WO2011037239A1 - 繊維強化複合材料 - Google Patents

繊維強化複合材料 Download PDF

Info

Publication number
WO2011037239A1
WO2011037239A1 PCT/JP2010/066732 JP2010066732W WO2011037239A1 WO 2011037239 A1 WO2011037239 A1 WO 2011037239A1 JP 2010066732 W JP2010066732 W JP 2010066732W WO 2011037239 A1 WO2011037239 A1 WO 2011037239A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
prepreg
resin
fiber
reinforced composite
Prior art date
Application number
PCT/JP2010/066732
Other languages
English (en)
French (fr)
Inventor
学 金子
智子 石本
馨 宇佐美
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009222073A external-priority patent/JP5590371B2/ja
Priority claimed from JP2009227153A external-priority patent/JP5590372B2/ja
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201080043278.7A priority Critical patent/CN102666683B/zh
Priority to EP10818911.9A priority patent/EP2484715A4/en
Priority to US13/498,506 priority patent/US20120202071A1/en
Publication of WO2011037239A1 publication Critical patent/WO2011037239A1/ja
Priority to US14/812,526 priority patent/US20150328828A1/en
Priority to US14/812,395 priority patent/US20150337099A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3607Moulds for making articles of definite length, i.e. discrete articles with sealing means or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • B29L2031/608Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • the present invention relates to a prepreg, a fiber-reinforced composite material obtained by curing the prepreg, and a method for producing the same.
  • Fiber reinforced composite materials are widely used from sports and leisure applications to industrial applications such as automobiles and aircraft, taking advantage of their light weight, high strength and high rigidity.
  • carbon fiber reinforced composite materials that are lighter and have higher strength and rigidity have been increasingly used for industrial applications.
  • carbon fiber reinforced composite materials used for structural members such as trains and aircraft bodies are generally manufactured by autoclave molding using prepreg as an intermediate material.
  • the purpose of this is to reduce the voids in the molded body by molding under high pressure using an autoclave and to exhibit the characteristics of the molded body as expected.
  • Oven molding and RFI molding do not apply pressure other than atmospheric pressure, so it does not have to be a solid pressure-resistant vessel like an autoclave, and can be molded if there is a furnace (oven) that can raise the temperature, It can be molded with simple equipment such as a hot air heater. However, since no pressure was applied, voids were likely to remain in the molded body, and the molded body had a problem that the strength was lower than that of the molded body in the autoclave, or pinholes were generated on the surface.
  • Patent Document 1 exemplifies a molded product having a small amount of voids using a partially impregnated prepreg.
  • Patent Document 1 discloses a method of forming a molded product with less voids using a prepreg partially impregnated with a resin.
  • Patent Document 2 discloses a method by which a high-strength and high-rigidity laminate using a carbon fiber fabric can be easily manufactured.
  • Dicyandiamide is a white solid and easily aggregates and hardly dissolves, causing white spots. Therefore, although there is a possibility of improving the white spot by reducing the amount of dicyandiamide used or using a transparent liquid curing agent such as imidazole, in this case the heat resistance is low or the pot life is relatively short. Therefore, it has drawbacks such as reduced workability.
  • An object of the present invention is to provide a prepreg capable of expressing the inherent heat resistance of a resin and a fiber-reinforced composite material obtained by curing the prepreg, regardless of the molding method.
  • the present inventors have found that the problem can be solved by using a boron chloride amine complex as a curing agent in the prepreg, and have reached the present invention.
  • the gist of the present invention is a prepreg composed of an epoxy resin (A), a boron chloride amine complex (B) and a fiber base material (C), and a fiber reinforced composite material obtained by curing the prepreg.
  • the molar ratio of boron in the boron chloride amine complex (B) to the molar number of the epoxy group contained in the epoxy resin (A) is preferably 4 to 7 mol%.
  • the epoxy resin (A) is a bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the following formula (I), a bisphenol type epoxy resin (2), and a phenol novolak type represented by the following formula (II). It is preferable to consist of an epoxy resin (3).
  • a prepreg that exhibits desired heat resistance can be provided regardless of the molding method, and the molding cost of the fiber-reinforced composite material or the molding equipment investment can be reduced.
  • an object of the present invention is to provide a method for producing a fiber-reinforced composite material that is free from defects in surface appearance, particularly in oven molding, and can exhibit the heat resistance inherent in the resin composition.
  • the inventors of the present invention formed a prepreg composed of a resin composition composed of an epoxy resin (A) and a boron chloride amine complex (B) and a fiber substrate (C).
  • the present inventors have found that the problem can be solved by dwelling in a specific temperature range before curing, and have reached the present invention.
  • the gist of the present invention is that when a prepreg comprising a resin composition comprising an epoxy resin (A) and a boron chloride amine complex (B) and a fiber substrate (C) is molded, 60 ° C. to 95 ° C.
  • the fiber reinforced composite material is produced by holding at 0.5 to 1.5 hours and then curing at the curing temperature of the resin composition.
  • the epoxy resin (A) is a bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the formula (I), a bisphenol type epoxy resin (2), and a phenol represented by the formula (II). It is preferable to consist of a novolac type epoxy resin (3).
  • a fiber-reinforced resin composite material having a good appearance and capable of expressing the heat resistance inherent in the resin composition can be obtained.
  • an object of the present invention is to provide a sandwich structure molded product having no white spot on the surface.
  • the gist of the present invention is a sandwich structure molded product comprising a skin material and a core material obtained by curing a prepreg comprising an epoxy resin (A), a boron chloride amine complex (B) and a fiber base material (C), and A sandwich structure molded article comprising: laminating a core material and a prepreg composed of an epoxy resin (A), a boron chloride amine complex (B), and a fiber base material (C), and then curing the prepreg by heating and pressing. It is a manufacturing method.
  • this sandwich structure molded product is useful as a member having both excellent physical properties and excellent appearance.
  • FIG. 1 is a cross-sectional view showing an example of a bagging configuration, illustrating a method for manufacturing a fiber-reinforced composite material panel according to the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of bagging in the production of the sandwich structure molded product of the present invention.
  • FIG. 3 is a graph showing an example when G′ ⁇ Tg is obtained from the intersection of the approximate straight line of the flat region before the log G ′ of the cured product is transferred and the approximate straight line of the region where the log G ′ is transferred.
