WO2011039610A1 - エネルギーマネジメントシステムおよび給電制御装置 - Google Patents

エネルギーマネジメントシステムおよび給電制御装置 Download PDF

Info

Publication number
WO2011039610A1
WO2011039610A1 PCT/IB2010/002462 IB2010002462W WO2011039610A1 WO 2011039610 A1 WO2011039610 A1 WO 2011039610A1 IB 2010002462 W IB2010002462 W IB 2010002462W WO 2011039610 A1 WO2011039610 A1 WO 2011039610A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
priority
supply destination
surplus
management system
Prior art date
Application number
PCT/IB2010/002462
Other languages
English (en)
French (fr)
Inventor
農士 三瀬
小林 晋
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to EP10819981.1A priority Critical patent/EP2485189B1/en
Priority to US13/499,371 priority patent/US20120233094A1/en
Priority to CN201080051924.4A priority patent/CN102612701B/zh
Publication of WO2011039610A1 publication Critical patent/WO2011039610A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to an energy management system that manages power generated from a power generation device that generates power using natural energy and power supplied to a power load device, and a power supply control device used therefor.
  • the cost merit of selling surplus power is an incentive to introduce solar cells. From the viewpoint of cost merit ⁇ and carbon dioxide reduction (saving CO 2), it is expected that the power selling price will be set higher and the introduction of the Taiyoike Pond will be promoted. The above cost merit is greatly affected by the unit price of power sold set by power companies in time series.
  • Patent Document 1 discloses a system that provides information useful for selecting an optimal price blank from among various ⁇ I gold brands provided by electric power companies. Yes.
  • the system of Patent Document 1 provides information useful for selecting an optimal rate plan by aggregating information on the amount of power generated by solar cells, the amount of power consumed by power-loading equipment, and the amount of power sold and sold with electric power companies. .
  • Patent Document 2 discloses a system that minimizes losses caused by price differences due to time zones when selling surplus power from private power generation.
  • a power generator is installed by a gas engine so that the cost derived by calculation based on the time series power selling price to the power company and the time series power buying price from the power company is low.
  • a system for operating a combined heat and power device that drives the vehicle is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 8-1 5 8 7 0 1
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 2-3 6 9 3 8 1
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2 0 0 5-2 8 7 2 1 1
  • Patent Document 1 is a system that provides the user with information for selecting an optimal rate plan from a plurality of predetermined rate plans, and in order to actually maximize cost merit.
  • Patent Document 2 can efficiently change the time zone for selling power, there is no means for automatically determining the destination of the generated power of the solar cell. In other words, the above system cannot decide whether to sell or store the power generated by the solar cell.
  • the combined heat and power unit can be operated at a low cost by controlling the amount of gas fuel supplied as in the system of Patent Document 3, the solar power generation using solar energy is possible. The power cannot be adjusted.
  • the present invention has been made in view of the above points, and provides an energy management system capable of improving cost performance with respect to utilization of power generated by a power generation device that generates power using natural energy, and a power supply control device used therefor. .
  • an energy management system for managing generated power from a power generation device that generates power using natural energy and power supplied to a power load device, and providing surplus power of the generated power
  • a controller that determines a destination; and a storage unit that stores a power usage rule in which priorities of the plurality of supply destination candidates for the surplus power are set, and the controller stores the power stored in the storage unit
  • An energy management system is provided that determines a surplus power supply destination of the generated power based on usage rules and power selling price information.
  • the energy management system includes a path switching unit that supplies the generated power of the power generation device to the power load device and switches a supply destination of surplus power of the generated power to provide the surplus power to the supply destination.
  • the power usage rule is configured such that the priority of the plurality of supply destination candidates is set corresponding to a power sale price, and the controller uses the power sale price information acquired by the information acquisition unit as the power.
  • the usage rules are queried to determine the priority of the plurality of supply destination candidates, and the supply destination candidates with the highest priority are switched to the supply destinations in order from the supply destination candidates. Controlling said path switching unit so as to provide a surplus power.
  • the power selling price information and the power usage rules are By using the power generation equipment's surplus power to determine the priority of multiple supply destination candidates, and providing surplus power as the supply destination in order from the high-priority supply destination candidates, Cost performance can be improved.
  • the energy storage device since the energy storage device is included in the supply destination, it is possible to select the priority between power sale and storage based on the power sale price information, so that the power generated by the power generation device can be made more efficient. Can be used.
  • the information acquisition unit acquires power purchase price information from the electric power company together with the power sale price information, and the power usage rule indicates that the priority order of the plurality of supply destination candidates with respect to the surplus power is the sales price.
  • the controller is set corresponding to a power price and a power purchase price, and the controller compares the power sale price information and the power purchase price information acquired by the information acquisition unit with the power usage rule to provide the plurality of provisions. It is also possible to determine the priorities of the prior candidates.
  • the controller can determine the priority order of a plurality of suppliers using the power purchase price information, which can further improve cost performance.
  • the energy management system includes: a load pattern indicating a time change in power supplied to the power load device; a power generation pattern indicating a time change in generated power of the power generation device; and the power sale acquired by the information acquisition unit.
  • the power usage rule further includes a calculation unit that calculates a balance of power charges using price information and the power purchase price information, and the power usage rule uses the calculation result of the calculation unit to determine the priority order of the plurality of supply destination candidates. You may decide that is set.
  • an efficient power usage rule can be set with high accuracy by calculating the balance of power charges when setting the power usage rule.
  • the energy storage device may include a power storage device that stores the surplus power, and a heat storage device that stores heat corresponding to the surplus power.
  • the energy storage device is set to a usage time zone, and the controller inquires the power usage rule for the power purchase price information of the usage time zone of the energy storage device. You may decide the priority order of the potential recipients.
  • the energy storage device is set to operate (consumes the energy stored in the energy storage device) during a specific time zone (for example, at night), the value of the power generation of the power generation device is specified above.
  • the cost performance can be evaluated with high accuracy by evaluating in the time zone.
  • the energy management system further includes a selection unit that selects a power usage rule applied by the controller, the storage unit stores a plurality of the power usage rules having different setting contents, and the selection unit includes: , Memorize in the above-mentioned storage part according to predetermined conditions A power usage rule applied by the controller may be selected from a plurality of power usage rules.
  • the user can select an optimal power usage rule according to the situation.
  • the plurality of power usage rules are such that the energy storage device is always set to have a higher priority than the power company in the priority order of the plurality of provision destination candidates. It is desirable to include.
  • the power storage device can further select the power usage rule according to the user's intention and the like by further storing the power usage rule that is always higher in priority than the power company.
  • the power generated by the generator using natural energy can be supplied as actively as possible to the power load equipment through storage in the energy storage device.
  • both the amount of carbon dioxide (CO 2) generated and the primary energy consumption basic unit are almost zero, so the power generated by the power generator must be used without selling it as much as possible. Can reduce the environmental burden.
  • a power supply control device used in the above-described energy management system, comprising the controller, the information acquisition unit, and the storage unit. .
  • FIG. 1 is a block diagram illustrating a configuration of a first embodiment.
  • FIG. 2 is a diagram showing a priority pattern of a provider in the same as above.
  • FIG. 3 is a diagram showing a load pattern and a power generation pattern of 1 kg in the same as above.
  • FIG. 4 A flow chart showing the operation of the energy management system according to the above.
  • FIG. 5 is a diagram showing a decision line for selling or storing surplus power of a solar cell in the energy management system according to the above.
  • FIG. 8 is a diagram showing a priority pattern of a destination in the second embodiment.
  • the energy management system 1 manages the generated power from the solar battery P V and the power supplied to the power load device L 1 provided in the facility H.
  • Solar cell PV is a power generator that uses solar energy, which is natural energy, to generate electricity.
  • the energy management system 1 includes a distribution board 2, a power supply control device 3, a first setting operation unit 4, and a second setting operation unit 5.
  • thick arrows indicate the flow of power supply
  • thin arrows indicate the flow of signals
  • broken arrows indicate the flow of heat supply.
  • the power generation device refers to a solar battery that generates power using solar energy, a wind power generation device that generates power using wind energy, and the like.
  • the energy storage device of the present invention refers to a power storage device that stores surplus power, a heat storage device that stores energy equivalent to surplus power, and the like.
  • the distribution board 2 supplies power from the power company AC or generated power of the solar battery PV to the power load device L 1 and switches the supply destination of the surplus power of the generated power to the surplus power. Electric power is provided to the provider.
  • the distribution board 2 corresponds to the path switching unit of the present invention. The power from the solar cell PV to the power load device L 1 and the supply destination is appropriately subjected to AC / DC conversion.
  • the power storage device S B can supply power to the power load device L 1 via the distribution board 2.
  • an upper limit and a lower limit of a power storage rate and a power storage speed (for example, 1 kW / h) are set in advance, and there are power storage loss and discharge loss.
  • the heat storage device HP supplies heat energy to the hot water supply load device L 2 to operate the hot water supply load device L 2.
  • the upper and lower limits of the heat storage rate are preset, and there is a heat dissipation loss.
  • the power storage device S B and the heat storage device HP each have a main usage time zone.
  • the power storage device S B is set to be used mainly in the daytime
  • the heat storage device HP is set to be used mainly at night.
  • the power storage device S B and the heat storage device HP correspond to the energy storage device of the present invention.
  • the power supply control device 3 includes an information acquisition unit 3 1, an information transmission unit 3 2, a load information acquisition unit 3 3, a storage unit 3 4, a calculation unit 3 5, and a controller (providing destination derivation unit) 3 6 Supplied setting part 3 7 And.
  • the information acquisition unit 31 has a function of receiving information from the center server S via the network N.
  • the information acquisition unit 31 1 receives and acquires the power sale price information to the power company AC and the power purchase price information from the power company A from the center server S in real time.
  • the information acquisition unit 31 can also acquire the power sale price information and the power purchase price information by a setting operation to the first setting operation unit 4 by the user. As a result, the information acquisition unit 31 can acquire the power sale price information and the power purchase price information even when not connected to the center server S.
  • the information transmission unit 32 has a function of transmitting information to the center server S via the network N.
  • the information transmission unit 32 transmits the information input from the second setting operation unit 5 to the center server S by the user's operation.
  • the above information includes regional information (electric power company information) and power contract form.
  • the load information acquisition unit 33 acquires load information of the power load device L 1 and the hot water supply load device L 2.
  • the storage unit 34 stores the power sale price information and the power purchase information price acquired by the information acquisition unit 31, and also stores the power usage rules.
  • the priorities of a plurality of suppliers (electric power company AC, power storage device S B, heat storage device H P) for surplus power of the solar battery PV are set corresponding to the unit price of power sales and the unit price of power purchase.
  • the priority order of a plurality of supply destinations is set using the calculation result of the calculation unit 35.
  • the calculation unit 35 includes a load pattern indicating a time change in load power of the power load device L 1, a power generation pattern indicating a time change in generated power of the solar battery PV, and a power sale acquired by the information acquisition unit 31. Using the price information and the power purchase price information, calculate the balance of electricity charges. Note that the load pattern and the power generation pattern are stored in the storage unit 34 in advance.
  • FIG. 3 shows the load pattern WL and the power generation pattern WPV stored in the storage unit 34.
  • the surplus of the generated power of the solar cell PV supplied to the load equipment is not stored in the power storage device SB, but all of it is sold to the power company AC.
  • the surplus electricity of the solar battery PV is not stored in the heat storage device HP but sold to the power company AC, the balance of the electricity charge is as shown in Equation 2.
  • Equation 3 the balance of power charges when the power storage device SB is prioritized and surplus power remains after power storage is as shown in Equation 3.
