WO2011039993A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2011039993A1
WO2011039993A1 PCT/JP2010/005811 JP2010005811W WO2011039993A1 WO 2011039993 A1 WO2011039993 A1 WO 2011039993A1 JP 2010005811 W JP2010005811 W JP 2010005811W WO 2011039993 A1 WO2011039993 A1 WO 2011039993A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
power conversion
command
output voltage
Prior art date
Application number
PCT/JP2010/005811
Other languages
English (en)
French (fr)
Inventor
英俊 北中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080043334.7A priority Critical patent/CN102511122B/zh
Priority to EP10820115.3A priority patent/EP2472710B1/en
Priority to JP2011528105A priority patent/JP4835812B2/ja
Priority to US13/387,873 priority patent/US8593843B2/en
Publication of WO2011039993A1 publication Critical patent/WO2011039993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/04Electric propulsion with power supply external to the vehicle using dc motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power conversion device applied to an electric vehicle that takes in electric power from a DC power source via an overhead wire (including a third rail).
  • an electric vehicle travels by taking electric power from an overhead line with a current collector and driving the electric motor using the collected electric power. It is known that the drive control of the electric motor is performed by a power conversion device that converts the collected power into a three-phase AC by an inverter that is a DC-AC conversion circuit and supplies it to the motor.
  • a reactor and a capacitor are formed to attenuate the harmonic current flowing out from the power conversion circuit to the DC power source side.
  • An LC filter circuit is installed.
  • the present invention has been made to solve the above-described problems. Even when the voltage of a DC power supply or the like fluctuates, the present invention suppresses the electric vibration of the LC filter circuit and suppresses the transient vibration of the capacitor voltage. Provided is a power conversion device that maintains normal operation by suppressing.
  • the power conversion device receives power from an overhead line, and outputs a converted power obtained by converting the power from the overhead line through an LC filter circuit including a reactor and a capacitor, and controls the power conversion circuit.
  • the control unit includes a time constant generating unit that generates a time constant and a calculation unit that generates a first control signal by delaying the capacitor voltage based on the time constant.
  • a processing unit is provided, and a second output voltage command is generated from the first output voltage command and the first control signal which are commands of the magnitude of the output voltage in the converted power, and based on the second output voltage command It controls the power conversion circuit.
  • a power converter that maintains normal operation by suppressing electrical vibration of the LC filter circuit and suppressing transient vibration of the capacitor voltage is provided. it can.
  • FIG. 3 is a diagram illustrating a transfer function block of the system of FIG. 2. It is a figure which shows the circuit by which the load of the positive resistance characteristic was connected to the LC filter connected to DC power supply as a comparative example.
  • FIG. 5 is a diagram illustrating a transfer function block of the system of FIG. 4. It is a figure which shows the example of a waveform of the input capacitor voltage in Embodiment 1 of this invention and a prior art example. It is a figure which shows the structural example of the delay process part in Embodiment 1 of this invention.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to Embodiment 1 of the present invention.
  • the power converter is connected to the overhead line 1 via the current collector 2 and connected to the rail 4 via the wheels 3.
  • the overhead line 1 and the rail 4 are connected to a substation (not shown) serving as a DC power source, the current collector 2 receives power from the overhead line 1, and the wheel 3 is connected to the rail 4 as a return circuit for return current. ing.
  • the power converter includes an LC filter circuit including a reactor 5 and a capacitor 6 in order to suppress the harmonic current from flowing out to the overhead line 1, a voltage detector 7 that detects the DC voltage EFC of the capacitor 6, and the capacitor 6.
  • One end of the power conversion circuit 10 connected in parallel and composed of the upper arm side switching element 11 and the lower arm side switching element 12 is connected to a connection point between the upper arm side switching element 11 and the lower arm side switching element 12, and the current flows.
  • a smoothing reactor 20 which is a smoothing filter for performing ripple filtering, a current detector 21 for detecting a current ISL of the smoothing reactor 20, a power storage element 26 serving as a load, a voltage detector 23 for detecting an output voltage BFC, and an LC filter circuit As a control unit to suppress electrical vibration and suppress transient vibration of capacitor voltage And a converter control unit 30.
  • the power conversion circuit 10 is a DC-DC conversion circuit (DCDC converter).
  • a nickel-metal hydride secondary battery, a lithium ion secondary battery, an electric double layer capacitor, or the like is suitable, but it is not limited and may be other.
  • the substation has been described as an example of the DC power source, other DC voltage sources may be used.
  • the converter control unit 30 includes a subtractor 31 that receives the current command ISL * of the smoothing reactor 20 and obtains the difference between the smoothing reactor currents ISL, and a current controller 32 that performs proportional-integral control by receiving the output of the subtractor 31.
  • An adder 33 that takes the sum of the output of the current controller 32 and the voltage BFC of the power storage element 26 and generates a voltage command VREF as a first output voltage command that is a command of the magnitude of the output voltage in the converted power; Based on the divider 35 for dividing the voltage command VREF by the signal EFC2 which is the first control signal and outputting the duty ratio M which is the second output voltage command, the duty ratio M and the carrier signal CAR.
  • a modulation circuit 37 that outputs a switching signal GSG to the power conversion circuit 10.
  • the conduction rate M may be generated by adding BFC / EFC2 to the output of the current controller 32.
  • the carrier signal CAR is a triangular wave or sawtooth wave carrier having a value of 0 to 1.
  • the modulation circuit 37 compares the magnitude relationship between the conduction rate M and the carrier signal CAR, and generates the switching signal GSG based on the comparison result. If the conduction ratio M> the carrier signal CAR, the upper arm side switching element 11 is turned on and the lower arm side switching element 12 is turned off. If the conduction ratio M ⁇ carrier signal CAR, the lower arm side switching element 12 is turned on and the upper arm side switching element 11 is turned off. In this way, control is performed by adjusting the ON time width of the upper arm side switching element 11 and the ON time width of the lower arm side switching element 12.
  • the signal EFC2 is a signal obtained by delaying the voltage EFC of the capacitor 6 by the delay processing unit 34.
  • the delay processing unit 34 performs, for example, first-order delay processing on the input voltage EFC, and generates and outputs a signal EFC2 that is a first control signal.
  • the first embodiment is characterized in that the conduction rate M is generated based on the signal EFC2 generated by the delay processing unit 34.
  • the current controller 32 is preferably proportional-integral control, but may be proportional control. Any of them can be configured by a known technique.
  • the power conversion device configured as described above converts the voltage ES from the overhead wire 1 into a predetermined voltage value, applies it to both ends of the power storage element 26, and controls on / off of the switching element of the power conversion circuit 10,
  • the smoothing reactor current ISL (equal to the current of the power storage element 26) is adjusted to a predetermined current value. That is, the power converter controls the smoothing reactor current ISL to a predetermined current value.
  • a smoothing reactor current command ISL * which is a command value of the smoothing reactor current ISL, is output from a higher-level control system (not shown).
  • ISL * is set to a positive value.
  • an LC filter circuit including the reactor 5 and the capacitor 6 is installed to attenuate the harmonic current flowing out from the power conversion circuit 10 to the overhead wire 1 side. Since this LC filter circuit exists, electric vibration may occur as described below. The principle of the occurrence of electrical vibration in the LC filter circuit will be briefly described below.
  • FIG. 2 is a simplified representation of the system shown in FIG. 1, and is connected to a DC power source 70 simulating the overhead wire 1, and an LC filter composed of a reactor 5 and a capacitor 6 is connected to a power conversion circuit 10 and a smoothing circuit. It is a figure which shows the circuit at the time of connecting the reactor 20 and the electric power storage element 26, and carrying out constant current control of the smoothing reactor current ISL.
  • the reactor 5 includes an inductance component L and a resistance component R.
  • the capacitance of the capacitor 6 is C.
  • the power conversion circuit 10 is controlled so that the smoothing reactor current ISL that is the output of the power conversion circuit is maintained constant even when the voltage EFC of the capacitor 6 fluctuates. Is done. Therefore, the power passing through the power conversion circuit 10 is constant, so that the power conversion circuit 10 has a constant power characteristic with respect to the fluctuation of the voltage EFC of the capacitor 6. That is, even if the voltage EFC varies, the input power PDC of the power conversion circuit 10 is controlled so as not to change. From the above characteristics, an element in which the power conversion circuit 10, the smoothing reactor 20, and the power storage element 26 are collectively expressed as a load of the LC filter is expressed as a constant power load 80.
  • the constant power load 80 viewed from the DC power supply 70 side has a negative resistance characteristic.
  • the negative resistance characteristic is a characteristic in which the input current IDC of the power conversion circuit 10 decreases if the voltage EFC of the capacitor 6 increases, and the input current IDC of the power conversion circuit 10 increases if the voltage EFC of the capacitor 6 decreases. It is.
  • the DC input unit of the system shown in FIG. 2 exhibits negative resistance characteristics, and the input current IDC of the power conversion circuit 10 decreases as the voltage EFC of the capacitor 6 increases.
  • the input current IDC of the power conversion circuit 10 increases, so that the operation of promoting the decrease of the voltage EFC of the capacitor 6 is performed. For this reason, braking is not effective for the fluctuation of the voltage EFC of the capacitor 6, the electric vibration of the LC filter circuit expands, and the voltage EFC of the capacitor 6 continuously vibrates in the vicinity of the resonance frequency of the LC filter.
  • the phenomenon described above is quantitatively explained by obtaining and evaluating the transfer function of the system of FIG.
  • a transfer function from the DC voltage ES to the voltage EFC of the capacitor 6 is obtained.
  • the constant power load 80 is controlled so that its output is constant.