  • Epoxy resin (A) As the epoxy resin (A) useful in the present invention, various known epoxy resins can be used, and the molecular structure, molecular weight and the like are not particularly limited as long as they have at least two epoxy groups in the molecule. .
  • various epoxy resins such as bisphenol type, phenol novolak type, cresol novolak type, dicyclopentadiene type, naphthalene type, biphenyl type, and oxazolidone type can be used alone or in combination of two or more.
  • a monofunctional epoxy resin, a vinyl polymerizable resin, a phenol resin, a bismaleimide resin, a BT resin, a cyanate ester resin, a vinyl ester resin, a benzoxazine resin, an unsaturated polyester resin, and the like can be blended as necessary.
  • Preferred epoxy resins are oxazolidone type resins, bisphenol type resins, and phenol novolac type resins.
  • a bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the above formula (I), a bisphenol type epoxy resin (2), and a phenol novolac type epoxy represented by the above formula (II) A combination of resins (3) is preferred.
  • the bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the formula (I) is commercially available, and examples thereof include AER4152 and XAC4151 from Asahi Kasei Chemicals Corporation.
  • Examples of the bisphenol type epoxy resin (2) include bisphenol A type resin, bisphenol F type resin, and bisphenol S type resin.
  • Bisphenol A type resin and bisphenol S type resin are preferable. These are readily available commercially.
  • the phenol novolac type epoxy resin (3) represented by the formula (II) is commercially available.
  • EPPN-501H, EPPN-502HY, EPPN-502H, etc. manufactured by Nippon Kayaku Co., Ltd., Japan Epoxy Examples include jER1032H60 manufactured by Resin Co., Ltd., Tactix 742 manufactured by Huntsman Co., etc.
  • a preferred epoxy equivalent is 150 to 180 g / eq.
  • the bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the formula (I), the bisphenol type epoxy resin (2) and the phenol novolac type epoxy resin (3) represented by the formula (II) is 20 to 40% by mass, the bisphenol type epoxy resin (2) is 45 to 65% by mass, and represented by the formula (II).
  • the phenol novolac type epoxy resin (3) to be prepared is preferably 5 to 25% by mass.
  • the bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the formula (I) is 20% by mass or more, the mechanical property of the fiber-reinforced composite material is not deteriorated and does not exceed 40% by mass. Good heat resistance in fiber reinforced composite materials.
  • the blending amount of the bifunctional epoxy resin (1) having an oxazolidone ring structure represented by the formula (I) is more preferably 25 to 35% by mass.
  • the bisphenol type epoxy resin (2) is 45% by mass or more, the prepreg drapeability is maintained, and if it is 65% by mass or less, the crosslinking density of the cured resin is not too low and the heat resistance is impaired. There is nothing.
  • the blending amount of the bisphenol type epoxy resin (2) is more preferably 50 to 60% by mass. It is more preferable that the bisphenol type epoxy resin (2) is a combination of a bisphenol A type resin and a bisphenol S type resin because the draping property of the prepreg and the heat resistance of the fiber reinforced composite material are highly balanced. If the phenol novolac type epoxy resin (3) represented by the formula (II) is 5% by mass or more, the crosslinking density of the cured resin does not become too low, and the heat resistance is not impaired. If it exists, the mechanical property in a fiber reinforced composite material will not be impaired. The blending amount of the phenol novolac type epoxy resin (3) is more preferably 10 to 20% by mass.
  • Boron chloride amine complex (B) In the present invention, boron chloride amine complex (B) is used as a curing agent. By using the boron chloride amine complex (B), it is possible to provide a prepreg that exhibits the inherent heat resistance of the matrix resin without being affected by the prepreg production method and form and the fiber-reinforced composite material molding method. In addition, no white spots appear on the surface of the sandwich structure molded product obtained using this fiber-reinforced composite material.
  • Boron chloride amine complex (B) can be obtained commercially.
  • the preferred compounding amount of this boron chloride amine complex (B) is such that the molar ratio of boron atoms in the boron chloride amine complex (B) is based on the number of moles of epoxy groups calculated from the epoxy equivalent of the epoxy resin (A). The amount is 4 to 7 mol%. If it is this range, since it is excellent in the heat resistant expression of the prepreg obtained, it is preferable.
  • thermoplastic resin may be blended in the matrix resin composed of the epoxy resin (A) used in the present invention and the boron chloride amine complex (B) as a curing agent.
  • thermoplastic resins include polyamide, polyester, polycarbonate, polyethersulfone, polyphenylene ether, polyphenylene sulfide, polyetheretherketone, polyimide, polytetrafluoroethylene, polyether, polyolefin, liquid crystal polymer, polyarylate, polysulfone, Examples thereof include polyacrylonitrile styrene, polystyrene, polyacrylonitrile, polymethacrylate, ABS, AES, ASA, polyvinyl chloride, polyvinyl formal, and phenoxy resin.
  • thermoplastic resins include polyvinyl formal, phenoxy resin, polyethersulfone and the like. More preferred is a phenoxy resin.
  • Various known additives can be used in combination with the matrix resin composed of the epoxy resin (A) and the boron chloride amine complex (B) as the curing agent used in the present invention, if necessary.
  • various curing accelerators silicone oils, natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, paraffins and other mold release agents, crystalline silica, fused silica, calcium silicate , Powders such as alumina, calcium carbonate, talc, barium sulfate, inorganic fillers such as glass fiber and carbon fiber, flame retardants such as chlorinated paraffin, bromotoluene, hexabromobenzene, antimony trioxide, carbon black, bengara, etc. Coloring agents, silane coupling agents, and the like can be used.
  • Fiber substrate (C) As the fiber base material (C) useful in the present invention, reinforcing fibers generally used for fiber-reinforced composite materials can be used. For example, carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, boron fiber, high-strength polyethylene fiber, tungsten carbide fiber, PBO fiber, glass fiber and the like can be mentioned. These are used alone or in combination of two or more. Can be used in combination. Carbon fiber is preferable.
  • the fiber substrate (C) is in the form of a tow as it is, in the form of a unidirectional material in which the reinforcing fiber tows are aligned in one direction, in the form of a woven fabric, or in the form of a nonwoven fabric made of reinforced fibers cut short.
  • a unidirectional material in which the reinforcing fiber tows are aligned in one direction, in the form of a woven fabric, or in the form of a nonwoven fabric made of reinforced fibers cut short.