  • the balance of the electricity rate when surplus power remains even after heat storage is given priority over heat storage in the heat storage device HP is as shown in Equation 4.
  • SB is the efficiency of power storage device SB (including power storage efficiency and discharge efficiency)
  • HP is the efficiency of heat storage device HP (including heat dissipation efficiency).
  • power sale priority refers to the case where all power is sold without storing heat as in Equation 2, and the same applies below. Comparing 2 with Equation 4, and if the value of Equation 2 is greater than the value of Equation 4, the power sale priority gives better cost performance than the heat storage priority. When the value of Equation 2 is smaller than the value of Equation 4, heat storage priority is more cost effective than electricity sales priority.
  • the priority order of priority for power sales and heat storage is determined by the unit price of power sales csel and the unit price of power purchase dnight.
  • the priority of storage priority and heat storage priority cannot be determined only by the power selling price csel and the power purchasing price dpur, d, d pur, n, but the power selling power amount Wsell, Wsel2, and storage load power supply amount WSB, heat storage load power supply amount Varies with WHP.
  • the power usage rules of this embodiment are as follows. First, the power sale priority and the heat storage priority are compared using Equation 6, and then the power sale priority and the storage priority are compared using Equation 5. Formula 7 is set to compare power storage priority and heat storage priority.
  • the controller 36 shown in FIG. 1 controls the distribution board 2 so that the power generated by the solar cell PV is preferentially supplied to the power load device L 1.
  • the controller 36 that performed the above control determines a supply destination of the surplus power of the solar battery PV from a plurality of supply destination candidates.
  • the plurality of supply destination candidates are the electric power company AC, the power storage device S B, and the heat storage device HP.
  • the controller 36 refers to the power usage rules for the power sale price information and the power purchase price information acquired by the information acquisition unit 31, and determines the priority order of a plurality of suppliers.
  • the controller 36 that has determined the priority order controls the distribution board 2 so as to provide surplus power in order from the provision destination with the highest priority.
  • the supply destination information determined by the controller 36 is transmitted to the distribution board 2 by the supply destination setting unit 37.
  • the controller 36 converts the power sale price information and the power purchase information price into power usage rules. To determine the priority of multiple suppliers (electric power company AC, power storage device SB, heat storage device HP). At this time, the controller 36 first compares the cost merit of power sale priority with the cost merit of heat storage priority (S2). If the cost merit of power sale priority is larger than the cost merit of heat storage priority, the cost merit of power storage priority is compared with the cost merit of power sale priority (S3).
  • controller 36 determines the third control pattern (see Fig. 2) as the control pattern for surplus power of solar cell PV. If the cost merit of power storage priority is less than or equal to the cost merit of power sale priority, the cost merit of power storage priority and the cost merit of heat storage priority are compared (S4). When the cost merit of power storage priority is greater than the cost merit of heat storage priority, the controller 36 determines the control pattern for surplus power of the solar cell PV as the first control pattern (see FIG. 2). Cost merit of storage priority is cost merit of heat storage priority If it is equal to or less than the threshold, the controller 36 determines the control pattern for the surplus power of the solar cell PV as the second control pattern (see Fig. 2).
  • step S5 the cost benefit of power sale priority and the cost benefit of power storage priority are compared.
  • the controller 36 determines the control pattern for surplus power of the solar cell PV as the fifth control pattern (see Fig. 2). If the cost merit of power sale priority is less than the cost merit of power storage priority, the cost merit of power storage priority is compared with the cost merit of heat storage priority (S6). When the cost merit of storage priority is larger than the cost merit of heat storage priority, the controller 36 determines the control pattern for the surplus power of the solar cell PV as the fourth control pattern (see FIG. 2). If the cost merit of power storage priority is less than or equal to the cost merit of heat storage priority, the controller 36 determines the sixth control pattern (see Fig. 2) as the control pattern for surplus power of the solar cell PV.
  • Fig. 5 shows an example of a decision line for deciding whether to sell or store surplus power from solar cells PV.
  • the controller 36 gives priority to electricity sale, regardless of whether the electricity sale price is 25 yen kWh or 40 yen ZkWh. decide.
  • the controller 36 determines power sale priority. If the unit price is 25 yen kWh, the controller 36 does not decide to prioritize power sales.
  • Fig. 6 shows an example of a decision line for deciding whether to store or store the surplus power of the solar cell PV.
  • Figure 6 (a) shows the seasonal characteristics of the same region.
  • A is the decision line for the summer season
  • B is the decision line for the intermediate period (spring, autumn)
  • C is the decision line for the winter season.
  • the decision line fluctuates for different seasons.
  • Figure 6 (b) shows the characteristics of each region in the same season (in the illustrated example, winter).
  • A is the decision line for the warmest region
  • B is the decision line for the middle region
  • C is the decision line for the coldest region.
  • the decision line varies in different regions.
  • the determination line can be changed depending on the temperature.
  • Fig. 7 shows the relationship between the unit price of electricity purchase and the annual utility cost in a certain region, in the priority of electricity sales, priority of electricity storage, and priority of heat storage.
  • A indicates the characteristics when power sales are prioritized
  • B indicates when power storage is prioritized
  • C indicates characteristics when heat storage is prioritized.
  • Fig. 7 (a) shows the case where the unit price is 25 yen / kWh
  • Fig. 7 (b) shows the case where the unit price is 40 yen ZkWh. From Fig. 7, regardless of the unit price of electricity sales and the unit price of electricity purchase, the annual light-to-heat ratio is lower for electricity sales than for heat storage. This is because the heat storage device HP is a load leveling device, and the unit price of power purchase d pur, n during the time zone (night) in which the heat storage device HP mainly operates is reduced.
  • the power sale price (power sale price information) or the power purchase price (power purchase price information). If there is a change, multiple supply destination candidates for the surplus power of solar battery PV (power company AC, power storage device SB, heat storage device HP) using the power sale price information, power purchase price information, and power usage rules ) And by providing surplus power as a provider in order from the candidate with the highest priority, cost performance can be improved for the use of the power generated by solar PV.
  • the storage device SB and the heat storage device HP are included in the supply destination, so that surplus power can be sold and stored based on the power sale price information and the power purchase price information. Therefore, the power generated by the solar battery PV can be used more efficiently.
  • efficient power usage rules can be accurately calculated by calculating the balance of power charges for power sales priority, power storage priority, and heat storage priority. Can be set.
  • the present embodiment it is possible to set power storage and heat storage as means for storing surplus power of the solar battery PV. Therefore, in the power usage rule, the surplus power is stored or stored according to the temperature. The judgment criteria can be changed.
  • each of the power storage device SB and the heat storage device HP when each of the power storage device SB and the heat storage device HP is set to operate (consumes energy stored in the power storage device SB and the heat storage device HP) during a specific time period.
  • cost performance By evaluating the value of solar cell PV power generation in the specified time zone, cost performance can be accurately evaluated.
  • the energy management system 1 according to the second embodiment is different from the energy management system 1 according to the first embodiment in that a plurality of power usage rules are stored. Note that the system configuration of the present embodiment is the same as the system configuration of the first embodiment.
  • the storage unit 3 4 of this embodiment stores the same power usage rules as those of the first embodiment (hereinafter referred to as “first power usage rules”), and the first power usage rules are the settings Different power usage rules (hereinafter referred to as “second power usage rules”) are stored.
  • the second power usage rule has three control patterns as shown in Fig. 8. First, the storage priority and the power sale priority are compared, and then the storage priority and the heat storage priority are compared. It is set.
  • the controller 36 has a selection function for selecting a power usage rule to be applied when determining the priority order of a plurality of providers.
  • the controller 36 uses the power usage applied when determining the priority order from the plurality of power usage rules (first and second power usage rules) stored in the storage unit 34 according to a predetermined condition. Select a rule.
  • the predetermined condition is, for example, a condition whether or not the power purchase unit price is lower than the power sale unit price. For example, when the unit price of power purchase at night is lower than the unit price of power sales, such as an all-electric contract, the second power usage rule is used.
  • the controller 36 of the present embodiment includes the controller of the present invention and Corresponds to the selection unit.
  • the controller 3 6 receives the power sale price information and the power purchase information price.
  • the controller 3 6 determines the priority of a plurality of suppliers (power company AC, power storage device SB, heat storage device HP).
  • the cost merit of power storage priority is compared with the cost merit of power sale priority (S 1 2).
  • the controller 36 determines the control pattern for surplus power of the solar cell PV as the third control pattern (see FIG. 8).
  • the cost merit of storage priority is compared with the cost advantage of heat storage priority (S 13).
  • the controller 36 determines the control pattern for the surplus power of the solar cell PV as the first control pattern (see FIG. 8).
  • the controller 36 determines the control pattern for surplus power of the solar cell PV as the second control pattern (see Fig. 8).
  • one of a plurality of power usage rules can be selected, so that the user can select an optimal power usage rule according to the situation. Can be selected.
  • the energy management system 1 according to the third embodiment is the same as the second embodiment in that the third power usage rule giving priority to the environment is stored together with the first and second power usage rules as a plurality of power usage rules. It differs from the energy management system 1 concerned.
  • the system configuration of the present embodiment is the same as the system configuration of the second embodiment.
  • the third power usage rule is set so that power storage in the power storage device S B and heat storage in the heat storage device HP always have priority over power sales to the power company AC.
  • the third power usage rule is stored in the storage unit 34 together with the first power usage rule.
  • the controller 36 determines the priority order of the provision destination from a plurality of power usage rules (first to third power usage rules) stored in the storage unit 34 according to the intention of the user. Select the power usage rule to be applied. For example, when the user is highly conscious of the environment, the third power usage rule is selected by a setting operation to the first setting operation unit 4 by the user.
  • the power storage device SB and the heat storage device HP further memorize the third power usage rule that always has a higher priority than the power company AC, so that the cost priority is given according to the user's intention and the like.
  • the first and second power usage rules and the environment-priority third power usage rule can be selected.
  • the energy management system 1 of this embodiment is the third If the power usage rule is selected, the power generated by the solar cell PV is supplied to the power load equipment in the facility H through the power storage to the power storage device SB or the heat storage device HP. be able to. In the case of power generation using solar energy, both the amount of carbon dioxide (C 0 2) generated and the primary energy consumption basic unit are almost zero. Therefore, according to this embodiment, the generated power of the solar cell PV is sold as much as possible. By using it without electricity, the load on the environment can be reduced.
  • the third power usage rule is that when the power selling price is lower than the preset reference price, the heat storage to the power storage device SB and the heat storage device HP is It may be set to always give priority over the sale of power to the company AC.
  • the energy management system 1 is given priority to the environment when the power sale price is low, and so as to give priority to the cost when the power sale price is high. It is possible to decide where to provide the power generated by battery PV.
  • the controller 36 may determine the priority order of a plurality of providing destinations using only the power sale price information without using the power purchase price information.
  • the priority of the power company AC is high when the power selling price is high for a certain index, and the priority of the power company AC is low when the power selling price is low for the above index. Becomes lower.
  • Embodiments 1 to 3 describe the case where the power generation device that generates power using natural energy is a solar cell PV.
  • the power generation device is not necessarily limited to the solar cell PV. It is not necessary to be a device that generates electricity using natural energy.
  • the power generation device may be, for example, a wind power generation device that generates power using wind energy. Even with the power generation device as described above, there is no problem in the implementation of the present invention, and the same effects as in the first to third embodiments can be obtained.
  • the case where the power storage device SB and the heat storage device HP are used in combination as energy storage devices is described.
  • the power storage device SB and the heat storage device are used as energy storage devices. It is not necessary to use with HP.
  • only one of the power storage device S B and the heat storage device HP may be used as the energy storage device. Even in the above modification, there is no problem in the implementation of the present invention, and the same effects as those in Embodiments 1 to 3 can be obtained.
  • the power supply control device 3 does not include the calculation unit 35, but stores a power usage rule set in advance by simulation using equations 1 to 7 by another device. 4 may be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Theoretical Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

