows through the refrigerant supply passage 30 and refrigerant flows through the hydrogen supply passage 32.
  • the thickness of the refrigerant supply pipe 31 (in this case, the hydrogen supply pipe) 31 which is an inner pipe can be reduced, and the substantial heat transfer effect is exactly the same as in the above case.
  • the hydrogen tank 8 After the hydrogen filled in the hydrogen tank 8 of the hydrogen fuel vehicle 7 is used up, the remaining hydrogen is recovered in the buffer tank 3 as shown by the dotted line path in FIG. Actually, the hydrogen tank 8 is taken out from the hydrogen fueled automobile 7 and transported, and the hydrogen in the hydrogen tank 8 having a low pressure is transferred to the buffer tank 3 and reused.
  • the thermal calculation is as follows.
  • the logarithmic average temperature ⁇ T lm is calculated using the hydrogen and refrigerant inlet / outlet temperatures given above.
  • the heat exchange amount Q cool in the heat exchanger is calculated by the following equation from the mass flow rate of hydrogen.
  • the convective heat transfer coefficient h h on the hydrogen side is calculated by the Ditus-Boelter equation.
  • the heat transfer coefficient is larger than that of the hydrogen side.
  • a heat transfer coefficient h c approximately twice that of the hydrogen side is used.
  • the required heat exchange length is calculated when the outer diameter of the heat transfer tube is 30 mm and when it is 14 mm.
  • d 0 30 mm
  • the inner diameter of the tube is 10 mm
  • the wall thickness is 10 mm
  • Heat transfer coefficient (outer tube reference) k t is as follows.
  • the required heat exchange length L HEX is calculated as follows.
  • the pressure loss is calculated as follows from the calculation result of the pipe friction coefficient f by the Nikuradse equation.
  • the required heat exchange length L HEX is calculated as follows.
  • the pressure loss is calculated as follows from the result of calculating the pipe friction coefficient by the Nikuradse equation.
  • the pipe friction coefficient is the same as in the case of (a) described above.
  • Pressure drop Delta] p h is as follows.
  • FIG. 6 is a graphical representation of the results of a simulation calculated based on this calculation formula for the heat exchange length in accordance with changes in the outer diameter of the tube.
  • FIG. 7 is a graph showing the result of simulating the pressure loss according to the change in the outer diameter of the pipe based on the above-described calculation formula, as in FIG.
  • the fixed parameters such as the inner diameter of the tube are as described above.
  • the heat transfer area is about 40%.

Abstract

 本発明は、伝熱効果が高く、小型化した水素充填システムの水素用熱交換器を作ることを課題とする。 蓄圧器(5)から高圧化された水素を水素燃料電池自動車(7)の水素タンク(8)へ充填する水素充填システムにおいて、充填する水素を冷却する プレクール装置(11)の熱交換器(12)の水素供給路(22)と冷媒供給路(23)の供給圧力を同程度の高圧にした。これにより、両供給路の境界の管壁の厚さを従来に比し薄くすることができた。この結果、熱交換器(12)の伝熱抵抗、水素圧力損失が低減され、伝熱効果が高まり、装置を小型化することができた。