  • woven fabrics stitched sheets that are stitched so as not to unravel sheets that are made by aligning fiber bundles represented by plain weave, twill weave, satin weave, or non-crimp fabric in one direction, or by laminating at different angles. Etc. can be exemplified.
  • a unidirectional material is preferred because the resulting fiber reinforced composite material has excellent mechanical properties. From the viewpoint of handleability, a woven fabric is preferable.
  • the prepreg according to the present invention is not particularly limited in its production method, and can be produced by a general method.
  • the matrix resin composition can be prepared in a glass flask, a kneader, a planetary mixer, a general stirring and heating pot, a stirring and pressure heating pot, and the like.
  • Examples of the method for applying the matrix resin to the fiber substrate include a hot melt film method and a lacquer method.
  • the prepreg molding method according to the present invention that is, the method for producing the fiber-reinforced composite material of the present invention is not particularly limited.
  • General molding methods such as autoclave molding, oven molding, press molding, continuous press molding, pultrusion molding, and internal pressure molding can be applied.
  • a preferred curing temperature is 130 ° C to 200 ° C. More preferably, it is 145 ° C to 185 ° C.
  • the molding machine in the method of dueling in the middle of the temperature rise during curing in the production of the fiber reinforced composite material, there is no particular limitation on the molding machine to be used.
  • An oven, an autoclave, a press machine, etc. can be used.
  • An oven is preferred.
  • Autoclaves can be pressurized with air or nitrogen. It is possible to pressurize the laminated body as seen in the so-called internal pressure molding method.
  • a vacuum pump or the like At the time of molding, in order to remove bubbles in the prepreg as much as possible, it is preferable to decompress the inside of the mold or bag with a vacuum pump or the like at the time of curing temperature rise and during curing.
  • a fiber reinforced resin composite material having no voids on the surface can be obtained by holding (dwelling) at 60 ° C. to 95 ° C. for 0.5 to 1.5 hours in the middle of curing temperature rise. .
  • the number of duels is not limited as long as it is within the temperature and time ranges, but is preferably one.
  • the second and subsequent duels be performed at a higher temperature than the immediately preceding duel.
  • the temperature of the duel is 60 ° C. to 95 ° C., the original heat resistance of the resin composition does not deteriorate. If the duel time is 0.5 to 1.5 hours, the flow amount of the resin is appropriate, and bubbles in the prepreg are removed, so that a good appearance can be obtained.
  • the temperature is further raised to a temperature at which the resin composition is cured to complete the curing.
  • the curing temperature may be a temperature range in which the resin composition is cured.
  • a preferred curing temperature is 130 ° C to 200 ° C. More preferably, it is 145 ° C to 185 ° C.
  • the production of the prepreg used in the sandwich structure molded product and the production method thereof, which is the third feature of the present invention, is not particularly limited, and can be performed by the general method described above.
  • the core material and the prepreg are laminated, and then the prepreg is cured by heating and pressurizing.
  • the molding method There is no particular limitation on the molding method.
  • General molding methods such as an autoclave molding method, an oven molding method, a press molding method, a continuous press molding method, a pultrusion molding method, and an internal pressure molding method can be applied.
  • a preferred curing temperature is 130 ° C to 200 ° C. More preferably, it is 145 ° C to 185 ° C.
  • a master batch was prepared by dissolving jER828 and YP-70 at 160 ° C. Components other than DY9577 having the composition shown in Table 2 were mixed at 120 ° C. with respect to this master batch. After this mixture was brought to 60 ° C., a predetermined amount of DY9577 was added and mixed to prepare a resin composition A.
  • Resin Composition B A master batch was prepared by dissolving jER828 and YP-70 at 160 ° C. Moreover, jER828, Dicy15, and DCMU were uniformly mixed and dispersed with a three roll mill to prepare a master batch. To the YP-70 masterbatch, ingredients other than the Dicy15 / DCMU masterbatch having the composition shown in Table 2 were mixed at 100 ° C. After this mixture was brought to 60 ° C., a predetermined amount of Dicy15 / DCMU master batch was added and mixed to prepare Resin Composition B.
  • Resin Composition C A master batch was prepared by dissolving jER828 and YP-70 at 160 ° C. Further, jER828, 2MA-OK and L-07N were uniformly mixed and dispersed by a three-roll mill to prepare a master batch. Components other than the 2MA-OK / L-07N masterbatch having the composition shown in Table 2 were mixed at 100 ° C. with the YP-70 masterbatch. The mixture was heated to 60 ° C., and a predetermined amount of 2MA-OK / L-07N master batch was added and mixed to prepare a resin composition C.
  • a panel of resin plate and fiber reinforced composite material was processed into a test piece (length 50 mm ⁇ width 12 mm, resin plate 2 mm thick, fiber reinforced composite material 2.8 mm thick).
  • the test piece was processed so that the length direction and the reinforcing fiber warp direction coincided.
  • a rheometer RDA700 manufactured by Rheometrics or an ARES-RDA manufactured by TA Instruments was used as a measuring device. The measurement frequency was 1 Hz, the rate of temperature rise of RDA700 was 5 ° C step temperature rise, and ARES-RDA was measured at 5 ° C / min temperature rise.
  • the log G ′ was plotted against the temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region before the log G ′ transition and the approximate straight line of the region where the G ′ transition was recorded as G′ ⁇ Tg. Further, tan ⁇ was plotted against temperature, and the temperature showing the maximum of tan ⁇ was recorded as tan ⁇ max. As a difference between the measuring apparatuses, the measured values of G′-Tg and tan ⁇ max by RDA700 are 1.05 times higher than the measured values by ARES-RDA.
  • Interlaminar shear strength of the fiber reinforced composite material is determined from the fiber reinforced composite material such that the warp direction of the reinforcing fiber is oriented at 0 ° with respect to the longitudinal direction of the test piece (length 25 mm ⁇ Cut out the width 6.3mm x thickness 2.8mm, about this test piece, three-point bending jig (indenter 3.2mmR, support 1.6mmR, distance between supports: 4 times the thickness of the test piece, crosshead speed: support
  • the interlaminar shear characteristics were measured using a universal testing machine manufactured by Instron Co., Ltd., in which the square of the distance was multiplied by 0.01 / 6 ⁇ the thickness of the test piece.