自然エネルギーを用いて発電する発電装置からの発電電力と電力負荷機器への供給電力とを管理するエネルギーマネジメントシステムであって、前記発電電力の余剰電力の提供先を決定するコントローラと、前記余剰電力に対する前記複数の提供先候補の優先順位が設定されている電力使用ルールを記憶する記憶部とを備えるエネルギーマネジメントシステムが提供される。また、前記コントローラは前記記憶部に記憶された電力使用ルール及び売電価格情報に基づいて前記発電電力の余剰電力の提供先を決定する。

Description

明細書 エネルギーマネジメン卜システムおよび給電制御装置 技術分野
本発明は、 自然エネルギーを用いて発電する発電装置からの発電電力と電力負荷機器 への供給電力とを管理するエネルギーマネジメントシステムおよびそれに用いられる給電 制御装置に関する。 背景技術
従来から、 太陽電池の発電電力が電力負荷機器に優先的に給電された後に上記発電電 力の余剰電力を電力会社へ売電するシステムが知られている。 この余剰電力の売電による コストメリットが、 太陽電池を導入するインセンティブとなっている。 上記コストメリツ 卜と二酸化炭素削減 (省 C O 2 ) との観点から、 今後さらに売電価格が高く設定され、 太 陽竃池の導入が促進されることが予想される。 上記コストメリットは、 電力会社によって 時系列で設定される売電単価が大きく影響する。
太陽電池が導入された従来のシステムとして、 特許文献 1には、 電力会社が提供する 各種^ I金ブランの中から最適な料金ブランを選択するのに有用な情報を提供するシステム が開示されている。 特許文献 1のシステムは、 太陽電池の発電量、 電力負荷機器の消費電 力量および電力会社と売買される電力量に関する情報を集約して最適な料金プランを選択 するのに有用な情報を提供する。
また、 特許文献 2には、 自家発電の余剰電力を売電する際に、 時間帯による価格差に 起因するロスを最小にするシステムが開示されている。 特許文献 3には、 電力会社への時 系列的な売電価格と電力会社からの時系列的な買電価格とに基づく計算によって導出され るコス卜が低くなるように、 ガスエンジンによって発電装置を駆動する熱電併給装置を運 転させるシステムが開示されている。
また、 太陽電池が導入された従来のシステムの中には、 太陽電池の発電電力を蓄電す るための蓄電装置が設置されたシステムがある。 上記システムによれば、 太陽電池の発電 電力を電力会社に売電するか、 蓄電装置に蓄電するかを選択することができる。 つまり、 上記システムでは、 太陽電池の発電電力の提供先を選択することができる。
【特許文献 1】 特開 2 0 0 8— 1 5 8 7 0 1号公報
【特許文献 2】 特開 2 0 0 2— 3 6 9 3 8 1号公報
【特許文献 3】 特開 2 0 0 5— 2 8 7 2 1 1号公報
ところで、 太陽電池および蓄電装置が導入されたシステムでは、 時系列で変動する売 電単価に対応して太陽電池の発電電力の提供先を自動制御することによって、 より大きな コストメリットを生み出すことが求められている。
しかしながら、 特許文献 1のシステムは、 予め決められている複数の料金プランの中 から最適な料金プランを選択するための情報をユーザに提供するシステムであって、 実際 にコストメリットを最大化するために太陽電池の発電電力の提供先を自動で決定する手段 は設けられていない。
また、 特許文献 2のシステムは、 売電の時間帯を効率的に変更することができるもの の、 太陽電池の発電電力の提供先を自動で決定する手段は設けられていない。 つまり、 上 記システムでは、 太陽電池の発電電力を売電するか蓄電するかを決定することはできない。
さらに、 特許文献 3のシステムのようにガス燃料の供給量を制御することによつて低 コストとなるように熱電併給装置を運転することができるものの、 太陽エネルギーを用い て発電する太陽電池の発電電力を調整することはできない。
上記より、 従来のシステムでは、 自然エネルギーを用いて発電する発電装置および上 記発電電力を蓄積するエネルギー蓄積装置が導入された状態で、 コストメリットを最大化 するように、 上記発電電力の提供先を自動で決定することはできない。
発明の概要
本発明は上記の点に鑑みて為されもので、 自然エネルギーを用いて発電する発電装置 の発電電力の活用についてコストパフォーマンスを上げることができるエネルギーマネジ メントシステムおよびそれに用いられる給電制御装置を提供する。
本発明の第一側面によると、 自然エネルギーを用いて発電する発電装置からの発電電 力と電力負荷機器への供給電力とを管理するエネルギーマネジメントシステムであって、 前記発電電力の余剰電力の提供先を決定するコントローラと、 前記余剰電力に対する前 記複数の提供先候補の優先順位が設定されている電力使用ルールを記憶する記憶部とを備 え、 前記コントローラは前記記憶部に記憶された電力使用ルール及び売電価格情報に基づ いて前記発電電力の余剰電力の提供先を決定するエネルギーマネジメントシステムが提供 される。
また、 前記エネルギーマネジメントシステムは、 前記発電装置の発電電力を前記電力 負荷機器に供給するとともに前記発電電力の余剰電力の提供先を切り替えて当該提供先に 当該余剰電力を提供する経路切替部と、 前記電力会社への売電価格情報を取得する情報取 得部とをさらに備え、 前記提供先候補は前記余剰電力の売電先である電力会社と前記余剰 電力相当のエネルギーを蓄積可能なエネルギー蓄積装置とを含み、 前記電力使用ルールは 前記複数の提供先候補の優先順位が売電価格に対応して設定され、 前記コントローラは、 前記情報取得部で取得された前記売電価格情報を前記電力使用ルールに照会して前記複数 の提供先候補の優先順位を決定し、 優先順位の高い提供先候補から順に前記提供先に切り 替えて当該提供先に前記余剰電力を提供するように前記経路切替部を制御する 。
上記構成によれば、 売電価格が変化した場合に、 売電価格情報と電力使用ルールとを 用いて発電装置の余剰電力に対する複数の提供先候補の優先順位を決定し、 優先順位の高 い提供先候補から順に提供先として余剰電力を提供することによって、 発電装置の発電電 力の活用についてコストパフォーマンスを上げることができる。
また、 エネルギー蓄積装置が提供先に含まれることによって、 売電価格情報に基づい て売電と蓄積との間の優先度を選択することができるので、 発電装置の発電電力をより効 率的に利用することができる。
また、 前記情報取得部は、 前記売電価格情報とともに前記電力会社からの買電価格情 報を取得し、 前記電力使用ルールは、 前記余剰電力に対する前記複数の提供先候補の優先 順位が前記売電価格および買電価格に対応して設定され、 前記コントローラは、 前記情報 取得部で取得された前記売電価格情報および前記買電価格情報を前記電力使用ルールに照 会して前記複数の提供先候補の優先順位を決定することもできる 。
これによれば、 コント口一ラは、 買電価格情報も用いて複数の提供先の優先順位を決 定することができるので、 さらにコストパフォーマンスを上げることができる。
前記エネルギ一マネジメントシステムは、 前記電力負荷機器への供給電力の時間変化 を示す負荷パターンと、 前記発電装置の発電電力の時間変化を示す発電パターンと、 前記 情報取得部で取得された前記売電価格情報および前記買電価格情報とを用いて、 電力料金 の収支を算出する算出部をさらに備え、 前記電力使用ルールは、 前記算出部の算出結果を 用いて前記複数の提供先候補の優先順位が設定されていることにしてもいい 。
これによれば、 電力使用ルールを設定する際に、 電力料金の収支を算出することによ つて、 効率のよい電力使用ル一ルを精度よく設定することができる。
前記エネルギー蓄積装置は、 前記余剰電力を蓄電する蓄電装置と、 前記余剰電力相当 のエネルギーを蓄熱する蓄熱装置とを含むことでもいい 。
このような構成によれば、 太陽電池の余剰電力の蓄積手段として蓄電と蓄熱とを選択 することができるので、 電力使用ルールにおいて、 例えば気温に応じて上記余剰電力を蓄 電するか蓄熱するかの判定基準を変更することができる。
前記エネルギ一マネジメントシステムにおいて、 前記エネルギー蓄積装置は、 使用時 間帯が設定され、 前記コントローラは、 前記エネルギー蓄積装置の使用時間帯の前記買電 価格情報を前記電力使用ルールに照会して前記複数の提供先候補の優先順位を決定するこ とにしてもいい。
よって、 特定の時間帯 (例えば夜間など) にエネルギー蓄積装置が運転する (ェネル ギ一蓄積装置で蓄積されたエネルギーを消費する) ように設定されている場合、 発電装置 の発電の価値を上記特定の時間帯で評価することによって、 コストパフォーマンスを精度 よく評価することができる。
前記エネルギーマネジメントシステムは、 前記コントローラで適用される電力使用ル ールを選択する選択部をさらに備え、 前記記憶部は、 互いに設定内容が異なる前記電力使 用ルールを複数記憶し、 前記選択部は、 予め決められた条件によって、 前記記億部に記憶 されている複数の電力使用ルールから、 前記コントローラで適用される電力使用ルールを 選択することにしても構わない。
これによれば、 複数の電力使用ルールの中から 1つを選択することができるので、 使 用者は、 状況に応じて最適な電力使用ルールを選択することができる。
本発明のエネルギ一マネジメントシステムにおいて、 前記複数の電力使用ルールは、 前記複数の提供先候補の優先順位において前記エネルギー蓄積装置が前記電力会社よリも 常に優先度が高く設定されている電力使用ルールを含むことが望ましい。