Description

水素充填システムの水素用熱交換器
 本発明は、水素充填システムの水素用熱交換器に関する。更に詳しくは、例えば水素燃料電池車に搭載された水素タンクに水素を冷却して供給するための水素充填システムの水素用熱交換器に関する。
 水素を燃料とする自動車は、二酸化炭素を発生させない究極のエコカーとして知られている。自動車に搭載されている水素タンクに水素を充填するために、既存のガソリンエンジン車用のガソリンスタンドのように、必要な場所に水素ステーションを設置する必要がある。水素ステーションから自動車の水素タンクに水素を充填させるシステムは、種々の構成のものが提案されている。
 例えば、高圧ガス貯蔵タンクの水素ガスをボルテックスチューブに導入して、高温ガスと低温ガスに分離し、分離した高温ガスを熱交換器で冷却する技術が知られている(例えば、特許文献1参照)。又、水素供給タンクから車載タンクへ水素を供給する経路上に熱交換器を内蔵し、冷却させる接続ユニットが知られている(例えば、特許文献2参照)。
 貯蔵タンク内の高圧ガスをこれより低い他の充填タンクに充填するとき、充填された水素ガスは後から入ってくる水素ガスにより、充填タンク内で断熱圧縮されるために、充填タンク内で温度が上昇し発熱すること知られている。このことは、高圧水素ガスを充填する際、温度が上昇し、充填タンク構造物の耐熱温度(一般的には85℃)以上となる恐れが生じるとともに、水素ガスの充填量が不足することを意味する。このために温度上昇を抑制しなければならない。
 このようなことから、これらの水素ステーションにおいて、温度を低くして体積を小さくして、一定時間当たりの水素充填速度を早くするために、ディスペンサーの部分にプレクーラーを設置して、水素を予冷する必要がある。このために70MPa級の水素ステーションではプレクーラーに水素を冷却する熱交換器を備えている。この熱交換器は、種々のものが提案されており、例えば充填する側の液体水素槽の冷熱を冷媒として利用するものも提案されている。
 これらの例として、前述した特許文献以外に、例えば、液化水素貯蔵空間内で加圧されている水素ガスを冷却するために、加圧水素ガスを冷却する熱交換器を設けた水素ガス供給設備を使用し、この水素ガス供給設備を介して水素ガスを供給する構成のものが知られている(例えば、特許文献3参照)。又、熱交換器に関わる技術として、水素自動車に水素ガスを供給する経路に筐体の熱交換器を設け冷却する構成のものが知られている(例えば、特許文献4参照)。更に、水素燃料電池自動車に適用したもので、水素タンク又は水素供給経路に二重管構成で冷媒管を設け、水素を冷却させる構成のものも知られている(例えば、特許文献3、5参照)。
 このような熱交換器では、例えば、70MPa仕様の水素ステーションの場合、3kg-H/minの水素充填速度を達成するために、ディスペンサーの部分にプレクーラーを設置して、水素を-30℃程度まで予冷している。プレクール熱交換器の配管を70MPaの耐圧にするために、管内径に対し肉厚が太くなり伝熱性能が悪くなる。このために、熱交換器の伝熱効率を高めるため、管を長くして伝熱面積を大きくせざるをえず、装置の大型化と圧力損失が増大するという問題があった。
特開2007-309375号公報 特開2005-69330号公報 特開2009-127813号公報 特開2008-164177号公報 特開2006-142924号公報
 水素の冷却技術は、前述のように多くの提案がなされているが、冷却装置は一定の冷却温度に水素を下げる必要があることから、熱交換器である管の長さを長くせざるを得ない等の制約がある。従って、従来提案されている冷却装置はこの点で小型化するには限界があった。前述の公知技術には、本発明に構造が似たような二重管構成の交換器の例もあるが、冷却の効率化を行うための具体的な構造は示されていない。
 又、適用する自動車は移動体であるので、冷却装置は極力軽量化されることが望ましい。このため、冷却装置等の設備は自動車側に搭載されるのではなく、固定されたスタンド等、例えばディスペンサー等に付随して設置されることが望ましい。更に、供給される水素は短時間で効率よく冷却され、安定した状態で自動車の水素タンクに短時間で充填されることが望まれている。
 本発明は、前述のような技術背景のもとになされたものであり、下記の目的を達成する。本発明の目的は、冷媒側の供給路圧力を水素側の供給路圧力と同程度まで昇圧することにより、水素の供給路と冷媒の供給路の境界の伝熱管の肉厚を薄くすることで伝熱効果を高め、小型化した水素充填システムの水素用熱交換器を提供することにある。
 本発明の他の目的は、冷媒側の圧力を水素側と同程度まで昇圧することにより、伝熱管の肉厚を薄くすることで流路の長さを短くし伝熱速度を早くし、水素圧力損失を低減した水素充填システムの水素用熱交換器を提供することにある。
 本発明の更に他の目的は、冷媒側の圧力を水素側と同程度まで昇圧することにより、伝熱管の肉厚を薄くすることで熱交換時の伝熱抵抗を低減し、冷却時間を短縮し、冷却効果を高めた水素充填システムの水素用熱交換器を提供することにある。
 本発明は、前記目的を達成するために次の手段をとる。
 本発明1の水素充填システムの水素用熱交換器は、水素を高圧貯蔵した圧力容器と、前記圧力容器と相対的に移動可能に設けられ、前記圧力容器から前記水素を充填される可搬用圧力容器と、前記圧力容器側に設けられ、前記圧力容器から前記可搬用圧力容器に前記水素を充填するための水素充填装置と、前記水素充填装置に付随して設けられ前記水素を冷却するため熱交換器を有する冷却装置とからなる水素充填システムにおいて、前記冷却装置の熱交換器は、前記圧力容器から前記水素充填装置へ高圧水素を供給する水素供給路を有する水素供給路と、前記水素供給体の外周又は内部に設けられ前記水素と略同圧力の冷媒を昇圧装置を介して供給する冷媒供給路を有する冷媒供給路とで構成される。
 本発明2の水素充填システムの水素用熱交換器は、本発明1において、前記水素供給路と前記冷媒供給路の境界部分の供給路体の肉厚は、前記水素供給路又は前記冷媒供給路の外管の肉厚よりも相対的に薄い肉厚構成になっていることを特徴とする。
 本発明3の水素充填システムの水素用熱交換器は、本発明1において、前記可搬用圧力容器は、車両に搭載されるものであることを特徴とする。
 本発明4の水素充填システムの水素用熱交換器は、本発明1において、前記冷却装置の熱交換器は、二重管構成で前記水素供給路が前記冷媒供給路内に埋設された構成になっていることを特徴とする。