  • the relational expression of the input power PDC of the power conversion circuit 10, the voltage EFC of the capacitor 6, and the input current IDC of the power conversion circuit 10 is the following expression (1).
  • Equation (6) does not contain useful information, it is ignored here. Equation (5) is rewritten as the following equation (7).
  • Equation (7) the smaller R, the larger C, the smaller the PDC, and the larger EFC0, the smaller the R required for the system to stabilize.
  • the resistance component existing on the direct current side is as small as several tens of m ⁇ , and it is difficult to satisfy the equation (7). As a result, the system becomes unstable and the LC filter circuit generates vibration.
  • FIG. 4 is a diagram showing a circuit in which a load composed of a resistor 60 is connected to the LC filter circuit connected to the DC power supply 70. As compared with the circuit shown in FIG. 2, the constant power load 80 is replaced with a resistor 60. The resistance value of the resistor 60 is R0.
  • FIG. 5 is a diagram showing a transfer function block of the system of FIG. From FIG. 5, the closed loop transfer function Gp (s) from the voltage Es of the DC power supply 70 to the voltage EFC of the capacitor 6 is expressed by the following equation (8).
  • R ⁇ 0 is obtained by calculating a condition in which all the solutions of the characteristic equation represented by Expression (9) are negative, and this condition is always satisfied. From this, it can be seen that when the load is composed of the resistor 60, the load is always stable. As described above, it can be seen that the circuit in which the resistor 60 is connected to the LC filter circuit connected to the DC power supply 70 is always stable.
  • the voltage of the overhead wire 1 (overhead voltage ES) may fluctuate rapidly depending on the operating state of other electric vehicles that are supplied with power from the same overhead wire 1.
  • the voltage EFC of the capacitor 6 generates a transient vibration. If the suppression of the transient vibration is insufficient, the capacitor 6 becomes overvoltage, and the power converter may stop. Therefore, it is important to suppress the transient vibration of the voltage EFC of the capacitor 6 when the overhead wire voltage ES fluctuates rapidly.
  • the voltage EFC of the capacitor 6 is delayed by the delay processing unit 34 to obtain the signal EFC2 that is the first control signal. Based on this signal EFC2 and VREF which is the first output voltage command, the current flow rate M is generated.
  • the conduction ratio M is generated based on the signal EFC2 delayed from the voltage EFC. It will be.
  • the conduction ratio M immediately decreases in inverse proportion to the increase in the voltage EFC and is corrected to a predetermined value corresponding to the voltage EFC, thereby canceling the fluctuation in the voltage EFC.
  • the output of the power conversion circuit 10 is adjusted so as not to fluctuate due to the fluctuation of the voltage EFC.
  • a transient fluctuation of the output of the power conversion circuit 10 due to the fluctuation of the voltage EFC is allowed to some extent, and the conduction ratio M decreases to a predetermined value corresponding to the voltage EFC with a certain delay. It becomes a behavior.
  • the constant power characteristic of the power conversion circuit 10 with respect to the fluctuation of the voltage EFC can be weakened, and the negative resistance characteristic described above can be weakened, so that the system can be stabilized and the transient oscillation of the voltage EFC Can also be suppressed.
  • FIG. 6 is a diagram illustrating a waveform example of the voltage EFC as the input capacitor voltage in the first embodiment.
  • the overhead line voltage ES is 1400 V in a state where power is supplied from the overhead line 1 side to the power storage element 26 side and the power storage element 26 is charged. Between 1600V is changed in steps.
  • the upper part is a waveform example when there is no delay processing unit as a comparative example, and the lower part is a waveform example when the delay processing unit 34 is applied. As shown in FIG.
  • the delay process in the delay processing unit 34 is preferably a first-order delay process.
  • the first-order lag time constant When the first-order lag time constant is reduced, the effect of suppressing the transient fluctuation of the voltage EFC when the overhead wire voltage fluctuates decreases.
  • the first-order lag time constant When the first-order lag time constant is increased, the effect of suppressing the transient fluctuation of the voltage EFC is increased.
  • this first-order lag time constant must be set appropriately.
  • the first-order lag time constant is preferably 10 ms to 800 ms, preferably 50 ms to 200 ms is more preferable.
  • the reactor 5 is 10 mH
  • the capacitor 6 is 3000 ⁇ F
  • the delay processing of the delay processing unit 34 is first-order lag processing
  • the first-order lag time constant is 200 ms.
  • the delay processing unit 34 generates a signal EFC2 based on the input voltage EFC and outputs the signal EFC2, and a primary delay time constant set in the primary delay calculation unit 341.
  • the time constant generation unit 342a Based on the voltage EFC, the time constant generation unit 342a has a first-order lag time constant T when the voltage EFC is higher than a predetermined value and a smaller value than the first-order lag time constant T when the voltage EFC is lower than a predetermined value. It is preferable that the configuration is generated so that
  • the first-order lag time constant T may be generated based on the overhead wire voltage ES instead of the voltage EFC.
  • the first-order lag time constant T can be set small under conditions where the negative resistance characteristic of the system becomes weak, so that transient fluctuations in the output of the power conversion circuit 10 accompanying fluctuations in the overhead line voltage ES are minimized.
  • the system can be stabilized and the transient oscillation of the voltage EFC can be suppressed.
  • a first-order lag calculator 341 that generates and outputs a signal EFC2 based on the input voltage EFC, and a first-order lag time constant T set in the first-order lag calculator 341,
  • the delay processing unit 34 may be configured from a time constant generation unit 342b that receives the input power PDC and generates the input power PDC based on the input power PDC.
  • the time constant generation unit 342b Based on the input power PDC, the time constant generation unit 342b has a primary delay time constant T when the input power PDC is smaller than a predetermined value, that is, when the converted power of the power conversion circuit 10 is small, and the input power PDC is a predetermined value. It is preferable that the first delay time constant T is generated to be smaller than the first delay time constant T.
  • the first-order lag time constant T is based on, for example, the input current IS or the current or power passing through the power conversion circuit 10, the output current ISL, the output power, or the like (generically referred to as load amount) in addition to the input power PDC.
  • load amount the input current IS or the current or power passing through the power conversion circuit 10
  • a generated configuration may be used.
  • the first-order lag time constant T can be set small under conditions where the negative resistance characteristic of the system is weak or when the system is stable, so that transient fluctuations in the output of the power conversion circuit 10 accompanying fluctuations in the overhead wire voltage ES are achieved. It is possible to stabilize the system and suppress the transient oscillation of the voltage EFC while minimizing the noise.
  • the converter control unit 30 by providing the converter control unit 30 with the delay processing unit 34, electric vibration of the LC filter circuit of the DCDC converter which is the power conversion circuit 10 can be suppressed, and the capacitor Transient vibration of voltage EFC can be suppressed. For this reason, even when the voltage of the DC power supply such as the overhead line voltage fluctuates abruptly, the capacitor 6 can be prevented from being overvoltage, and the normal operation of the power converter can be maintained.
  • Embodiment 2 FIG.
  • the power conversion circuit 10 is a DCDC converter, but in the second embodiment, a DC-AC conversion circuit (inverter) is described. Even in the configuration in which the motor is driven and controlled by the DC-AC converter circuit, negative resistance characteristics are generated on the input side of the power converter circuit based on the principle described in the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of the power conversion device according to the second embodiment.
  • the power converter is connected to the overhead line 1 via the current collector 2 and connected to the rail 4 via the wheels 3.
  • the overhead line 1 and the rail 4 are connected to a substation (not shown) serving as a DC power source, the current collector 2 receives power from the overhead line 1, and the wheel 3 is connected to the rail 4 as a return circuit for return current. ing.
  • the power conversion device includes an inverter 104 as a power conversion circuit that converts a DC voltage into an AC voltage of an arbitrary frequency, and a reactor 102 and a capacitor 103 in order to suppress a harmonic current from the inverter 104 from flowing out to the power supply side. And an inverter control unit 180 as a control unit that controls the inverter 4 that converts the voltage EFC of the capacitor 103 into an AC voltage.
  • the inverter control unit 180 receives a signal from the speed detector 107 that detects the rotation speed of the electric motor 106, a signal from the current detectors 105a to 105c that detects current, and the voltage EFC of the capacitor 103, and an external control device ( (Not shown), a torque command Tm * is input, and the torque Tm generated by the electric motor 106 is controlled to coincide with the torque command Tm *.
  • the current detector is not limited to being provided in three phases, but may be provided in two phases and calculating the remaining one phase.
  • the speed sensorless control method that calculates and calculates the rotational speed of the electric motor 106 without providing the speed detector 107 has been put into practical use, the speed detector 107 becomes unnecessary in that case.
  • the inverter control unit 180 controls the motor on a dq-axis rotational coordinate system in which an axis coinciding with the secondary magnetic flux axis of the electric motor 106 is defined as a d-axis and an axis orthogonal to the d-axis is defined as a q-axis. This is a configuration for performing vector control.
  • M is a mutual inductance
  • l2 is a secondary leakage inductance
  • s is a differential operator
  • PP is the number of pole pairs of the electric motor 106
  • R2 is a secondary resistance of the electric motor 106.
  • the slip angular frequency command generation unit 119 determines the slip angular frequency command ⁇ s to be given to the motor 106 from the following equation (12) from the d-axis current command Id *, the q-axis current command Iq *, and the circuit constants of the motor 106. * Is calculated.
  • R2 represents the secondary resistance of the electric motor.
  • the slip angular frequency command ⁇ s * calculated by the equation (12) and the rotational angular frequency ⁇ r output from the speed detector 107 attached to the shaft end of the motor 106 are added by the adder 121, and the inverter 104 outputs the result.
  • Inverter angular frequency ⁇ The result obtained by integrating the inverter angular frequency ⁇ by the integrator 122 is input to the voltage command / PWM signal generation unit 150 (described later) and the three-phase-dq axis coordinate converter 123 as a basic phase angle ⁇ of coordinate conversion.