このような構成によれば、 エネルギー蓄積装置が電力会社よリも常に優先順位が高い 電力使用ルールをさらに記憶することによって、 ユーザの意思などに応じて上記電力使用 ルールを選択することができるので、 自然エネルギ一を用いた発電装置の発電電力を、 ェ ネルギー蓄積装置への蓄積を通じて電力負荷機器へできるだけ積極的に供給することがで きる。 自然エネルギーを用いた発電の場合、 二酸化炭素 (C O 2 ) の発生量も一次エネル ギー消費原単位もどちらもほぼ 0であるため、 上記発電装置の発電電力をできるだけ売電 せずに利用することによって、 環境への負荷を小さくすることができる。
本発明の第二の側面によると、 前記したエネルギーマネジメントシステムに用いられ る給電制御装置であって、 前記コントローラと、 前記情報取得部と、 前記記憶部とを備え る給電制御装置が提供される。
図面の簡単な説明
本発明の目的及び特徴は以下のような添付図面とともに与えられた後述する好ましい 実施形態の説明から明白になる。
【図 1】 実施形態 1の構成を示すブロック図である。
【図 2】 同上において提供先の優先順位のパターンを示す図である。
【図 3】 同上において 1 曰の負荷パターンと発電パターンとを示す図である。
【図 4】 同上に係るエネルギーマネジメントシステムの動作を示すフローチヤ一卜で ある。
【図 5】 同上に係るエネルギーマネジメントシステムにおいて太陽電池の余剰電力を 売電するか蓄電するかの決定ラインを示す図である。
【図 6】 同上に係るエネルギーマネジメントシステムにおいて本陽電池の余剰電力を 蓄電するか蓄熱するかの決定ラインであって、 (a )は同じ地域の季節ごとの特性を示す図、 ( b ) は同じ季節の地域ごとの特性を示す図である。
【図 7】 同上に係るエネルギーマネジメントシステムにおいて買電単価と年間光熱費 の関係において、 (a ) は売電単価が 2 5円ノ k W hの場合の図、 (b ) は売電単価が 4 0 円 Z k W hの場合の図である。
【図 8】 実施形態 2において提供先の優先順位のパターンを示す図である。
【図 9】 同上に係るエネルギーマネジメントシステムの動作を示すフローチヤ一卜で ある。
発明を実施するための形態
以下、 本発明の実施形態が本明細書の一部をなす添付図面を参照にしてより詳細に説 明する。 図面全体において、 同一または類似した部分には同じ部材符号を付してそれにつ いての重複する説明を省略する。
(実施形態 1 )
実施形態 1に係るエネルギーマネジメントシステム 1は、 図 1に示すように、 太陽電 池 P Vからの発電電力と、 施設 Hに設けられた電力負荷機器 L 1への供給電力とを管理す る。 太陽電池 P Vは、 自然エネルギーである太陽エネルギーを用いて発電する発電装置で ある。 上記エネルギ一マネジメントシステム 1は、 分電盤 2と、 給電制御装置 3と、 第 1 の設定操作部 4と、 第 2の設定操作部 5とを備えている。 なお、 図 1において、 太線の矢 印は電力供給の流れを示し、 細線の矢印は信号の流れを示し、 破線の矢印は熱供給の流れ を示してしゝ 。
本発明において発電装置とは、 太陽エネルギーを用いて発電する太陽電池や、 風力ェ ネルギーを用いて発電する風力発電装置などをいう。 また、 本発明のエネルギー蓄積装置 とは、 余剰電力を蓄電する蓄電装置や、 余剰電力相当のエネルギーを蓄熱する蓄熱装置な どをいう。
また、 本実施形態において分電盤 2は、 電力会社 A Cからの電力または太陽電池 P V の発電電力を電力負荷機器 L 1に供給するとともに、 上記発電電力の余剰電力の提供先を 切り替えて上記余剰電力を上記提供先に提供する。 分電盤 2は、 本発明の経路切替部に相 当する。 なお、 太陽電池 P Vから電力負荷機器 L 1および提供先への電力は、 それぞれ適 宜交流 直流変換が行われる。
上記提供先としては、 上記余剰電力の売電先である電力会社 A Cと、 上記余剰電力を 蓄電する蓄電装置 (蓄電池) S Bと、 上記余剰電力相当のエネルギーを蓄熱する蓄熱装置 H Pとがある。 蓄電装置 S Bは、 分電盤 2を介して電力負荷機器 L 1に電力供給すること が可能である。 蓄電装置 S Bには、 蓄電率の上限および下限ならびに蓄電速度 (例えば 1 k W/ h ) が予め設定されているとともに、 蓄電ロスおよび放電ロスがある。 蓄熱装置 H Pは、 給湯負荷機器 L 2に熱エネルギーを与えて給湯負荷機器 L 2を動作させる。 蓄熱装 置 H Pには、 蓄熱率の上限および下限が予め設定されているとともに、 放熱ロスがある。 蓄電装置 S Bおよび蓄熱装置 H Pには、 それぞれ主な使用時間帯が設定されている。 本実 施形態では、 蓄電装置 S Bが主に昼間に使用されるように設定され、 蓄熱装置 H Pが主に 夜間に使用されるように設定されている。 蓄電装置 S Bおよび蓄熱装置 H Pは、 本発明の エネルギー蓄積装置に相当する。
給電制御装置 3は、 情報取得部 3 1 と、 情報送信部 3 2と、 負荷情報取得部 3 3と、 記憶部 3 4と、 算出部 3 5と、 コントローラ (提供先導出部) 3 6と、 提供先設定部 3 7 とを備えている。
情報取得部 3 1は、 ネットワーク Nを介してセンタ一サーバ Sから情報を受信する機 能を有している。 情報取得部 3 1は、 電力会社 A Cへの売電価格情報と電力会社 Aじから の買電価格情報とをセンタ一サーバ Sからリアルタイムで受信して取得する。 また、 情報 取得部 3 1は、 使用者による第 1の設定操作部 4への設定操作によっても売電価格情報お よび買電価格情報を取得することができる。 これにより、 情報取得部 3 1は、 センタ一サ ーバ Sに繋がっていない場合であっても、 売電価格情報および買電価格情報を取得するこ とができる。
情報送信部 3 2は、 ネットワーク Nを介してセンターサーバ Sへ情報を送信する機能 を有している。 情報送信部 3 2は、 使用者の操作によって第 2の設定操作部 5から入力さ れた情報をセンタ一サーバ Sに送信する。 上記情報としては、 地域情報 (電力会社情報) や電力契約形態などがある。
負荷情報取得部 3 3は、 電力負荷機器 L 1および給湯負荷機器 L 2の負荷情報を取得 する。
記憶部 3 4には、 情報取得部 3 1で取得された売電価格情報と買電情報価格とが記憶 されているとともに、 電力使用ルールが記憶されている。 電力使用ルールは、 太陽電池 P Vの余剰電力に対する複数の提供先 (電力会社 A C、 蓄電装置 S B、 蓄熱装置 H P ) の優 先順位が売電単価および買電単価に対応して設定されている。 複数の提供先の優先順位と しては、 図 2に示すように 6つの制御パターン (第 1〜6の制御パターン) がある。 例え ば第 1の制御パターンの場合、 最初に売電優先となり、 太陽電池 P Vの余剰電力に対して 電力会社 A Cへの売電が行われる。 すべての余剰電力を電力会社 A Cへ売電できない場合、 次に蓄電優先となり、 上記余剰電力に対して蓄電装置 S Bへの蓄電が行われる。 その後、 まだ余剰電力が残っている場合、 蓄熱優先となり、 上記余剰電力に対して蓄熱装置 H Pへ の蓄熱が行われる。
電力使用ルールには、 算出部 3 5の算出結果を用いて複数の提供先の優先順位が設定 されている。 算出部 3 5は、 電力負荷機器 L 1の負荷電力の時間変化を示す負荷パターン と、 太陽電池 P Vの発電電力の時間変化を示す発電パターンと、 情報取得部 3 1で取得さ れた売電価格情報および買電価格情報とを用いて、 電力料金の収支を算出する。 なお、 負 荷パターンおよび発電パターンは、 記憶部 3 4に予め記憶されている。
図 3には、 記憶部 3 4に記憶されている負荷パターン WL と発電パターン WPV とが示 されている。 まず、 負荷機器へ供給して残った太陽電池 P Vの発電電力のうち余剰電力を 蓄電装置 S Bに蓄電せずに全て電力会社 A Cへ売電する場合の電力料金の収支は式 1のよ うになる。 また、 太陽電池 P Vの余剰電力を蓄熱装置 H Pに蓄熱せずに全て電力会社 A C へ売電する場合の電力料金の収支は式 2のようになる。
(Wse M +WSB) X c se l - (Wpur, d x d pur, d+Wpur, n x d pur, n) (式 1 )
(Wse l 2+WHP) x c se l— (Wpur, d d pur, d+Wpur, n d pur, n) (式 2 ) ここで、 csel は売電単価、 d pur, dは昼間の買電単価、 d pur, nは夜間の買電単価、 WseM は蓄電を行う場合に太陽電池 PVの余剰電力のうち蓄電装置 SBへの給電電力量を 除いた電力、 Wsel2 は蓄熱を行う場合に太陽電池 PVの余剰電力のうち蓄熱装置 H Pへの 給電電力量を除いた電力、 WSBは蓄電を行う場合に蓄電装置への必要電力量、 WHPは蓄熱 を行う場合に蓄熱装置への必要電力量、 Wpur.dは昼間の必要電力量、 Wpur.nは夜間の必 要電力量を表す。
一方、 蓄電装置 SBへの蓄電を優先し蓄電後においても余剰電力が残っている場合の 電力料金の収支は、 式 3のようになる。 また、 蓄熱装置 H Pへの蓄熱を優先し蓄熱後にお いても余剰電力が残っている場合の電力料金の収支は、 式 4のようになる。