 本発明5の水素充填システムの水素用熱交換器は、本発明1において、前記冷却装置の熱交換器は、二重管構成で前記冷媒供給路が前記水素供給路内に埋設された構成になっていることを特徴とする。
 本発明6の水素充填システムの水素用熱交換器は、本発明1において、前記水素供給路内の水素及び前記冷媒供給路内の冷媒の圧力は、70MPaであることを特徴とする。
 本発明7の水素充填システムの水素用熱交換器は、本発明1において、前記水素供給路内の水素及び前記冷媒供給路内の冷媒は、供給方向が相互に逆方向に供給される構成であることを特徴とする。
 本発明によれば、水素の供給路側の圧力と、冷媒の供給路側の圧力とを同程度に昇圧させた高圧の供給路の構成とした。このことにより、水素側と冷媒側の供給路の境界の管壁肉厚を薄くできるようになり、供給路の長さを短くすることができ、伝熱抵抗を低減し、水素圧力損失も低減した。この結果、熱交換時の伝熱効果の向上した装置となり、冷却時間が短縮され冷却効果を高め、装置を小型化することができた。
図1は、本発明の水素充填システムの全体構成を示す実施の形態の構成図である。 図2は、図1の実施の形態の冷却装置の構成を示す構成図である。 図3は、図2の熱交換器部分を拡大表示した部分断面図である。 図4は、熱交換器の構成を従来の構成と対比して示す説明図である。 図5は、熱交換器の他の実施例を示す断面図である。 図6は、本発明の改善効果を実証する熱交換器長さの計算例を表示した図である。 図7は、本発明の改善効果を実証する圧力損失の計算例を表示した図である。
 以下、本発明の実施の形態を、図面に基づいて詳細に説明する。図1は、水素充填システム1の概要を示す構成図である。水素は公知の水素製造装置2によって製造され、水素貯蔵タンクであるバッファタンク3に貯蔵される。このバッファタンク3の水素は、配管、バルブ等を介して圧縮機4に供給され、この圧縮機4により圧縮され高圧化される。高圧に圧縮された水素は、蓄圧器5内に貯蔵される。蓄圧器5は、複数のボンベからなり、このボンベのバルブを順次切り替えることにより、必要とされる量の水素を連続的に取り出すことができる。各ボンベ内の容量、圧力、水素の流量等は、水素充填システムに設けられた表示装置(図示せず)に表示される。
 通常、水素製造装置2により製造された水素は、水素輸送車により輸送され水素ステーションの水素貯蔵タンクに貯蔵される。水素製造装置2は、本発明の要旨とするものではないが、一般的に水素は化石燃料、バイオマス、自然エネルギー、原子力エネルギー等から触媒法、電気分解法等の製造方法により製造される。製造された水素は、配管による直接的な供給、専用の水素タンク車、又はボンベに充填された状態で運搬され、水素ステーション内の備蓄タンクに貯蔵されるか、又はそのまま備蓄用ボンベと同じボンベで貯蔵される。
 このボンベ内の高圧の水素は、水素充填装置のディスペンサー6を介して、水素燃料電池自動車7に搭載の水素タンク8に充填される。ディスペンサー6は、固定的に特定の場所に設置された水素ステーションに配置されている。この水素ステーションは、ガソリンスタンドと同様に道路等に隣接して設けられ、水素燃料電池自動車7に水素を充填させるための設備である。
 水素充填装置のディスペンサー6は、蓄圧器5に貯蔵されている高圧の水素を燃料電池自動車7の水素タンク8に充填させるための装置である。本例の水素燃料電池自動車7は、水素と酸素の電気化学反応を利用して発電する燃料電池によって、モータを駆動するものである。通常燃料として水素ガスは、水素タンク8に高圧で貯蔵され、その水素タンク8は燃料電池の近傍に搭載され設置され、水素燃料電池自動車7の移動と共にする。
 この水素タンク8内の水素量が低下すると、水素を充填する必要が生じ、特定の場所に配置されている水素ステーションまで移動する。水素ステーションのディスペンサー6から、ノズル体9を充填口に差し込むことにより高圧の水素を水素タンク8へ充填する。一般に、この水素タンク8は複数個搭載されており、水素量が不足すると水素タンク8は、他の水素タンク8のバルブを開けて使用される。水素タンク8の水素の残量は、運転席の表示盤で確認することができる。
 水素充填装置には、ディスペンサー6に付随して、充填水素を冷却するためのプレクール装置11が、即ち冷却装置が配置されている。この冷却装置は、水素の供給量の効率化、即ち単位時間当たり充填量の増大を図ると同時に、水素燃料電池自動車7の温度上昇を抑制する効果も有している。ディスペンサー6は、高圧の、例えば70MPaの高圧水素ガスを、安全かつ容易な操作で水素燃料電池自動車7の水素タンク8へ充填するための装置である。
 水素充填装置には図示していないが、流量計、カップリング、温度、圧力等の表示装置、制御装置、バルブ等が付随して設けられている。冷却された水素は、ディスペンサー6に設けられたノズル体9に導かれ、水素燃料電池自動車7側の充填口に供給される。この充填口にノズル9が接続されたとき、水素がこのカプラー形式のノズル体9を介して燃料電池自動車に供給される。
 ノズル9は、ディスペンサー6にチューブを介して連結されているので、水素燃料電池自動車7がノズル9の近傍に設置されると、周知のガソリン車の場合と同様に、作業者が手動操作でノズル9を水素燃料電池自動車7の水素充填口に接続することができる。水素は、蓄圧器5から配管を介してバルブ10の調整により供給される際、昇温された水素ガスとなってディスペンサー6に導かれる。
 この昇温された水素ガスをスムースに水素燃料電池自動車7の水素タンク8へ供給するためには、前述した断熱圧縮により充填タンク8内で温度が上昇するので、冷却する必要がある。このためにディスペンサー6に付随してプレクール装置11が設けられている。冷却装置のプレクール装置11は、昇温した水素ガスを冷却するための熱交換器12を有している。本例では、このプレクール装置11の熱交換器12の部分を小型化し、伝熱効率を高めた構成にしたものである。
 次に、このプレクール装置11の熱交換器12の具体的な構造を説明する。図2は、熱交換器12の構成を示す構成図であり、図3は図2のA部の部分拡大図である。この熱交換器12は、供給される水素を冷却するために流路となる管路体の一部を、螺旋状に形成したステンレス製のコイル管にしたものである。このコイル管は、水素の供給路13とこの水素を冷却するための冷媒の供給路14の二重管構造により、水素と冷媒の供給路を形成している。