  • Composite bending characteristics A test piece (length 130 mm ⁇ width 12 mm ⁇ thickness 2.8 mm) was cut out from the fiber reinforced composite material so that the warp direction of the reinforcing fiber was oriented at 0 ° with respect to the longitudinal direction of the test piece. 3 piece bending jig (3.2 mmR for both indenter and support, distance between supports: 40 times the thickness of test piece, crosshead speed: square of distance between supports ⁇ 0.01 / 6 ⁇ thickness of test piece) The bending characteristics (bending strength and bending elastic modulus) were measured using a universal testing machine manufactured by Instron Corporation.
  • Example 1 As a fiber base material, TRK510 made by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 45% by mass, and the resin composition A was applied to a release paper with a film coater at 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the fiber substrate, and the fusing press (Asahi Textile Machine Industry Co., Ltd., JR-600S, treated under the conditions of temperature 40 ° C., pressure 0.05 MPa, feed rate 1.6 m / min. The prepreg 1 was obtained through a length of 1340 mm and a pressure of cylinder pressure). The resin content of this prepreg was 45% by mass.
  • the obtained prepreg was cut and the cross section was visually observed, a portion where the resin was not impregnated was observed.
  • the obtained prepreg was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port and preliminary deaeration was performed at room temperature for 4 hours. The laminated body bagged was put in an oven, and a panel was obtained by heat-curing at 150 ° C. for 2 hours while deaeration by connecting a vacuum pump to the drawing port. A test piece was cut out from the obtained panel, and Tg was measured by DMA. The results are shown in Table 2. RDA700 was used as a measuring device.
  • the resin composition A is heated to 60 ° C. and defoamed, the resin composition A is sandwiched between two glass plates subjected to a release treatment via a 2 mm-thick spacer, and is 150 ° C. in an oven. And cured for 2 hours to obtain a cured resin plate having a thickness of 2 mm.
  • a test piece was cut out from the obtained cured resin plate, and Tg was measured by DMA. The results are shown in Table 2.
  • RDA700 was used as a measuring device.
  • Comparative Example 1 As a fiber base material, TRK510 made by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 45% by mass, and the resin composition B was applied to the release paper with a film coater at 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the fiber base by hand to obtain prepreg 2. The resin content of this prepreg was 45% by mass. When the obtained prepreg was cut and the cross section was visually observed, a portion where the resin was not impregnated was observed. The obtained prepreg was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG.
  • the resin composition B was heated to 60 ° C. to degas, the resin composition B was sandwiched between two glass plates subjected to a release treatment via a 2 mm-thick spacer, and the oven was 150 ° C. in an oven. And cured for 2 hours to obtain a cured resin plate having a thickness of 2 mm. A test piece was cut out from the obtained cured resin plate, and Tg was measured by DMA. The results are shown in Table 2. RDA700 was used as a measuring device.
  • Comparative Example 2 As a fiber base material, TRK510 made by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 45% by mass, and the resin composition B was applied to the release paper with a film coater at 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the fiber base material, and the fusing press (Asahi Textile Machine Industry Co., Ltd., JR-600S, treatment length 1340 mm under conditions of temperature 100 ° C., pressure 0.4 MPa, feed rate 1 m / min. The prepreg 3 was obtained through the cylinder pressure.
  • the obtained prepreg was cut and the cross section was visually observed, it was observed that most of the fiber base material was impregnated with the resin.
  • the obtained prepreg was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port, and preliminary deaeration was performed at room temperature for 6 hours.
  • the laminated body bagged was put in an oven, and a panel was obtained by heat-curing at 150 ° C. for 2 hours while deaeration by connecting a vacuum pump to the drawing port.
  • a test piece was cut out from the obtained panel, and Tg was measured by DMA. The results are shown in Table 2.
  • RDA700 was used as a measuring device.
  • Comparative Example 3 The same operation as in Comparative Example 1 was performed except that an autoclave was used instead of the oven and heat molding was performed at a pressure of 0.3 MPa and a temperature of 150 ° C. for 2 hours. A test piece was cut out from the obtained panel, and Tg was measured by DMA. The results are shown in Table 2. RDA700 was used as a measuring device.
  • Comparative Example 4 Except having used the resin composition C instead of the resin composition B, the same operation as the comparative example 1 was performed, and the prepreg 4 and its panel were obtained. A test piece was cut out from the obtained panel, and Tg was measured by DMA. The results are shown in Table 2.
  • the obtained resin composition C was heated to 60 ° C. for defoaming, and then the resin composition A was sandwiched between two glass plates that had been subjected to a release treatment via a 2 mm-thick spacer, and 150 ° C. in an oven. It was heat-cured at 2 ° C. for 2 hours to obtain a cured resin plate having a thickness of 2 mm. A test piece was cut out from the obtained cured resin plate, and Tg was measured by DMA. The results are shown in Table 2.
  • RDA700 was used as a measuring device.
  • Example 2 A sample was taken out from the cured resin plate of the resin composition A obtained in the same manner as in Example 1, and Tg by DSC was measured. The results are shown in Table 3.
  • Example 3 jER828 and DY9577 were mixed at room temperature with the composition shown in Table 3 to obtain a resin composition D.
  • the obtained resin composition was placed in an aluminum dish and cured in an oven at 150 ° C. for 2 hours to obtain a cured resin.
  • a sample was taken out from the obtained cured resin, and Tg was measured by DSC. The results are shown in Table 3.
  • Examples 4-8 Resin compositions E, F, G, H and I were prepared in the same manner as in Example 3 except that the composition was changed as shown in Table 3, and Tg was measured by DSC. The results are shown in Table 3.
  • Example 9 jER828, jER1001, and DY9577 were mixed and defoamed at 70 ° C. with the compositions shown in Table 3 to obtain Resin Composition J.
  • the resin composition J was sandwiched between two glass plates that had been subjected to a mold release treatment via a 2 mm thick spacer, and heat cured at 150 ° C. for 2 hours in an oven to obtain a 2 mm thick cured resin plate.
  • a sample was taken out from the obtained cured resin plate, and Tg was measured by DSC. The results are shown in Table 3.
  • Example 10 Resin composition K was prepared in the same manner as in Example 9 except that the composition was changed as shown in Table 3, and Tg was measured by DSC. The results are shown in Table 3. As shown in Tables 2 and 3, the prepreg of the present invention shows the original Tg of the matrix resin. In the prior art, as shown in Comparative Examples 1 to 4, the original Tg of the matrix resin cannot be expressed.