WseM csel- Wpur, d—WSB x SB) x d pur, d+Wpur, n x d pur, n) (式 3) Wsel2x csel- {Wpur.d dpur,d+ (Wpur, n-WHPx ^HP) x dpur, n} (式 4) ただし、 SB は蓄電装置 SBの効率 (蓄電効率および放電効率を含む)、 7? HP は蓄熱 装置 HPの効率 (放熱効率を含む) である。
ここで、 売電優先と蓄電優先とを比較する場合 (この場合、 売電優先とは式 1のよう に蓄電を行わずに全て売電する場合のことをいい、 以下同一である)、 式 1と式 3とを比較 し、 式 1の値が式 3の値より大きい場合、 売電優先のほうが蓄電優先よリコストパフォー マンスがよくなる。 式 1の値が式 3の値より小さい場合、 蓄電優先のほうが売電優先より コストパフォ一マンスがよくなる。
式 1一式 3
= [(WseM+WSB) csel- (Wpur, dx dpur, d+Wpur, nx dpur, n)]
一 [WseM x csel- {(Wpur, d-WSBx 77 SB) x d pur, d+Wpur, n dpur.n}] =WSBx ( csel- r?SBx dpur.d) (式 5)
蓄電装置 S Bの効率 7?SB がほぼ一定とすると、 式 5より、 売電優先と蓄電優先の優先 順位は、 売電単価 csel と昼間の買電単価 dpur, dとで決定される。
続いて、 売電優先と蓄熱優先とを比較する場合 (この場合、 売電優先とは式 2のよう に蓄熱を行わずに全て売電する場合のことをいい、 以下同一である)、 式 2と式 4とを比較 し、 式 2の値が式 4の値より大きい場合、 売電優先のほうが蓄熱優先よリコストパフォ一 マンスがよくなる。 式 2の値が式 4の値より小さい場合、 蓄熱優先のほうが売電優先より コストパフォーマンスがよくなる。
式 2—式 4
= [(Wsel2+WHP) x csel- (Wpur.dx dpur, d+Wpur, nx dpur.n)]
- [Wsel2 csel- {Wpur, dx dpur, d+ (Wpur, n- WHP 77 HP) x dpur, n}] = WHP x ( c se I— 7? HP x d pur, n) (式 6 )
蓄熱装置 HPの効率 HP がほぼ一定とすると、 式 6より、 売電優先と蓄熱優先の優先 順位は、 売電単価 csel と夜間の買電単価 dpur.nとで決定される。
続いて、 蓄電優先と蓄熱優先とを比較する場合、 式 3と式 4とを比較し、 式 3の値が 式 4の値より大きい場合、 蓄電優先のほうが蓄熱優先よリコストパフォーマンスがよくな る。 式 3の値が式 4の値より小さい場合、 蓄熱優先のほうが蓄電優先よリコストパフォー マンスがよくなる。
式 3—式 4
= [WseM X csel- {(Wpur, d-WSBx 7? SB) x dpur, d+Wpur, nx dpur, n}] 一 [Wsel2x csel- {Wpur.dx dpur,d+ (Wpur, n-WHPx ^HP) x dpur, n}] = (Wse 11 x c se I + WSB 77 SB d pur, d) - (Wsel2x csel+WHPx 77HPX dpur, n)
(式 7)
式 7より、 蓄電優先と蓄熱優先の優先順位は、 売電価格 csel と買電価格 dpur, d, d pur, nのみで決定することはできず、 売電電力量 Wsell, Wsel2、 蓄電負荷給電量 WSB、 蓄 熱負荷給電量 WHPによって変化する。
本実施形態の電力使用ルールとしては、 まず、 式 6を用いて売電優先と蓄熱優先との 比較を行い、 その後、 式 5を用いて売電優先と蓄電優先との比較を行い、 最後に式 7を用 いて蓄電優先と蓄熱優先との比較を行うように設定されている。
図 1に示すコントローラ 36は、 太陽電池 P Vの発電電力を電力負荷機器 L 1へ優先 的に給電するように分電盤 2を制御する。 上記制御を行ったコントローラ 36は、 太陽電 池 PVの余剰電力の提供先を複数の提供先候補から決定する。 複数の提供先候補は、 電力 会社 ACと蓄電装置 S Bと蓄熱装置 H Pとである。 コントローラ 36は、 情報取得部 31 で取得された売電価格情報および買電価格情報を電力使用ルールに照会して複数の提供先 の優先順位を決定する。 優先順位を決定したコントローラ 36は、 優先順位の高い提供先 から順に余剰電力を提供するように分電盤 2を制御する。 コントローラ 36で決定された 提供先情報は、 提供先設定部 37によって分電盤 2に送信される。
次に、 本実施形態に係るエネルギーマネジメントシステム 1の動作について図 4を用 いて説明する。 まず、 給電制御装置 3の情報取得部 31が新しい売電価格情報または買電 情報価格を取得すると (図 4の S 1 )、 コントローラ 36は、 売電価格情報および買電情報 価格を電力使用ルールに照会して、 複数の提供先 (電力会社 AC、 蓄電装置 SB、 蓄熱装 置 H P) の優先順位を決定する。 このとき、 まず、 コントローラ 36は、 売電優先のコス トメリットと蓄熱優先のコストメリッ卜とを比較する (S 2)。 売電優先のコストメリット が蓄熱優先のコストメリツトょリ大きい場合、 蓄電優先のコストメリッ卜と売電優先のコ ストメリッ卜とを比較する (S 3)。 蓄電優先のコストメリットが売電優先のコストメリッ トょリ大きい場合、 コント口一ラ 36は、 太陽電池 PVの余剰電力に対する制御パターン を第 3の制御パターン (図 2参照) に決定する。 蓄電優先のコストメリットが売電優先の コストメリット以下である場合、 蓄電優先のコストメリットと蓄熱優先のコストメリット とを比較する (S4)。 蓄電優先のコストメリットが蓄熱優先のコストメリットより大きい 場合、 コントローラ 36は、 太陽電池 PVの余剰電力に対する制御パターンを第 1の制御 パターン (図 2参照) に決定する。 蓄電優先のコストメリットが蓄熱優先のコストメリツ ト以下である場合、 コント口一ラ 36は、 太陽電池 PVの余剰電力に対する制御パターン を第 2の制御パターン (図 2参照) に決定する。
—方、 ステップ S 2において、 売電優先のコストメリットが蓄熱優先のコストメリツ ト以下である場合、 売電優先のコストメリッ卜と蓄電優先のコストメリッ卜とを比較する (S 5)。 売電優先のコストメリツ卜が蓄電優先のコストメリツトょリ大きい場合、 コント ローラ 36は、 太陽電池 PVの余剰電力に対する制御パターンを第 5の制御パターン (図 2参照) に決定する。 売電優先のコストメリツ卜が蓄電優先のコストメリツト以下である 場合、 蓄電優先のコストメリットと蓄熱優先のコストメリットとを比較する (S6)。 蓄電 優先のコストメリツトが蓄熱優先のコストメリツトょリ大きい場合、 コントローラ 36は、 太陽電池 PVの余剰電力に対する制御パターンを第 4の制御パターン (図 2参照) に決定 する。 蓄電優先のコストメリットが蓄熱優先のコストメリット以下である場合、 コント口 ーラ 36は、 太陽電池 PVの余剰電力に対する制御パターンを第 6の制御パターン (図 2 参照) に決定する。
図 5には、 太陽電池 PVの余剰電力を売電するか蓄電するかを決定するための決定ラ インの一例が示されている。 図 5に示す決定ラインを用いると、 買電単価が 25円ノ kW hである場合、 売電単価が 25円 kWhであっても 40円 ZkWhであっても、 コント ローラ 36は売電優先に決定する。 一方、 買電単価が 35円 kWhである場合、 売電単 価が 40円 ZkWhであるときは、 コントローラ 36は売電優先に決定する。 し力、し、 売 電単価が 25円 kWhであるときは、 コントローラ 36は売電優先には決定しない。
続いて、 太陽電池 PVの余剰電力を蓄電するか蓄熱するかを決定するための決定ライ ンの一例を図 6に示す。 図 6 (a) は、 同じ地域の季節ごとの特性を示す。 図 6 (a) の Aは夏季であるときの決定ライン、 Bは中間期 (春、 秋) であるときの決定ライン、 Cは 冬季であるときの決定ラインである。 図 6 (a) によれば、 季節が異なると決定ラインは 変動する。 図 6 (b) は、 同じ季節 (図示例は冬季) の地域ごとの特性を示す。 図 6 (b) の Aは最も暖かい地域の決定ライン、 Bは中間の地域の決定ライン、 Cは最も寒い地域の 決定ラインを示す。 図 6 (b) によれば、 地域が異なると決定ラインは変動する。 上記よ リ、 本実施形態のエネルギーマネジメントシステム 1では、 気温によって上記決定ライン を変化させることができる。
また、 図 7は、 ある地域において、 売電優先と蓄電優先と蓄熱優先とにおける買電単 価と年間光熱費との関係について示す。 図 7 (a) および (b) の Aは売電優先の場合、 Bは蓄電優先の場合、 Cは蓄熱優先の場合の特性を示す。 図 7 (a) は売電単価が 25円 ノ kWhの場合であり、 図 7 (b) は売電単価が 40円 ZkWhの場合である。 図 7より、 売電単価および買電単価に関わらず、 売電優先のほうが蓄熱優先よりも年間光熱比は安い。 これは、 蓄熱装置 HPが負荷平準化機器であり、 蓄熱装置 HPが主に運転する時間帯 (夜 間) の買電単価 d pur , nが安くなるためである。