  • the U-phase current Iu, V-phase current Iv, and W-phase current Iw detected by the current detectors 105a to 105c are calculated on the dq coordinate calculated by the following equation (13). Conversion into d-axis current Id and q-axis current Iq.
  • the subtractor 110 calculates the difference between the q-axis current command Iq * and the q-axis current Iq, and inputs the result to the q-axis current controller 112 in the next stage.
  • the q-axis current controller 112 performs proportional-integral control on the input value and outputs a q-axis voltage compensation value qe.
  • the subtractor 111 calculates the difference between the d-axis current command Id * and the q-axis current Iq, and inputs the result to the d-axis current controller 113 in the next stage.
  • the d-axis current controller 113 performs proportional-integral control on the input value and outputs a d-axis voltage compensation value de.
  • the q-axis current error qe and the d-axis current error de are expressed by the following equations (14) and (15). In the following equation, s is a differential operator, K1 is a proportional gain, and K2 is an integral gain.
  • the voltage non-interference calculation unit 114 calculates the d-axis feed according to the following equations (16) and (17) from the d-axis current command Id *, the q-axis current command Iq *, and the circuit constants of the motor 106.
  • the forward voltage Ed * and the q-axis feedforward voltage Eq * are calculated.
  • R1 is the primary resistance of the motor 106
  • the adder 117 adds the q-axis voltage compensation value qe and the q-axis feedforward voltage Eq * to the q-axis voltage command Vq *, and the adder 118 uses the d-axis voltage compensation value de and the d-axis feed.
  • the sum of the forward voltage Ed * is input to the voltage command / PWM signal generator 150 as the d-axis voltage command Vd *.
  • the q-axis voltage command Vq * and the d-axis voltage command Vd * are expressed by the following equations (18) and (19).
  • the inverter output voltage command VM * which is the first output voltage command, is expressed by the following equation (20).
  • VM * represents the magnitude of the inverter output voltage command vector.
  • the inverter 104 is a voltage-type PWM inverter that is already known, and a detailed description of the configuration is omitted.
  • the switching elements U, V, and W are the U phase of the upper arm of the inverter 104
  • the switching elements are arranged in the V phase and the W phase
  • the switching elements X, Y, and Z are switching elements arranged in the U phase, the V phase, and the W phase of the lower arm of the inverter 104.
  • FIG. 10 is a diagram illustrating a configuration example of the voltage command / PWM signal generation unit 150 in the second embodiment.
  • the delay processing unit 170 receives the capacitor voltage EFC and outputs a signal EFC2.
  • the modulation factor calculator 151 calculates a modulation factor PMF, which is a command for the magnitude of the AC output voltage and a second output voltage command, from the signal EFC2, the q-axis voltage command Vq *, and the d-axis voltage command Vd *.
  • the voltage phase angle calculation unit 152 calculates a voltage phase angle THV that is a voltage phase command of the AC output voltage from the q-axis voltage command Vq * and the d-axis voltage command Vd *.
  • the modulation factor PMF indicates the inverter output voltage command VM * as a percentage of the maximum voltage VMmax that can be output by the inverter.
  • PMF 1.0
  • the inverter output voltage command VM * is the inverter output voltage. It is shown that it becomes equal to the maximum value VMmax.
  • the modulation factor calculation unit 151 and the voltage phase angle calculation unit 152 perform the following calculations (21) and (22), respectively.
  • the maximum value VMmax of the inverter output voltage VM is calculated by the following equation (23) based on the signal EFC2.
  • VMmax is the maximum voltage that the inverter 104 can output when the value of the voltage EFC of the capacitor 103 is equal to the value of the signal EFC2, and is a value when the inverter 104 is operated in a one-pulse mode in which rectangular wave conduction is performed. is there.
  • the signal EFC2 is a signal obtained by delaying the capacitor voltage EFC by the delay processing unit 170. That is, the delay processing unit 170 performs, for example, first-order delay processing on the input voltage EFC, and generates and outputs a signal EFC2 that is a first control signal.
  • the second embodiment is characterized in that a modulation factor PMF, which is a second output voltage command, is generated based on the signal EFC2 generated by the delay processing unit 170.
  • the adder 156 generates the control phase angle ⁇ 1 by taking the sum of the voltage phase angle THV and the basic phase angle ⁇ , and the control phase angle ⁇ 1 is input to the voltage command calculation unit 155.
  • the modulation factor PMF is also input to the voltage command calculation unit 155.
  • the U-phase voltage command Vu * and V-phase which are three-phase output voltage commands, are calculated from the modulation factor PMF and the control phase angle ⁇ 1 using the following formulas (24) to (26).
  • a voltage command Vv * and a W-phase voltage command Vw * are generated.
  • the U-phase voltage command Vu *, V-phase voltage command Vv *, and W-phase voltage command Vw * are respectively compared with the carrier signal CAR by the comparators 161 to 163 to generate gate signals U, V, and W.
  • the U-phase voltage command Vu *, the V-phase voltage command Vv *, and the W-phase voltage command Vw * are compared with the carrier signal CAR by the comparators 161 to 163, and then passed through the inverting circuits 164 to 166, and then gated.
  • Signals X, Y, Z are generated.
  • the carrier signal CAR is a triangular wave carrier signal generated by the carrier signal generator 157.
  • both the modulation factor PMF and the voltage phase THV are signals generated based on the q-axis voltage command Vq * and the d-axis voltage command Vd *, but the signal generated including the signal EFC2 is the modulation factor as described above. Limited to PMF.
  • the voltage phase angle THV is generated only from the q-axis voltage command Vq * and the d-axis voltage command Vd *, and is not adjusted based on the signal EFC2. Incidentally, it has been confirmed that the control performance of the electric motor 106 is significantly deteriorated by the method of adjusting the voltage phase angle THV based on the signal EFC2.
  • the inverter output voltage command VM * which is the first output voltage command, is calculated from the q-axis voltage command Vq * and the d-axis voltage command Vd *, and the inverter output voltage command VM * and the signal From the EFC2, a configuration for calculating the modulation factor PMF, which is a command for the magnitude of the AC output voltage and the second output voltage command, and the AC output voltage from the q-axis voltage command Vq * and the d-axis voltage command Vd *.
  • the voltage phase angle THV which is a voltage phase command, is calculated, and the three-phase output voltage commands Vu *, Vv *, Vw * are generated based on the calculated modulation factor PMF and the voltage phase angle THV.
  • the modulation factor PMF is generated based on the signal EFC2 delayed from the voltage EFC.
  • the modulation factor PMF decreases immediately in inverse proportion to the increase in the voltage EFC and is corrected to a predetermined value according to the voltage EFC, thereby canceling the fluctuation in the voltage EFC. Adjustment is made so that fluctuations in voltage EFC do not affect the output of power conversion circuit 104.
  • transient fluctuation of the output of the power conversion circuit 104 due to fluctuation of the voltage EFC is allowed to some extent, and the modulation factor PMF decreases to a predetermined value according to the voltage EFC with a certain delay. It becomes.
  • the constant power characteristic of the power conversion circuit 104 with respect to the fluctuation of the voltage EFC can be weakened, and the above-described negative resistance characteristic can be weakened. Therefore, the system can be stabilized and the transient vibration of the voltage EFC can be suppressed.
  • the delay process in the delay processing unit 170 is preferably a first-order delay process.
  • the first-order lag time constant When the first-order lag time constant is reduced, the effect of suppressing the transient fluctuation of the voltage EFC when the overhead wire voltage fluctuates decreases.
  • the first-order lag time constant When the first-order lag time constant is increased, the effect of suppressing the transient fluctuation of the voltage EFC is increased.
  • this first-order lag time constant must be set appropriately.
  • the first-order lag time constant is preferably 10 ms to 800 ms, preferably 50 ms to 200 ms is more preferable.
  • the higher the voltage EFC and the smaller the input power PDC the weaker the negative resistance characteristics.
  • the input power PDC is negative, the system is always stable.
  • the delay processing unit 170 preferably has the same internal configuration as the delay processing unit 34 described in the first embodiment. That is, the delay processing unit 170 of the second embodiment is the same as the configuration of FIGS. 7 and 8 described in the first embodiment, and the description thereof is omitted.
  • the time constant generation unit 342 b When the delay processing unit 170 has the configuration shown in FIG. 8, the time constant generation unit 342 b generates, for example, the input current IS or the power conversion circuit 104 in addition to the configuration that generates the first-order lag time constant T based on the input power PDC. It is good also as a structure produced
  • the first-order lag time constant T can be set small under conditions where the negative resistance characteristic of the system is weak or when the system is stable, and therefore, transient fluctuations in the output of the power conversion circuit 104 accompanying fluctuations in the overhead wire voltage ES. It is possible to stabilize the system and suppress the transient oscillation of the voltage EFC while minimizing the noise.
  • the delay control unit 170 is provided in the voltage command / PWM signal generation unit 150 of the inverter control unit 180, so that the LC filter circuit of the inverter that is the power conversion circuit 104.
  • the electrical vibration of the capacitor can be suppressed, and the transient vibration of the capacitor voltage can be suppressed. For this reason, even when the voltage of the DC power supply such as the overhead line voltage fluctuates abruptly, the capacitor 6 can be prevented from being overvoltage, and the normal operation of the power converter can be maintained.
  • the present invention can also be applied to a case of a synchronous motor other than this.
  • the example of the substation connected to the overhead line 1 was shown as DC power supply, a storage battery and a generator can be applied similarly as DC power supply.
  • the configurations shown in the first and second embodiments are examples of the contents of the present invention, and it is needless to say that the configurations can be modified without departing from the gist of the present invention.
  • Reactor 6 Capacitor 10 Power conversion circuit (DCDC converter) 30 Converter Control Unit 34 Delay Processing Unit 102 Reactor 103 Capacitor 104 Power Conversion Circuit (Inverter) 150 Voltage command / PWM signal generation unit 170 Delay processing unit 180 Inverter control unit 341 First order delay calculation units 342a, 342b Time constant generation unit

