WO2011040285A1 - Dna構築物およびそれを用いた組み換えcho細胞の製造方法 - Google Patents
Dna構築物およびそれを用いた組み換えcho細胞の製造方法 Download PDFInfo
- Publication number
- WO2011040285A1 WO2011040285A1 PCT/JP2010/066317 JP2010066317W WO2011040285A1 WO 2011040285 A1 WO2011040285 A1 WO 2011040285A1 JP 2010066317 W JP2010066317 W JP 2010066317W WO 2011040285 A1 WO2011040285 A1 WO 2011040285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vector
- gene
- cho
- dna
- hprt
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title description 30
- 101150003028 Hprt1 gene Proteins 0.000 claims abstract description 116
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 96
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims abstract description 86
- 239000012634 fragment Substances 0.000 claims abstract description 86
- 238000002744 homologous recombination Methods 0.000 claims abstract description 45
- 230000006801 homologous recombination Effects 0.000 claims abstract description 45
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 26
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 claims abstract description 3
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 claims abstract description 3
- 239000013598 vector Substances 0.000 claims description 182
- 210000004027 cell Anatomy 0.000 claims description 103
- 210000000349 chromosome Anatomy 0.000 claims description 19
- 230000010354 integration Effects 0.000 claims description 17
- 239000013600 plasmid vector Substances 0.000 claims description 15
- 230000035897 transcription Effects 0.000 claims description 13
- 238000013518 transcription Methods 0.000 claims description 13
- 239000003550 marker Substances 0.000 claims description 9
- 238000012258 culturing Methods 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 230000036961 partial effect Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 claims description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 210000004507 artificial chromosome Anatomy 0.000 claims description 2
- 239000003114 blood coagulation factor Substances 0.000 claims description 2
- 239000013601 cosmid vector Substances 0.000 claims description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 claims description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 108020004414 DNA Proteins 0.000 description 137
- 108091008146 restriction endonucleases Proteins 0.000 description 49
- 238000006243 chemical reaction Methods 0.000 description 46
- 230000014509 gene expression Effects 0.000 description 42
- 108091028043 Nucleic acid sequence Proteins 0.000 description 41
- 239000013612 plasmid Substances 0.000 description 25
- 238000010586 diagram Methods 0.000 description 19
- 239000002609 medium Substances 0.000 description 16
- 238000012408 PCR amplification Methods 0.000 description 14
- 230000000692 anti-sense effect Effects 0.000 description 13
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 12
- 238000002105 Southern blotting Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- 229930193140 Neomycin Natural products 0.000 description 10
- 210000001766 X chromosome Anatomy 0.000 description 10
- 229960004927 neomycin Drugs 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 101100277337 Arabidopsis thaliana DDM1 gene Proteins 0.000 description 8
- 108700024394 Exon Proteins 0.000 description 8
- 101100043657 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CHA1 gene Proteins 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 210000004748 cultured cell Anatomy 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 238000010363 gene targeting Methods 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 230000010473 stable expression Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 5
- 230000016784 immunoglobulin production Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000005030 transcription termination Effects 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000012136 culture method Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 238000003757 reverse transcription PCR Methods 0.000 description 4
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 210000001726 chromosome structure Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 108700026220 vif Genes Proteins 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 101150094949 APRT gene Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000007399 DNA isolation Methods 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 238000007845 assembly PCR Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical group C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000011891 EIA kit Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- -1 cationic lipid Chemical class 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000008775 paternal effect Effects 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000033885 plasminogen activation Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/46—Vector systems having a special element relevant for transcription elements influencing chromatin structure, e.g. scaffold/matrix attachment region, methylation free island
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/80—Vector systems having a special element relevant for transcription from vertebrates
- C12N2830/85—Vector systems having a special element relevant for transcription from vertebrates mammalian
Definitions
- the present invention relates to a DNA construct useful for efficient production of recombinant CHO cells and a method for producing recombinant CHO cells using the same.
- Recombinant protein production systems using mammalian cells as hosts are similar to those produced in vivo by post-translational modifications such as glycosylation, folding, and phosphorylation of proteins derived from higher animals such as humans. It is possible to apply.
- This post-translational modification is necessary for reproducing the inherent physiological activity of a protein with a recombinant protein, and in the production system of a recombinant protein used for a pharmaceutical or the like that particularly requires such physiological activity, Protein production systems using mammalian cell hosts are often used.
- the CHO-DHFR system a clone in which the copy number of the plasmid vector incorporated in the chromosome is amplified is selected by combining a selection marker contained in the plasmid vector and an appropriate drug selection process.
- the CHO-DHFR system can select a cell clone having an expression level increased several tens of times by a two-step selection process using the selective drug methotrexate.
- the protein production system does not necessarily increase the expression level of the target protein in proportion to the number of copies of the simply amplified plasmid vector, and it takes a long time to select a cell clone with an increased expression level. It is known that there are problems. Furthermore, it has been reported that, after selection of cell clones with increased expression levels, the culturing of the selected cell clones in a medium that does not contain a selection agent is continued to confirm the decrease or disappearance of the expression level in most clones. (Patent Document 1: Special Table 2002-541854, Non-Patent Document 1: Kim, NS (1998) Biotechnol. Bioeng., 60, 679-688.).
- the target protein production system using mammalian cells as described above generally introduces a vector containing the target protein gene into a host cell, selects a cell clone in which the vector is integrated into the chromosome, and further selects the cell. It is produced by culturing clones under appropriate culture conditions.
- This integration into the chromosome is an event that can occur at random positions, and the expression level of the target protein varies depending on the resulting cell clone.
- Some cell clones also have problems such as not expressing the target protein.
- the method of selecting many clones by the expression level of a recombinant protein, and selecting a preferable clone is taken.
- this screening process is very laborious and labor intensive.
- Various processes have been reported for avoiding such trouble and quickly selecting a preferred clone.
- Patent Document 2 Japanese Patent Publication No. 9-510865.
- Homologous recombinant cell clones are generated in a pool of recombinant cell clones by a vector carrying a sequence having a base sequence homologous to the immunoglobulin ⁇ 2A locus.
- the target chromosome position is identified in advance as a position that can give a higher expression level when a foreign gene is integrated compared to random integration. Therefore, the presence of homologous recombinant cell clones having a high expression level in the pool of recombinant cell clones to be screened at a certain frequency makes it possible to reduce the labor for screening according to the expression level. .
- Patent Document 3 Japanese Translation of PCT International Publication No. 2001-516221.
- a clone having a high expression level of a marker gene present in the marking plasmid is selected from a cell clone population in which the marking plasmid is randomly recombined in advance.
- a target protein-producing clone that inherits the expression level of the marker gene by selecting a cell clone in which site-specific recombination has occurred between a plasmid vector having the target protein gene and a randomly incorporated marking plasmid sequence Is obtained.
- the above technique is advantageous in reducing labor required for selection of clones with high expression levels.
- the selected drug not only increases the culture cost, but also increases the cost of the purification process that is performed to avoid the risk of contamination with pharmaceuticals. Therefore, development of a cell clone production technique that can stably maintain the expression level without adding a selective agent is strongly desired.
- Non-patent Document 3 Barnes, L. M. et al. (2003) Biotechnology and Bioengineering, 81, 631. -639.).
- the hprt gene is known as one of the housekeeping genes existing in the long arm of the X chromosome of humans, etc., and the cells after knockout of the hprt gene are the drug 6-Thioguanime Since it shows resistance to (6TG) and G418, negative selection is easily performed.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2007-325571
- Non-Patent Document 4 Koyama Y Et Al., (2006) Biotechnology And Bioengineering, 95, 1052-1060.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2007-325571
- Non-Patent Document 4 Koyama Y Et Al., (2006) Biotechnology And Bioengineering, 95, 1052-1060.
- Non-patent Document 5 Porter C.I. G. Itzaki J. E, Eur. J. Biochem 218, 273-281 (Non-patent Document 5) and Hiroshima University Atomic Radiation Medical Research Institute Annual Report No. 44 (2003) (Non-patent Document 6) compare ES cells with HT1080 cells for gene targeting. It has been reported that the frequency of gene targeting is very low in somatic cell-derived cultured cells.
- CHO cells are used as host cells for antibody pharmaceutical protein production systems, and it is required to produce high-level and stable protein production systems using CHO cells.
- Non-Patent Document 11 PNAS, 88, 9488-9502 (1991)
- Non-Patent Document 12 Somatic Cell. Mol. Genet., 19, 363-375
- Non-Patent Document 13 PNAS, 86, 4574-4578 (1989)
- a cell line in which the aprt gene is present only on one chromosome was used as a host, and a homologous DNA fragment of 2.6 kbp to 4 kbp was used as a homology arm.
- a homologous DNA fragment of 2.6 kbp to 4 kbp was used as a homology arm.
- several clones to about 15 clones per 10 7 cells were obtained. Has been obtained.
- CHO cells Since CHO cells are female-derived cells, they have two X chromosomes and two hprt loci. Therefore, CHO cells become resistant to selective drugs such as 6TG by incorporating foreign genes into the hprt locus of both chromosomes. However, the probability of recombination occurring in two chromosomes is usually lower than in the case of male-derived cells. For example, Koyama Y Et Al.
- Non-patent Document 4 (2006) Biotechnology And Bioengineering, 95, 1052-1060 (Non-patent Document 4), assuming that the probability of recombination on a single chromosome is 10 ⁇ 6 with reference to the recombination efficiency of the male-derived HT1080 cell line to the hprt locus Then, the theoretical probability that occurs simultaneously on two chromosomes is 10-12 .
- Non-patent Document 7 Datt, A. et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 9757-9762
- Non-Patent Document 8 Selva E. M. et al., (1995) Genetics.
- Patent Document 9 Riele H. et al., (1992) Proc. Natl. Acad. Sci.
- Non-Patent Document 10 Deng C, D, Capecchi M, R (1992) Mol.Cell.Biol. 12, 3365-337 1).
- the frequency of obtaining recombinant cells may be lower than that of cultured cells derived from males due to the influence of polymorphism of the X chromosome. Therefore, there is still a need to create a technique for efficiently producing recombinant CHO cells that express a target protein gene.
- an object of the present invention is to provide a DNA construct useful for efficient production of recombinant CHO cells and a method for producing recombinant CHO using the same.
- the DNA construct according to the present invention is a DNA construct comprising a first homologous DNA fragment, a target protein gene, and a second homologous DNA fragment from the 5 ′ end to the 3 ′ end,
- the first homologous DNA fragment and the second homologous DNA fragment have a homology capable of homologous recombination with a portion of the hypoxanthine-phosphoribosyltransferase enzyme ( hprt ) locus of the CHO cell genome, and have 1 kbp or more It has a chain length.
- the method for producing recombinant CHO cells according to the present invention comprises introducing a vector comprising the above DNA construct into CHO cells.
- recombinant CHO cells expressing the target protein gene can be obtained at a remarkably high frequency.
- FIG. 2 is a schematic diagram of the hprt locus of the CHO-K1 cell line in Example 1.
- FIG. Numbers 1 to 9 represent exons 1 to 9 of the hprt gene, and the sequence between each exon represents introns 1 to 8.
- 3 is a schematic diagram of a vector for homologous recombination used in Example 2.
- FIG. (A) is a vector having a homologous DNA fragment derived from the hprt gene of CHO cells.
- (B) is a vector having a homologous DNA fragment derived from human HT1080 cells.
- FIG. (A) is a schematic diagram showing the relationship between the hprt gene region of CHO cells, the vector for homologous recombination, and the DNA used as an index for genomic PCR of recombinant CHO cells in Example 4.
- FIG. (B) and (C) show the PCR results of Example 4.
- (A) is a schematic diagram showing the relationship between the hprt gene region of CHO cells, the vector for homologous recombination, and the DNA used as an indicator of Southern hybridization in Example 5.
- FIG. (B) shows the result of Southern hybridization in Example 5. The antibody production amount by the recombinant CHO cell acquired in Example 6 is shown.
- FIG. 6 is a schematic diagram of a vector for homologous recombination having a 2.5 kbp homologous DNA fragment used in Example 7.
- A is a schematic diagram showing the relationship between the hprt gene region of CHO cells, the vector for homologous recombination, and the DNA used as an indicator of genomic PCR of recombinant CHO cells in Example 7.
- FIG. (B) and (C) show the PCR results of Example 7.
- A) is a schematic diagram showing the relationship between the hprt gene region of CHO cells, the vector for homologous recombination, and the DNA used as an indicator of Southern hybridization in Example 7.
- FIG. (B) shows the results obtained from Southern hybridization in Example 7.
- FIG. 10 is a schematic diagram of a vector for homologous recombination having a 2.5 kbp homologous DNA fragment and a CHO endogenous promoter used in Example 9. The antibody productivity when the recombinant CHO cells obtained in Example 9 are maintained for a long period of time is shown.
- FIG. 1 is a schematic diagram of a vector for homologous recombination having a 2.5 kbp homologous DNA fragment used in Example 10.
- FIG. It is the schematic diagram of the CHO recombinant vector which has MAR derived from the human hprt gene intron used in Example 11, and the chromosome in which the vector was integrated into the CHO hprt locus.
- A shows a vector in which MAR is not transcribed and a chromosome structure after integration.
- B shows a vector having a structure in which MAR is transcribed by transcription of the hprt locus, and a chromosome structure after integration.
- FIG. 10 shows a vector in which MAR is transcribed by the CMV promoter and a chromosome structure after integration.
- the stability in the antibody production of the CHO cell acquired by the CHO recombinant vector which has MAR used in Example 11 is shown.
- the DNA construct according to the present invention comprises two homologous DNA fragments having homology capable of homologous recombination with a part of the hprt locus in the CHO cell genome, each having a chain length of 1 kbp or more. This is a feature.
- a CHO cell has two X chromosomes
- a recombinant CHO cell can be obtained at a remarkably high frequency.
- 130 recombinant cells are obtained per 1 ⁇ 10 ⁇ 7 . This result can be said to be a surprising fact considering that the theoretical probability that recombination occurs simultaneously at the two hprt loci of two chromosomes was predicted to be 10 ⁇ 12 as described above.