以上、 本実施形態によれば、 売電価格 (売電価格情報) または買電価格 (買電価格情 報) が変化した場合に、 売電価格情報と買電価格情報と電力使用ルールとを用いて太陽電 池 P Vの余剰電力に対する複数の提供先候補 (電力会社 A C、 蓄電装置 S B、 蓄熱装置 H P ) の優先順位を決定し、 優先順位の高い提供先候補から順に提供先として余剰電力を提 供することによって、 太陽電池 P Vの発電電力の活用についてコストパフォーマンスを上 げることができる。
また、 本実施形態によれば、 蓄電装置 S Bおよび蓄熱装置 H P (エネルギー蓄積装置) が提供先に含まれることによって、 売電価格情報および買電価格情報に基づいて余剰電力 の売電と蓄積との間の優先度を選択することができるので、 太陽電池 P Vの発電電力をよ リ効率的に利用することができる。
さらに、 本実施形態によれば、電力使用ルールを設定する際に、売電優先、 蓄電優先、 蓄熱優先のそれぞれにおける電力料金の収支を算出することによって、 効率のよい電力使 用ルールを精度よく設定することができる。
また、 本実施形態によれば、 太陽電池 P Vの余剰電力の蓄積手段として蓄電と蓄熱と を設定することができるので、 電力使用ルールにおいて、 気温に応じて上記余剰電力を蓄 電するか蓄熱するかの判定基準を変更することができる。
また、 本実施形態によれば、 それぞれが特定の時間帯に蓄電装置 S Bおよび蓄熱装置 H Pが運転する (蓄電装置 S Bおよび蓄熱装置 H Pで蓄積されたエネルギーを消費する) ように設定されている場合、 太陽電池 P Vの発電の価値を上記特定の時間帯で評価するこ とによって、 コストパフォーマンスを精度よく評価することができる。
(実施形態 2 )
実施形態 2に係るエネルギ一マネジメントシステム 1は、 複数の電力使用ルールを記 憶している点で、実施形態 1に係るエネルギーマネジメントシステム 1と相違する。なお、 本実施形態のシステム構成は、 実施形態 1のシステム構成と同様である。
本実施形態の記憶部 3 4には、 実施形態 1と同様の電力使用ルール (以下 「第 1の電 力使用ルール」 という) が記憶されているとともに、 第 1の電力使用ルールとは設定内容 が異なる電力使用ルール (以下 「第 2の電力使用ルール」 という) が記憶されている。
第 2の電力使用ルールは、 図 8に示すように 3つの制御パターンがあり、 まず、 蓄電 優先と売電優先との比較を行い、 続いて、 蓄電優先と蓄熱優先との比較を行うように設定 されている。
本実施形態のコントローラ 3 6は、 複数の提供先の優先順位を決定する際に適用する 電力使用ルールを選択する選択機能を有している。 コントローラ 3 6は、 予め決められた 条件によって、 記憶部 3 4に記憶されている複数の電力使用ルール (第 1 , 2の電力使用 ルール) から、 上記優先順位を決定する際に適用する電力使用ルールを選択する。 予め決 められた条件とは、 例えば買電単価が売電単価よりも安いか否かの条件などである。 例え ばオール電化契約などのように夜間の買電単価が売電単価よりも安い場合、 第 2の電力使 用ルールが用いられる。 本実施形態のコントローラ 3 6は、 本発明のコントローラおよび 選択部に相当する。
次に、 本実施形態に係るエネルギーマネジメントシステム 1において第 2の電力使用 ルールを用いた場合の動作について図 9を用いて説明する。 まず、 給電制御装置 3の情報 取得部 3 1が新しい売電価格情報または買電情報価格を取得すると (図 9の S 1 1 )、 コン トローラ 3 6は、 売電価格情報および買電情報価格を第 2の電力使用ルールに照会して、 複数の提供先 (電力会社 A C、 蓄電装置 S B、 蓄熱装置 H P ) の優先順位を決定する。 こ のとき、 まず、 蓄電優先のコストメリットと売電優先のコストメリットとを比較する (S 1 2 )。 蓄電優先のコストメリッ卜が売電優先のコストメリツトょリ大きい場合、 コント口 ーラ 3 6は、 太陽電池 P Vの余剰電力に対する制御パターンを第 3の制御パターン (図 8 参照) に決定する。 蓄電優先のコストメリツ卜が蓄電優先のコストメリツト以下である場 合、 蓄電優先のコストメリットと蓄熱優先のコストメリツ卜とを比較する (S 1 3 )。 蓄電 優先のコストメリツトが蓄熱優先のコストメリツトょリ大きい場合、 コントローラ 3 6は、 太陽電池 P Vの余剰電力に対する制御パターンを第 1の制御パターン (図 8参照) に決定 する。 蓄電優先のコストメリットが蓄熱優先のコストメリット以下である場合、 コント口 ーラ 3 6は、 太陽電池 P Vの余剰電力に対する制御パターンを第 2の制御パターン (図 8 参照) に決定する。
以上、 本実施形態によれば、 複数の電力使用ルール (第 1 , 2の電力使用ルール) の 中から 1つを選択することができるので、 使用者は、 状況に応じて最適な電力使用ルール を選択することができる。
(実施形態 3 )
実施形態 3に係るエネルギーマネジメントシステム 1は、 複数の電力使用ルールとし て、 第 1 , 2の電力使用ルールとともに、 環境優先の第 3の電力使用ルールを記憶してい る点で、 実施形態 2に係るエネルギーマネジメントシステム 1と相違する。 なお、 本実施 形態のシステム構成は、 実施形態 2のシステム構成と同様である。
第 3の電力使用ルールは、 蓄電装置 S Bへの蓄電および蓄熱装置 H Pへの蓄熱を電力 会社 A Cへの売電よりも常に優先するように設定されている。 第 3の電力使用ルールは、 第 1 . 2の電力使用ルールとともに記憶部 3 4に記憶されている。
本実施形態のコントローラ 3 6は、 ユーザの意思などによって、 記憶部 3 4に記憶さ れている複数の電力使用ルール (第 1〜 3の電力使用ルール) から、 提供先の優先順位を 決定する際に適用する電力使用ルールを選択する。 例えばユーザの環境への意識が高い場 合、 ユーザによる第 1の設定操作部 4への設定操作によって、 第 3の電力使用ルールが選 択される。
以上、 本実施形態によれば、 蓄電装置 S Bおよび蓄熱装置 H Pが電力会社 A Cよりも 常に優先順位が高い第 3の電力使用ルールをさらに記憶することによって、 ユーザの意思 などに応じて、 コスト優先の第 1 , 2の電力使用ルールと環境優先の第 3の電力使用ルー ルとを選択することができる。 本実施形態のエネルギーマネジメントシステム 1は、 第 3 の電力使用ルールを選択した場合、 太陽電池 P Vの発電電力を、 蓄電装置 S Bへの蓄電ま たは蓄熱装置 H Pへの蓄熱を通じて施設 H内の電力負荷機器し 1へできるだけ積極的に供 給することができる。 太陽エネルギーを用いた発電の場合、 二酸化炭素 (C 0 2 ) の発生 量も一次エネルギー消費原単位もどちらもほぼ 0であるため、 本実施形態によれば、 太陽 電池 P Vの発電電力をできるだけ売電せずに利用することによって、 環境への負荷を小さ くすることができる。
なお、 実施形態 3の変形例として、 第 3の電力使用ルールは、 売電価格が予め設定さ れている基準価格よリも安い場合に、 蓄電装置 S Bおよび蓄熱装置 H Pへの蓄熱を電力会 社 A Cへの売電よりも常に優先するように設定されていてもよい。 つまり、 変形例の第 3 の電力使用ル一ルを用いた場合、 エネルギーマネジメントシステム 1は、 売電価格が安い ときに環境優先となり、 売電価格が高いときにコスト優先となるように、 太陽電池 P Vの 発電電力の提供先を決定することができる。
なお、 実施形態 1 ~ 3の変形例として、 コントローラ 3 6は、 買電価格情報を用いず に売電価格情報のみを用いて複数の提供先の優先順位を決定してもよい。 上記変形例の場 合、 ある指数に対して売電価格が高い場合に、 電力会社 A Cの優先順位が高くなリ、 上記 指数に対して売電価格が低い場合に、 電力会社 A Cの優先順位が低くなる。
また、 実施形態 1 ~ 3では、 自然エネルギーを用いて発電する発電装置が太陽電池 P Vである場合について説明しているが、 本発明を実施するにあたって、 上記発電装置は必 ずしも太陽電池 P Vである必要はなく、 自然エネルギーを用いて発電する装置であればよ い。 上記より、 実施形態 1 ~ 3の変形例として、 上記発電装置が、 例えば風力エネルギー を用いて発電する風力発電装置などであってもよい。 上記のような発電装置であっても、 本発明の実施には何ら問題がなく、 実施形態 1 ~ 3と同様の効果を得ることができる。
また、 実施形態 1〜3では、 エネルギー蓄積装置として蓄電装置 S Bと蓄熱装置 H P とを併用した場合について説明しているが、 本発明を実施するにあたって、 エネルギー蓄 積装置として蓄電装置 S Bと蓄熱装置 H Pとを併用する必要はない。 上記より、 実施形態 1 , 2の変形例として、 蓄電装置 S Bまたは蓄熱装置 H Pのいずれか一方のみをエネルギ —蓄積装置としてもよい。 上記変形例においても、 本発明の実施には何ら問題がなく、 実 施形態 1〜 3と同様の効果を得ることができる。
さらに、実施形態 1 ~ 3の変形例として、給電制御装置 3は、算出部 3 5を備えずに、 別装置による式 1 ~ 7を用いたシミュレーションによって予め設定された電力使用ルール を記憶部 3 4に記憶させてもよい。
以上、 本発明の好ましい実施形態が説明されているが、 本発明はこれらの特定の実施 形態に限られるものではなく、 請求範囲の範疇から離脱しない多様な変更及び変形が可能 であり、 それも本発明の範疇内に属する。