Abstract

課題 直流電源等の電圧が変動した場合でも、LCフィルタ回路の電気振動を抑制しコンデンサ電圧の過渡振動を抑制することで、正常運転を維持する電力変換装置を提供することを目的とする。 解決手段 リアクトルとコンデンサとからなるLCフィルタ回路を介して架線からの電力を変換した変換電力を出力する電力変換回路と、この電力変換回路を制御する制御部とを有し、制御部は、コンデンサの電圧を遅延処理して第一の制御信号を生成する遅延処理部を備え、変換電力における出力電圧の大きさの指令である第一の出力電圧指令と第一の制御信号とから第二の出力電圧指令を生成し、この第二の出力電圧指令に基づいて電力変換回路を制御する。

Description

電力変換装置
 本発明は、架線(第三軌条等を含む)経由等で直流電源から電力を取り入れる電気車に適用する電力変換装置に関するものである。
 一般に、電気車は、架線から集電装置で電力を取り入れ、集電した電力を使用して電動機を駆動して走行する。電動機の駆動制御は、集電した電力を直流-交流変換回路であるインバータにより三相交流に変換して電動機へ供給する電力変換装置により行うことが知られている。
 また、近年、二次電池や電気二重層キャパシタといった電力貯蔵素子の性能が向上してきていることから、これらを電気車に搭載し、電力貯蔵素子の電力と架線からの電力を併用して電動機を駆動して走行するシステムの開発が進められている(例えば、特許文献1参照)。このようなシステムには、架線と電力貯蔵素子の間の電力フローを制御するために直流-直流変換回路であるDCDCコンバータを有した電力変換装置が使用される。
特開2003-199204号公報
 上述の直流-交流変換回路あるいは直流-直流変換回路といった電力変換回路と直流電源との間には、電力変換回路から直流電源側へ流出する高調波電流を減衰させるために、リアクトルとコンデンサからなるLCフィルタ回路が設置される。
 しかしながら、電気車に適用される電力変換装置においては、直流電源や架線の電圧の変動等によってLCフィルタ回路に電気振動が発生する。このとき、LCフィルタ回路のコンデンサ電圧の過渡振動が発生した結果としてコンデンサが過電圧になると、電力変換装置が正常運転できなくなったり停止したりする場合がある。とくに、直流電源等の電圧が急激に変動した場合に、このような不具合が発生しやすい。
 本発明は、上記のような課題を解決するためになされたものであり、直流電源等の電圧が変動した場合であっても、LCフィルタ回路の電気振動を抑制し、コンデンサ電圧の過渡振動を抑制することによって、正常運転を維持する電力変換装置を提供する。
 本発明における電力変換装置は、架線から電力を受電し、リアクトルとコンデンサとからなるLCフィルタ回路を介して架線からの電力を変換した変換電力を出力する電力変換回路と、電力変換回路を制御する制御部とを有する電力変換装置において、制御部は、時定数を生成する時定数生成部と時定数に基づきコンデンサの電圧を遅延処理して第一の制御信号を生成する演算部とからなる遅延処理部を備え、変換電力における出力電圧の大きさの指令である第一の出力電圧指令と第一の制御信号とから第二の出力電圧指令を生成し、第二の出力電圧指令に基づいて電力変換回路を制御するものである。
 本発明によれば、架線からの電圧が変動した場合であっても、LCフィルタ回路の電気振動を抑制し、コンデンサ電圧の過渡振動を抑制することによって、正常運転を維持する電力変換装置を提供できる。
本発明の実施の形態1における電力変換装置の構成例を示す図である。 直流電源に接続されたLCフィルタに、定電力負荷が接続された回路を示す図である。 図2のシステムの伝達関数ブロックを示す図である。 直流電源に接続されたLCフィルタに、比較例として正抵抗特性の負荷が接続された回路を示す図である。 図4のシステムの伝達関数ブロックを示す図である。 本発明の実施の形態1と従来例における入力コンデンサ電圧の波形例を示す図である。 本発明の実施の形態1における遅延処理部の構成例を示す図である。 本発明の実施の形態1における遅延処理部の他の構成例を示す図である。 本発明の実施の形態2における電力変換装置の構成を示す図である。 本発明の実施の形態2における電圧指令/PWM信号生成部の構成例を示す図である。
 実施の形態1.
 実施の形態1について図面を参照して説明する。図1は、本発明の実施の形態1における電力変換装置の構成例を示す図である。電力変換装置は、集電装置2を介して架線1に接続されるとともに、車輪3を介してレール4に接続されている。架線1及びレール4は直流電源となる変電所(図示せず)に接続されており、集電装置2は架線1から電力を受電し、車輪3はリターン電流の戻り回路としてレール4に接続されている。
 電力変換装置は、高調波電流が架線1側に流出するのを抑制するためにリアクトル5とコンデンサ6とからなるLCフィルタ回路、コンデンサ6の直流電圧EFCを検出する電圧検出器7、コンデンサ6に並列に接続されて上アーム側スイッチング素子11と下アーム側スイッチング素子12とからなる電力変換回路10、上アーム側スイッチング素子11と下アーム側スイッチング素子12との接続点に一端が接続されて電流リプルのフィルタリングを行う平滑フィルタである平滑リアクトル20、平滑リアクトル20の電流ISLを検出する電流検出器21、負荷となる電力貯蔵素子26、出力電圧BFCを検出する電圧検出器23、LCフィルタ回路の電気振動を抑制し、コンデンサ電圧の過渡振動を抑制するための制御部としてのコンバータ制御部30を有している。ここで、電力変換回路10は、直流-直流変換回路(DCDCコンバータ)である。
 電力貯蔵素子26としては、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等が好適であるが、限定されることはなくこの他でも良い。直流電源として、変電所を例として説明したが、これ以外の直流電圧源であってもよい。
 コンバータ制御部30は、平滑リアクトル20の電流指令ISL*が入力されて平滑リアクトル電流ISLの差をとる減算器31と、減算器31の出力が入力されて比例積分制御を行う電流制御器32と、電流制御器32の出力と電力貯蔵素子26の電圧BFCとの和をとり、変換電力における出力電圧の大きさの指令である第一の出力電圧指令として電圧指令VREFを生成する加算器33と、電圧指令VREFを第一の制御信号である信号EFC2で除算して、第二の出力電圧指令である通流率Mを出力する除算器35と、通流率Mとキャリア信号CARに基づいて電力変換回路10へのスイッチング信号GSGを出力する変調回路37とから構成される。なお、通流率Mは、電流制御器32の出力にBFC/EFC2を加算して生成してもよい。
 通流率Mは、電流制御器32の出力がわずかであれば、BFC/EFC(定常状態ではEFC2=EFC)におよそ等しい値であり、0~1の間の値である。例えば、コンデンサ6の電圧EFCが1500Vであり、電力貯蔵素子26の電圧BFCが600Vである場合、通流率Mは0.4近傍となる。
 キャリア信号CARは、0~1の値をとる三角波やのこぎり波の搬送波である。変調回路37では、通流率Mとキャリア信号CARの大小関係を比較し、比較結果に基づいて、スイッチング信号GSGを生成する。通流率M>キャリア信号CARなら、上アーム側スイッチング素子11をオンとして、下アーム側スイッチング素子12をオフする。また通流率M<キャリア信号CARなら、下アーム側スイッチング素子12をオンとして、上アーム側スイッチング素子11をオフする。このようにして、上アーム側スイッチング素子11のオン時間幅と、下アーム側スイッチング素子12のオン時間幅を調整して制御を行う。
 信号EFC2は、コンデンサ6の電圧EFCを遅延処理部34で遅延処理を行って得た信号である。遅延処理部34は、入力された電圧EFCに対して例えば一次遅れ処理を行い、第一の制御信号である信号EFC2を生成して出力する。この実施の形態1では、遅延処理部34で生成された信号EFC2に基づいて通流率Mを生成することが特徴である。なお、電流制御器32は比例積分制御が好適であるが、比例制御でもよい。何れも公知技術で構成できる。
 このように構成された電力変換装置は、架線1からの電圧ESを所定の電圧値に変換し、電力貯蔵素子26の両端に印加するとともに、電力変換回路10のスイッチング素子をオンオフ制御して、平滑リアクトル電流ISL(電力貯蔵素子26の電流に等しい)を所定の電流値となるように調整する。つまり、電力変換装置は、平滑リアクトル電流ISLを所定の電流値に制御する。
 平滑リアクトル電流ISLの指令値である平滑リアクトル電流指令ISL*は、図示しない上位の制御系から出力されるものであり、電力貯蔵素子26の充電が必要な場合においては、ISL*を正の値として架線1から電力貯蔵素子26への電力フローとして充電動作を行い、電力貯蔵素子26の放電が必要な場合においては、ISL*を負の値として電力貯蔵素子26から架線1への電力フローとして放電動作を行う。充電、放電とも必要でない場合は、ISL*=0とし、平滑リアクトル電流ISLをゼロに制御する。このように、必要に応じて上位の制御系により正、零、負の平滑リアクトルの電流指令ISL*が決定され、任意の電力フローが実現可能な構成としている。
 上述したとおりに、電気車用の電力変換装置では、電力変換回路10から架線1側へ流出する高調波電流を減衰させるために、リアクトル5とコンデンサ6からなるLCフィルタ回路が設置されるが、このLCフィルタ回路が存在するために、以下に述べるように電気振動が発生することがある。以下にLCフィルタ回路に電気振動が発生する原理を簡単に説明する。