- the DNA construct according to the present invention uses a part of the hprt locus as a target region for homologous recombination.
- a part of the hprt locus as a target region is advantageous for stably expressing the target protein gene at a high level.
- the target region of the present invention may be appropriately determined in the hprt locus as long as expression of the target protein gene is not hindered.
- the target region is preferably a region containing at least a part of the intron of the hprt gene.
- the intron has been determined by the present inventors for its base sequence. Specifically, the intron has the base sequence represented by any one of SEQ ID NOs: 15 to 22, which will be described later with reference to FIG. ⁇ 8.
- target region of the present invention may include all or part of the exons adjacent to the intron.
- specific examples of such exons include exons 1 to 9 in FIG. 1.
- These base sequences access, for example, a known database such as the National Center for Biotechnology Information. Can be obtained.
- the DNA construct according to the present invention having such a homologous DNA fragment can be incorporated into a desired target region in the hprt locus. Examples of this integration include (1) a type in which an exon is disrupted by incorporation of a DNA construct, (2) a type in which one or more exons are deleted by incorporation of a DNA construct, and (3) an exon by incorporation of a DNA construct.
- the DNA fragment of the present invention is preferably homologous to a region containing at least a part of the intron of the hprt gene, as described above, considering the chain length necessary for homologous recombination. Therefore, according to one aspect of the present invention, the first homologous DNA fragment or the second homologous DNA fragment of the present invention comprises the base sequence described in any of SEQ ID NOs: 15 to 22 or a partial sequence thereof. It is supposed to be.
- the lower limit of the chain length of the partial sequence is 1 bp, and the upper limit thereof can be appropriately adjusted within the range of the chain length of the base sequence described in any of SEQ ID NOs: 15 to 22.
- the homology between the homologous DNA fragment and the hprt locus is appropriately determined in view of the efficiency of homologous recombination, but is preferably 99.0% or more, more preferably 99.9% or more, and still more preferably Is 100%. Such homology can be appropriately determined by, for example, analysis using a DNA sequencer or the like.
- the homologous DNA fragment has a chain length of 1 kbp or more, and such a chain length is preferable for achieving homologous recombination at a remarkable high frequency of the DNA construct.
- the lower limit of the chain length of the homologous DNA fragment is preferably 2.5 kbp or more.
- the upper limit of the chain length of the homologous DNA fragment is 7.5 kbp or less, preferably 5 kbp or less.
- the range of the chain length of the homologous DNA fragment can be appropriately combined with the above upper limit value and lower limit value.
- it is preferably 1 kbp or more and 7.5 kbp or less, more preferably 1 kbp or more and 5 kbp or less, and most preferably 2.5 kbp or more and 5 kbp or less. If the chain length is within this range, it is possible to maintain a favorable frequency of obtaining recombinant cells while achieving homologous recombination at a significantly high frequency of the DNA construct.
- the target protein gene preferably encodes a protein useful as a medicine.
- the target protein gene can be suitably used, whether it is a sequence derived from cDNA or a structural gene containing a natural intron derived from genomic DNA.
- the target protein includes antibodies, enzymes, cytokines, hormones, coagulation factors, regulatory proteins, receptors, etc., but preferably monoclonal antibodies, polyclonal antibodies, erythropoietin, tissue-specific plasminogen activation Factor or granulocyte colony activating factor.
- the target protein gene is preferably incorporated into the hprt locus as an expression unit containing elements necessary for expression such as a promoter sequence and a transcription termination signal sequence. Therefore, according to one embodiment of the present invention, the target protein gene is arranged in the DNA construct as an expression unit containing at least a promoter sequence and a transcription termination signal sequence.
- the CHO cell endogenous element may be used as an element necessary for expression, and such an embodiment is also included in the present invention.
- the promoter and transcription termination signal may be appropriately determined according to the type and nature of the target protein gene, and suitable examples of such promoter sequences include CMV promoter and SV40 promoter. Further, preferable examples of the transcription termination signal sequence include BGH poly A signal sequence and SV40 poly A signal sequence.
- Examples of other elements necessary for the expression of the promoter sequence and the transcription termination signal sequence include, for example, regulatory elements for efficiently expressing the target gene (eg, enhancer, IRES (internal ribosome entry site) sequence, LoxP sequence) And a recombinant enzyme recognition sequence such as an FRT sequence) may be appropriately selected and used. Depending on the nature of the regulatory element, it can be placed in an appropriate position in the expression unit. These elements necessary for expression are appropriately selected in consideration of the productivity of the target protein.
- the DNA construct preferably comprises a positive selection marker gene.
- the positive selection marker gene can be appropriately placed in the DNA construct as long as homologous recombination is not prevented.
- the positive selection marker gene include a neomycin resistance gene, a hygromycin resistance gene, a zeocin resistance gene, a dihydrofolate reductase gene, and a glutamine synthetase gene.
- both positive selection and negative selection by inactivation of the hprt gene can be applied in the selection of recombinant CHO cells, which is advantageous for greatly reducing false positive clones.
- the DNA construct according to the present invention can be incorporated into a vector and introduced into the CHO cell genome.
- a vector system is not particularly limited as long as the DNA construct can be integrated into the CHO cell genome by homologous recombination reaction.
- Preferred examples include a plasmid vector, a cosmid vector, a phage vector, and an artificial chromosome vector.
- the DNA construct according to the present invention and the vector containing the DNA construct are suitably constructed by combining a restriction enzyme cleavage reaction and a ligation reaction.
- a recognition sequence of a restriction enzyme is contained at both ends of each constituent unit, a cleavage reaction is performed with the restriction enzyme for the recognition sequence, and unnecessary DNA sequences (such as an operation sequence in E. coli) are gel-cut out.
- a DNA construct and a vector containing the same can be constructed by performing a ligation reaction of the obtained unit after removal by treatment.
- the vector DNA constructed by the ligation reaction can be purified by phenol / chloroform extraction or the like, and can be propagated in host cells such as Escherichia coli and yeast selected in consideration of the type of vector.
- the vector according to the present invention preferably carries the CHF1 ⁇ promoter operably linked to the target protein gene. Expression of a foreign gene integrated into the CHO hprt locus is caused by inactivation of the promoter.
- stable expression at the CHO hprt gene locus becomes possible.
- the vector according to the present invention transcribes the nuclear / matrix attachment region (MAR) derived from the first intron of the human hprt gene into the chromosomal site by transcription originally occurring at the integration site after the vector is integrated into the chromosome. It is preferable to hold the structure.
- MAR nuclear / matrix attachment region
- Patent Document 4 WO 2004/022741 and Non-Patent Document 5
- MAR nucleus / matrix adhesion region
- the hprt gene is a gene that exists universally in many mammals including CHO. Since the hprt locus of CHO is presumed to have a high degree of difficulty in selecting integration cells, no examples of its use as a vector integration site are known. A person skilled in the art normally considers that when a foreign gene is integrated into the hprt locus of CHO, it can be stably expressed as in human cells. However, the intron sequence at the hprt locus of CHO is completely different from the human hprt gene, and the surprising fact that MAR does not exist in the intron has been revealed by the present inventors for the first time. Actually, the foreign gene integrated into the hprt locus of CHO was unable to be stably expressed as shown in Example 11.
- Non-Patent Document a prior example in which MAR is incorporated into a vector and randomly incorporated into a CHO chromosome or held as an extrachromosomal plasmid to achieve partial stabilization is known (Non-Patent Document). 14: Mol Gen.
- Non-Patent Document 14 Molecular Biology Reports, 31, 85-90 (2004).
- the MAR itself is transcribed into a vector at a position where it is not transcribed (Non-Patent Document 14), or the MAR itself is also transcribed by a promoter placed in expectation of transcription of the target protein gene (Non-Patent Document 14). Reference 15).
- Example 11 which will be described later, the structure of hprt loci of CHO is less effective and the result is that it is insufficient for long-term stable expression.
- the structure is such that the MAR mounted on the vector is transcribed only by transcription originally occurring at the vector integration site. It was revealed that it was necessary.
- the recombinant CHO cell according to the present invention can be preferably produced by introducing the above vector into a CHO cell. Therefore, the recombinant CHO cell according to the present invention has a foreign target protein gene integrated at the hprt locus. According to a preferred embodiment of the present invention, the function of the hprt gene is inactivated in the recombinant CHO cell. Such recombinant CHO cells are advantageous in stably producing a target protein such as an antibody at a high level.
- a generally used method can be preferably used. Examples include calcium phosphate method, electroporation method, microinjection method, DEAE-dextran method, method using liposome reagent, lipofection method using cationic lipid, and the like.
- the vector when it is circular, it may be linearized by a known method and introduced into cells.
- site-specific introduction systems using recombinant enzymes such as the Cre / LoxP system and the Flp / FRT system may be applied as appropriate, taking into account the efficiency of obtaining recombinant cells.
- site-specific introduction systems using recombinant enzymes such as the Cre / LoxP system and the Flp / FRT system may be applied as appropriate, taking into account the efficiency of obtaining recombinant cells.
- Cre / LoxP system and the Flp / FRT system
- Such an embodiment is also included in the present invention.
- the selection step can be performed by negative selection based on inactivation of the hprt gene.
- cell selection can be performed with high accuracy by combining negative selection and positive selection.
- a promoter trap method In addition to the above selection method, a promoter trap method, a poly A trap method, or the like may be used in appropriate combination.
- serum-free culture is also possible by obtaining recombinant CHO cells and acclimatizing them to a Chemical Defined medium. Such acclimation conditions can be appropriately determined according to the state of the recombinant cells.
- Method for producing a target protein prepared above recombinant CHO cells, comprising to produce the protein of interest by culturing the cells, the method for producing a target protein are provided.
- the target protein can be obtained efficiently and stably.
- a known medium may be appropriately selected according to the state of the recombinant CHO cells, but a serum-free medium is preferable.
- the culture medium is preferably a medium to which a selective agent is not added in consideration of culture cost and purification cost.
- Preferable examples of the medium include Chemical Defined medium.
- the culture method known methods such as a batch culture method, a fed-batch culture method, and a reflux culture method can be applied.
- the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
- the reaction conditions such as restriction enzyme reaction, PCR reaction, ligation reaction and the like are the reaction conditions recommended by the manufacturer, or Molecular Cloning 2nd Edition; Sambrook et al. , Cold Spring Harbor Laboratory Press.
- the DNA sequence was determined using the DNA sequencer (310 Genetic Analyzer Applied BioSystems, Inc.).
- the homology arms 1 and 2 shown below correspond to the first and second homologous DNA fragments of the present invention, respectively.
- Example 1 Acquisition of hprt locus DNA sequence information of CHO cells
- a Chinese hamster oocyte cell line CHO-K1 cell line (Cell No; JCRB9018) obtained from the JCRB cell bank was prepared as an AMEM medium (composition: Advanced MEM (GIBCO), 5 % [V / v] FBS, 1 ⁇ GlutaMAX (GIBCO)), and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ). The obtained culture broth was centrifuged to obtain a CHO-K1 cell pellet. This pellet was treated with DNA Isolation Kit for Cells and Tissues (Roche Diagnostics KK) to obtain genomic DNA.
- AMEM medium composition: Advanced MEM (GIBCO), 5 % [V / v] FBS, 1 ⁇ GlutaMAX (GIBCO)
- the obtained culture broth was centrifuged to obtain a CHO-K1 cell pellet. This pellet was treated with DNA Isolation Kit for Cells and Tissues
- Fragment 1 sense primer 5'-tctgcaggct tcctctcac accg-3 '(SEQ ID NO: 1)
- Fragment 1 antisense primer 5'-acatgtcaag gcaacgccat ttcca -3 '(SEQ ID NO: 2)
- Fragment 2 sense primer 5'-tggaaatggc gttgccttga catgt -3 '(SEQ ID NO: 3)
- Fragment 2 antisense primer 5'- caccttttcc aaatcctcga -3 '(SEQ ID NO: 4)
- Fragment 3 sense primer 5'- agcttatgct ctgatttgaa atcagctg -3 '(SEQ ID NO: 5)
- Fragment 3 antisense primer 5'-cttcagtctg ataaaatcta cagtca
- intron 1 located between exon 1 and exon 2 of the hprt locus of the CHO-K1 cell line
- intron 2 located between exon 2 and exon 3
- Intron 3 located between exon 3 and exon 4
- Intron 4 located between exon 4 and exon 5
- Intron 5 located between exon 5 and exon 6
- Intron 6 located between exon 6 and exon 7 (SEQ ID NO: 20)
- intron 7 located between exon 7 and exon 8 SEQ ID NO: 21
- intron 8 located between exon 8 and exon 9 SEQ ID NO: 20
- Example 2 Construction of targeting vector
- a vector represented by FIG. 1kx2 antibody vector
- FIG. 1kx2 antibody vector For comparison, the homologous DNA fragment derived from the human hprt gene sequence was replaced with the homologous DNA fragment derived from the hprt gene sequence of the CHO cell, and is represented by FIG. 2 (B) having the same structure as the CHO 1kx2 antibody vector.
- Vector (HT1080 homology arm vector) was constructed.
- HA1 and HA2 were set to sequences homologous to the region containing exon 3 of the hprt gene as shown in FIG. 3 described later.
- the primer sequences used in the PCR reaction are as shown below.
- HA1 sense primer 5'-CCTGCAGGTCGCGATTGGTACTTGTTCAGCTTTATTCAAG-3 '(SEQ ID NO: 23)
- HA1 antisense primer 5'-GTCGACAAGGACGCGTTCTGATAAAATCTACAGTCATAGGA-3 '(SEQ ID NO: 24)
- HA2 sense primer 5'-GTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCTCCGGAGACTGAAGAGCTATTGTGTGAGTAT-3 '(SEQ ID NO: 25)
- HA2 antisense primer 5'-ACATGTTCTCTTAAGTCGCGAAGTAGTGTTATGATGTATGGGCATA-3 '(SEQ ID NO: 26)
- restriction enzyme Sse 8387I and Nru I recognition sites were added to the 5 ′ end of the HA1 sense primer.
- the recognition site of Sal I and Mlu I is at the 5 ′ end of the HA1 antisense primer
- the recognition site of Sal I and Acc III is at the 5 ′ end of the HA2 sense primer
- the 5 ′ end of the HA2 antisense primer is at the 5 ′ end.