 図2において、蓄圧器5からの水素ガスは、管路15を介してこの熱交換器12の水素供給口16に導かれ、コイル管の内部管に供給される。供給された水素は、水素排出口17より排出され、ディスペンサー6に導かれるようになっている。一方、図3に示すように、二重管構成で埋設された状態の水素の供給路13の外側の管内の空間部は、前述したとおり冷媒の供給路14となっている。冷媒は、冷凍機18により冷却された後、昇圧用ポンプ19により加圧して冷媒供給口20から供給され、冷媒排出口21から排出される。
 本実施の形態でいう冷媒は、フロン、HCFC、HFC、二酸化炭素、アンモニア、プロパン等の一般的に冷媒として使用されているものである。冷媒が気体状態の場合は、圧縮機で圧縮されるが、本例においては、液体の状態として説明する。冷媒供給口20は、水素排出口17の近傍に、又、冷媒排出口21は水素供給口16の近傍に設けられている。従って、水素の供給方向と冷媒の供給方向とは逆の向きの流れになっている。この様に、この熱交換器12の主要部は、水素と冷媒の供給路の二重管構成となっている。
 即ち、水素供給路22が、冷媒供給路23内に埋設された状態の二重管構造の管体となっている。この管体は前述のとおりコイル状に構成されている。この水素充填システム1には、図示していないが適宜必要な位置に温度センサー等が配置され、そこに流れる流体の温度を測定しており、又、圧縮機、ポンプ等の運転制御のため、或いは温度制御、圧力制御のための制御装置が設けられている。
 水素燃料電池自動車7には、可搬用圧力容器である水素タンク8が搭載されており、水素燃料電池自動車7の移動とともに移動する構成になっている。水素燃料電池自動車7側の水素タンク8の機能は公知であるので、詳細な説明は省略するが、この水素タンク8は燃料電池に隣接して設けられ、燃料電池のアノード電極(燃料極)側に水素ガスを供給するためのものである。
 図4(a)及び図4(b)は、本構成と従来例との比較を示した部分断面図で、熱交換器の説明図である。図4(a)は、従来の熱交換器構成を示し、図4(b)は、本実施の形態の熱交換器の構成を示している。図4(a)及び図4(b)において、管体を直角に交差する矢印は、圧力方向、伝熱方向を示す。従来の熱交換器の二重管構造は、水素供給路50の伝熱管の管壁の肉厚は厚い管であった。
 即ち、水素供給路51の管壁の肉厚が図4(a)に示すように、水素供給圧力である、例えば70MPaの高圧に耐えられる厚さとしている。これに対して、冷媒供給路52の圧力は大気圧としており、冷媒供給路53の外管も大気圧に接している。この従来の構成は、水素の供給圧のみが高圧であり、冷媒の供給圧は大気圧程度で低圧であった。このため相互の圧力差が大きいので、水素供給路50の管壁の肉厚の厚さを高圧に耐えうるように厚く構成していた。
 これに対し、本構成は図4(b)に示すように、冷媒の供給圧を水素の供給圧と同程度の圧力で供給するような構成にした。即ち、水素供給路13の水素圧力と冷媒供給路14の冷媒圧力を70MPaと同じにする。冷媒の供給圧は昇圧ポンプ19により昇圧させる。冷媒は液体を加圧して昇圧させるので、このための動力はそれほど必要としない。これにより、水素供給路13と冷媒供給路14の圧力が同じになり圧力差は無くなるので、水素供給路22と冷媒供給路23の境界の管の肉厚は薄くすることができる。
 この肉厚を薄くすることにより熱が伝播しやすくなり、伝熱効率は向上する。この結果、伝熱抵抗が従来に比し大幅に低減し、熱交換器は熱交換部分の長さを短くすることができ、装置を小型化することができる。この小型化は、短尺にすることで装置を従来に比し1/2~1/3に小さくすることが可能である。更に水素と冷媒との圧力差が大きいことに伴って生じる変形、振動等に伴う圧力の損失も従来の構成に比し低減されることになる。
 この水素側の圧力損失も従来に比し、1/2~1/3に低減することが可能である。冷媒供給路23の外側の管壁の肉厚は、高圧に耐えられる厚さとする。この構成は、二重管構成の内管路を水素の供給路として説明したが、必ずしもこの構成に限定されることはなく、図5に示すように管構成において、内管の供給路を冷媒供給管31により、この内孔に冷媒供給路30を形成し、又、外周の供給路を水素供給管33とし、この内孔と冷媒供給管31の外周面との間を水素供給路32としている。なお、この冷媒供給路30に水素を流し、水素供給路32に冷媒を流すように、逆の構成にしてもよい。この場合であっても内管である冷媒供給管(この場合は、水素供給管となる。)31の肉厚は薄くでき、実質的な伝熱効果は前述の場合と全く同じである。
 水素燃料自動車7の水素タンク8に充填された水素が使用済みになった後は、図1の点線経路で示すように残った水素はバッファタンク3に回収される。実際は水素タンク8を水素燃料自動車7から取り出し、運搬し、低圧になった水素タンク8内の水素をバッファタンク3に移し再利用する。
 [計算例]
 次に、内管の肉厚を変えてシュミレーションした伝熱関係の計算例を示す。計算条件及び各符号の定義は、次のとおりである。
 固定パラメータは、内管直径:d=10mm、水素の充填速度:m=3kg/min、水素入口温度:Thi=30℃,水素出口温度:Tho=-35℃,冷媒入口温度:Tci=-50℃,冷媒出口温度:Tco=-30℃とする。
 水素の物性値は、定圧比熱:cph=15052J/(kg・K),密度:ρ=48.92kg/m3,粘性係数:μ=11.3×10-6Pa・s,熱伝導率:λ=0.2706W/(m・K),熱拡散率:α=λ/ρph=3.675×10-7/s,動粘性係数:ν=μ/ρ=2.31×10-7/s,プラントル数:Pr=ν/α=0629
 ステンレス管の物性値は、熱伝導率:λ=20W/(m・K)とする。
 熱計算は次のとおりである。上記で与えられた水素及び冷媒の出入り口温度を用いて対数平均温度ΔTlmを計算する。
Figure JPOXMLDOC01-appb-M000001
 熱交換器における熱交換量Qcoolは、水素の質量流量から次式で計算される。
Figure JPOXMLDOC01-appb-M000002
 水素側の対流熱伝達率hを、Dittus-Boelterの式により計算する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004