 図2は、図1に示すシステムを簡単化して表現したものであり、架線1を模擬する直流電源70に接続され、リアクトル5とコンデンサ6から構成されたLCフィルタに、電力変換回路10と平滑リアクトル20と電力貯蔵素子26とを接続し、平滑リアクトル電流ISLを定電流制御した場合の回路を示す図である。図示するように、リアクトル5は、インダクタンス分Lと、抵抗分Rとからなる。コンデンサ6の静電容量はCである。
 電力変換回路10は、平滑リアクトル電流指令ISL*が一定である場合には、コンデンサ6の電圧EFCが変動しても電力変換回路の出力である平滑リアクトル電流ISLが一定に維持されるように制御される。そのため、電力変換回路10の通過電力は一定となるので、電力変換回路10はコンデンサ6の電圧EFCの変動に対して定電力特性となる。つまり、電圧EFCが変動しても、電力変換回路10の入力電力PDCは変化しないように制御される。以上の特性から、電力変換回路10と平滑リアクトル20と電力貯蔵素子26とを、LCフィルタの負荷としてまとめて表現した要素を定電力負荷80として表記している。
 このように構成された図2のシステムにおいて、直流電源70側からみた定電力負荷80は負抵抗特性となる。負抵抗特性とは、コンデンサ6の電圧EFCが上昇すれば電力変換回路10の入力電流IDCが減少し、コンデンサ6の電圧EFCが減少すれば電力変換回路10の入力電流IDCが増加する特性のことである。なお、通常の抵抗は正抵抗特性を示し、正抵抗特性は、電圧が上昇すれば電流が増加し、電圧が減少すれば電流は減少することが常識として知られている。
 以上のとおり、図2に示すシステムの直流入力部は負抵抗特性を示し、コンデンサ6の電圧EFCが上昇するほど電力変換回路10の入力電流IDCが減少するので、コンデンサ6の電圧EFCの増加を助長する動作となり、逆にコンデンサ6の電圧EFCが減少するほど電力変換回路10の入力電流IDCが増加するので、コンデンサ6の電圧EFCの減少を助長する動作となる。このため、コンデンサ6の電圧EFCの変動に対して制動が効かず、LCフィルタ回路の電気振動は拡大してゆき、コンデンサ6の電圧EFCはLCフィルタの共振周波数付近で持続振動する。以上が定性説明である。
 次いで、図2のシステムの伝達関数を求め、これを評価することで、以上説明した現象を定量説明する。まず、直流電圧ESからコンデンサ6の電圧EFCまでの伝達関数を求める。定電力負荷80は、上述したとおり、その出力が一定となるように制御される。この場合、電力変換回路10の入力電力PDCとコンデンサ6の電圧EFC、電力変換回路10の入力電流IDCの関係式は次の式(1)となる。
Figure JPOXMLDOC01-appb-M000001
 上記の関係は非線形であるので、線形化を図る。システムの動作点をEFC0、IDC0とすると、その近傍では次の式(2)が成立する。
Figure JPOXMLDOC01-appb-M000002
 図2および式(2)から、図2に示すシステムの伝達関数ブロック図は、図3のとおりとなる。この伝達関数ブロック図から、直流電圧ESからコンデンサ6の電圧EFCまでの閉ループ伝達関数G(s)は次の式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 この伝達関数G(s)が安定であるためには、G(s)の極がすべて負であることが必要である。すなわち、G(s)の分母である次の(4)式に示す特性方程式の解がすべて負である必要がある。
Figure JPOXMLDOC01-appb-M000004
 上式の解をα、βとすると、両者とも負であることが必要であるので、G(s)が安定となる条件として解と係数の関係から、次の式(5)、式(6)を導出できる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 式(6)は有用な情報を含まないのでここでは無視する。式(5)は、書き直すと次の式(7)となる。
Figure JPOXMLDOC01-appb-M000007
 式(7)から、Lが小さいほど、Cが大きいほど、PDCが小さいほど、EFC0が大きいほど、システムが安定化するために必要なRは小さくてすむ。例として電気車用の電力変換装置として一般的な数値であるL=12mH、C=6600μF、PDC=1000KW、EFC0=1500Vの条件を式(7)に代入すると、R>0.8(Ω)となる。しかしながら通常、電気車においては直流側に存在する抵抗成分は数十mΩ程度と微小であり、式(7)を満たすのは困難である。そのため、システムは不安定となりLCフィルタ回路は振動を発生する。
 つまり、式(7)を満足する抵抗を図2に示す回路に付加するか、あるいは制御的に安定化を図らない限り、コンデンサ6の電圧EFCは振動し発散してしまうことが理解できる。実際には、抵抗を付加することは、装置を大型化し、損失の増大を招くので、制御的に安定化を図る方法が必要となる。
 ところで、仮に負荷が正抵抗特性の場合について、上記と同様に定量説明する。図4は、直流電源70に接続されたLCフィルタ回路に、抵抗60で構成された負荷が接続された回路を示す図である。図2に示した回路と比較して、定電力負荷80を抵抗60で置き換えた回路である。なお、抵抗60の抵抗値をR0とする。
 図5は、図4のシステムの伝達関数ブロックを示す図である。図5より、直流電源70の電圧Esからコンデンサ6の電圧EFCまでの閉ループ伝達関数Gp(s)は次の式(8)となる。
Figure JPOXMLDOC01-appb-M000008
 式(8)で示された閉ループ伝達関数Gp(s)の特性方程式は次の式(9)となる。
Figure JPOXMLDOC01-appb-M000009
 上記に実施した内容と同様に、式(9)で示される特性方程式の解がすべて負となる条件を算出するとR≧0であり、この条件は常に満たされるものである。このことから負荷が抵抗60で構成される場合は、常時安定であることがわかる。以上に説明したとおり、直流電源70に接続されたLCフィルタ回路に、抵抗60を接続した回路は常に安定であることが分かる。
 ところが、電気車に適用する電力変換装置では、直流電源に接続されたLCフィルタ回路には定電力負荷が接続されることにより負抵抗特性を有することになる。そのため、制御的にシステムの安定化を図る必要がある。制御的にシステムを安定化する手法は、いくつかの方法が提案されているが、いずれも上述した負抵抗特性を弱めるように制御を行うものである。
 しかしながら、電気車の用途では、同一の架線1から電力の供給を受けている他の電気車の運転状態により、架線1の電圧(架線電圧ES)が急激に変動する場合がある。このような場合には、コンデンサ6の電圧EFCは過渡振動を発生する。過渡振動の抑制が不十分であると、コンデンサ6が過電圧となり、電力変換装置が停止してしまうことがある。したがって、架線電圧ESが急激に変動した場合にコンデンサ6の電圧EFCの過渡振動を抑制することが重要となる。
 この実施の形態1では、図1に示したように、コンデンサ6の電圧EFCを遅延処理部34により遅延処理し、第一の制御信号である信号EFC2を得る。この信号EFC2と第一の出力電圧指令であるVREFとに基づき、通流率Mを生成する構成とした。このように構成したので、例えば架線電圧ESがある値から急増して、これによりコンデンサ6の電圧EFCが急増した場合において、電圧EFCから遅延させた信号EFC2に基づいて通流率Mを生成することになる。
 従来例のように遅延処理部34がない場合は、通流率Mは電圧EFCの増加に反比例して直ちに減少して電圧EFCに応じた所定の値に修正され、電圧EFCの変動を打ち消すことで、電圧EFCの変動によって電力変換回路10の出力が変動しないように調整される。一方、実施の形態1では、電圧EFCの変動による電力変換回路10の出力の過渡変動をある程度許容し、通流率Mは一定の遅延を以って電圧EFCに応じた所定の値まで減少する挙動となる。
 このように動作させることで、電圧EFCの変動に対する電力変換回路10の定電力特性を弱めることができ、前述の負抵抗特性を弱めることができるので、システムを安定化でき、電圧EFCの過渡振動も抑制できる。
 図6は、実施の形態1における入力コンデンサ電圧としての電圧EFCの波形例を示す図である。図6では、電力貯蔵素子26の電圧が概略600Vのときに、電力を架線1側から電力貯蔵素子26側へ流し、電力貯蔵素子26の充電を行っている状態で、架線電圧ESを1400Vと1600Vの間をステップ状に変化させている。上段は比較例として遅延処理部がない場合の波形例であり、下段は遅延処理部34を適用した場合の波形例である。図6に示すように、遅延処理部がない場合は架線電圧ESのステップ増加に伴い電圧EFCのピークは1700V程度まで跳ね上がっているが、遅延処理部34を適用した場合には電圧EFCのピークは1650V程度に抑制されている。また、電圧EFCの過渡振動も抑制されていることが分かる。
 ここで、遅延処理部34での遅延処理は一次遅れ処理が好適である。一次遅れ時定数を小さくすると、架線電圧が急激に変動した時における電圧EFCの過渡変動の抑制効果が小さくなり、一次遅れ時定数を大きくすると、電圧EFCの過渡変動の抑制効果が大きくなる。ただし、一次遅れ時定数を大きくしすぎると、電力変換回路の出力電圧が架線電圧の変動によって大きく影響を受けてしまい好ましくない。したがって、この一次遅れ時定数は適切に設定する必要がある。