  • Example 11 Except having changed the composition as shown in Table 4, the same operation as the preparation of the resin composition A was performed to obtain a resin composition L.
  • a fiber base material TRK510 made by Mitsubishi Rayon Co., Ltd. was prepared.
  • the resin film basis weight was set so that the resin content of the prepreg was 45% by mass, and the resin composition L was applied to a release paper with a film coater at 60 ° C. to obtain a resin film.
  • the obtained resin film was bonded to both sides of the fiber base by hand to obtain prepreg 5.
  • the resin content of this prepreg was 45% by mass.
  • the obtained prepregs were laminated with their warp directions aligned, and this laminate was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port and preliminary deaeration was performed at room temperature for 12 hours. The bagged laminate was placed in an oven, and a vacuum pump was connected to the drawing port and deaerated, followed by heat curing at 95 ° C. for 1 hour and then heat curing at 150 ° C. for 2 hours to obtain a panel. A test piece was cut out from the obtained panel, and G′-Tg and tan ⁇ max were measured by DMA, composite interlayer shear strength, composite bending strength, and elastic modulus were measured. The results are shown in Table 4. ARES-RDA was used for the measurement of DMA.
  • Example 12 A prepreg 6 and a panel were obtained from the resin composition M by performing the same operation as in Example 11 except that the composition was changed as shown in Table 4. A test piece was cut out from the obtained panel, and G′-Tg and tan ⁇ max were measured by DMA, and the composite interlaminar shear strength, composite bending strength, and elastic modulus were measured. The results are shown in Table 4. ARES-RDA was used for the measurement of DMA.
  • Example 13 A prepreg 7 and a panel were obtained from the resin composition N by performing the same operation as in Example 11 except that the composition was changed as shown in Table 4. A test piece was cut out from the obtained panel, and G′-Tg and tan ⁇ max were measured by DMA, and the composite interlaminar shear strength, composite bending strength, and elastic modulus were measured. The results are shown in Table 4. ARES-RDA was used for the measurement of DMA.
  • Example 14 A prepreg 8 and a panel were obtained from the resin composition O by performing the same operation as in Example 11 except that the composition was changed as shown in Table 4. A test piece was cut out from the obtained panel, and G′-Tg and tan ⁇ max were measured by DMA, and the composite interlaminar shear strength, composite bending strength, and elastic modulus were measured. The results are shown in Table 4. ARES-RDA was used for the measurement of DMA.
  • the prepreg of the present invention shows the original G′-Tg of the matrix resin.
  • Examples 15 and 16 and Comparative Examples 5 and 6 The raw materials and fiber materials of the resin compositions used in Examples 15 and 16 and Comparative Examples 5 and 6 are shown in Table 5 below.
  • Resin Composition P A master batch was prepared by dissolving jER828 and YP-70 at 160 ° C. using a glass flask. Components other than DY9577 having the composition shown in Table 6 were mixed at 120 ° C. with respect to this master batch. After this mixture was brought to 60 ° C., a predetermined amount of DY9577 was added and mixed to prepare a resin composition P.
  • Tg Tg by DMA
  • a panel (composite) of a cured resin plate and a fiber reinforced composite material was processed into a test piece (length 50 mm ⁇ width 12 mm, thickness of the cured resin plate 2 mm, fiber reinforced composite material thickness 2.8 mm).
  • the test piece was processed so that the length direction coincided with the reinforcing fiber warp direction.
  • ARES-RDA manufactured by TA Instruments was used as a measuring device. The measurement was performed at a measurement frequency of 1 Hz and a temperature increase of 5 ° C./min.
  • the log G ′ was plotted against the temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region before the log G ′ transition and the approximate straight line of the region where the G ′ transition was recorded as G′ ⁇ Tg. Further, tan ⁇ was plotted against temperature, and the temperature showing the maximum of tan ⁇ was recorded as tan ⁇ max.
  • Example 15 As a fiber base material, TRK510 made by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 45% by mass, and the resin composition P was applied to release paper with a film coater at 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the fiber base material, and was subjected to a fusing press (Asahi Textile Machinery Co., Ltd., JR-600S, treated at a temperature of 40 ° C., a pressure of 0.05 MPa, and a feed rate of 1.6 m / min. A prepreg 9 was obtained through a length of 1340 mm and a pressure of cylinder pressure).
  • the resin content of this prepreg was 45% by mass.
  • the obtained prepreg was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the outlet, and preliminary deaeration was performed at room temperature for 4 hours. The laminated body bagged was put in an oven, and a duel was conducted at 95 ° C. for 1 hour while degassing with a vacuum pump connected to the drawing port, and then heat-cured at 150 ° C. for 2 hours to obtain a composite. The temperature was raised at 1 ° C./min. Table 7 shows the results of visually confirming the appearance of the obtained composite and the results of measuring the Tg by DMA after cutting out a test piece from the obtained composite.
  • Example 16 Table 7 shows the result of confirming the appearance of the composite by performing the same operation as in Example 15 except that the duel temperature was set to 60 ° C. Further, Table 7 shows the results of cutting out test pieces from the obtained composite and measuring Tg by DMA.
  • Table 7 shows the results of confirming the appearance of the composite by performing the same operation as in Example 15 except that the duel temperature was set to 100 ° C. Further, Table 7 shows the results of cutting out test pieces from the obtained composite and measuring Tg by DMA. Further, after defoaming the resin composition P by heating to 60 ° C., the resin composition P is sandwiched between two glass plates that have been subjected to a release treatment via a spacer having a thickness of 2 mm, and 100 ° C. in an oven. Due to this, a duel was carried out for 1 hour, followed by heat curing at 150 ° C. for 2 hours to obtain a cured resin plate. The temperature was raised at 1 ° C./min. Table 7 shows the results of cutting out test pieces from the obtained cured resin plate and measuring Tg by DMA.
  • Table 7 shows the result of confirming the appearance of the composite by performing the same operation as in Example 15 except that the duel temperature was set to 50 ° C. Further, Table 7 shows the results of cutting out test pieces from the obtained composite and measuring Tg by DMA.
  • Examples 17 and 18 and Comparative Examples 7 and 8 The raw materials of the resin composition and the reinforcing fiber substrate used in Examples 17 and 18 and Comparative Examples 7 and 8 are shown in Table 9 below.