Figure JPOXMLDOC01-appb-M000005
 これにより、水素側の熱伝達率hは、次のようになる。
Figure JPOXMLDOC01-appb-M000006
 一方、冷媒側は、液体であるので、水素側よりも熱伝達率は大きい。ここでは、水素側の約2倍の熱伝達率hを、用いる。
Figure JPOXMLDOC01-appb-M000007
 以下、この式にもとづき、伝熱管の外径を30mmとした場合と14mmにした場合で、必要な熱交換長さを計算した結果である。
 (a)管の外径:d=30mmの場合(管の内径10mmで、肉厚は10mm)
 熱通過率(外管基準)kは、次のようになる。
Figure JPOXMLDOC01-appb-M000008
 これにもとづき、必要な熱交換長さLHEXを、計算すると次のようになる。
Figure JPOXMLDOC01-appb-M000009
 圧力損失は、Nikuradseの式で管摩擦係数fを、計算した結果から次のように計算される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 (b)管の外径:d=14mmの場合(管の内径10mmで、肉厚は2mm)
 熱通過率(外管基準)kは、次のようになる。
Figure JPOXMLDOC01-appb-M000012
 これにもとづき、必要な熱交換長さLHEXを、計算すると次のようになる。
Figure JPOXMLDOC01-appb-M000013
 圧力損失は、Nikuradseの式で管摩擦係数を計算した結果から次のように計算される。管摩擦係数は、前述した(a)の場合と同じである。圧力損失Δpは、次のようになる。
Figure JPOXMLDOC01-appb-M000014
 この計算結果は、従来と同じ条件で計算すると、伝熱効率は優れているので、本構成の方の伝熱効率は従来のものよりよく、管路長さが短くなり、圧力損失も小さくなることが裏付けられた。図6は、この計算式にもとづき、熱交換長さを管外径の変化に応じシミュレーションして算出した結果をグラフ表示したものである。
 図7は、図6と同様に、前述の計算式にもとづき、圧力損失を管外径の変化に応じシミュレーションして算出した結果をグラフ表示したものである。この図6、図7において、管内径他の固定パラメータは、前述の数値どおりである。この図6及び図7の計算例で示したように、例えば、管径を30mmから14mmにすることで、伝熱面積は約40%になることが確認できる。
 以上、本発明の実施の形態について説明したが、本発明は、この実施の形態に限定されない。例えば、本発明の水素供給路と冷媒供給路を管体として説明したが、その形状に限定されず他の形状であってもよい。又、車両は、自動車として説明したが、トラック等であってもよい。本発明の目的、趣旨を逸脱しない範囲内での変更が可能なことはいうまでもない。
 1…水素充填システム
 2…水素製造装置
 3…バッファタンク
 4…圧縮機
 5…蓄圧器
 6…ディスペンサー
 7…水素燃料電池自動車
 8…水素タンク
 11…プレクール装置
 12…熱交換器
 22…水素供給路
 23…冷媒供給路