 LCフィルタ回路のリアクトル5のインダクタンスが3mH~20mH程度、コンデンサ6の静電容量が1000μF~20000μF程度の一般的な電気車の制御装置においては、一次遅れ時定数は10ms~800msが好ましく、50ms~200msがさらに好ましい。例えば、図6の下段の波形では、リアクトル5を10mH、コンデンサ6を3000μFとし、遅延処理部34の遅延処理は一次遅れ処理とし、一次遅れ時定数を200msとした。
 なお、上述したように、電圧EFCが高いほど、また入力電力PDCが小さいほど負抵抗特性は弱くなる。また、入力電力PDCが負の場合は式(7)が常時成立するので系は常に安定となる。
 また、図7に示すように、遅延処理部34は、入力された電圧EFCに基づいて信号EFC2を生成して出力する一次遅れ演算部341と、一次遅れ演算部341に設定する一次遅れ時定数Tを、入力された電圧EFCに基づいて生成する時定数生成部342aとから構成してもよい。
 時定数生成部342aは、電圧EFCに基づいて、電圧EFCが所定値よりも高いときの一次遅れ時定数Tが、電圧EFCが所定値よりも低いときの一次遅れ時定数Tと比べて小さい値となるように生成される構成とするのが好ましい。
 ここで、一次遅れ時定数Tは、電圧EFCの代わりに架線電圧ESに基づいて生成される構成としてもよい。
 このようにすれば、系の負抵抗特性が弱くなる条件では一次遅れ時定数Tを小さく設定できるので、架線電圧ESの変動に伴う電力変換回路10の出力の過渡変動を最小限に抑制しながら系を安定化し電圧EFCの過渡振動を抑制できる。
 別の構成として、図8に示すように、入力された電圧EFCに基づいて信号EFC2を生成して出力する一次遅れ演算部341と、一次遅れ演算部341に設定する一次遅れ時定数Tを、入力電力PDCが入力され入力電力PDCに基づいて生成する時定数生成部342bとから遅延処理部34を構成してもよい。
 時定数生成部342bは、入力電力PDCに基づいて、入力電力PDCが所定値よりも小さいとき、すなわち電力変換回路10の変換電力が小さいときの一次遅れ時定数Tが、入力電力PDCが所定値よりも大きいときの一次遅れ時定数Tと比べて小さい値となるように生成される構成とするのが好ましい。
 ここで、一次遅れ時定数Tは、入力電力PDCの他、例えば入力電流ISあるいは電力変換回路10を通過する電流または電力、出力電流ISLまたは出力電力等(総称として負荷量と称する)に基づいて生成される構成としてもよい。
 このようにすれば、系の負抵抗特性が弱くなる条件や系が安定となる条件では一次遅れ時定数Tを小さく設定できるので、架線電圧ESの変動に伴う電力変換回路10の出力の過渡変動を最小限に抑制しながら系を安定化し電圧EFCの過渡振動を抑制できる。
 つまり、電力変換装置10の入力側電圧としてのフィルタコンデンサ電圧EFC、架線電圧ES等、及び電力変換装置10の負荷量等の電力変換回路の状態量に基づいて一次遅れ時定数Tを生成する構成とすることで系の負抵抗特性が弱くなる条件や系が安定となる条件では一次遅れ時定数Tを小さく設定できるので、架線電圧ESの変動に伴う電力変換回路10の出力の過渡変動を最小限に抑制しながら系を安定化し電圧EFCの過渡振動を抑制できる。
 以上に説明したように、実施の形態1によれば、コンバータ制御部30に遅延処理部34を備えたことにより、電力変換回路10であるDCDCコンバータのLCフィルタ回路の電気振動を抑制でき、コンデンサ電圧EFCの過渡振動を抑制できる。このため、架線電圧等の直流電源の電圧が急激に変動した場合でも、コンデンサ6が過電圧になることを防止し、電力変換装置の正常運転を維持できる。
 実施の形態2.
 電力変換回路10として、実施の形態1ではDCDCコンバータとした場合を説明したが、実施の形態2では直流-交流変換回路(インバータ)である場合を説明する。直流-交流変換回路により電動機を駆動制御する構成においても、電力変換回路の入力側には、実施の形態1で説明した原理に基づいて負抵抗特性が生じる。
 図9は、実施の形態2における電力変換装置の構成を示す図である。電力変換装置は、集電装置2を介して架線1に接続されるとともに、車輪3を介してレール4に接続されている。架線1及びレール4は直流電源となる変電所(図示せず)に接続されており、集電装置2は架線1から電力を受電し、車輪3はリターン電流の戻り回路としてレール4に接続されている。
 電力変換装置は、直流電圧を任意の周波数の交流電圧に変換する電力変換回路としてのインバータ104、インバータ104からの高調波電流が電源側に流出するのを抑制するためにリアクトル102とコンデンサ103からなるLCフィルタ回路、コンデンサ103の電圧EFCを交流電圧に変換するインバータ4を制御する制御部としてのインバータ制御部180を有している。
 インバータ制御部180は、電動機106の回転速度を検出する速度検出器107からの信号、電流を検出する電流検出器105a~105cからの信号、コンデンサ103の電圧EFCが入力され、外部の制御装置(図示しない)より、トルク指令Tm*が入力される構成とし、電動機106の発生するトルクTmが、トルク指令Tm*と一致するように制御される。なお、電流検出器は3相に設けることにこだわるものではなく、2相に設けて残り1相を演算して算出してもよい。また、速度検出器107を設けずに電動機106の回転速度を演算して算出する速度センサレス制御方式も実用化されているから、その場合は速度検出器107が不要となる。
 次に、インバータ制御部180の構成を説明する。インバータ制御部180は、電動機106の二次磁束軸に一致した軸をd軸とし、前記d軸に直交する軸をq軸と定義されたdq軸回転座標系上で電動機の制御を行う、所謂ベクトル制御を行う構成である。
 以下に、インバータ制御部180を構成する各要素の構成を説明する。図9に示すように、q軸電流指令生成部108およびd軸電流指令生成部109では、外部の制御装置(図示せず)より入力されるそれぞれトルク指令Tm*および二次磁束指令Φ2*と電動機106の回路定数とから、次の式(10)および式(11)にて、それぞれd軸(励磁分)電流指令Id*およびq軸(トルク分)電流指令Iq*を演算する。
 ここで、式(10)、式(11)において、L2は電動機の二次自己インダクタンスであり、L2=M+l2で表現される。Mは相互インダクタンス、l2は二次漏れインダクタンス、sは微分演算子、PPは電動機106の極対数、R2は電動機106の二次抵抗を示す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 次に、すべり角周波数指令生成部119では、d軸電流指令Id*、q軸電流指令Iq*と電動機106の回路定数から、次の式(12)より、電動機106に与えるすべり角周波数指令ωs*を演算する。ここで、R2は電動機の二次抵抗を示す。
Figure JPOXMLDOC01-appb-M000012
 式(12)により算出したすべり角周波数指令ωs*と、電動機106の軸端に取り付けられた速度検出器107の出力である回転角周波数ωrとを加算器121で加算して、インバータ104が出力するインバータ角周波数ωとする。このインバータ角周波数ωを積分器122で積分した結果を座標変換の基本位相角θとして、電圧指令/PWM信号生成部150(後述する)および三相-dq軸座標変換器123に入力する。
 三相-dq軸座標変換器123では、電流検出器105a~105cにより検出されたU相電流Iu、V相電流Iv、W相電流Iwを、次の式(13)により算出するdq座標上のd軸電流Idとq軸電流Iqとに変換する。
Figure JPOXMLDOC01-appb-M000013
 次に、減算器110では、q軸電流指令Iq*とq軸電流Iqの差をとり、結果を次段のq軸電流制御器112に入力する。q軸電流制御器112は、入力された値を比例積分制御し、q軸電圧補償値qeを出力する。また、減算器111では、d軸電流指令Id*とq軸電流Iqの差をとり、結果を次段のd軸電流制御器113に入力する。d軸電流制御器113は、入力された値を比例積分制御し、d軸電圧補償値deを出力する。q軸電流誤差qe、d軸電流誤差deは、次の式(14)、式(15)で表される。なお、下式において、sは微分演算子、K1は比例ゲイン、K2は積分ゲインである。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 次に、電圧非干渉演算部114では、d軸電流指令Id*と、q軸電流指令Iq*と、電動機106の回路定数とから、次の式(16)、式(17)によりd軸フィードフォワード電圧Ed*、q軸フィードフォワード電圧Eq*を演算する。ただし、式(16)および式(17)において、漏れ係数σはσ=1-M/(L1・L2)で定義される。また、R1は電動機106の一次抵抗、L1は電動機106の一次自己インダクタンスであり、L1=M+l1で計算される。L2は二次自己インダクタンスであり、L2=M+l2で計算される(l1は一次漏れインダクタンス、l2は二次漏れインダクタンス)。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 次に、加算器117にてq軸電圧補償値qeとq軸フィードフォワード電圧Eq*を加算したものをq軸電圧指令Vq*とし、加算器118にてd軸電圧補償値deとd軸フィードフォワード電圧Ed*を加算したものをd軸電圧指令Vd*として、それぞれ電圧指令/PWM信号生成部150に入力する構成としている。q軸電圧指令Vq*、d軸電圧指令Vd*は、次の式(18)、式(19)で表される。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 なお、このとき、第一の出力電圧指令であるインバータ出力電圧指令VM*は、次の式(20)で表される。ここで、VM*は、インバータ出力電圧指令ベクトルの大きさを表している。