  • Resin Composition R Using a glass flask, jER828 and YP-70 were dissolved at 160 ° C. to prepare a master batch. Components other than DY9577 having the composition shown in Table 2 were mixed at 120 ° C. with respect to this master batch. After this mixture was brought to 60 ° C., a predetermined amount of DY9577 was added and mixed to prepare a resin composition R.
  • Resin Composition S With the composition shown in Table 10, jER828, jER807, Dicy15 and DCMU were uniformly mixed and dispersed by a three roll mill to prepare a master batch. This master batch was mixed with the pre-reacted material at 60 ° C. using a glass flask to prepare a resin composition C.
  • Resin Composition T Using a glass flask, jER828 and YP-70 were dissolved at 160 ° C. to prepare a master batch. Moreover, jER828, Dicy15, and DCMU were uniformly mixed and dispersed by a three roll mill to prepare a master batch. A glass flask was used for the YP-70 masterbatch, and ingredients other than the Dicy15 / DCMU masterbatch having the composition shown in Table 10 were mixed at 100 ° C. After this mixture was brought to 60 ° C., a predetermined amount of Dicy 15 / DCMU master batch was added and mixed to prepare a resin composition T.
  • Tg Tg by DMA
  • a panel of fiber reinforced composite material prepared by laminating and curing prepregs in the warp direction was processed into test pieces (length 50 mm ⁇ width 12 mm, thickness 2.8 mm). About the obtained panel, the test piece was processed so that a length direction and a reinforced fiber warp direction might correspond.
  • a rheometer RDA700 or ARES-RDA manufactured by Rheometrics was used as a measuring device. The measurement frequency was 1 Hz, the temperature increase rate of RDA700 was measured in steps of 5 ° C, and ARES-RDA was measured at a temperature increase of 5 ° C / min. As a difference between the measurement devices, the measurement value by RDA700 is 1.05 times higher than the measurement value by ARES-RDA.
  • the log G ′ was plotted against the temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region before the log G ′ transition and the approximate straight line of the region where the G ′ transition was recorded as G′ ⁇ Tg. Further, tan ⁇ was plotted against temperature, and the temperature showing the maximum of tan ⁇ was recorded as tan ⁇ max.
  • Example 17 As a reinforcing fiber base material, TRK510 manufactured by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 40% by mass, and the resin composition Q was applied to release paper with a film coater under the condition of 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the reinforcing fiber base, and the fusing press (JR-600S, manufactured by Asahi Textile Machinery Industry Co., Ltd.) under the conditions of a temperature of 60 ° C., a pressure of 0.05 MPa, and a feed rate of 1.2 m / min.
  • the fusing press JR-600S, manufactured by Asahi Textile Machinery Industry Co., Ltd.
  • a prepreg 10 was obtained through a treatment length of 1340 mm and a pressure of cylinder pressure).
  • the resin content of this prepreg was 40% by mass.
  • the prepreg 10 was cut, and an aluminum honeycomb having a taper-treated end having a height of 5 mm was disposed in the center of the prepreg, and the aluminum honeycomb was covered with the prepreg to obtain a laminate shown in FIG.
  • This laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port and preliminary deaeration was performed at room temperature for 12 hours.
  • the bagged laminate was placed in an autoclave, and the temperature was raised at 2 ° C./min while deaeration was connected to a pulling port.
  • Table 10 shows the results of immersing the obtained panel in pure water for 12 hours, removing the water droplets after removal, and checking the presence or absence of white spots on the surface.
  • the obtained prepreg 10 was laminated with the warp directions aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the drawing port and preliminary deaeration was performed at room temperature for 6 hours.
  • the bagged laminate was placed in an autoclave, and the temperature was raised at 2 ° C./min while deaeration was connected to a pulling port. When the temperature reached 80 ° C., the temperature was maintained for 20 minutes. Thereafter, the temperature was raised at 3.3 ° C./min. After reaching 130 ° C., the pressure was increased at 0.3 MPa, and heat curing was performed for 90 minutes to obtain a panel. A test piece was cut out from the obtained panel, and Tg was measured by DMA. The results are shown in Table 10. ARES-RDA was used for the measurement of DMA.
  • the fiber reinforced composite material obtained in Example 17 had sufficient heat resistance.
  • Example 18 As a reinforcing fiber base material, TRK510 manufactured by Mitsubishi Rayon Co., Ltd. was prepared. The basis weight of the resin film was set so that the resin content of the prepreg was 45% by mass, and the resin composition R was applied to release paper with a film coater under the condition of 60 ° C. to obtain a resin film. The obtained resin film was bonded to both sides of the reinforcing fiber base, and the fusing press (Asahi Textile Machinery Co., Ltd., JR-600S, under the conditions of temperature 40 ° C., pressure 0.05 MPa, feed rate 1.6 m / min, A prepreg 11 was obtained through a treatment length of 1340 mm and a pressure of cylinder pressure).
  • the resin content of this prepreg was 45% by mass.
  • the prepreg 11 was cut, and an aluminum honeycomb having a taper-treated end having a height of 5 mm was disposed in the center of the prepreg, and the aluminum honeycomb was covered with the prepreg to obtain a laminate shown in FIG.
  • This laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the outlet, and preliminary deaeration was performed at room temperature for 12 hours.
  • the obtained prepreg 11 was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the outlet, and preliminary deaeration was performed at room temperature for 12 hours. Put the bagged laminate in the oven, connect a vacuum pump to the outlet, degas and raise the temperature at 1 ° C / min, heat cure at 95 ° C for 1 hour, and then heat cure at 150 ° C for 2 hours I got a panel. A test piece was cut out from the obtained panel, and Tg was measured by DMA. Table 10 shows the obtained results. ARES-RDA was used as a measuring device. The fiber reinforced composite material obtained in Example 18 had sufficient heat resistance.
  • Comparative Example 7 Except having used the resin composition S, the same operation as Example 17 was performed and the prepreg 12 was obtained. Subsequently, the same operation as in Example 17 was performed except that this prepreg 12 was used to obtain a sandwich structure molded product.
  • Table 10 shows the results of immersing the obtained sandwich structure molded article in pure water for 12 hours, wiping off the water droplets after removal, and confirming the presence or absence of white spots on the surface.
  • the prepreg 12 was laminated with the warp direction aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the outlet, and preliminary deaeration was performed at room temperature for 12 hours.