Claims (7)

  1.  水素を高圧貯蔵した圧力容器(5)と、
     前記圧力容器と相対的に移動可能に設けられ、前記圧力容器から前記水素を充填される可搬用圧力容器(8)と、
     前記圧力容器側に設けられ、前記圧力容器から前記可搬用圧力容器に前記水素を充填するための水素充填装置(6)と、
     前記水素充填装置に付随して設けられ前記水素を冷却するため熱交換器(12)を有する冷却装置(11)と
     からなる水素充填システムにおいて、
     前記冷却装置の熱交換器(12)は、
     前記圧力容器から前記水素充填装置へ高圧水素を供給する水素供給路(13)を有する水素供給路(22)と、
     前記水素供給体の外周又は内部に設けられ前記水素と略同圧力の冷媒とを昇圧装置(19)を介して供給する冷媒供給路(14)を有する冷媒供給路(23)と
     で構成される水素充填システムの水素用熱交換器。
  2.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記水素供給路(13)と前記冷媒供給路(14)の境界部分の供給路を形成する肉厚は、前記水素供給路(22)又は前記冷媒供給路(23)の肉厚よりも相対的に薄い肉厚構成になっていることを特徴とする水素充填システムの水素用熱交換器。
  3.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記可搬用圧力容器(8)は、車両(7)に搭載されるものであることを特徴とする水素充填システムの水素用熱交換器。
  4.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記冷却装置(11)の熱交換器(12)は、二重管構成で前記水素供給路(22)が前記冷媒供給路(23)内に埋設された構成になっていることを特徴とする水素充填システムの水素用熱交換器。
  5.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記冷却装置(11)の熱交換器(12)は、二重管構成で前記冷媒供給路(23)が前記水素供給路(23)内に埋設された構成になっていることを特徴とする水素充填システムの水素用熱交換器。
  6.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記水素供給路(22)内の水素及び前記冷媒供給体(23)内の冷媒の圧力は、70MPaであることを特徴とする水素充填システムの水素用熱交換器。
  7.  請求項1に記載された水素充填システムの水素用熱交換器において、
     前記水素供給路(22)内の水素及び前記冷媒供給体(23)内の冷媒は、供給方向が相互に逆方向に供給される構成であることを特徴とする水素充填システムの水素用熱交換器。
PCT/JP2010/067392 2009-10-05 2010-10-04 水素充填システムの水素用熱交換器 WO2011043308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10821978A EP2487401A1 (en) 2009-10-05 2010-10-04 Hydrogen heat exchanger for a hydrogen filling system
CA2776739A CA2776739A1 (en) 2009-10-05 2010-10-04 Hydrogen heat exchanger for a hydrogen filling system
US13/500,447 US20120216915A1 (en) 2009-10-05 2010-10-04 Hydrogen heat exchanger for a hydrogen filling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009231123A JP2011080495A (ja) 2009-10-05 2009-10-05 水素充填システムの水素用熱交換器
JP2009-231123 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043308A1 true WO2011043308A1 (ja) 2011-04-14

Family

ID=43856761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067392 WO2011043308A1 (ja) 2009-10-05 2010-10-04 水素充填システムの水素用熱交換器

Country Status (5)

Country Link
US (1) US20120216915A1 (ja)
EP (1) EP2487401A1 (ja)
JP (1) JP2011080495A (ja)
CA (1) CA2776739A1 (ja)
WO (1) WO2011043308A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140116663A1 (en) * 2011-06-28 2014-05-01 Taiyo Nippon Sanso Corporation Heat exchanger
US20210198095A1 (en) * 2019-12-31 2021-07-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Station for filling tanks of hydrogen-fuelled vehicles
US11713734B1 (en) * 2023-02-01 2023-08-01 GM Global Technology Operations LLC Thermally conditioned noise / vibration attenuating fuel rail chamber