- Pci I and Nru I recognition sites were added, respectively.
- Ecolisense primers 5'-ACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAAC-3 '(SEQ ID NO: 27)
- Ecoli antisense primers 5'-CCTGCAGGGACGTCAGGTGGCACTTTTCGGGGAAATGTGC-3 '(SEQ ID NO: 28)
- DNA sequences containing HA1, HA2, and ori sequences and ampicillin resistance gene were each cloned by PCR reaction. These three DNA sequences were cleaved with restriction enzymes Pci I, Sse 8387I and Sal I, and ligation reaction was performed to obtain a pHA12 plasmid vector. Next, the pHA12 plasmid vector was cleaved with restriction enzymes Mlu I and Acc III to obtain DNA sequence 1 in which HA2, a DNA sequence containing an ori sequence and an ampicillin resistance gene, and HA1 were linked in order from the 5 ′ end. .
- the p23HA12 plasmid vector was cleaved with Mlu I and Bam] HI, and a DNA fragment obtained by annealing linker 2-s oligo and linker 2-a oligo was inserted to obtain basic vector II.
- Linker 2-s oligo 5'-CGCGTatcTCTAGAataATCGATagaAAGCTTacaG-3 '(SEQ ID NO: 29)
- Linker 2-a oligo 5'-GATCCtgtAAGCTTtctATCGATtatTCTAGAgatA-3 '(SEQ ID NO: 30)
- a DNA sequence 3 (an expression cassette containing SV40, neoR, synthetic polyA) containing the SV40 promoter, polyA signal sequence and neomycin resistance gene is obtained by PCR reaction. Amplified.
- the primer sequences used for the PCR reaction are as follows. In this PCR reaction, a restriction enzyme Xba I recognition site was added to the 5 'end of the sense primer, and a synthetic poly A and Cla I recognition site was added to the 3' end.
- neoR sense primer 5'-ccttTCTAGActtctgaggcggaaagaacc-3 '(SEQ ID NO: 31)
- neoR antisense primer 5'-cttATCGATtCACACAAAAAACCAACACACAGATGTAATGAAAATAAAGATATTTTATTgtgggcgaagaactccagca-3 '(SEQ ID NO: 32)
- the basic vector II was cleaved with restriction enzymes Xba I and Cla I, and the DNA sequence 3 was ligated to obtain a basic vector + NeoR plasmid.
- IGH-3A21s primer 5'-TAAAAGGTGTCCAGGATGTGCAGTTTCAGG -3 '(SEQ ID NO: 33)
- IGH-3A21a1 primer 5′-GAGGCCGATGAAACAGTGACCAGAGTCCCT -3 ′ (SEQ ID NO: 34)
- RT-PCR was performed using One-step RT-PCR kit (QIAGEN) using RNA extracted from RPMI8226 cultured cells with ISOGEN (Nippon Gene) as a template, and using the obtained mRNA as a template, the constant region was designated as IGH-Cs, PCR amplification was performed with the IGH-Ca primer set to obtain DNA sequence 5.
- QIAGEN One-step RT-PCR kit
- ISOGEN Natural Gene
- IGH-Cs primer 5'-CATCGGCCTCCACCAAGGGCCCATCGGTCT-3 '(SEQ ID NO: 35)
- IGH-Ca primer 5′-TTAAGCGGCCGCTCATTTACCCGGAGACAG-3 ′ (SEQ ID NO: 36)
- PCR amplification was performed with the IGH-LS and IGH-Va primer sets using the DNA sequence 4 as a template to obtain a DNA sequence 6 to which a secretion signal was added.
- IGH-LS primer 5'-GGTCGCCACCATGGAGTTTGGACTGAGCTGGGTTTTCCTTGTTGCTATTTTAAAAGGTGTCCAGGATGTG-3 '(SEQ ID NO: 37)
- IGH-Va primer 5'-GCCCTTGGTGGAGGCCGATGAAACAGTGAC-3 '(SEQ ID NO: 38)
- DNA sequence 5 and DNA sequence 6 as a template, assembly PCR was performed with IGH-Vs and IGH-Ca primer sets to obtain DNA sequence 7 in which both sequences were linked.
- IGH-Vs primer 5'-TTCCGGTACCGGTCGCCACCATGGAGTTTG -3 '(SEQ ID NO: 39)
- a pmaxGFP plasmid (amaxa) was subjected to a mutagenesis PCR reaction using Prime STAR MAX (Takara Shuzo) with a NotI-site-s / NotI-site-a primer set, and a NotI site was introduced immediately before the CMV promoter.
- NotI-site-s primer 5'-ATGCggccgcATGTCAATATTGGCCATT-3 '(SEQ ID NO: 40)
- NotI-site-a primer 5'-GACATgcggccGCATGGGAGGAGACCGGG-3 '(SEQ ID NO: 41)
- a 0.5 kbp fragment was amplified with the NotI-spacer-s / NotI-spacerA-a primer set using pcDNA3.1-hygro (+) (Invitrogen) as a template, inserted into the NorI site of pmaxGFP + NotI, and pmax A GFP + spacerA plasmid was obtained.
- NotI-spacerA-s primer 5'-ttGCGGCCGCgaaaagcctgaactcaccg-3 '(SEQ ID NO: 42)
- NotI-spacerA-a primer 5'-ttGCGGCCGCgacggtgtcgtccatcacag-3 '(SEQ ID NO: 43)
- the heavy chain was amplified with the KpnI-IGH-s / BglII-IGH-a primer set. This was replaced with GFP of pmaxGFP + spacerA to obtain a pmax + spacerA + IgH plasmid.
- KpnI-IGH-s primer 5'-ccttGGTACCGAAGCCGCTAGCGCTACCGGTCGCCACCaTGGAGTTTGGACTGAGCTGGG-3 '(SEQ ID NO: 44)
- BglII-IGH-a primer 5'-ccttAGATCTtcatttacccggagacaggg-3 '(SEQ ID NO: 45)
- the plasmid retaining the light chain variable region was used as a template, and the variable region was PCR amplified with the IGL-3A21s1 and IGL-3A21a1 primer sets to obtain DNA sequence 9.
- IGL-3A21s1 primer 5'-CCCAGGTGCCAGATGTGACATCAAGATGAC-3 '(SEQ ID NO: 48)
- IGL-3A21a1 primer 5'-GCCACAGTTCGTTTTATTTCCAACTTTGTC-3 '(SEQ ID NO: 49)
- IGL-Cs primer 5'-TGGAAATAAAACGAACTGTGGCTGCACCAT-3 '(SEQ ID NO: 50)
- IGL-Ca primer 5'-TTAAGCGGCCGCCTAACACTCTCCCCTGT-3 '(SEQ ID NO: 51)
- PCR amplification was performed with the IGL-LS and IGL-3A21a primer sets using the DNA sequence 9 as a template to obtain a DNA sequence 11 to which a secretion signal was added.
- IGL-LS primer 5'-GGTCGCCACCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGACA-3 '(SEQ ID NO: 52)
- IGL-3A21a primer 5'-GCCACAGTTCGTTTTATTTCCAACTTTGTC-3 '(SEQ ID NO: 53)
- DNA sequence 10 and DNA sequence 11 as a template, assembly PCR was performed with IGL-Vs and IGL-Ca primer sets to obtain DNA sequence 12 in which both products were linked.
- IGL-Vs primer 5'-CCTTGGTACCGGTCGCCACCATGGACATGA-3 '(SEQ ID NO: 54)
- NotI-spacerB-s primer 5'-ttGCGGCCGCctgtgatggacgacaccgtc-3 '(SEQ ID NO: 55)
- NotI-spacerBa primer 5'-ttGCGGCCGCctattcctttgccctcggac-3 '(SEQ ID NO: 56)
- the light chain was amplified with the KpnI-IGH-s / BglII-IGH-a primer set. This was replaced with GFP of pmaxGFP + spacerB to obtain a pmax + spacerB + IgL plasmid.
- KpnI-IGL-s primer 5'-ccttGGTACCGAAGCCGCTAGCGCTACCGGTCGCCACCatggacatgagggtccccgc-3 '(SEQ ID NO: 57)
- BglII-IGL-a primer 5'-ccttAGATCTctaacactctcccctgttga-3 '(SEQ ID NO: 58)
- HindIII-spB (IgL) -s2 primer 5'-ccttAAGCTTctattcctttgccctcggac-3 '(SEQ ID NO: 59)
- Hin3-CMV-IgHL-SVpA-a primer 5'-cttAAGCTTAACGTCTCGCCCTTTGGTCTC-3 '(SEQ ID NO: 60)
- the basic vector + neoR plasmid was cleaved with the restriction enzyme Hind III, and the DNA sequence 13 (light chain cassette) was inserted to obtain the basic vector + neoR + IgL plasmid.
- CHA1 and CHA2 were set to sequences homologous to the region containing exon 3 of the hprt gene as shown in FIG. 3 described later.
- the primer sequences used in the PCR reaction are as shown below.
- SseNru-CHA1-1k-s primer 5'-ttCCTGCAGGTCGCGAaggagtttattagaggaaatat-3 '(SEQ ID NO: 61)
- MluI-CHA1-r primer 5'-ttACGCGTtgataaaatctacagtcatggg-3 '(SEQ ID NO: 62)
- Bam-CHA2-s primer 5'-ttGGATCCgactgaagagctactgtgta-3 '(SEQ ID NO: 63)
- PciNru-CHA2-1k-r primer 5'-ttACATGTTCGCGAatcagatcccctgggactgga-3 '(SEQ ID NO: 64)
- CHA2 sequence amplified with the Bam-CHA2-s / PciNru-CHA2-1k-r primer set was cleaved with the restriction enzymes BamHI and PciI and replaced with the HA2 sequence of the basic vector + neoR + IgL plasmid.
- the CHA1 sequence amplified with the SseNru-CHA1-1k-s / MluI-CHA1-r primer set was cleaved with restriction enzymes Sse8387I and MluI and replaced with the HA1 sequence.
- DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme Mlu I site to obtain a CHO 1kx2 antibody vector shown in FIG. 2 (A).
- HT1080 homology arm vector DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme MluI site of the basic vector + neoR + IgL plasmid to obtain the HT1080 homology arm vector shown in FIG. 2 (B).
- Example 3 Introduction of vector into cells
- the vector linearized CHO 1kx2 antibody vector and the HT1080 homology arm vector were purified using Endofree Plasmid Maxi kit (manufactured by QIAGEN) and cleaved with NruI. It was dissolved in sterile water to a concentration of 2 g / L and used for the following transfection experiments.
- Transfection and screening CHO-K1 cells were prepared to 1 ⁇ 10 6 cells with Nucleofection T solution (amaxa) and mixed with 2 ⁇ g of linearized plasmid vector. Next, a voltage was applied with the program U-023 using the obtained mixed solution and using Nuefector II (amaxa). Transfection was performed 3 times for each vector.
- the transfected cells are seeded in a 96-well plate at 350 cells / well, and cultured in an incubator at 37 ° C. and 5% CO 2 (medium: Advanced MEM (GIBCO), 5% FBS, 1 ⁇ Glutamax (GIBCO). ), G418 (Invitrogen) was added 2 days after transfection (final concentration: 500 ⁇ g / mL).
- the G418 / 6TG resistant clones obtained with the CHO 1kx2 antibody vector were 6 clones per 3 ⁇ 10 6 cells.
- the HT1080 homology arm vector a G418 / 6TG resistant clone was not obtained.
- Example 4 Analysis by genomic PCR Using DNA Isolation kit (Roche), genomic DNA was extracted from clones resistant to G418 and 6TG obtained by transfection of the CHO 1kx2 antibody vector, and this genomic DNA was used as a template below. The PCR reaction shown confirmed the regiospecific recombination to the target hprt locus.
- FIG. 3A is a schematic diagram illustrating details of analysis of homologous recombination reaction by genomic PCR.
- the target region (2) for homologous recombination of the hprt gene (1) is set to include exon 3 (3), and this region contains CHA1 (4), CHA2 (5) and vector DNA (6).
- the antibody heavy chain sequence (7), neomycin resistance gene (8) and antibody light chain sequence (9) sandwiched between them are integrated by homologous recombination.
- DNA containing CHA1 (4) and part of antibody heavy chain sequence (7) (1688 bp DNA) and DNA containing CHA2 (5) and part of antibody light chain sequence (9) (1752 bp of DNA) DNA
- 1688 bp DNA DNA containing CHA1 (4) and part of antibody heavy chain sequence (7)
- DNA containing CHA2 (5) and part of antibody light chain sequence (9) (1752 bp of DNA) DNA
- the 1688 bp DNA shown in FIG. 3 (A) was set as an index for homologous recombination between CHA1 and the target region, and this DNA was detected by PCR reaction using the primers CHPRTs / NotI-spacerAs shown below. .
- FIGS. 3 (B) and (C) 1 to 6 represent clones obtained with the CHO 1kx2 antibody vector. Among the obtained 6 clones, PCR amplification products of both 1688 bp and 1752 bp were confirmed in 5 clones, and homologous recombination reaction was confirmed.
- Example 5 Analysis by Southern hybridization In the 5 clones obtained in Example 4, it was confirmed by the following Southern hybridization that the CHO 1kx2 antibody vector was integrated into the target hprt locus by position-specific recombination. .
- FIG. 4A is a schematic diagram illustrating details of Southern hybridization of Example 5.
- the target region (2) for homologous recombination of the hprt gene (1) is set to a region containing exon 3 (3), and homology arm 1 (CHA1) (4) and homology arm 2 (CHA2) (5) is set to be homologous to two adjacent regions in the target region.
- the Pci I restriction enzyme site is located so as to sandwich the target region (2) and does not exist inside thereof.
- the Pci I restriction enzyme site does not exist in the CHO 1kx2 antibody vector.
- the neomycin resistance gene sequence (6) of the CHO 1kx2 antibody vector is designed so that the NR probe can hybridize.
- the CHO 1kx2 antibody vector is incorporated into the hprt locus of the clone. Can be determined.