Figure JPOXMLDOC01-appb-M000020
 最後に、電圧指令/PWM信号生成部150から、インバータ104のスイッチング素子U~Z(図示しない)までのゲート信号が出力される構成としている。なお、インバータ104はすでに公知である電圧型PWMインバータであり、詳細な構成の説明は割愛するが、一部説明を補足すると、スイッチング素子U、V、Wはインバータ104の上側アームのU相、V相、W相に配置されるスイッチング素子であり、スイッチング素子X、Y、Zはインバータ104の下側アームのU相、V相、W相に配置されるスイッチング素子である。
 次に、電圧指令/PWM信号生成部150の構成を説明する。図10は、実施の形態2における電圧指令/PWM信号生成部150の構成例を示す図である。遅延処理部170は、コンデンサ電圧EFCが入力されて信号EFC2を出力する。変調率演算部151は、信号EFC2、q軸電圧指令Vq*およびd軸電圧指令Vd*から、交流出力電圧の大きさの指令であり第二の出力電圧指令である変調率PMFを算出する。また、電圧位相角演算部152は、q軸電圧指令Vq*とd軸電圧指令Vd*とから、交流出力電圧の電圧位相の指令である電圧位相角THVを算出する。
 変調率PMFは、インバータ出力電圧指令VM*を、インバータが出力可能な最大電圧VMmaxに対する割合で示したものであり、PMF=1.0の場合は、インバータ出力電圧指令VM*は、インバータ出力電圧の最大値VMmaxと等しくなることを示している。
 変調率演算部151、電圧位相角演算部152では、それぞれ次の式(21)、式(22)の演算を行う。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 ここで、インバータ出力電圧VMの最大値VMmaxは、信号EFC2に基づき、次の式(23)により算出する。
Figure JPOXMLDOC01-appb-M000023
 VMmaxは、コンデンサ103の電圧EFCの値が信号EFC2の値と等しいときに、インバータ104が出力可能な最大電圧であり、インバータ104を矩形波通電となる1パルスモードで動作させた時の値である。
 ここで、実施の形態1で示した構成と同じく、信号EFC2はコンデンサ電圧EFCを遅延処理部170で遅延処理を行って得た信号である。すなわち、遅延処理部170は、入力された電圧EFCに対して例えば一次遅れ処理を行い、第一の制御信号である信号EFC2を生成して出力する。この実施の形態2では、遅延処理部170で生成された信号EFC2に基づいて第二の出力電圧指令である変調率PMFを生成することが特徴である。
 加算器156は、電圧位相角THVと基本位相角θとの和をとって制御位相角θ1を生成し、制御位相角θ1は、電圧指令演算部155に入力される。変調率PMFもまた、電圧指令演算部155に入力される。電圧指令演算部155では、変調率PMFと制御位相角θ1とから、次の式(24)~式(26)に示す演算式で三相出力電圧指令であるU相電圧指令Vu*、V相電圧指令Vv*、W相電圧指令Vw*を生成する。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 U相電圧指令Vu*、V相電圧指令Vv*、W相電圧指令Vw*は、比較器161~163でそれぞれキャリア信号CARと大小比較され、ゲート信号U、V、Wが生成される。また、U相電圧指令Vu*、V相電圧指令Vv*、W相電圧指令Vw*は、比較器161~163でそれぞれキャリア信号CARと大小比較されたあとに反転回路164~166を経て、ゲート信号X、Y、Zが生成される。ここで、キャリア信号CARは、キャリア信号生成部157で生成された三角波状の搬送波信号である。
 ゲート信号U、V、W、X、Y、Zに基づき、インバータ104のスイッチング素子のオンオフ(スイッチング)が制御される。なお、変調率PMFと電圧位相THVはともに、q軸電圧指令Vq*とd軸電圧指令Vd*とに基づいて生成する信号であるが、信号EFC2を含んで生成する信号は上述のとおり変調率PMFに限る。電圧位相角THVは、上述のとおりq軸電圧指令Vq*と、d軸電圧指令Vd*とからのみ生成することとし、信号EFC2に基づいて調整等は実施しない。ちなみに、電圧位相角THVを信号EFC2に基づき調整をする方法では、電動機106の制御性能が著しく悪化することが確認された。
 したがって、これまで説明したとおり、q軸電圧指令Vq*とd軸電圧指令Vd*とから、第一の出力電圧指令であるインバータ出力電圧指令VM*を算出し、インバータ出力電圧指令VM*と信号EFC2とから、交流出力電圧の大きさの指令であり第二の出力電圧指令である変調率PMFを算出する構成と、q軸電圧指令Vq*とd軸電圧指令Vd*とから、交流出力電圧の電圧位相の指令である電圧位相角THVを算出する構成とを備え、算出した変調率PMFと電圧位相角THVに基づいて、三相出力電圧指令Vu*、Vv*、Vw*を生成するのが好ましい。このように構成したので、例えば架線電圧ESが急増して、これに伴ってコンデンサ電圧EFCが急増した場合において、電圧EFCから遅延させた信号EFC2に基づいて変調率PMFを生成することになる。
 従来のように遅延処理部170がない場合は、変調率PMFは電圧EFCの増加に反比例して直ちに減少して電圧EFCに応じた所定の値に修正され、電圧EFCの変動を打ち消すことで、電圧EFCの変動が電力変換回路104の出力に影響しないように調整される。一方、実施の形態2では、電圧EFCの変動による電力変換回路104の出力の過渡変動をある程度許容し、変調率PMFは一定の遅延を以って電圧EFCに応じた所定の値まで減少する挙動となる。
 このように動作させることで、実施の形態1で説明した場合と同じように、電圧EFCの変動に対する電力変換回路104の定電力特性を弱めることができ、前述の負抵抗特性を弱めることができるので、システムを安定化でき、電圧EFCの過渡振動も抑制できる。
 ここで、遅延処理部170での遅延処理は一次遅れ処理が好適である。一次遅れ時定数を小さくすると、架線電圧が急激に変動した時における電圧EFCの過渡変動の抑制効果が小さくなり、一次遅れ時定数を大きくすると、電圧EFCの過渡変動の抑制効果が大きくなる。ただし、一次遅れ時定数を大きくしすぎると、電力変換回路の出力電圧が架線電圧の変動によって大きく影響を受けてしまい好ましくない。したがって、この一次遅れ時定数は適切に設定する必要がある。
 LCフィルタ回路のリアクトル102のインダクタンスが3mH~20mH程度、コンデンサ103の静電容量が1000μF~20000μF程度の一般的な電気車の制御装置においては、一次遅れ時定数は10ms~800msが好ましく、50ms~200msがさらに好ましい。
 なお、本実施の形態2の構成においても,実施の形態1と同様に、電圧EFCが高いほど、また入力電力PDCが小さいほど負抵抗特性は弱くなる。また、入力電力PDCが負の場合は系は常に安定となる。
 また、遅延処理部170は、実施の形態1で説明した遅延処理部34と同様の内部構成とすることが好ましい。つまり、実施の形態2の遅延処理部170は、実施の形態1で説明した図7及び図8の構成と同様であり、その説明を省略する。
 なお、遅延処理部170が図8に示す構成の場合、時定数生成部342bは、入力電力PDCに基づいて一次遅れ時定数Tを生成する構成の他、例えば入力電流ISあるいは電力変換回路104を通過する電流または電力、出力電流または出力電力、電動機106のトルク等の入力電力PDCと関係する負荷量に基づいて生成される構成としてもよい。
 このようにすれば、系の負抵抗特性が弱くなる条件や系が安定となる条件では一次遅れ時定数Tを小さく設定できるので、架線電圧ESの変動に伴う電力変換回路104の出力の過渡変動を最小限に抑制しながら系を安定化し電圧EFCの過渡振動を抑制できる。
 つまり、フィルタコンデンサ電圧EFC、架線電圧ES、上記負荷量等の電力変換回路の状態量に基づいて一次遅れ時定数Tを生成する構成とすることで系の負抵抗特性が弱くなる条件や系が安定となる条件では一次遅れ時定数Tを小さく設定できるので、架線電圧ESの変動に伴う電力変換回路10の出力の過渡変動を最小限に抑制しながら系を安定化し電圧EFCの過渡振動を抑制できる。
 以上に説明したように、実施の形態2によれば、インバータ制御部180の電圧指令/PWM信号生成部150に遅延処理部170を備えたことにより、電力変換回路104であるインバータのLCフィルタ回路の電気振動を抑制でき、コンデンサ電圧の過渡振動を抑制できる。このため、架線電圧等の直流電源の電圧が急激に変動した場合でも、コンデンサ6が過電圧になることを防止し、電力変換装置の正常運転を維持できる。
 実施の形態2では、電動機106として誘導電動機を使用する場合で説明したが、これ以外の同期電動機等の場合でも本発明を適用できる。また、直流電源として架線1に接続された変電所の例を示したが、蓄電池や発電機を直流電源としても同様に適用できる。
 また、以上の実施の形態1、2に示した構成は、本発明の内容の一例であり、本発明の要旨を逸脱しない範囲で変更して構成することも可能であることは言うまでもない。
5 リアクトル
6 コンデンサ
10 電力変換回路(DCDCコンバータ)
30 コンバータ制御部
34 遅延処理部
102 リアクトル
103 コンデンサ
104 電力変換回路(インバータ)
150 電圧指令/PWM信号生成部
170 遅延処理部
180 インバータ制御部
341 一次遅れ演算部
342a、342b 時定数生成部