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508261A (ja) * 2011-03-11 2014-04-03 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 水素充填方法及びシステム
JP2013002581A (ja) * 2011-06-20 2013-01-07 Tatsuno Corp ガス充填システム
JP5839546B2 (ja) * 2011-06-30 2016-01-06 株式会社神戸製鋼所 水素ステーション
JP2013057384A (ja) * 2011-09-09 2013-03-28 Taiyo Nippon Sanso Corp 水素ステーション
US9284178B2 (en) * 2011-10-20 2016-03-15 Rht Railhaul Technologies Multi-fuel service station
JP2013148197A (ja) * 2012-01-23 2013-08-01 Mayekawa Mfg Co Ltd ガス充填システム
JP2013231457A (ja) * 2012-04-27 2013-11-14 Taiyo Nippon Sanso Corp 水素ガス充填方法
CN107842712B (zh) * 2012-08-24 2021-10-15 奥斯康普控股公司 虚拟气态燃料管道
DE102013002431A1 (de) * 2013-02-12 2014-08-14 Linde Aktiengesellschaft Befüllung von Speicherbehältern mit einem gasförmigen, unter Druck stehenden Medium, insbesondere Wasserstoff
DE102013011052A1 (de) * 2013-07-02 2015-01-08 Linde Aktiengesellschaft Verfahren zum Ermitteln eines Wasserstofftankdrucks
FR3008472B1 (fr) * 2013-07-10 2015-07-17 Air Liquide Procede de remplissage d'un reservoir de gaz
JP2015031420A (ja) 2013-07-31 2015-02-16 株式会社神戸製鋼所 水素ガスの冷却方法及び水素ガスの冷却システム
FR3016021B1 (fr) * 2014-01-02 2016-02-05 Commissariat Energie Atomique Systeme de stockage reversible d'h2 avec reservoir contenant des hydrures metalliques, a equilibrage de pression
EP3109534B1 (en) * 2014-02-21 2022-03-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas supply system and hydrogen station
US9731594B2 (en) * 2014-08-27 2017-08-15 Oshkosh Corporation Natural gas filling system for a vehicle
JP6033827B2 (ja) * 2014-11-27 2016-11-30 株式会社前川製作所 燃料ガスの冷却部が設けられた燃料ガス充填店舗
JP6389440B2 (ja) * 2015-03-13 2018-09-12 株式会社神戸製鋼所 ガス供給システムおよびそれを備えた水素ステーション、蓄圧器の寿命判定方法、並びにガス供給システムの使用方法
JP6265166B2 (ja) * 2015-03-31 2018-01-24 富永 淳 導管からの水素漏洩監視システム
US10718468B2 (en) * 2015-04-24 2020-07-21 Cmd Corporation Method and apparatus for dispensing gaseous fuel to a vehicle
US9840413B2 (en) 2015-05-18 2017-12-12 Energyield Llc Integrated reformer and syngas separator
US9843062B2 (en) 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
DK201600136A1 (en) * 2016-03-02 2017-10-02 Nel Hydrogen As Cooling of a supply pipe in a hydrogen refueling system
JP6708505B2 (ja) * 2016-07-14 2020-06-10 株式会社日立プラントメカニクス 高圧水素の膨張タービン式充填システム
JP6652483B2 (ja) * 2016-11-07 2020-02-26 株式会社神戸製鋼所 ガス供給システム及び水素供給設備
JP6368396B2 (ja) * 2017-04-10 2018-08-01 株式会社神戸製鋼所 水素ガスの冷却方法及び水素ガスの冷却システム
SE542134C2 (en) * 2017-07-07 2020-03-03 Boh Westerlund Hydrogen refuelling station comprising a fill tank arranged with a cooling system
JP6831311B2 (ja) * 2017-09-15 2021-02-17 株式会社神戸製鋼所 ガス供給装置、およびガス供給装置の運転開始方法
CN110939860B (zh) * 2018-09-21 2021-03-16 国家能源投资集团有限责任公司 加氢站控制系统、方法以及加氢站
CN109342063B (zh) * 2018-10-05 2020-04-17 北京航天三发高科技有限公司 一种换热器热流输入温度的确定方法
US10961109B2 (en) 2018-11-16 2021-03-30 China Energy Investment Corporation Limited Fluid bypass method and system for controlling the temperature of a non-petroleum fuel
US11293595B2 (en) * 2020-04-01 2022-04-05 Mirae EHS-code Research Institute Hydrogen fueling system and method based on real-time communication information from CHSS for fuel cell
CA3185964A1 (en) * 2020-07-13 2022-01-20 Darryl E. POLLICA Hydrogen fueling systems and methods
KR102565176B1 (ko) * 2021-02-25 2023-08-11 주식회사 이앤코 하이브리드 대기식 기화기
US11287089B1 (en) * 2021-04-01 2022-03-29 Air Products And Chemicals, Inc. Process for fueling of vehicle tanks with compressed hydrogen comprising heat exchange of the compressed hydrogen with chilled ammonia
CN113503462B (zh) * 2021-07-09 2022-12-27 上海氢枫能源技术有限公司 一种移动式加氢机器人及其运行控制方法
DE102021125688A1 (de) * 2021-10-04 2023-04-06 Schmöle GmbH Wärmetauscher und Verfahren zum Betanken eines Fahrzeuges
US20230140626A1 (en) * 2021-11-04 2023-05-04 Supercool Metals LLC Bulk metallic glass structures for hydrogen applications
DE102021131243B3 (de) 2021-11-29 2023-03-09 Audi Aktiengesellschaft Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen Brennstoffzellenvorrichtung
JP2024004582A (ja) * 2022-06-29 2024-01-17 三菱重工業株式会社 水素ステーション及び水素ステーション用冷凍機システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304703A (ja) * 2000-04-18 2001-10-31 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2005069330A (ja) 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 水素供給ステーション
JP2006142924A (ja) 2004-11-18 2006-06-08 Toyota Industries Corp 水素燃料自動車における水素タンク冷却装置
JP2006316817A (ja) * 2005-05-10 2006-11-24 Jfe Engineering Kk 水素の供給方法、水素の供給装置
JP2007309375A (ja) 2006-05-17 2007-11-29 Honda Motor Co Ltd 高圧ガス充填方法、高圧ガス充填装置及びこの高圧ガス充填装置を搭載した車両
JP2008164177A (ja) 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
US20080302504A1 (en) * 2007-06-11 2008-12-11 Kiyoshi Handa Station Side Cooling for Refueling Vehicle Storage Tanks with High Pressure Fuel
JP2009127813A (ja) 2007-11-27 2009-06-11 Taiyo Nippon Sanso Corp 水素ガス供給方法およびその供給設備