- NR probe having a sequence complementary to the neomycin resistance gene in the CHO 1kx2 antibody vector was synthesized by the following procedure. First, the full length of the neomycin resistance gene coding sequence in the CHO 1kx2 antibody vector was amplified by PCR and TA-cloned into the pGEM T plasmid vector (Promega). Next, using a PCR DIG probe synthesis kit (Roche, primer: M13 Forward / Reverse primer), a DIG (Dioxigein) -labeled probe was prepared.
- Genomic DNA of each cell clone was extracted from 6TG resistant colonies and cleaved with Pci I restriction enzyme. 5 ⁇ g of the cut genomic DNA was electrophoresed using a 0.6% agarose gel, and transferred to a nylon membrane (Hybond N + membrane, Amaersham Biosciences). The obtained membrane was incubated at 80 ° C. for 2 hours to immobilize DNA on the membrane.
- Hybridization The NR probe was hybridized to the membrane. At this time, prehybridization, hybridization, and probe detection were performed according to the DIG application manual (Roche).
- Example 6 Protein production by recombinant cells Culture of recombinant clones and sampling of medium First, recombinant clones were seeded at 2 ⁇ 10 5 cells per dish, G418 (final concentration; 500 ⁇ g / mL) and 6-TG (final concentration; 50 ⁇ M), and FBS (Japan) The cells were cultured at 37 ° C. in the presence of 5% CO 2 in 10 mL of Advanced MEM (Invitrogen) containing 5% of Bio Serum. On the fifth day after the start of the culture, the medium was collected. The collected medium was used for the following ELISA analysis.
- the amount of IgG in the medium collected quantitatively by ELISA was analyzed by measuring the absorbance at 450 nm using Human IgG EIA Kit (precoated) (Takara Shuzo).
- Example 7 Homologous recombination with a vector having a homologous DNA fragment having a chain length of 2.5 kbp Obtaining a 2.5 kbp CHO cell hprt gene homologous DNA fragment
- the genomic DNA of the CHO-K1 cell was used as a template.
- the target hprt gene homologous DNA fragments (CHA1-2.5 and CHA2-2.5) were cloned by PCR reaction (KOD-Plus-Ver2, TOYOBO).
- CHA1-2.5 and CHA2-2.5 were set to sequences homologous to the region containing exon 3 of the hprt gene, as also shown in FIG.
- the primer sequences used in the PCR reaction were the MluI-CHA1-r primer and Bam-CHA2-s primer described in Example 2 and those shown below.
- CHA2-2.5 sequence amplified with the Bam-CHA2-s / NcoNru-CHA2-2.5k-r primer set was cleaved with restriction enzymes BamHI and NcoI, and the basic vector + neoR + IgL Replaced with the HA2 sequence of the plasmid.
- the CHA1-2.5 sequence amplified with the SseNru-CHA1-2.5 ks / MluI-CHA1-r primer set was cleaved with restriction enzymes Sse8387I and MluI and replaced with the HA1 sequence.
- DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme Mlu I site to obtain a CHO 2.5 kx2 antibody vector shown in FIG.
- the CHO 2.5 kx2 antibody vector was purified and linearized in the same manner as in Example 3 and dissolved in sterile water to a concentration of 2 g / L. 6 cells were introduced.
- Genomic DNA was extracted from clones resistant to G418 and 6TG obtained by transfection of the CHO 2.5 kx2 antibody vector, and the PCR reaction shown below was performed using this genomic DNA as a template to target hprt locus. Confirmation of position-specific recombination was performed.
- FIG. 7A is a schematic diagram illustrating details of analysis of homologous recombination reaction by genomic PCR.
- the target region (2) for homologous recombination of the hprt gene (1) is set to include exon 3 (3), and this region contains CHA1-2.5 (4), CHA2 in the vector DNA (6). -2.5 (5) and the antibody heavy chain sequence (7), neomycin resistance gene (8) and antibody light chain sequence (9) sandwiched between them are integrated by homologous recombination.
- DNA containing CHA1-2.5 (4) and part of antibody heavy chain sequence (7) (3075 bp DNA), and CHA2-2.5 (5) and antibody light chain sequence (9) Can be obtained from the genome only by homologous recombination and serves as an index for homologous recombination. Therefore, as an index for homologous recombination between CHA1-2.5 and the target region, the 3075 bp DNA shown in FIG. 7 (A) is set, and this DNA is represented by the primer CHA1-seq-s11 / NotI Detection was by PCR reaction with spacerA-s.
- the DNA of 3228 bp shown in FIG. 7 (A) was set, and this DNA was used as the primer IGL-Cs / CHA2- Detection was by PCR reaction with seq-a4.
- CHA1-seq-s11 primer 5'-GACACATGCAGACAGAACAG-3 '(SEQ ID NO: 69)
- CHA2-seq-a4 primer 5'-GTTTGCTAACACCCCTTCTC-3 '(SEQ ID NO: 70)
- PCR amplification product was analyzed by 1.0% agarose gel electrophoresis.
- the results were as shown in FIGS. 7 (B) and (C).
- 7 (B) and (C) 1 to 5 represent clones obtained with the CHO 2.5kx2 antibody vector.
- PCR amplification products of both 3075 bp and 3228 bp were confirmed in 4 clones, and homologous recombination reaction was confirmed.
- FIG. 8A is a schematic diagram illustrating details of Southern hybridization in Example 7.
- the target region (2) for homologous recombination of the hprt gene (1) is set to a region containing exon 3 (3), and homology arm 1 (CHA1-2.5) (4 ) And homology arm 2 (CHA2-2.5) (5) are set to be homologous to two adjacent regions in the target region. Only one Eco RV restriction enzyme site exists in the vicinity of the target region (2), and only one site exists in the target region. On the other hand, in the CHO 2.5 kx2 antibody vector, there is only one Eco RV restriction enzyme site in CHA2-2.5.
- the neomycin resistance gene sequence (6) of the CHO 2.5 kx2 antibody vector is designed so that the NR probe can hybridize.
- Example 8 Confirmation of homologous recombination in two chromosomes of CHO cells Genomic DNA extracted from wild-type hprt gene residual confirmation CHO 1k ⁇ 2 antibody vector and CHO 2.5 k ⁇ 2 homologous recombination cloning of antibody vectors by genomic PCR was used as template by PCR reactions described below wild-type hprt gene residual I confirmed that it was.
- FIG. 9A is a schematic diagram illustrating details of genomic PCR for confirming the remaining wild-type hprt gene.
- FIG. 9A (left) shows PCR in wild-type CHO cells having two X chromosomes.
- the target region (2) for homologous recombination of the hprt gene (1) is set including exon 3 (3).
- the target region DNA (2322 bp) can be amplified by a PCR reaction, and it can be confirmed that the wild type hprt gene remains using this as an index.
- the center diagram of FIG. 9 (A) shows PCR in a heterozygous homologous recombination cell in which a vector is integrated into the hprt locus of one X chromosome.
- the DNA (7) of the vector including CHA1 (4), CHA2 (5) and the antibody heavy chain, neomycin resistance gene and antibody light chain sequence sandwiched between them
- the other chromosome holds the target region, and the DNA (2322 bp) of the target region can be amplified by the PCR reaction, and it can be confirmed that the wild-type hprt gene remains.
- a 2322 bp DNA shown in FIG. 9A was set as the index, and a PCR reaction was performed using the primer CHPRTs / CHA2-seq-a1 in order to detect this DNA.
- the obtained PCR amplification product was analyzed by 1.0% agarose gel electrophoresis. The result was as shown in FIG. 9 (B).
- WT indicates wild type cells
- 1 kx2 vector integration clones (1, 2, 3, 5 and 6) indicate integration clones of the CHO 1kx2 antibody vector obtained in Example 4.
- .5 kx2 vector integration clone (1 to 4) indicates an integration clone of the CHO 2.5 kx2 antibody vector obtained in Example 7.
- From the wild type cells a 2322 bp PCR amplification product was confirmed, and the presence of the wild type hprt gene was confirmed.
- no 2322 bp PCR amplification product was confirmed in all the analyzed recombinant clones, the recombinant cells were homozygous with the vector integrated into both X chromosomes.
- Example 9 Long-term stable expression of an antibody by a recombinant vector clone using a CHO endogenous promoter Preparation of CHO CHEF1P vector
- the CHO-K1 genomic DNA was used as a template, and the CHEF1 ⁇ promoter was amplified with the EF1aP-MluI-F / EF1aP-XbaI-R primer set.
- EF1aP-MluI-F primer 5'-AGAACGCGTCCACACAATCAGAACCACA-3 '(SEQ ID NO: 71)
- EF1aP-XbaI-R primer 5'-GACGATCTAGAGGTGGTTTTCACAACA-3 '(SEQ ID NO: 72)
- the IgH gene was amplified with the CMV-seq-s / MluI-CMV-IgHL-SVpA-a primer set using the CHO 2.5k ⁇ 2_H-neo-L plasmid as a template.
- CMV-seq-s primer 5'-AGGGACTTTCCATTGACGTC-3 '(SEQ ID NO: 73)
- MluI-CMV-IgHL-SVpA-a primer 5'-cttACGCGTAACGTCTCGCCCTTTGGTCTC-3 '(SEQ ID NO: 74)
- the obtained CHEF1 ⁇ P and IgH genes were cleaved with XbaI and NheI, respectively, and ligation reaction was performed. Thereafter, the CHEF1 ⁇ P + IgH gene band was gel-extracted, cloned into a TOPO vector (Invitrogen), and then digested with MluI to obtain a CHEF1 ⁇ P + IgH gene cassette.
- the CHEF1 ⁇ promoter was amplified with the EF1aP-HindIII-F / EF1aP-HindIII-R primer set.
- EF1aP-HindIII-F primer 5'-AGAAAGCTTCCACACAATCAGAACCACA-3 '(SEQ ID NO: 75)
- EF1aP-HindIII-R primer 5'-GACGAATTCGCGGTGGTTTTCACAACA-3 '(SEQ ID NO: 76)
- the IgL gene was amplified with IgLser-EcoRI-F / IgLser-HindIII-R primer set using CHO 2.5k ⁇ 2_H-neo-L plasmid as a template.
- IgLser-EcoRI-F primer 5'-TATGAATTCGTCGCCACCATGGACAT-3 '(SEQ ID NO: 77)
- IgLser-HindIII-R primer 5'-TGTAAGCTTTACCACATTTGTAGAGGTTTT-3 '(SEQ ID NO: 78)
- the obtained CHEF1 ⁇ P and IgL gene were cleaved with EcoRI, and a ligation reaction was performed. Thereafter, the band of the CHEF1 ⁇ P + IgL gene was gel-extracted, cloned into a TOPO vector, and digested with HindIII to obtain a CHEF1 ⁇ P + IgL gene cassette.
- the CHO 2.5k ⁇ 2_H-neo vector was digested with HindIII and dephosphorylated, and then the CHEF1 ⁇ P + IgL gene cassette was inserted to obtain an H-neo-EF1L vector. Next, after MluI digestion and dephosphorylation, a CHEF1 ⁇ P + IgH gene cassette was inserted to obtain a CHO CHEF1P vector shown in FIG.
- CHO CHEF1P Vector Recombinant CHO Cells The constructed CHO CHEF1P vector was linearized, introduced into CHO cells, and screened in the same manner as in Example 3 to obtain CHO CHEF1P vector recombinant CHO cells.
- Cells maintained during passage are detached, seeded in a 100 mm dish at 2 ⁇ 10 6 cells, cultured overnight at 37 ° C. and 5% CO 2 , and detached to prepare 3 ⁇ 10 5 cells / ml. 1.5 ml each was seeded on a 12-well plate and cultured. After 24 hours, the medium was completely removed and 1.5 ml of fresh medium was dispensed. After culturing for 24 hours, the whole amount of the medium was recovered, and the amount of IgG was measured by ELISA assay. Moreover, the cells adhering to the bottom of the well were detached and the number of cells was counted.
- Example 10 Obtaining a homologous recombinant by a vector having a homologous DNA fragment having a chain length of 2.5 kbp and expressing an antibody heavy chain Preparation of antibody heavy chain expression recombinant vector
- the CHO 2.5 kx2 antibody vector prepared in Example 7 was cleaved with restriction enzyme Hind III and self-cyclized to prepare a CHO 2.5 kbx2 heavy chain vector shown in FIG.
- Example 11 Obtaining stably expressing CHO cells with a vector having a human hprt locus intron-derived MAR and expressing an antibody heavy chain Preparation of MAR non-transcribed vector Using the genomic DNA of the human-derived cell line HT1080 cell line prepared in Example 2 as a template, using the XbaI-hprtMAR-s / XbaI-hprtMAR-a primer set, the MAR of the human hprt gene intron (hprtMAR1) Amplified.
- XbaI-hprtMAR-s primer 5'-ttTCTAGAtagttatgagcccatgtccc-3 '(SEQ ID NO: 79)
- XbaI-hprtMAR-a primer 5'-ttTCTAGAcggtgaaatcctgtctctac-3 '(SEQ ID NO: 80)
- the CHO 2.5 kx2 antibody vector prepared in Example 7 was cleaved with the restriction enzyme XbaI, and hprtMAR1 was inserted to obtain a MAR non-transcribed vector shown in FIG. 13 (A).
- MAR Transcription Vector Using human genome cell line HT1080 cell line as a template, the human hprt gene intron MAR (hprtMAR2) was amplified using AscI-hprtMAR-s / MluI-hprtMAR-a primer set.
- AscI-hprtMAR-s primer 5'-ttGGCGCGCCtagttatgagcccatgtccc-3 '(SEQ ID NO: 81)
- MluI-hprtMAR-a primer 5'-ttACGCGTcggtgaaatcctgtctctacac-3 '(SEQ ID NO: 82)
- the CHO 2.5 kx2 antibody vector prepared in Example 7 was cleaved with the restriction enzyme MluI, and hprtMAR2 was inserted. Next, it was cleaved with the restriction enzyme MluI, and the antibody heavy chain expression cassette of Example 2 was inserted to obtain the MAR transcription vector shown in FIG. 13 (B).