  • the bagged laminate was placed in an autoclave, and the temperature was raised at 2 ° C./min while deaeration was connected to a pulling port. When the temperature reached 80 ° C., the temperature was maintained for 20 minutes. Thereafter, the temperature was raised at 3.3 ° C./min. After reaching 130 ° C., the pressure was increased at 0.3 MPa, and heat curing was performed for 90 minutes to obtain a panel. A test piece was cut out from the obtained panel, and Tg was measured by DMA. Table 10 shows the obtained results. ARES-RDA was used for the measurement of DMA.
  • Comparative Example 8 A prepreg 13 was obtained in the same manner as in Example 18 except that the resin composition T was used. Subsequently, the same operation as in Example 18 was performed except that this prepreg 13 was used to obtain a sandwich structure molded product. Table 10 shows the results of immersing the obtained sandwich structure molded article in pure water for 12 hours, wiping off the water droplets after removal, and confirming the presence or absence of white spots on the surface.
  • the prepregs 13 were laminated with their warp directions aligned, and the laminated body was bagged with the configuration shown in FIG. Further, a vacuum pump was connected to the outlet, and preliminary deaeration was performed at room temperature for 12 hours. Put the bagged laminate in the oven, connect a vacuum pump to the outlet, degas and raise the temperature at 1 ° C / min, heat cure at 95 ° C for 1 hour, and then heat cure at 150 ° C for 2 hours I got a panel. A test piece was cut out from the obtained panel, and Tg was measured by DMA. Table 10 shows the obtained results. RDA700 was used for the measuring device.
  • the present invention is industrially useful because it can provide a fiber-reinforced resin molded article having excellent performance.
  • FIGS. 1 and 2 indicate the following. DESCRIPTION OF SYMBOLS 1 Nonwoven fabric 2 Drawer 3 Sealant 4 Tool 5 Laminate 6 Nylon bag film 7 Pressure plate 8 Release film 9 Aluminum honeycomb

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 エポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および繊維基材(C)からなるプリプレグを用いる。エポキシ樹脂(A)中に含まれるエポキシ基のモル数に対し塩化ホウ素アミン錯体(B)中のホウ素のモル数比が4~7モル%であること、エポキシ樹脂(A)がオキサゾリドン環構造を有する二官能エポキシ樹脂、ビスフェノール型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂からなるのが好ましい。

Description

繊維強化複合材料
 本発明は、プリプレグ、これを硬化してなる繊維強化複合材料、およびその製造方法に関する。
 繊維強化複合材料は、軽量かつ高強度で高剛性の特徴を生かし、スポーツ、レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に近年では、より軽量でかつより高強度、高剛性の炭素繊維強化複合材料が産業用途に用いられることが多くなってきた。
 産業用途の中でも列車や航空機の機体などの構造部材に用いられる炭素繊維強化複合材料は、プリプレグを中間材料として用い、オートクレーブ成形で製造されるのが一般的である。これはオートクレーブを用いて高圧下で成形することにより、成形体中のボイドを低減し、成形体の特性を期待された通りに発現させることを目的としている。
 しかしながら、オートクレーブの設備は非常に高価なため、新規に導入することは困難であるばかりでなく、一旦導入するとそのオートクレーブの大きさにより成形体の大きさが制限され、それより大きな成形体の製造が事実上不可能となる。このような問題に対し、脱オートクレーブ、低コスト成形の開発が盛んに行われており、その代表的なものとしては、真空、大気圧のみの低圧下で成形する、オーブン成形(または真空バッグ成形などとも呼ばれる)やRFI成形がある。オーブン成形やRFI成形は大気圧以外に圧力を加えないので、オートクレーブのようなしっかりした耐圧力容器でなくても良く、温度さえ上げることができる炉(オーブン)があれば成形でき、断熱ボードと熱風ヒーターといった簡便な設備でも成形可能である。ただし圧力を加えないので、成形体中にボイドが残りやすく、成形体はオートクレーブでの成形体に比べて強度が低い、あるいは表面にピンホールが発生するという問題があった。
 そこで、特許文献1には、部分含浸させたプリプレグを使用したボイドの少ない成形品が例示されている。また、特許文献1には樹脂を部分含浸させたプリプレグを使用しボイドの少ない成形品を形成する方法が開示されている。
 しかしながら、このような部分含浸プリプレグを用いると、マトリクス樹脂組成物本来の耐熱性が、成形品において得られないという問題点がある。マトリクス樹脂組成物単体の硬化物のガラス転移点温度(Tg)よりも、成形品のTgが低くなってしまう。低コスト化への要求から選択される強化繊維の目付が高いプリプレグにおいては、この問題点が顕著に現れる。
 前記のピンホールの問題を解決する方法として、真空下でプリプレグの硬化温度以下の温度で一定時間保持し、その後硬化温度まで昇温して硬化させることで、内部の気泡を抜き、ボイドの少ない成形品を得る方法も一般に用いられる。一般にこのような硬化前の温度保持のことをデュエルという。しかしながら、成形時のデュエル温度設定が適切でない場合、表面のボイドを抜くことができず表面外観に欠陥が発生する。
 また、繊維強化複合材料をスキン材とするサンドイッチ構造成形物は、高い剛性を有し、幅広く使用されている。例えば、特許文献2には、炭素繊維織物を用いた高強度、高剛性の積層板を容易に製造することのできる方法が開示されている。
 近年、繊維強化複合材料をスキン材とするサンドイッチ構造成形物は、軽量かつ高強度、高剛性の積層板の製造という用途に加え、外観部品への適用という用途も多くなってきた。しかしながら、一般によく使用されるジシアンジアミドを硬化剤として用いた繊維強化複合材料成形物においては、表面に白点が生じるという不具合がある。成形直後に白点が無くても、経時的に冷水や温水に触れることにより白点が生じる場合があり、この欠点は特にサンドイッチ構造成形物とした場合に顕著に現れる。