Claims (7)

  1.  架線から電力を受電し、リアクトルとコンデンサとからなるLCフィルタ回路を介して前記架線からの電力を変換した変換電力を出力する電力変換回路と、前記電力変換回路を制御する制御部とを有する電力変換装置において、
     前記制御部は、時定数を生成する時定数生成部と前記時定数に基づき前記コンデンサの電圧を遅延処理して第一の制御信号を生成する演算部とからなる遅延処理部を備え、前記変換電力における出力電圧の大きさの指令である第一の出力電圧指令と前記第一の制御信号とから第二の出力電圧指令を生成し、前記第二の出力電圧指令に基づいて前記電力変換回路を制御することを特徴とする電力変換装置。
  2.  時定数生成部は、電力変換回路の状態量に応じて時定数を生成することを特徴とする請求項1に記載の電力変換装置。
  3.  電力変換回路の状態量は、入力側電圧であることを特徴とする請求項2に記載の電力変換装置。
  4.  電力変換回路の状態量は、負荷量であることを特徴とする請求項2に記載の電力変換装置。
  5.  遅延処理部は、入力側電圧が所定値よりも高いときは、入力側電圧が所定値よりも低いときと比べて小さい時定数を生成することを特徴とする請求項3に記載の電力変換装置。
  6.  遅延処理部は、負荷量が所定値よりも小さいときは、負荷量が所定値よりも大きいときと比べて小さい時定数を生成することを特徴とする請求項4に記載の電力変換装置。
  7.  電力変換回路は、直流を入力として交流を出力するインバータであり、制御部は、前記インバータが出力する交流電力における交流出力電圧の大きさの指令である第一の出力電圧指令を生成し、前記第一の出力電圧指令と前記第一の制御信号とから第二の出力電圧指令を生成し、前記交流出力電圧の電圧位相の指令である電圧位相角を生成し、前記第二の出力電圧指令と前記電圧位相角とに基づいて、前記インバータを制御することを特徴とする請求項1乃至請求項6のいずれか一項に記載の電力変換装置。
PCT/JP2010/005811 2009-09-29 2010-09-28 電力変換装置 WO2011039993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080043334.7A CN102511122B (zh) 2009-09-29 2010-09-28 电力变换装置
EP10820115.3A EP2472710B1 (en) 2009-09-29 2010-09-28 Power conversion device
JP2011528105A JP4835812B2 (ja) 2009-09-29 2010-09-28 電力変換装置
US13/387,873 US8593843B2 (en) 2009-09-29 2010-09-28 Electric power conversion device capable of suppressing electric oscillations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/004961 2009-09-29
PCT/JP2009/004961 WO2011039794A1 (ja) 2009-09-29 2009-09-29 電力変換装置

Publications (1)

Publication Number Publication Date
WO2011039993A1 true WO2011039993A1 (ja) 2011-04-07

Family

ID=43825652

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/004961 WO2011039794A1 (ja) 2009-09-29 2009-09-29 電力変換装置
PCT/JP2010/005811 WO2011039993A1 (ja) 2009-09-29 2010-09-28 電力変換装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004961 WO2011039794A1 (ja) 2009-09-29 2009-09-29 電力変換装置

Country Status (4)

Country Link
US (1) US8593843B2 (ja)
EP (1) EP2472710B1 (ja)
CN (1) CN102511122B (ja)
WO (2) WO2011039794A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201504A (ja) * 2018-05-17 2019-11-21 株式会社日立製作所 モータ制御装置および同装置の制御方法
WO2022264257A1 (ja) * 2021-06-15 2022-12-22 三菱電機株式会社 電源装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2575252T3 (en) 2011-09-29 2018-10-08 Daihen Corp Signal processor, filter, power converter for power converter circuit, connection inverter system and PWM inverter system
CN103036529B (zh) * 2011-09-29 2017-07-07 株式会社大亨 信号处理装置、滤波器、控制电路、逆变器和转换器系统
TWI506959B (zh) * 2012-12-18 2015-11-01 Ind Tech Res Inst 調變方法以及應用該調變方法之控制裝置
JP2015116092A (ja) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 電動車両
EP2940824B1 (en) * 2014-04-29 2022-11-23 General Electric Technology GmbH Improvements in or relating to voltage source converters
CN104192014B (zh) * 2014-09-05 2016-05-04 江苏今创车辆有限公司 采用统一电压输出及双向dc/dc模块的双能源机车
KR102499262B1 (ko) * 2015-10-14 2023-02-13 삼성전자주식회사 액티브 필터 및 그 제어방법, 액티브 필터를 포함하는 전력 관리 시스템
CN105634272A (zh) * 2016-01-27 2016-06-01 姚安宇 主板供电电路
SE541627C2 (en) 2018-03-20 2019-11-19 Bombardier Transp Gmbh A system and a method for feeding electric power to a consumer thereof
CN109713895B (zh) * 2018-12-26 2021-02-02 上海南芯半导体科技有限公司 一种用于dc-dc中恒流恒功率控制电路及实现方法
WO2023188667A1 (ja) * 2022-03-30 2023-10-05 株式会社日立製作所 車両用駆動制御装置及びその方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211002A (ja) * 1989-02-07 1990-08-22 Hitachi Ltd 電気車用発電ブレーキ装置
JPH0398402A (ja) * 1989-09-11 1991-04-24 Toshiba Corp 車両用電力変換装置
JPH11299012A (ja) * 1998-02-12 1999-10-29 Mitsubishi Electric Corp 直流電気車の制御装置
JP2000116189A (ja) * 1998-10-08 2000-04-21 Mitsubishi Electric Corp 誘導電動機の制御装置
JP2003199204A (ja) 2001-12-25 2003-07-11 Toshiba Corp 電気車制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077652A (en) * 1990-10-18 1991-12-31 Dynamote Corporation Dual feedback loop DC-to-AC converter
JPH0583976A (ja) * 1991-09-18 1993-04-02 Hitachi Ltd 交流電動機制御装置及びこれを用いた電気車の制御装置
US7479769B2 (en) * 2003-08-29 2009-01-20 Nxp B.V. Power delivery system having cascaded buck stages
JP4980588B2 (ja) * 2005-06-21 2012-07-18 ローム株式会社 降圧型スイッチングレギュレータ、その制御回路、ならびにそれを用いた電子機器
JP4065901B1 (ja) * 2006-08-29 2008-03-26 三菱電機株式会社 交流電動機のベクトル制御装置
WO2008053554A1 (en) * 2006-11-02 2008-05-08 Mitsubishi Electric Corporation Electric motor car control apparatus
EP2642658B1 (en) * 2007-09-25 2018-08-29 Mitsubishi Electric Corporation Controller for electric motor
CA2714211C (en) * 2008-02-13 2015-06-30 Masaki Kono Electrical power conversion apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211002A (ja) * 1989-02-07 1990-08-22 Hitachi Ltd 電気車用発電ブレーキ装置
JPH0398402A (ja) * 1989-09-11 1991-04-24 Toshiba Corp 車両用電力変換装置
JPH11299012A (ja) * 1998-02-12 1999-10-29 Mitsubishi Electric Corp 直流電気車の制御装置
JP2000116189A (ja) * 1998-10-08 2000-04-21 Mitsubishi Electric Corp 誘導電動機の制御装置
JP2003199204A (ja) 2001-12-25 2003-07-11 Toshiba Corp 電気車制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472710A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201504A (ja) * 2018-05-17 2019-11-21 株式会社日立製作所 モータ制御装置および同装置の制御方法
JP7100494B2 (ja) 2018-05-17 2022-07-13 株式会社日立製作所 モータ制御装置および同装置の制御方法
WO2022264257A1 (ja) * 2021-06-15 2022-12-22 三菱電機株式会社 電源装置
JP7374387B2 (ja) 2021-06-15 2023-11-06 三菱電機株式会社 電源装置

Also Published As

Publication number Publication date
EP2472710B1 (en) 2016-01-13
EP2472710A4 (en) 2014-10-01
WO2011039794A1 (ja) 2011-04-07
US8593843B2 (en) 2013-11-26
US20120147638A1 (en) 2012-06-14
CN102511122B (zh) 2015-01-21
CN102511122A (zh) 2012-06-20
EP2472710A1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2011039993A1 (ja) 電力変換装置
EP2380272B1 (en) Control system for ac motor
JP5120670B2 (ja) 電動機駆動装置の制御装置
JP5120669B2 (ja) 電動機駆動装置の制御装置
CA2660601C (en) Vector control device for alternating-current electric motor
JP4706324B2 (ja) モータ駆動システムの制御装置
JP5246508B2 (ja) 電動機駆動装置の制御装置
US7595600B2 (en) Method and system for torque control in permanent magnet machines
US7282886B1 (en) Method and system for controlling permanent magnet motor drive systems
EP2621079B1 (en) Inverter control device and inverter control method
WO2012144000A1 (ja) 交流電動機の制御装置
JP5354036B2 (ja) 車両および車両の制御方法
JP2011067010A (ja) 車両のモータ駆動装置
JP4835812B2 (ja) 電力変換装置
JP6627702B2 (ja) 電力変換器の制御装置
US8975839B2 (en) Vehicle, and control method for vehicle
JP2015126607A (ja) モータ制御システム
JP5370748B2 (ja) 電動機駆動装置の制御装置
WO2023162860A1 (ja) 交流電動機の制御装置およびプログラム
WO2023176484A1 (ja) モータ駆動システム、及びモータ駆動プログラム
JP2015162940A (ja) 電力変換器の制御装置
JP2010226780A (ja) 交流電動機の制御システム
JPH10257797A (ja) 電力変換器のフィードバック制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043334.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528105

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13387873

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010820115

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4763/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 5740/CHENP/2012

Country of ref document: IN