- MAR CMV Transcription Vector Human hprt gene intron MAR (hprtMAR3) was amplified with BglII-hprtMAR-s / BglII-hprtMAR-a primer set using the genomic DNA of human-derived cell line HT1080 cell line as a template.
- BglII-hprtMAR-s primer 5'-ttAGATCTtagttatgagcccatgtccc-3 '(SEQ ID NO: 83)
- BglII-hprtMAR-a primer 5'-ttAGATCTcggtgaaatcctgtctctacac-3 '(SEQ ID NO: 84)
- the pCR-BluntII-TOPO + antibody heavy chain expression cassette prepared in Example 2 was cleaved with restriction enzyme BglII, hprtMAR3 was inserted, and then cut out with restriction enzyme MluI to obtain an antibody heavy chain + MAR expression cassette.
- the pCR-BluntII-TOPO + antibody light chain expression cassette prepared in Example 2 was cleaved with the restriction enzyme BglII, hprtMAR3 was inserted, and then cut out with the restriction enzyme HindIII to obtain an antibody light chain + MAR expression cassette.
- the CHO 2.5 kx2 antibody vector prepared in Example 7 was cleaved with the restriction enzyme MluI, and the antibody heavy chain + MAR expression cassette was inserted. Next, it was cleaved with restriction enzyme HindIII, and an antibody light chain + MAR expression cassette was inserted to obtain a MAR CMV transcription vector shown in FIG. 13 (C).
- Example 12 Obtaining a homologous recombinant by a vector having a homologous DNA fragment having a chain length of 200b or 500b and expressing an antibody heavy chain CHO 200b ⁇ 2 vector, CHO 500b ⁇ 2 vector production
- CHO-K1 cell genomic DNA as a template, SseNru-CHA1-200-s / MluI-CHA1-r primer set, Bam-CHA2-s / PciNru-CHA2-200
- a homologous DNA fragment (CHA1-200 and CHA2-200) of the target hprt gene was cloned by PCR reaction with the -r primer set.
- CHA1-200 and CHA2-200 were set to sequences homologous to the region containing exon 3 of the hprt gene.
- the primer sequences used in the PCR reaction are as shown below.
- DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme Mlu I site to obtain a CHO 200b ⁇ 2 vector having a homology arm length of 200b shown in FIG. 15 (A).
- a homologous DNA fragment of target hprt gene (CHA1-) by PCR reaction with SseNru-CHA1-500-s / MluI-CHA1-r primer set and Bam-CHA2-s / PciNru-CHA2-500-r primer set. 500 and CHA2-500 were cloned respectively.
- DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme Mlu I site to obtain a CHO 500b ⁇ 2 vector having a homology arm length of 500b shown in FIG. 15 (B).
- Example 13 Obtaining a homologous recombinant by a vector having a homologous DNA fragment having a chain length of 5 kb and expressing an antibody heavy chain CHO 5 kb ⁇ 2 vector preparation PCR using genomic DNA of CHO-K1 cells as template and NsiNru-CHA1-5k-s / MluI-CHA1-r primer set, BclI-CHA2-s / BspNru-CHA2-5k-r primer set By the reaction, homologous DNA fragments (CHA1-5k and CHA2-5k) of the target hprt gene were cloned. CHA1-5k and CHA2-5k were set to sequences homologous to the region containing exon 3 of the hprt gene. The primer sequences used in the PCR reaction are as shown below.
- NsiNru-CHA1-5ks primer 5'-ttATGCATTCGCGAAtctcaggtgataggagacataagac-3 '(SEQ ID NO: 89)
- BclI-CHA2-s primer 5'-ttTGATCAgactgaagagctactgtgta-3 '(SEQ ID NO: 90)
- BspNru-CHA2-5k-r primer 5'-ttTCATGAaTCGCGAAtcagcactcaggagtcagag-3 '(SEQ ID NO: 91)
- DNA sequence 8 (heavy chain cassette) was inserted into the restriction enzyme Mlu I site to obtain a CHO 5 kb ⁇ 2 vector having a homology arm length of 5 kb shown in FIG.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
(6TG)やG418に対して耐性を示すため、陰性選択が容易に行われる。
したがって、目的タンパク質遺伝子を発現する組み換えCHO細胞を効率的に製造する技術の創出が依然として必要とされている。
したがって、本発明は、組み換えCHO細胞の効率的な製造に有用なDNA構築物およびそれを用いた組み換えCHO細製造方法の提供をその目的とする。
前記第一の相同DNA断片および第二の相同DNA断片が、CHO細胞ゲノムのヒポキサンチン-ホスホリボシルトランスフェラーゼ酵素(hprt)遺伝子座の一部と相同組み換え可能な相同性を有し、かつ1kbp以上の鎖長を有するものである。
本発明によるDNA構築物は、CHO細胞ゲノム中のhprt遺伝子座の一部と相同組み換え可能な相同性を有し、各々が1kbp以上の鎖長を有する、二つの相同DNA断片を含んでなることを一つの特徴とする。上記DNA構築物によれば、CHO細胞が2本のX染色体を有するにもかかわらず、顕著な高頻度で組み換えCHO細胞を取得しうるのは意外な事実である。本発明によるDNA構築物によれば、後述の実施例10に示される通り、1x10-7あたり130個の組み換え細胞が得られている。この結果は、上記したように、染色体2本のhprt遺伝子座において同時に組み換えが生じる理論上の確率が10-12と予測されていたことを勘案すると、驚くべき事実といえる。
かかる相同DNA断片を有する本発明によるDNA構築物によれば、hprt遺伝子座中の所望の標的領域に組み込むことが可能である。この組み込みの態様としては、(1)DNA構築物の組み込みによってエクソンが分断されるタイプ、(2)DNA構築物の組み込みによってエクソンが1つ以上欠失するタイプ、(3)DNA構築物の組み込みによってエクソンが2個に増幅し、その間にDNA構築物が挿入されるタイプ、(4)DNA構築物の組み込みによってイントロンが分断されるタイプ、(5)DNA構築物の組み込みによってイントロンが1つ以上欠失するタイプ、(6)DNA構築物の組み込みによってイントロンが2個に増幅し、その間にDNA構築物が挿入されるタイプが挙げられる。
もっとも、発現に必要な要素としてCHO細胞の内在性のものを用いるように構成してもよく、本発明にはかかる態様も包含される。
本発明によるDNA構築物は、ベクターに組み込んでCHO細胞ゲノムに導入することができる。かかるベクターシステムとしては、相同組み換え反応によりDNA構築物をCHO細胞ゲノムに組み込みうる限り特に限定されないが、好ましくは、プラスミドベクター、コスミドベクター、ファージベクターまたは人工染色体ベクター等が挙げられる。
本発明による組み換えCHO細胞は、上記ベクターをCHO細胞に導入することにより好適に製造することができる。
したがって、本発明による組み換えCHO細胞は、hprt座に外来性の目的タンパク質遺伝子が組み込まれてなる。また、本発明の好ましい態様によれば、組み換えCHO細胞はhprt遺伝子の機能が不活化している。かかる組み換えCHO細胞は、抗体等の目的タンパク質を高レベルで安定に産生する上で有利である。
上記ベクターの導入方法としては、一般的に用いられる方法が好適に利用できる。例えば、リン酸カルシウム法、エレクトロポレーション法、マイクロインジェクション法、DEAE-デキストラン法、リポソーム試薬を用いる方法、カチオン性脂質を用いたリポフェクション法などが挙げられる。ここで、ベクターが環状である場合、公知の方法により線状化して細胞に導入されてもよい。
また、本発明による製造方法にあっては、上記導入後、組み換えCHO細胞の選択を行うことが好ましい。選択工程は、hprt遺伝子の不活化に基づく陰性選択により行うことができる。また、陽性マーカー遺伝子を組み換えCHO細胞に導入している場合には、陰性選択と陽性選択とを組み合わせて高い精度で細胞選択を行うことが可能となる。
また、本発明の別の態様によれば、上記組み換えCHO細胞を用意し、該細胞を培養して目的タンパク質を産生することを含んでなる、目的タンパク質の製造方法が提供される。上記方法によれば、目的タンパク質を効率的かつ安定に取得することができる。
なお、以下の実験において、制限酵素による反応、PCR反応、ライゲーション反応等の各反応条件は、メーカーの推奨する反応条件、あるいは、Molecular Cloning 2nd Edition; Sambrook et al., Cold Spring Harbor Laboratory Press に記載の方法に従って設定した。また、得られた種々のプラスミドベクターDNAについては、DNAシーケンサー(310 Genetic Analyser Applied Bio Systems, Inc.)を用いてDNA配列を決定した。また、以下に示すホモロジーアーム1および2はそれぞれ、本発明の第一および第二の相同DNA断片に対応している。
JCRBセルバンクから入手したチャイニーズハムスター卵母細胞株CHO-K1細胞株(Cell No; JCRB9018)をAMEM培地(組成;Advanced MEM(GIBCO)、5%[v/v]FBS、1× GlutaMAX(GIBCO))を用いて、CO2インキュベーター(37 ℃、5% CO2)で培養した。得られた培養液を遠心分離し、CHO-K1細胞ペレットを得た。このペレットをDNA Isolation Kit for Cells and Tissues (Roche Diagnostics K.K.)により処理し、ゲノムDNAを得た。次に、このゲノムDNAを鋳型とし、PCR(KOD-Plus ver.2、TOYOBO)によって、CHO-K1細胞のhprt遺伝子座のDNA断片を7つ得た。得られた断片は図1に示される通りである。7断片の増幅のために用いたPCRプライマーは、Zu Z et al. Mutat Res. 1993. 288(2):237-48.)に記載のプライマー配列を参考に作製した。プライマー配列は以下に示す通りである。
5’- tctgcaggct tcctcctcac accg -3’(配列番号1)
断片1 antisense プライマー:
5’- acatgtcaag gcaacgccat ttcca -3’(配列番号2)
断片2 sense プライマー:
5’- tggaaatggc gttgccttga catgt -3’(配列番号3)
断片2 antisense プライマー:
5’- caccttttcc aaatcctcga -3’(配列番号4)
断片3 sense プライマー:
5’- agcttatgct ctgatttgaa atcagctg -3’(配列番号5)
断片3 antisense プライマー:
5’- cttcagtctg ataaaatcta cagtca -3’(配列番号6)
断片4 sense プライマー:
5’- aagacttgcc cgagatgtca tgaa -3’(配列番号7)
断片4 antisense プライマー:
5’- ccaagtgagt gattgaaagc acag -3’(配列番号8)
断片5 sense プライマー:
5’- tgtgtgtatt caagaatatg catg -3’(配列番号9)
断片5 antisense プライマー:
5’- gctgagaaaa tttaacagta ttttag -3’(配列番号10)
断片6 sense プライマー:
5’- caaatacaag caagaatttc ccagag -3’(配列番号11)
断片6 antisense プライマー:
5’- ggacttgaac atctagggag -3’(配列番号12)
断片7 sense プライマー:
5’- acttaccact taccattaaa tacc -3’(配列番号13)
断片7 antisense プライマー:
5’- gacaatctat cgaaggctca tagtgc -3’(配列番号14)
図1に示すように、CHO-K1細胞株のhprt遺伝子座のエクソン1とエクソン2間に位置するイントロン1(配列番号15)、エクソン2とエクソン3間に位置するイントロン2(配列番号16)、エクソン3とエクソン4間に位置するイントロン3(配列番号17)、エクソン4とエクソン5間に位置するイントロン4(配列番号18)、エクソン5とエクソン6間に位置するイントロン5(配列番号19)、エクソン6とエクソン7間に位置するイントロン6(配列番号20)、エクソン7とエクソン8間に位置するイントロン7(配列番号21)、エクソン8とエクソン9間に位置するイントロン8(配列番号22)のDNA配列を決定した。
以下に記載の手法により、抗体遺伝子をhprt遺伝子座に対して組み込むため、抗体遺伝子を含む、図2(A)で表されるベクター(CHO
1kx2 抗体ベクター)を構築した。
また、比較対象として、ヒトhprt遺伝子配列由来の相同DNA断片を、CHO細胞のhprt遺伝子配列由来の相同DNA断片と置換した以外、CHO 1kx2 抗体ベクターと同様の構成を有する図2(B)で表されるベクター(HT1080ホモロジーアームベクター)を構築した。
JCRBセルバンクから入手したヒト由来細胞株HT1080細胞株(カタログ番号:IF050354)をGFX Genomic Blood DNA Purification Kit (Amersham Biosciences)により処理し、ゲノムDNAを得た。次に、このゲノムDNAを鋳型とし、PCR反応(KOD-Plus-、TOYOBO)によって、標的となるhprt遺伝子の相同DNA断片(HA1およびHA2)をクローニングした。HA1およびHA2は、後述する図3でも示される通り、hprt遺伝子のエクソン3を含む領域と相同な配列に設定した。PCR反応に用いたプライマー配列は以下に示す通りである。
5’-CCTGCAGGTCGCGATTGGTACTTGTTCAGCTTTATTCAAG-3’(配列番号23)
HA1 antisense プライマー:
5’-GTCGACAAGGACGCGTTCTGATAAAATCTACAGTCATAGGA-3’(配列番号24)
HA2 sense プライマー:
5’-GTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCTCCGGAGACTGAAGAGCTATTGTGTGAGTAT-3’(配列番号25)
HA2 antisense プライマー:
5’-ACATGTTCTCTTAAGTCGCGAAGTAGTGTTATGATGTATGGGCATA-3’(配列番号26)
5’-ACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAAC-3’(配列番号27)
Ecoli antisense プライマー:
5’-CCTGCAGGGACGTCAGGTGGCACTTTTCGGGGAAATGTGC-3’(配列番号28)
IおよびAccIIIサイトを付加してPCR増幅を行い、DNA配列2を得た。この断片とDNA配列1を連結し、p23HA12プラスミドベクターを得た。
次に、p23HA12プラスミドベクターをMlu IおよびBam] HIで切断し、リンカー2-sオリゴとリンカー2-aオリゴをアニールさせたDNA断片を挿入し、基礎ベクターIIを得た。
5’-CGCGTatcTCTAGAataATCGATagaAAGCTTacaG-3’(配列番号29)
リンカー2-aオリゴ:
5’- GATCCtgtAAGCTTtctATCGATtatTCTAGAgatA-3’(配列番号30)
5’- ccttTCTAGActtctgaggcggaaagaacc-3’(配列番号31)
neoR antisenseプライマー:
5’-cttATCGATtCACACAAAAAACCAACACACAGATGTAATGAAAATAAAGATATTTTATTgtgggcgaagaactccagca-3’(配列番号32)
重鎖可変領域を保持したプラスミド(「Cloning of cDNA and Characterization of Anti-RNase A Monoclonal Antibody 3A21」:Journal of Fermentation and Bioengineering. Vol.82, No.3, pp. 312-314,1999)を鋳型とし、可変領域をIGH-3A21s、IGH-3A21a1プライマーセットでPCR増幅し、DNA配列4を得た。
5’- TAAAAGGTGTCCAGGATGTGCAGTTTCAGG -3’(配列番号33)
IGH-3A21a1プライマー:
5’- GAGGCCGATGAAACAGTGACCAGAGTCCCT -3’(配列番号34)
5’- CATCGGCCTCCACCAAGGGCCCATCGGTCT -3’(配列番号35)
IGH-Caプライマー:
5’- TTAAGCGGCCGCTCATTTACCCGGAGACAG -3’(配列番号36)
5’-GGTCGCCACCATGGAGTTTGGACTGAGCTGGGTTTTCCTTGTTGCTATTTTAAAAGGTGTCCAGGATGTG-3’(配列番号37)
IGH-Vaプライマー:
5’-GCCCTTGGTGGAGGCCGATGAAACAGTGAC -3’(配列番号38)
5’-TTCCGGTACCGGTCGCCACCATGGAGTTTG -3’(配列番号39)
5’-ATGCggccgcATGTCAATATTGGCCATT -3’(配列番号40)
NotI-site-aプライマー:
5’-GACATgcggccGCATGGGAGGAGACCGGG -3’(配列番号41)
GFP+spacerAプラスミドを得た。
5’-ttGCGGCCGCgaaaaagcctgaactcaccg -3’(配列番号42)
NotI-spacerA-aプライマー:
5’-ttGCGGCCGCgacggtgtcgtccatcacag -3’(配列番号43)
5’-ccttGGTACCGAAGCCGCTAGCGCTACCGGTCGCCACCaTGGAGTTTGGACTGAGCTGGG-3’(配列番号44)
BglII-IGH-aプライマー:
5’-ccttAGATCTtcatttacccggagacaggg-3’(配列番号45)
5’-ccttACGCGTgacggtgtcgtccatcacag -3’(配列番号46)
MluI-CMV-IgHL-SVpA-aプライマー:
5’-cttACGCGTAACGTCTCGCCCTTTGGTCTC -3’(配列番号47)
同様に、軽鎖可変領域を保持したプラスミドを鋳型とし、可変領域をIGL-3A21s1、IGL-3A21a1プライマーセットでPCR増幅し、DNA配列9を得た。
5’-CCCAGGTGCCAGATGTGACATCAAGATGAC-3’(配列番号48)
IGL-3A21a1プライマー:
5’-GCCACAGTTCGTTTTATTTCCAACTTTGTC-3’(配列番号49)
5’-TGGAAATAAAACGAACTGTGGCTGCACCAT-3’(配列番号50)
IGL-Caプライマー:
5’-TTAAGCGGCCGCCTAACACTCTCCCCTGT-3’(配列番号51)
5’-GGTCGCCACCATGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGACA -3’(配列番号52)
IGL-3A21aプライマー:
5’-GCCACAGTTCGTTTTATTTCCAACTTTGTC-3’(配列番号53)
5’-CCTTGGTACCGGTCGCCACCATGGACATGA -3’(配列番号54)
5’-ttGCGGCCGCctgtgatggacgacaccgtc-3’(配列番号55)
NotI-spacerB-aプライマー:
5’-ttGCGGCCGCctattcctttgccctcggac-3’(配列番号56)
5’-ccttGGTACCGAAGCCGCTAGCGCTACCGGTCGCCACCatggacatgagggtccccgc-3’(配列番号57)
BglII-IGL-aプライマー:
5’-ccttAGATCTctaacactctcccctgttga -3’(配列番号58)
5’-ccttAAGCTTctattcctttgccctcggac-3’(配列番号59)
Hin3-CMV-IgHL-SVpA-aプライマー:
5’-cttAAGCTTAACGTCTCGCCCTTTGGTCTC-3’(配列番号60)
CHO-K1細胞のゲノムDNAを鋳型とし、PCR反応(KOD-Plus-Ver2、TOYOBO)によって、標的となるhprt遺伝子の相同DNA断片(CHA1およびCHA2)をクローニングした。CHA1およびCHA2は、後述する図3でも示される通り、hprt遺伝子のエクソン3を含む領域と相同な配列に設定した。PCR反応に用いたプライマー配列は以下に示す通りである。
5’-ttCCTGCAGGTCGCGAaggagtttattagaggaaatat-3’(配列番号61)
MluI-CHA1-rプライマー:
5’-ttACGCGTtgataaaatctacagtcatggg-3’(配列番号62)
Bam-CHA2-sプライマー:
5’-ttGGATCCgactgaagagctactgtgta-3’(配列番号63)
PciNru-CHA2-1k-rプライマー:
5’- ttACATGTTCGCGAatcagatccctgggactgga-3’(配列番号64)
Bam-CHA2-s/ PciNru-CHA2-1k-rプライマーセットで増幅したCHA2配列を、制限酵素Bam HIおよびPci Iで切断し、基礎ベクター+neoR+IgLプラスミドのHA2配列と置換した。さらに、SseNru-CHA1-1k-s/ MluI-CHA1-rプライマーセットで増幅したCHA1配列を、制限酵素Sse8387IおよびMlu Iで切断し、HA1配列と置換した。次いで、制限酵素Mlu I部位に、DNA配列8(重鎖カセット)を挿入し、図2(A)で示されるCHO 1kx2 抗体ベクターを得た。
基礎ベクター+neoR+IgLプラスミドの制限酵素Mlu I部位に、DNA配列8(重鎖カセット)を挿入し、図2(B)に示されるHT1080ホモロジーアームベクターを得た。
ベクター線状化
CHO 1kx2 抗体ベクター、HT1080ホモロジーアームベクターは、Endofree Plasmid Maxi kit(QIAGEN社製)を用いて精製し、Nru Iにて切断した。2g/Lの濃度になるように滅菌水に溶解し、以下のトランスフェクション実験に用いた。
CHO-K1細胞をNucleofection T solution(amaxa)で1×106細胞に調製し、線状化したプラスミドベクター2μgと混合した。次に、得られた混合液を用いて、NuceofectorII(amaxa)を用い、プログラムU-023で電圧印加した。トランスフェクションは各ベクターにつき、3回施行した。トランスフェクトした細胞は、350細胞/ウェルにて96ウェルプレートに播種し、インキュベーター中37℃、5%CO2にて培養し(培地:Advanced MEM(GIBCO社)に5%FBS、1x Glutamax(GIBCO社)を添加したもの)、トランスフェクションから2日後にG418(インビトロジェン社)を加えた(最終濃度;500μg/mL)。
DNA Isolation kit(ロシュ)を用い、CHO 1kx2 抗体ベクターのトランスフェクションにより得たG418および6TGに耐性のクローンからゲノムDNAを抽出し、このゲノムDNAを鋳型とした以下に示すPCR反応により、標的hprt遺伝子座への位置特異的な組み換えの確認を行った。
hprt遺伝子(1)の相同組換えの標的領域(2)は、エクソン3(3)を含んで設定されており、この領域にベクターDNA(6)中のCHA1(4)、CHA2(5)およびこれに挟まれた抗体重鎖配列(7)、ネオマイシン耐性遺伝子(8)および抗体軽鎖配列(9)は相同組み換えにより組込まれる。
よって、CHA1と標的領域との相同組換えの指標として、図3(A)に示す1688bpのDNAを設定し、このDNAは、以下に示すプライマーCHPRTs/NotI-spacerA-sによるPCR反応により検出した。一方、CHA2と標的hprt遺伝子座との相同組換えの指標として、図3(A)に示す1752bpのDNAを設定し、このDNAは、以下に示すプライマーIGL-Cs/ CHA2-seq-a1によるPCR反応により検出した。
5’-TGTTCCTGTGCATACTAGGC-3’ (配列番号65)
CHA2-seq-a1プライマー:
5’-CCAGAGAAATTATTTGCCACCAGC-3’ (配列番号66)
図3(B)および(C)において、1から6はCHO 1kx2 抗体ベクターにより得られたクローンを示す。取得した6クローンのうち、5クローンにおいて1688bpおよび1752bpの両方のPCR増幅産物が確認され、相同組換え反応が確認された。
実施例4で取得された5クローンにおいて、CHO 1kx2 抗体ベクターが標的hprt遺伝子座へ位置特異的な組み換えで組み込まれたことを、以下のサザンハイブリダイゼーションにより確認した。
図4(A)で示される通り、hprt遺伝子(1)の相同組み換えの標的領域(2)は、エクソン3(3)を含む領域に設定され、ホモロジーアーム1(CHA1)(4)およびホモロジーアーム2(CHA2)(5)は、標的領域における二つの隣接した領域に相同であるように設定されている。そして、Pci I制限酵素サイトは、標的領域(2)を挟むように位置し、その内側には存在しない。一方、CHO 1kx2 抗体ベクターにはPci I制限酵素サイトは存在しない。そして、CHO 1kx2 抗体ベクターのネオマイシン耐性遺伝子配列(6)には、NRプローブがハイブリダイズしうるように設計されている。
CHO 1kx2 抗体ベクター中のネオマイシン耐性遺伝子に相補的な配列を有するNRプローブを、以下の手順で合成した。まず、CHO 1kx2 抗体ベクター中のネオマイシン耐性遺伝子コード配列の全長をPCRにより増幅し、pGEM T プラスミドベクター(Promega社)にTAクローニングした。次に、PCR DIGプローブ合成キット(ロシュ社、プライマー:M13 Forward/Reverseプライマー)を用いて、DIG(Digoxigein)標識されたプローブを作製した。
6TG耐性コロニーから各細胞クローンのゲノムDNAを抽出し、Pci I制限酵素により切断した。切断したゲノムDNA5μgを、0.6%アガロースゲルを用いて電気泳動し、ナイロンメンブレン(Hybond N+ membrane、AmaershamBiosciences社)へ転写した。得られたメンブレンは80℃で2時間インキュベートし、DNAをメンブレン上に固定した。
上記メンブレンに対し、上記NRプローブをハイブリダイズさせた。この際、プレハイブリダイゼーション、ハイブリダイゼーションおよびプローブの検出は、DIGアプリケーション マニュアル(ロシュ社)に従って行った。
組み換えクローンの培養および培地のサンプリング
まず、組み換えクローンを1シャーレあたり2 X 105 細胞播種し、G418(最終濃度; 500 μg/mL)および6-TG(最終濃度; 50 μM)、およびFBS(Japan Bio Serum社製)を5%含んだAdvanced MEM(Invitrogen)10mL中、5 % CO2存在下37℃で培養した。培養を開始してから5日目に、培地を回収した。回収した培地は、以下のELISA解析に用いた。
回収した培地中のIgG量は、Human IgG EIA Kit (precoated)(宝酒造製)により、450nmの吸光度を測定することにより解析した。
2.5kbpのCHO細胞hprt遺伝子相同DNA断片の取得
鎖長2.5kbpの相同DNA断片を有する、図6に示すCHO 2.5kx2 抗体ベクターベクターを製造するため、CHO-K1細胞のゲノムDNAを鋳型とし、PCR反応(KOD-Plus-Ver2、TOYOBO)によって、標的となるhprt遺伝子の相同DNA断片(CHA1-2.5およびCHA2-2.5)をクローニングした。CHA1-2.5およびCHA2-2.5は、後述する図7(A)でも示される通り、hprt遺伝子のエクソン3を含む領域と相同な配列に設定した。PCR反応に用いたプライマー配列は実施例2に記載したMluI-CHA1-rプライマーおよびBam-CHA2-sプライマーと、以下に示すものを用いた。
5’-ttCCTGCAGGTCGCGAgtctgtgtgtatgtttgtgataggc-3’(配列番号67)
NcoNru-CHA2-2.5k-rプライマー:
5’-ttCCATGGTCGCGAtgaaggttatagagcataggggacc-3’(配列番号68)
Bam-CHA2-s/ NcoNru-CHA2-2.5k-rプライマーセットで増幅したCHA2-2.5配列を、制限酵素Bam HIおよびNco Iで切断し、基礎ベクター+neoR+IgLプラスミドのHA2配列と置換した。さらに、SseNru-CHA1-2.5k-s/ MluI-CHA1-rプライマーセットで増幅したCHA1-2.5配列を、制限酵素Sse8387IおよびMlu Iで切断し、HA1配列と置換した。次いで、制限酵素Mlu I部位に、DNA配列8(重鎖カセット)を挿入し、図6で示されるCHO 2.5kx2 抗体ベクターを得た。
CHO 2.5kx2 抗体ベクターは、実施例3と同様、精製および線状化を行い、2g/Lの濃度になるように滅菌水に溶解し、1×106細胞に対しして導入した。
CHO 2.5kx2 抗体ベクターのトランスフェクションにより得たG418および6TGに耐性のクローンからゲノムDNAを抽出し、このゲノムDNAを鋳型とした以下に示すPCR反応により、標的hprt遺伝子座への位置特異的な組み換えの確認を行った。
hprt遺伝子(1)の相同組換えの標的領域(2)は、エクソン3(3)を含んで設定されており、この領域にベクターDNA(6)中のCHA1-2.5(4)、CHA2-2.5(5)およびこれに挟まれた抗体重鎖配列(7)、ネオマイシン耐性遺伝子(8)および抗体軽鎖配列(9)は相同組み換えにより組込まれる。
よって、CHA1-2.5と標的領域との相同組換えの指標として、図7(A)に示す3075 bpのDNAを設定し、このDNAは、以下に示すプライマーCHA1-seq-s11/NotI-spacerA-sによるPCR反応により検出した。一方、CHA2-2.5と標的hprt遺伝子座との相同組換えの指標として、図7(A)に示す3228 bpのDNAを設定し、このDNAは、以下に示すプライマーIGL-Cs/ CHA2-seq-a4によるPCR反応により検出した。
5’-GACACATGCAGACAGAACAG-3’(配列番号69)
CHA2-seq-a4プライマー:
5’-GTTTGCTAACACCCCTTCTC-3’(配列番号70)
図7(B)および(C)において、1から5はCHO 2.5kx2 抗体ベクターにより得られたクローンを示す。取得した5クローンのうち、4クローンにおいて3075 bpおよび3228 bpの両方のPCR増幅産物が確認され、相同組み換え反応が確認された。
実施例7で取得された4クローンにおいて、CHO 2.5kx2 抗体ベクターが標的hprt遺伝子座へ位置特異的に組み込まれたことを、以下のサザンハイブリダイゼーションにより確認した。
図8(A)で示される通り、hprt遺伝子(1)の相同組み換えの標的領域(2)は、エクソン3(3)を含む領域に設定され、ホモロジーアーム1(CHA1-2.5)(4)およびホモロジーアーム2(CHA2-2.5)(5)は、標的領域における二つの隣接した領域に相同であるように設定されている。そして、Eco RV制限酵素サイトは、標的領域(2)近傍には一か所のみ存在し、標的領域内には一か所しか存在しない。一方、CHO 2.5kx2 抗体ベクターには、Eco RV制限酵素サイトはCHA2-2.5に一か所しか存在しない。そして、CHO 2.5kx2 抗体ベクターのネオマイシン耐性遺伝子配列(6)には、NRプローブがハイブリダイズしうるように設計されている。
CHO 2.5kx2 抗体ベクター中のネオマイシン耐性遺伝子に相補的な配列を有するNRプローブは、実施例5と同様にして準備した。
6TG耐性コロニーから各細胞クローンのゲノムDNAを抽出し、Eco RV制限酵素により切断した。切断したゲノムDNAのサザンハイブリダイゼーション解析を、実施例5と同様に行った。
ゲノムPCRによる野生型hprt遺伝子残存の確認
CHO 1kx2抗体ベクターおよびCHO 2.5kx2抗体ベクターの相同組換えクローンから抽出したゲノムDNAを鋳型として用いた、以下に示すPCR反応により、野生型hprt遺伝子が残存しているのかを確認した。
まず、図9(A)左図は2本のX染色体を有する野生型CHO細胞におけるPCRを示す。hprt遺伝子(1)の相同組換えの標的領域(2)は、エクソン3(3)を含んで設定されている。ベクター非導入の野生型細胞の場合、標的領域のDNA(2322bp)は、PCR反応によって増幅することができ、これを指標として野生型hprt遺伝子が残存していることを確認することができる。
次に、得られたPCR増幅産物を1.0%アガロースゲル電気泳動により解析した。結果は、図9(B)に示される通りであった。
CHO CHEF1Pベクターの作製