Claims

請求範囲
【請求項 1】
自然エネルギーを用いて発電する発電装置からの発電電力と電力負荷機器への供給電力 とを管理するエネルギーマネジメントシステムであって、
前記発電電力の余剰電力の提供先を決定するコントロ一ラと、
前記余剰電力に対する前記複数の提供先候補の優先順位が設定されている電力使用ルー ルを記憶する記憶部とを備え、
前記コントローラは前記記憶部に記憶された電力使用ルール及び売電価格情報に基づい て前記発電電力の余剰電力の提供先を決定するエネルギーマネジメントシステム。
【請求項 2】
前記発電装置の発電電力を前記電力負荷機器に供給するとともに前記発電電力の余剰電 力の提供先を切り替えて当該提供先に当該余剰電力を提供する経路切替部と、
前記電力会社への売電価格情報を取得する情報取得部とをさらに備え、
前記提供先候補は前記余剰電力の売電先である電力会社と前記余剰電力相当のエネルギ 一を蓄積可能なエネルギー蓄積装置とを含み、
前記電力使用ルールは前記複数の提供先候補の優先順位が売電価格に対応して設定され、 前記コントローラは、 前記情報取得部で取得された前記売電価格情報を前記電力使用ル ールに照会して前記複数の提供先候補の優先順位を決定し、 優先順位の高い提供先候補か ら順に前記提供先に切り替えて当該提供先に前記余剰電力を提供するように前記経路切替 部を制御する請求項 1記載のエネルギーマネジメントシステム。
【請求項 3】
前記情報取得部は、 前記売電価格情報とともに前記電力会社からの買電価格情報を取得 し、
前記電力使用ルールは、 前記余剰電力に対する前記複数の提供先候補の優先順位が前記 売電価格および買電価格に対応して設定され、
前記コントローラは、 前記情報取得部で取得された前記売電価格情報および前記買電価 格情報を前記電力使用ルールに照会して前記複数の提供先候補の優先順位を決定する請求 項 2記載のエネルギーマネジメントシステム。
【請求項 4】
前記電力負荷機器への供給電力の時間変化を示す負荷パターンと、 前記発電装置の発電 電力の時間変化を示す発電パターンと、 前記情報取得部で取得された前記売電価格情報お よび前記買電価格情報とを用いて、 電力料金の収支を算出する算出部をさらに備え、 前記電力使用ルールは、 前記算出部の算出結果を用いて前記複数の提供先候補の優先順 位が設定されている請求項 3記載のエネルギーマネジメントシステム。
【請求項 5】 前記エネルギー蓄積装置は、 前記余剰電力を蓄電する蓄電装置と、 前記余剰電力相当の エネルギーを蓄熱する蓄熱装置とを含む請求項 2〜 4のいずれか 1項に記載のエネルギー マネジメントシステム。
【請求項 6】
前記エネルギー蓄積装置は、 使用時間帯が設定され、
前記コントローラは、 前記エネルギー蓄積装置の使用時間帯の前記買電価格情報を前記 電力使用ルールに照会して前記複数の提供先候補の優先順位を決定する請求項 3〜 5のい ずれか 1項に記載のエネルギーマネジメントシステム。
【請求項 7】
前記コントローラで適用される電力使用ルールを選択する選択部をさらに備え、 前記記憶部は、 互いに設定内容が異なる前記電力使用ルールを複数記憶し、
前記選択部は、 予め決められた条件によって、 前記記憶部に記憶されている複数の電力 使用ルールから、 前記コントローラで適用される電力使用ルールを選択する請求項 2〜 6 のいずれか 1項に記載のエネルギ一マネジメントシステム。
【請求項 8】
前記複数の電力使用ルールは、 前記複数の提供先候補の優先順位において前記エネルギ 一蓄積装置が前記電力会社よりも常に優先度が高く設定されている電力使用ルールを含む 請求項 7記載のエネルギーマネジメントシステム。
【請求項 9】
請求項 2 ~ 8のいずれか 1項に記載のエネルギーマネジメントシステムに用いられる給 電制御装置であって、
前記コントローラと、 前記情報取得部と、 前記記憶部とを備える給電制御装置。
PCT/IB2010/002462 2009-09-30 2010-09-29 エネルギーマネジメントシステムおよび給電制御装置 WO2011039610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10819981.1A EP2485189B1 (en) 2009-09-30 2010-09-29 Energy management system and power feed control device
US13/499,371 US20120233094A1 (en) 2009-09-30 2010-09-29 Energy management system and power feed control device
CN201080051924.4A CN102612701B (zh) 2009-09-30 2010-09-29 能量管理系统和供电控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-228261 2009-09-30
JP2009228261A JP5807171B2 (ja) 2009-09-30 2009-09-30 エネルギーマネジメントシステムおよび給電制御装置

Publications (1)

Publication Number Publication Date
WO2011039610A1 true WO2011039610A1 (ja) 2011-04-07

Family

ID=43825628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002462 WO2011039610A1 (ja) 2009-09-30 2010-09-29 エネルギーマネジメントシステムおよび給電制御装置

Country Status (5)