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756032A (en) * 1952-11-17 1956-07-24 Heater
JP2624649B2 (ja) * 1986-05-30 1997-06-25 株式会社東芝 二重金属管等の残留応力改善方法
JPH05164482A (ja) * 1991-12-12 1993-06-29 Kobe Steel Ltd 液化天然ガスの気化装置
US7757726B2 (en) * 2005-05-06 2010-07-20 Kiyoshi Handa System for enhancing the efficiency of high pressure storage tanks for compressed natural gas or hydrogen
JP2008004318A (ja) * 2006-06-21 2008-01-10 Toyota Motor Corp 燃料電池の配管構造
JP5067524B2 (ja) * 2006-07-26 2012-11-07 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
WO2008075509A1 (ja) * 2006-12-19 2008-06-26 Taiyo Nippon Sanso Corporation 熱交換器
US20080264514A1 (en) * 2006-12-19 2008-10-30 Pascal Tessier System and Method for Filling a Hydrogen Storage Vessel at Enhanced Flow Rates
EP2224519A1 (en) * 2009-02-16 2010-09-01 HyET Holding B.V. Hydrogen storage vessel and fuel cell apparatus comprising an ionic decompression cell
JP5525188B2 (ja) * 2009-06-09 2014-06-18 本田技研工業株式会社 水素充填装置及び水素充填方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304703A (ja) * 2000-04-18 2001-10-31 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2005069330A (ja) 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 水素供給ステーション
JP2006142924A (ja) 2004-11-18 2006-06-08 Toyota Industries Corp 水素燃料自動車における水素タンク冷却装置
JP2006316817A (ja) * 2005-05-10 2006-11-24 Jfe Engineering Kk 水素の供給方法、水素の供給装置
JP2007309375A (ja) 2006-05-17 2007-11-29 Honda Motor Co Ltd 高圧ガス充填方法、高圧ガス充填装置及びこの高圧ガス充填装置を搭載した車両
JP2008164177A (ja) 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
US20080302504A1 (en) * 2007-06-11 2008-12-11 Kiyoshi Handa Station Side Cooling for Refueling Vehicle Storage Tanks with High Pressure Fuel
JP2009127813A (ja) 2007-11-27 2009-06-11 Taiyo Nippon Sanso Corp 水素ガス供給方法およびその供給設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Heisei 20 Nendo Obei ni Okeru Suiso Station no Gijutsu Doko Chosa Hokokusho", March 2009 (2009-03-01), pages 29 - 43, XP008155778, Retrieved from the Internet <URL:URL:http://www.jhfc.jp/data/report/2008/pdf/eaa_station_report_01.pdf> [retrieved on 20101015] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140116663A1 (en) * 2011-06-28 2014-05-01 Taiyo Nippon Sanso Corporation Heat exchanger
US20210198095A1 (en) * 2019-12-31 2021-07-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Station for filling tanks of hydrogen-fuelled vehicles
US11713734B1 (en) * 2023-02-01 2023-08-01 GM Global Technology Operations LLC Thermally conditioned noise / vibration attenuating fuel rail chamber

Also Published As

Publication number Publication date
JP2011080495A (ja) 2011-04-21
US20120216915A1 (en) 2012-08-30
EP2487401A1 (en) 2012-08-15
CA2776739A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
WO2011043308A1 (ja) 水素充填システムの水素用熱交換器
US9458968B2 (en) Hydrogen dispensing process and system
CN109690169B (zh) 一种使用液氢的氢燃料充装系统及其氢燃料供应方法
CA2513745A1 (en) Transportable hydrogen refueling station
JP4913427B2 (ja) 水素ガスの充填方法及び装置
US20080314050A1 (en) No-vent liquid hydrogen storage and delivery system
EP2124008A1 (en) Heat exchanger
JP2013504015A (ja) 貯蔵タンクに、圧縮された媒体を充填するための装置
CN216079287U (zh) 一种低温高压氢混合加注型加氢站
JP2011074925A (ja) 水素ガスの充填方法及び充填装置
JP2013148197A (ja) ガス充填システム
CN102027236A (zh) 用于泵送低温流体的装置和方法
JP2013231457A (ja) 水素ガス充填方法
JP4554966B2 (ja) 水素ガス充填方法及び水素ガス充填装置
JP2008267496A (ja) 水素ガス冷却装置
CN115419829A (zh) 一种用于液氢发动机测试的高压液氢输送系统及其方法
CN114322349A (zh) 耦合直流的回热式制冷机冷却的低温储存系统
KR20060130283A (ko) 저온액화가스의 충전방법
CN115355440A (zh) 一种低温高压氢混合加注型加氢站
CN103403437A (zh) 液化气体的再气化装置及再气化气体制造方法
JP2008164177A (ja) 熱交換器
JP2006177537A (ja) 高圧タンクシステム
JP2008064160A (ja) 圧縮水素ガス充填装置及び圧縮水素ガス充填方法
JP2007071266A (ja) 水素自動車への液化水素の供給、充填方法およびその供給装置
CN115247643A (zh) 一种液氢增压泵性能测试平台及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2776739

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010821978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500447

Country of ref document: US