CHO-K1ゲノムDNAを鋳型とし、EF1aP-MluI-F/EF1aP-XbaI-RプライマーセットでCHEF1αプロモーターを増幅した。
5’-AGAACGCGTCCACACAATCAGAACCACA-3’(配列番号71)
EF1aP-XbaI-Rプライマー:
5’-GACGATCTAGAGGTGGTTTTCACAACA-3’(配列番号72)
5’-AGGGACTTTCCATTGACGTC-3’(配列番号73)
MluI-CMV-IgHL-SVpA-aプライマー:
5’-cttACGCGTAACGTCTCGCCCTTTGGTCTC-3’(配列番号74)
5’-AGAAAGCTTCCACACAATCAGAACCACA-3’(配列番号75)
EF1aP-HindIII-Rプライマー:
5’-GACGAATTCGCGGTGGTTTTCACAACA-3’(配列番号76)
5’-TATGAATTCGTCGCCACCATGGACAT-3’(配列番号77)
IgLser-HindIII-Rプライマー:
5’-TGTAAGCTTTACCACATTTGTAGAGGTTTT-3’(配列番号78)
構築したCHO CHEF1Pベクターの線状化、CHO細胞への導入およびスクリーニングを実施例3と同様に実施し、CHO CHEF1Pベクター組換えCHO細胞を取得した。
取得したCHO CHEF1Pベクター組換えCHO細胞を、7℃、5%CO2にて継代維持し(選択薬剤非添加培地: Advanced MEM(GIBCO社)に5% FBS、1xGlutamax(GIBCO社)を添加したもの)、適時抗体生産量の測定に供した。
抗体重鎖発現組み換えベクターの作製
実施例7で作製したCHO 2.5kx2 抗体ベクターを制限酵素Hind IIIで切断し、自己閉環化させ、図13で示されるCHO 2.5kbx2 重鎖ベクターを作製した。
構築したCHO 2.5kbx2 重鎖ベクターの線状化、CHO細胞への導入およびスクリーニングを実施例3と同様に実施し、CHO 2.5kbx2 重鎖ベクター組換えCHO細胞を取得した。その結果、107細胞あたり130個の組換えCHO細胞が取得された。
MAR非転写ベクターの作製
実施例2で準備したヒト由来細胞株HT1080細胞株のゲノムDNAを鋳型とし、XbaI-hprtMAR-s/XbaI-hprtMAR-aプライマーセットでヒトhprt遺伝子イントロンのMAR(hprtMAR1)を増幅した。
5’-ttTCTAGAtagttatgagcccatgtccc-3’(配列番号79)
XbaI-hprtMAR-aプライマー:
5’-ttTCTAGAcggtgaaatcctgtctctac-3’(配列番号80)
ヒト由来細胞株HT1080細胞株のゲノムDNAを鋳型とし、AscI-hprtMAR-s/MluI-hprtMAR-aプライマーセットでヒトhprt遺伝子イントロンのMAR(hprtMAR2)を増幅した。
5’-ttGGCGCGCCtagttatgagcccatgtccc-3’(配列番号81)
MluI-hprtMAR-aプライマー:
5’-ttACGCGTcggtgaaatcctgtctctac-3’(配列番号82)
ヒト由来細胞株HT1080細胞株のゲノムDNAを鋳型とし、BglII-hprtMAR-s/BglII-hprtMAR-aプライマーセットでヒトhprt遺伝子イントロンのMAR(hprtMAR3)を増幅した。
5’-ttAGATCTtagttatgagcccatgtccc-3’(配列番号83)
BglII-hprtMAR-aプライマー:
5’-ttAGATCTcggtgaaatcctgtctctac-3’(配列番号84)
構築したMAR非転写ベクター、MAR転写ベクターおよびMAR CMV転写ベクターの線状化、CHO細胞への導入およびスクリーニングを実施例3と同様に実施し、組換えCHO細胞を取得した。
図13(A)、(B)および(C)に示されるMARベクターによって取得した組換えCHOクローンの抗体生産性解析を、実施例9と同様に実施した。
CHO 200b×2ベクター、CHO 500b×2ベクター作製
CHO-K1細胞のゲノムDNAを鋳型とし、SseNru-CHA1-200-s/MluI-CHA1-rプライマーセット、Bam-CHA2-s/PciNru-CHA2-200-rプライマーセットによるPCR反応によって、標的となるhprt遺伝子の相同DNA断片(CHA1-200およびCHA2-200)をそれぞれクローニングした。CHA1-200およびCHA2-200はhprt遺伝子のエクソン3を含む領域と相同な配列に設定した。PCR反応に用いたプライマー配列は以下に示す通りである。
5’-ttCCTGCAGGTCGCGAtggaatcttctattcctgattt-3’(配列番号85)
PciNru-CHA2-200-rプライマー:
5’-ttACATGTTCGCGAtcagcactcaggagtcagag-3’(配列番号86)
5’-ttCCTGCAGGTCGCGAgatgcctagcatgtacctgg-3’(配列番号87)
PciNru-CHA2-500-rプライマー:
5’-ttACATGTTCGCGAtaagtacaaatccatcttgggtgac-3’(配列番号88)
構築したCHO 200b×2ベクター、CHO 500b×2ベクターの線状化、CHO細胞への導入およびスクリーニングを実施例3と同様に実施した。
CHO 5kb×2ベクター作製
CHO-K1細胞のゲノムDNAを鋳型とし、NsiNru-CHA1-5k-s/MluI-CHA1-rプライマーセット、BclI-CHA2-s/BspNru-CHA2-5k-rプライマーセットによるPCR反応によって、標的となるhprt遺伝子の相同DNA断片(CHA1-5kおよびCHA2-5k)をそれぞれクローニングした。CHA1-5kおよびCHA2-5kはhprt遺伝子のエクソン3を含む領域と相同な配列に設定した。PCR反応に用いたプライマー配列は以下に示す通りである。
5’-ttATGCATTCGCGAAtctcaggtgataggagacataagac-3’(配列番号89)
BclI-CHA2-sプライマー:
5’-ttTGATCAgactgaagagctactgtgta-3’(配列番号90)
BspNru-CHA2-5k-rプライマー:
5’-ttTCATGAaTCGCGAAtcagcactcaggagtcagag-3’(配列番号91)
構築したCHO 5kb×2ベクターの線状化、CHO細胞への導入およびスクリーニングを実施例3と同様に実施した。
その結果、1×106細胞あたり、7クローンの組み換えCHO細胞が取得された。実施例7のホモロジーアーム2.5kbのベクターでの取得頻度は1×106細胞あたり4クローンであったことから、ホモロジーアーム長5kbはより好ましい結果となった。
Claims (16)
- 5’末端から3’末端に向かって、第一の相同DNA断片、目的タンパク質遺伝子、および第二の相同DNA断片を含んでなる、DNA構築物であって、
前記第一の相同DNA断片および第二の相同DNA断片が、CHO細胞ゲノムのヒポキサンチン-ホスホリボシルトランスフェラーゼ酵素(hprt)遺伝子座の一部と相同組み換え可能な相同性を有し、かつ1kbp以上の鎖長を有するものである、DNA構築物。 - 前記第一の相同DNA断片および第二の相同DNA断片が1kbp以上7.5kbp以下の鎖長を有するものである、請求項1に記載のDNA構築物。
- 前記第一の相同DNA断片および第二の相同DNA断片が1kbp以上5kbp以下の鎖長を有するものである、請求項1に記載のDNA構築物。
- 前記hprt遺伝子座の一部が、hprt遺伝子のイントロンの少なくとも一部を含んでなる領域である、請求項1に記載のDNA構築物。
- 前記第一の相同DNA断片または第二の相同DNA断片が、配列番号15~22のいずれかに記載の塩基配列またはその部分配列を含んでなる、請求項1に記載のDNA構築物。
- 前記目的タンパク質が、抗体、酵素、サイトカイン、ホルモン、凝固因子、調節タンパク質またはレセプターである、請求項1に記載のDNA構築物。
- 陽性選択マーカー遺伝子をさらに含んでなる、請求項1に記載のDNA構築物。
- 請求項1に記載のDNA構築物を含んでなる、ベクター。
- ヒトhprt遺伝子の第一イントロン由来の核/マトリックス付着領域(MAR)を、当該ベクターが染色体に組込まれた後、組込み部位で生じる転写によって、当該MAR自身が転写される構造で保持する、請求項8に記載のベクター。
- 前記目的タンパク質遺伝子に作動可能に連結されたCHEF-1α遺伝子プロモーターを含んでなる、請求項8または9に記載のベクター。
- 前記ベクターが、プラスミドベクター、コスミドベクター、ファージベクターまたは人工染色体ベクターである、請求項8~10のいずれか一項に記載のベクター。
- 請求項8~10のいずれか一項に記載に記載のベクターをCHO細胞に導入することを含んでなる、組み換えCHO細胞の製造方法。
- hprt座に外来性の目的タンパク質遺伝子が組み込まれてなる、組み換えCHO細胞。
- hprt遺伝子の機能が不活化している、請求項13に記載の組み換えCHO細胞。
- 請求項12に記載の製造方法により得られる、組み換えCHO細胞。
- 請求項13または15に記載の組み換えCHO細胞を用意し、該細胞を培養して目的タンパク質を産生することを含んでなる、目的タンパク質の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/498,006 US20120270264A1 (en) | 2009-10-01 | 2010-09-21 | Dna construct, and process for production of recombinant cho cell using same |
MX2012003816A MX2012003816A (es) | 2009-10-01 | 2010-09-21 | Construccion de adn y procedimiento para la generacion de celulas cho recombinantes usando la misma. |
EP10820404.1A EP2484761A4 (en) | 2009-10-01 | 2010-09-21 | DNA CONSTRUCT AND METHOD FOR PRODUCING RECOMBINANT CHO CELLS THEREWITH |
JP2011514999A JP4998814B2 (ja) | 2009-10-01 | 2010-09-21 | Dna構築物およびそれを用いた組み換えcho細胞の製造方法 |
CN2010800545605A CN102639699A (zh) | 2009-10-01 | 2010-09-21 | Dna构建体以及用其制备重组cho细胞的方法 |
IL218957A IL218957A0 (en) | 2009-10-01 | 2012-03-29 | Dna construct , and process for production of recombinant cho cell using same |
US13/441,196 US20130034875A1 (en) | 2009-10-01 | 2012-04-06 | Dna construct, and process for production of recombinant cho cell using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009229722 | 2009-10-01 | ||
JP2009-229722 | 2009-10-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/441,196 Continuation-In-Part US20130034875A1 (en) | 2009-10-01 | 2012-04-06 | Dna construct, and process for production of recombinant cho cell using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040285A1 true WO2011040285A1 (ja) | 2011-04-07 |
Family
ID=43826109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066317 WO2011040285A1 (ja) | 2009-10-01 | 2010-09-21 | Dna構築物およびそれを用いた組み換えcho細胞の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120270264A1 (ja) |
EP (1) | EP2484761A4 (ja) |
JP (1) | JP4998814B2 (ja) |
CN (1) | CN102639699A (ja) |
IL (1) | IL218957A0 (ja) |
MX (1) | MX2012003816A (ja) |
WO (1) | WO2011040285A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016038354A (ja) * | 2014-08-11 | 2016-03-22 | 学校法人北里研究所 | 抗トロンボポエチン抗体の検出方法、免疫性血小板減少症の検出方法及びキット |
EP3382029A1 (en) | 2017-03-31 | 2018-10-03 | Toto Ltd. | Recombinant mammalian cells and method for producing substance of interest |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106191040B (zh) * | 2015-04-30 | 2021-09-14 | 杭州菁因康生物科技有限公司 | 基因打靶方法 |
CN106318965B (zh) * | 2015-06-26 | 2019-05-07 | 深圳华大生命科学研究院 | 人工半合成染色体的整合方法及含有完整合成染色体的微生物 |
CN111801424A (zh) * | 2018-01-10 | 2020-10-20 | Agc生技制品公司 | 双向chef1载体 |
CN111574596B (zh) * | 2020-05-25 | 2022-09-02 | 中国农业科学院兰州兽医研究所 | 组成型分泌表达o型fmdv重组抗原表位基因工程cho细胞系的构建方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05507853A (ja) | 1990-06-12 | 1993-11-11 | ベイラー・カレッジ・オブ・メディシン | 動物細胞および植物細胞における相同的組換え法 |
JPH09510865A (ja) | 1993-12-23 | 1997-11-04 | メルク アンド カンパニー, インコーポレイテッド | マウス細胞のための相同的組換え抗体発現系 |
JP2001516221A (ja) | 1997-03-14 | 2001-09-25 | アイデック・ファーマシューティカルズ・コーポレイション | 哺乳類細胞内の特定部位に相同組換えによって遺伝子を組み込む方法とそれを実施するためのベクター |
JP2002541854A (ja) | 1999-04-15 | 2002-12-10 | クルセル ホラント ベスローテン フェンノートシャップ | ヒト細胞における組み換え蛋白質の生産 |
WO2004022741A1 (ja) | 2002-09-03 | 2004-03-18 | Japan Science And Technology Agency | 哺乳類人工染色体 |
WO2007075976A2 (en) * | 2005-12-21 | 2007-07-05 | Inspiration Biopharmaceuticals, Inc. | Method of producing biologically active vitamin k dependent proteins by recombinant methods |
JP2007325571A (ja) | 2006-06-09 | 2007-12-20 | Toto Ltd | 組換え哺乳類動物細胞を用いたタンパク質生産方法 |
WO2009022656A1 (ja) * | 2007-08-10 | 2009-02-19 | Toto Ltd. | 組換え哺乳動物細胞、組換え哺乳動物細胞の製造方法、および目的タンパク質の生産方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142393A1 (en) * | 1998-10-17 | 2002-10-03 | Armin Baiker | Episomally replicating vector, its preparation and use |
KR100408844B1 (ko) * | 2000-07-29 | 2003-12-06 | 한국산업기술평가원 | 동물세포 발현벡터 |
BRPI0718747A2 (pt) * | 2006-11-14 | 2013-12-03 | Cellectis | Variantes meganuclease que clavam uma ou sequência alvo de dna a partir do gene hprt e usos das mesmas. |
EP2180058A1 (en) * | 2008-10-23 | 2010-04-28 | Cellectis | Meganuclease recombination system |
-
2010
- 2010-09-21 CN CN2010800545605A patent/CN102639699A/zh active Pending
- 2010-09-21 US US13/498,006 patent/US20120270264A1/en not_active Abandoned
- 2010-09-21 JP JP2011514999A patent/JP4998814B2/ja not_active Expired - Fee Related