Country Link
US (1) US20120233094A1 (ja)
EP (1) EP2485189B1 (ja)
JP (1) JP5807171B2 (ja)
CN (1) CN102612701B (ja)
WO (1) WO2011039610A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091113A1 (ja) * 2010-12-28 2012-07-05 パナソニック株式会社 電力制御装置
US20140025220A1 (en) * 2012-07-19 2014-01-23 Solarcity Corporation Techniques for controlling energy generation and storage systems
JP5654179B1 (ja) * 2013-12-10 2015-01-14 中国電力株式会社 充放電制御装置、プログラム
US9831677B2 (en) 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
WO2021005675A1 (ja) * 2019-07-08 2021-01-14 東芝三菱電機産業システム株式会社 エネルギーバランス調整制御方法及び調整制御装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105105A1 (ja) * 2011-01-31 2012-08-09 日本電気株式会社 電力管理システム及び電力管理方法
CN102933915A (zh) * 2011-06-06 2013-02-13 松下电器产业株式会社 热泵的运转方法及热泵系统
EP2688173B1 (en) 2012-07-20 2017-03-22 Panasonic Intellectual Property Management Co., Ltd. Multi-service provision with energy storage system
ITPD20120389A1 (it) * 2012-12-19 2014-06-20 Enzo Bertoldi Metodo per la gestione dell'energia prodotta da un impianto per la generazione di energia da fonti rinnovabili
EP2747234A3 (en) 2012-12-21 2014-08-06 Danfoss Power Electronics A/S Photovoltaic-based power system
JP5502213B1 (ja) * 2013-02-01 2014-05-28 中国電力株式会社 電力需給調整装置、電力需給調整システム、電力需給調整方法およびプログラム
ITTO20130137A1 (it) * 2013-02-19 2014-08-20 Marco Bucar Sistema per la produzione di energia elettrica e per la gestione e l'ottimizzazione di una rete di flussi energetici
JP6160157B2 (ja) * 2013-03-22 2017-07-12 富士通株式会社 電力供給システム、制御装置、制御方法および制御プログラム
CN103182949B (zh) * 2013-03-28 2015-01-07 安徽江淮汽车股份有限公司 一种整车控制器的切断/唤醒电路
EP3032692A4 (en) * 2013-08-09 2016-08-03 Panasonic Ip Man Co Ltd POWER ADJUSTMENT DEVICE, POWER ADJUSTMENT METHOD AND PROGRAM
WO2015031581A1 (en) * 2013-08-28 2015-03-05 Robert Bosch Gmbh System and method for energy asset sizing and optimal dispatch
JP6160957B2 (ja) * 2013-09-30 2017-07-12 パナソニックIpマネジメント株式会社 電力管理装置、電力管理方法、プログラム
US9520722B2 (en) * 2013-11-15 2016-12-13 Epsel Co., Ltd. Solar power generation management apparatus
DE102013226761A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Auslegen einer Fotovoltaik-Anlage
TWI596560B (zh) * 2013-12-26 2017-08-21 崑山科技大學 Sales system
JP6184880B2 (ja) * 2014-01-14 2017-08-23 シャープ株式会社 太陽光太陽熱利用システムの制御装置、太陽光太陽熱利用システム、および太陽光太陽熱利用システムの制御方法
US10007285B2 (en) * 2014-02-12 2018-06-26 International Business Machines Corporation Injecting electricity into a grid from distributed generation
FR3018594B1 (fr) * 2014-03-11 2016-04-01 Electricite De France Chauffe-eau joule regulable en puissance
CN103824235B (zh) * 2014-03-18 2017-04-12 国家电网公司 一种基于竞价上网的新能源电站电量消纳方案制定方法
FR3019882A1 (fr) * 2014-04-15 2015-10-16 Electricite De France Systeme de chauffe-eau a consommation energetique modulable
JP6115831B2 (ja) * 2014-11-04 2017-04-19 三菱電機株式会社 コントローラ、スケジュール作成方法、及びプログラム
FR3030703B1 (fr) * 2014-12-19 2017-01-06 Electricite De France Procede de modification de la consommation d'une pompe a chaleur
CN104578160B (zh) * 2015-01-14 2017-01-04 天津大学 一种微网能量控制方法
JP6403875B2 (ja) * 2015-04-15 2018-10-10 三菱電機株式会社 機器管理装置、機器管理システム、機器管理方法及びプログラム
JP6544720B2 (ja) * 2015-06-17 2019-07-17 パナソニックIpマネジメント株式会社 管理装置、管理方法、及び管理用プログラム
JP6541081B2 (ja) * 2015-07-28 2019-07-10 パナソニックIpマネジメント株式会社 電力供給システム
JP6765174B2 (ja) * 2015-09-18 2020-10-07 シャープ株式会社 空気調和機および空気調和機の制御方法
JP6522487B2 (ja) * 2015-11-27 2019-05-29 新電元工業株式会社 パワーコンディショナの運転制御装置、運転制御方法、および運転制御プログラム
JP2017153274A (ja) * 2016-02-25 2017-08-31 オムロン株式会社 電力取引マッチングシステム、電力取引マッチング方法および電力取引マッチングプログラム
JP6563123B2 (ja) * 2016-05-02 2019-08-21 三菱電機株式会社 電力融通制御装置、電力融通制御方法および電力融通制御システム
CN106228696B (zh) * 2016-07-19 2019-01-25 国网四川省电力公司攀枝花供电公司 一种费控系统
AU2016250449A1 (en) 2016-10-28 2018-05-17 Rheem Australia Pty Limited A system, apparatus and method for efficient use of solar photovoltaic energy
JP6856399B2 (ja) * 2017-02-17 2021-04-07 株式会社Nttファシリティーズ 電力制御装置および電力制御方法
JP6328283B2 (ja) * 2017-03-09 2018-05-23 三菱電機株式会社 コントローラ、スケジュール作成方法、及びプログラム
JP7042180B2 (ja) * 2018-07-19 2022-03-25 旭化成ホームズ株式会社 熱源制御装置及び熱源制御プログラム
CN110648176B (zh) * 2019-09-20 2020-11-20 南方电网能源发展研究院有限责任公司 一种电力容量市场与电能量市场的衔接方法、装置及设备
EP4312333A1 (en) * 2022-07-27 2024-01-31 OptiWatti Oy System and method for managing energy at premises

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369381A (ja) 2001-06-06 2002-12-20 Mitsubishi Chemicals Corp 送受電シフト方法
JP2003189477A (ja) * 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2003223917A (ja) * 2002-01-30 2003-08-08 Mitsubishi Heavy Ind Ltd コジェネレーションプラント運転支援システム及び運転支援方法
JP2004263622A (ja) * 2003-02-28 2004-09-24 Osaka Gas Co Ltd コージェネレーションシステム
JP2005218193A (ja) * 2004-01-28 2005-08-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2005226918A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 太陽電池駆動冷媒サイクル装置、給湯器、温蔵庫、冷却貯蔵庫、飲料供給装置及び空気調和機
JP2005287210A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd エネルギ供給システム
JP2005287211A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd エネルギ供給システム
JP2008158701A (ja) 2006-12-21 2008-07-10 Showa Shell Sekiyu Kk 表示装置、方法及びコンピュータプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255526A (en) * 1992-03-18 1993-10-26 Fischer Harry C Multi-mode air conditioning unit with energy storage system
JP3519699B2 (ja) * 1992-04-24 2004-04-19 エイディシーテクノロジー株式会社 エネルギ制御装置
JP2002095168A (ja) * 1992-06-23 2002-03-29 Adc Technology Kk 電力系統制御装置
US7385373B2 (en) * 2003-06-30 2008-06-10 Gaia Power Technologies, Inc. Intelligent distributed energy storage system for demand side power management
US7373222B1 (en) * 2003-09-29 2008-05-13 Rockwell Automation Technologies, Inc. Decentralized energy demand management
US7274975B2 (en) * 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
JP4606389B2 (ja) * 2006-06-28 2011-01-05 大阪瓦斯株式会社 分散型発電機の制御システム
US20080046387A1 (en) * 2006-07-23 2008-02-21 Rajeev Gopal System and method for policy based control of local electrical energy generation and use
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
GB2448504B (en) * 2007-04-17 2012-07-25 Timothy Patrick Cooper A load management controller
WO2008125696A2 (en) * 2007-04-17 2008-10-23 Timothy Patrick Cooper A load management controller
US7565227B2 (en) * 2007-08-15 2009-07-21 Constellation Energy Group, Inc. Multi-building control for demand response power usage control
JP2009183077A (ja) * 2008-01-31 2009-08-13 Jfe Steel Corp 製造プラント発電設備の発電電力調整方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369381A (ja) 2001-06-06 2002-12-20 Mitsubishi Chemicals Corp 送受電シフト方法
JP2003189477A (ja) * 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2003223917A (ja) * 2002-01-30 2003-08-08 Mitsubishi Heavy Ind Ltd コジェネレーションプラント運転支援システム及び運転支援方法
JP2004263622A (ja) * 2003-02-28 2004-09-24 Osaka Gas Co Ltd コージェネレーションシステム
JP2005218193A (ja) * 2004-01-28 2005-08-11 Osaka Gas Co Ltd コージェネレーションシステム
JP2005226918A (ja) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd 太陽電池駆動冷媒サイクル装置、給湯器、温蔵庫、冷却貯蔵庫、飲料供給装置及び空気調和機
JP2005287210A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd エネルギ供給システム
JP2005287211A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd エネルギ供給システム
JP2008158701A (ja) 2006-12-21 2008-07-10 Showa Shell Sekiyu Kk 表示装置、方法及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2485189A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091113A1 (ja) * 2010-12-28 2012-07-05 パナソニック株式会社 電力制御装置
US9343926B2 (en) 2010-12-28 2016-05-17 Panasonic Intellectual Property Management Co., Ltd. Power controller
US20140025220A1 (en) * 2012-07-19 2014-01-23 Solarcity Corporation Techniques for controlling energy generation and storage systems
US9270118B2 (en) * 2012-07-19 2016-02-23 Solarcity Corporation Techniques for controlling energy generation and storage systems
US9831677B2 (en) 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
US10277031B2 (en) 2012-07-19 2019-04-30 Solarcity Corporation Systems for provisioning energy generation and storage systems
JP5654179B1 (ja) * 2013-12-10 2015-01-14 中国電力株式会社 充放電制御装置、プログラム
WO2015087391A1 (ja) * 2013-12-10 2015-06-18 中国電力株式会社 充放電制御装置、プログラム
WO2021005675A1 (ja) * 2019-07-08 2021-01-14 東芝三菱電機産業システム株式会社 エネルギーバランス調整制御方法及び調整制御装置

Also Published As

Publication number Publication date
JP2011078238A (ja) 2011-04-14
CN102612701A (zh) 2012-07-25
JP5807171B2 (ja) 2015-11-10
EP2485189A4 (en) 2014-04-16
EP2485189A1 (en) 2012-08-08
EP2485189B1 (en) 2017-11-08
CN102612701B (zh) 2015-05-27
US20120233094A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011039610A1 (ja) エネルギーマネジメントシステムおよび給電制御装置
JP6216377B2 (ja) 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム
WO2014119153A1 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ
JP3980541B2 (ja) 分散型エネルギーコミュニティー制御システム、中央制御装置、分散制御装置と、それらの制御方法
WO2014034391A1 (ja) エネルギー管理システム、サーバ、エネルギー管理方法および記憶媒体
JP5907753B2 (ja) 地域内電力需要管理システム
JP2003189477A (ja) 電力制御装置
WO2016088761A1 (ja) 電力制御システム、電力制御方法及びプログラム
JP6009976B2 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ
KR20020054357A (ko) 전력수급관리시스템
Detroja Optimal autonomous microgrid operation: A holistic view
US20160226261A1 (en) Power Supply-Demand Adjusting Apparatus, Power System and Power Supply-Demand Adjusting Method
WO2020153443A1 (ja) エネルギーマネジメントシステムおよびその制御方法
JP2014096866A (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置
JP2018036926A (ja) マイクログリッドの運転計画システムおよび方法
JP2015092822A (ja) パワーコンディショナー及び算出方法
JP6903867B2 (ja) 電力供給経路制御システム、電力供給経路制御方法および電力供給経路制御プログラム
WO2017145458A1 (ja) 電力供給制御システム、電力供給制御方法および電力供給制御プログラム
JP5922431B2 (ja) 地域内電力需給制御システム
JP2018152961A (ja) 電力管理システム
JP2021013231A (ja) 情報処理装置、情報処理方法及びプログラム
JP6903531B2 (ja) 分散型電源制御装置、分散型電源制御システム及び分散型電源制御方法
JP2014086367A (ja) 集合住宅における燃料電池の稼動制御方法および稼動制御システム
JP7240295B2 (ja) 地域エネルギー管理装置及び地域エネルギー管理方法
KR20220061220A (ko) 에너지 저장소의 저장 전략에 의존하여 로컬 에너지 네트워크에 대한 네트워크 관리 시스템을 운영하는 방법, 및 네트워크 관리 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051924.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 766/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010819981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010819981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499371

Country of ref document: US