- 2010-09-21 EP EP10820404.1A patent/EP2484761A4/en not_active Withdrawn
- 2010-09-21 MX MX2012003816A patent/MX2012003816A/es not_active Application Discontinuation
- 2010-09-21 WO PCT/JP2010/066317 patent/WO2011040285A1/ja active Application Filing
-
2012
- 2012-03-29 IL IL218957A patent/IL218957A0/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05507853A (ja) | 1990-06-12 | 1993-11-11 | ベイラー・カレッジ・オブ・メディシン | 動物細胞および植物細胞における相同的組換え法 |
JPH09510865A (ja) | 1993-12-23 | 1997-11-04 | メルク アンド カンパニー, インコーポレイテッド | マウス細胞のための相同的組換え抗体発現系 |
JP2001516221A (ja) | 1997-03-14 | 2001-09-25 | アイデック・ファーマシューティカルズ・コーポレイション | 哺乳類細胞内の特定部位に相同組換えによって遺伝子を組み込む方法とそれを実施するためのベクター |
JP2002541854A (ja) | 1999-04-15 | 2002-12-10 | クルセル ホラント ベスローテン フェンノートシャップ | ヒト細胞における組み換え蛋白質の生産 |
WO2004022741A1 (ja) | 2002-09-03 | 2004-03-18 | Japan Science And Technology Agency | 哺乳類人工染色体 |
WO2007075976A2 (en) * | 2005-12-21 | 2007-07-05 | Inspiration Biopharmaceuticals, Inc. | Method of producing biologically active vitamin k dependent proteins by recombinant methods |
JP2007325571A (ja) | 2006-06-09 | 2007-12-20 | Toto Ltd | 組換え哺乳類動物細胞を用いたタンパク質生産方法 |
WO2009022656A1 (ja) * | 2007-08-10 | 2009-02-19 | Toto Ltd. | 組換え哺乳動物細胞、組換え哺乳動物細胞の製造方法、および目的タンパク質の生産方法 |
Non-Patent Citations (35)
Title |
---|
"Cloning of cDNA and Characterization of Anti-RNase A Monoclonal Antibody 3A21", JOURNAL OF FERMENTATION AND BIOENGINEERING, vol. 82, no. 3, 1999, pages 312 - 314 |
"Nikkei Bio Saishin Yogo Jiten, 5th edition", 17 September 2002, NIKKEI BUSINESS PUBLICATIONS, INC., article NIKKEI BIOTECHNOLOGY/NIKKEI BIO BUSINESS ET AL., pages: 351,525, XP008157804 * |
ANNUAL REPORT OF THE HIROSHIMA UNIVERSITY RESEARCH INSTITUTE FOR RADIATION BIOLOGY AND MEDICINE, vol. 44, 2003 |
BARNES, L. M. ET AL., BIOTECHNOLOGY AND BIOENGINEERING, vol. 81, 2003, pages 631 - 639 |
BIOTECHNOLOGY AND BIOENGINEERING, vol. 91, 2005, pages 1 - 11 |
BROWN, M. E. ET AL., CYTOTECHNOLOGY, vol. 9, 1992, pages 231 - 236 |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C. longicaudatus HPRT gene, exon 7 & 8; http://www.ncbi.nlm.nih.gov/nuccore/49512", XP008154893, Database accession no. X53079 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene , exon 6; http://www.ncbi.nlm.nih.gov/nuccore/49511", XP008154895, Database accession no. X53078 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene, exon 1; http://www.ncbi.nlm.nih.gov/nuccore/49505", XP008154897, Database accession no. X53073 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene, exon 2; http://www.ncbi.nlm.nih.gov/nuccore/49507", XP008154891, Database accession no. X53074 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene, exon 3; http://www.ncbi.nlm.nih.gov/nuccore/49508", XP008154894, Database accession no. X53075 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene, exon 4; http://www.ncbi.nlm.nih.gov/nuccore/49509", XP008154901, Database accession no. X53076 * |
DATABASE GENBANK [online] 14 November 2006 (2006-11-14), ROSSITER B.J. ET AL: "Definition: C.longicaudatus HPRT gene, exon 5; http://www.ncbi.nlm.nih.gov/nuccore/49510", retrieved from http:// www.ncbi.nlm.nih.gov/nuccore/49510 Database accession no. X53077 * |
DATABASE GENBANK [online] 21 April 2003 (2003-04-21), FUSCOE J.C. ET AL: "Definition: hprt=hypoxanthine phosphoribosyl transferase {exon 2}; http://www.ncbi.nlm.nih.gov/nuccore/257049", XP008154903, Database accession no. S46270 * |
DATT, A. ET AL., PNAS, U.S.A., vol. 94, 1997, pages 9757 - 9762 |
DATT, A. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 94, 1997, pages 9757 - 9762 |
DENG C, D; CAPECCHI M, R, MOL. CELL. BIOL., vol. 12, 1992, pages 3365 - 3371 |
F.M. AUSUBEL: "Current Protocols in Molecular Biology", 1989, JOHN WILEY & SONS |
FUSCOE J.C. ET AL: "Analysis of X-ray-induced HPRT mutations in CHO cells: insertion and deletions", MUTAT RES, vol. 269, no. 2, 1992, pages 171 - 183, XP008154882 * |
KIM, N. S., BIOTECHNOL. BIOENG., vol. 60, 1998, pages 679 - 688 |
KOYAMA Y, BIOTECHNOLOGY AND BIOENGINEERING, vol. 95, 2006, pages 1052 - 1060 |
KOYAMA Y. ET AL: "Stable expression of a heterogeneous gene introduced via gene targeting into the HPRT locus of human fibrosarcoma cells", BIOTECHNOL BIOENG, vol. 95, no. 6, 2006, pages 1052 - 1060, XP008154913 * |
MAJUMDAR A. ET AL: "Targeted gene knock in and sequence modulation mediated by a psoralen- linked triplex-forming oligonucleotide", J BIOL CHEM, vol. 283, no. 17, 2008, pages 11244 - 11252, XP008154908 * |
MOL GEN. GENET., vol. 212, 1988, pages 301 - 309 |
MOLECULAR BIOLOGY REPORTS, vol. 31, 2004, pages 85 - 90 |
PNAS, vol. 86, 1989, pages 4574 - 4578 |
PNAS, vol. 88, 1991, pages 9488 - 9502 |
PORTER C. G.; ITZHAKI J. E, EUR. J. BIOCHEM, vol. 218, pages 273 - 281 |
RIELE H. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 89, 1992, pages 5128 - 5132 |
ROSSITER B.J. ET AL: "The Chinese hamster HPRT gene: restriction map, sequence analysis, and multiplex PCR deletion screen", GENOMICS, vol. 9, no. 2, 1991, pages 247 - 256, XP008154889 * |
SAMBROOK ET AL.: "Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS |
SELVA E. M. ET AL., GENETICS, vol. 139, 1995, pages 1175 - 1188 |
SOMATIC CELL. MOL. GENET., vol. 19, pages 363 - 375 |
SYKES R.C. ET AL: "Yeast ARS function and nuclear matrix association coincide in a short sequence from the human HPRT locus", MOL GEN GENET, vol. 212, no. 2, 1988, pages 301 - 309, XP008154904 * |
ZU Z ET AL., MUTAT RES., vol. 288, no. 2, 1993, pages 237 - 48 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016038354A (ja) * | 2014-08-11 | 2016-03-22 | 学校法人北里研究所 | 抗トロンボポエチン抗体の検出方法、免疫性血小板減少症の検出方法及びキット |
EP3382029A1 (en) | 2017-03-31 | 2018-10-03 | Toto Ltd. | Recombinant mammalian cells and method for producing substance of interest |
JP2018171056A (ja) * | 2017-03-31 | 2018-11-08 | Toto株式会社 | 組換え哺乳動物細胞および目的物質の生産方法 |
JP7041571B2 (ja) | 2017-03-31 | 2022-03-24 | Toto株式会社 | 組換え哺乳動物細胞および目的物質の生産方法 |
Also Published As
Publication number | Publication date |
---|---|
IL218957A0 (en) | 2012-06-28 |
US20120270264A1 (en) | 2012-10-25 |
EP2484761A4 (en) | 2013-11-27 |
CN102639699A (zh) | 2012-08-15 |
MX2012003816A (es) | 2012-07-04 |
JP4998814B2 (ja) | 2012-08-15 |
EP2484761A1 (en) | 2012-08-08 |
JPWO2011040285A1 (ja) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2864489B1 (en) | Site-specific integration | |
DK2951309T3 (en) | INCREASED TRANSGEN EXPRESSION AND PROCESSING | |
KR101485853B1 (ko) | 조절 핵산 요소 | |
JP4998814B2 (ja) | Dna構築物およびそれを用いた組み換えcho細胞の製造方法 | |
JP5797192B2 (ja) | 細胞クローンのための阻害に基づくハイスループットスクリーニング方法 | |
AU2008339985C1 (en) | Mammalian expression vector | |
JPH10500570A (ja) | 相同組換えに効果的なdna構築物及びその利用 | |
US20210139919A1 (en) | Dna vectors, transposons and transposases for eukaryotic genome modification | |
US7008764B1 (en) | Optimization of cells for endogenous gene activation | |
KR20200038462A (ko) | Cho 세포 내 통합 부위 | |
KR20120034715A (ko) | 고생산성 세포의 수립을 위한 발현 벡터 및 고생산성 세포 | |
JP5387266B2 (ja) | 組換え哺乳動物細胞、組換え哺乳動物細胞の製造方法、および目的タンパク質の生産方法 | |
JP4293990B2 (ja) | 哺乳類人工染色体 | |
TW200932907A (en) | SM-protein based secretion engineering | |
KR20100097123A (ko) | 신규한 재조합 서열 | |
JP4568378B2 (ja) | 遺伝子発現安定化エレメント | |
US20130034875A1 (en) | Dna construct, and process for production of recombinant cho cell using same | |
JP2006507847A (ja) | 真核細胞内における配列特異的dna組換え | |
JP2007325571A (ja) | 組換え哺乳類動物細胞を用いたタンパク質生産方法 | |
JP2012196208A (ja) | DNA構築物、ならびにそれを用いた組換えdhfr遺伝子欠損CHO細胞およびその製造方法 | |
TWI327166B (en) | Novel neomycin-phosphotransferase genes and methods for the selection of recombinant cells producing high levels of a desired gene product | |
Hu | Cell Line Development | |
CA2504010A1 (en) | Sequence specific dna recombination in eukaryotic cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080054560.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011514999 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820404 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 218957 Country of ref document: IL Ref document number: MX/A/2012/003816 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3614/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820404 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498006 Country of ref document: US |