 ジシアンジアミドは白色固体状であり、凝集しやすく溶解しにくいため白点の原因となる。そのため、ジシアンジアミドの使用量を少なくすること、イミダゾール等の透明な液状硬化剤を使用することなどで白点改良の可能性はあるけれども、この場合は耐熱性が低いとか、ポットライフが比較的短くなり、作業性が低下するなどの欠点を抱えている。
特表2003-513110号公報 特開2004-58609号公報
 本発明の課題は、成形法に左右されることなく、樹脂本来の耐熱性を発現することのできるプリプレグおよびそれを硬化して得られる繊維強化複合材料を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、プリプレグにおいて硬化剤として塩化ホウ素アミン錯体を用いることにより課題を解決することができることを見出し、本発明に至った。
 すなわち、本発明の要旨は、エポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および繊維基材(C)からなるプリプレグ、およびこれを硬化させて得られる繊維強化複合材料である。
 本発明において、エポキシ樹脂(A)中に含まれるエポキシ基のモル数に対し塩化ホウ素アミン錯体(B)中のホウ素のモル数比が4~7モル%であることが好ましい。
 また、エポキシ樹脂(A)が下記式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)、ビスフェノール型エポキシ樹脂(2)および下記式(II)で表されるフェノールノボラック型エポキシ樹脂(3)からなるのが好ましい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 かかる本発明によれば、成形方法によらず所望の耐熱性を発現するプリプレグを提供することができ、繊維強化複合材料の成形コストあるいは成形設備投資を削減することができる。
 また、本発明の課題は、特にオーブン成形において表面外観の欠陥がなく、樹脂組成物本来の耐熱性を発現することのできる繊維強化複合材料の製造方法を提供することにある。
 本発明者らは、この課題についても鋭意検討した結果、エポキシ樹脂(A)および塩化ホウ素アミン錯体(B)からなる樹脂組成物と繊維基材(C)とからなるプリプレグを成形する際に、硬化前に特定の温度範囲でデュエルすることにより課題を解決することができることを見出し、本発明に至った。
 すなわち、この発明の要旨は、エポキシ樹脂(A)および塩化ホウ素アミン錯体(B)を含んでなる樹脂組成物と繊維基材(C)とからなるプリプレグを成形する際に、60℃~95℃で0.5~1.5時間保持した後、前記樹脂組成物の硬化温度で硬化させることを含む繊維強化複合材料の製造方法である。
 この発明において、エポキシ樹脂(A)は前記式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)、ビスフェノール型エポキシ樹脂(2)および前記式(II)で表されるフェノールノボラック型エポキシ樹脂(3)からなるのが好ましい。
 かかる本発明の製造方法によれば、良好な外観を有し、樹脂組成物本来の耐熱性を発現することのできる繊維強化樹脂複合材料を得ることができる。
 さらに、本発明の課題は、表面に白点のないサンドイッチ構造成形物を提供することにある。
 本発明者らは、また、この課題についても鋭意検討した結果、硬化剤として塩化ホウ素アミン錯体を用いることにより課題を解決できることを見出し、本発明に至った。
 すなわち、この発明の要旨は、エポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および繊維基材(C)からなるプリプレグを硬化させてなるスキン材とコア材とからなるサンドイッチ構造成形物、並びにコア材とエポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および繊維基材(C)とからなるプリプレグとを積層した後、加熱加圧して前記プリプレグを硬化させることを含むサンドイッチ構造成形物の製造方法である。
 この発明によれば、水に濡れても表面に白点が生じることのないサンドイッチ構造成形物を提供することができる。このサンドイッチ構造成形物は、優れた物性と優れた外観を併せ持つ部材として有用である。
図1は、本発明の繊維強化複合材料のパネルの製造方法を示す図であって、バギングの構成の一例を示す断面図である。 図2は、本発明のサンドイッチ構造成形物の製造におけるバギングの構成の一例を示す断面図である。 図3は、硬化物のlogG´の転移する前の平坦領域の近似直線とlogG´が転移する領域の近似直線との交点からG´-Tgを求めるときの一例を示すグラフである。
 以下、本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではなく、本発明の精神と実施の範囲内において様々な変形が可能であることを理解されたい。
 エポキシ樹脂(A)
 本発明に有用なエポキシ樹脂(A)としては公知の各種のエポキシ樹脂を使用することができ、その分子中にエポキシ基を少なくとも2個有するものであれば分子構造、分子量等に特に制限はない。例えば、ビスフェノール型、フェノールノボラック型、クレゾールノボラック型、ジシクロペンタジエン型、ナフタレン型、ビフェニル型、オキサゾリドン型などの各種エポキシ樹脂を単独で、または2種以上併用して用いることができる。また、必要に応じて、単官能エポキシ樹脂、ビニル重合性樹脂、フェノール樹脂、ビスマレイミド樹脂、BT樹脂、シアネートエステル樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂等を配合することができる。好ましいエポキシ樹脂は、オキサゾリドン型樹脂、ビスフェノール型樹脂、フェノールノボラック型樹脂である。
 エポキシ樹脂の組み合わせとしては、前記式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)とビスフェノール型エポキシ樹脂(2)と前記式(II)で表されるフェノールノボラック型エポキシ樹脂(3)の組み合わせが好ましい。
 式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)は商業的に入手することができ、例えば、旭化成ケミカルズ株式会社のAER4152やXAC4151が挙げられる。
 ビスフェノール型エポキシ樹脂(2)としては、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールS型樹脂等が挙げられる。好ましくは、ビスフェノールA型樹脂、ビスフェノールS型樹脂である。これらは商業的に容易に入手可能である。
 式(II)で表されるフェノールノボラック型エポキシ樹脂(3)は商業的に入手することができ、例えば、日本化薬株式会社製のEPPN-501H、EPPN-502HY、EPPN-502H等、ジャパンエポキシレジン株式会社製のjER1032H60等や、ハンツマン社製のTactix742等が挙げられる。好ましいエポキシ当量は150~180g/eqである。
 式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)、ビスフェノール型エポキシ樹脂(2)および式(II)で表されるフェノールノボラック型エポキシ樹脂(3)の合計100質量%に対し、式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)が20~40質量%、ビスフェノール型エポキシ樹脂(2)が45~65質量%、式(II)で表されるフェノールノボラック型エポキシ樹脂(3)が5~25質量%の配合比であるのが好ましい。
 式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)が20質量%以上であれば、繊維強化複合材料での機械特性が低下することなく、40質量%を超えなければ繊維強化複合材料での耐熱性が良好である。式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)の配合量は、さらに好ましくは25~35質量%である。また、ビスフェノール型エポキシ樹脂(2)が45質量%以上であれば、プリプレグのドレープ性が保たれ、65質量%以下であれば、硬化樹脂の架橋密度が低くなりすぎず、耐熱性が損なわれることがない。ビスフェノール型エポキシ樹脂(2)の配合量は、さらに好ましくは50~60質量%である。ビスフェノール型エポキシ樹脂(2)をビスフェノールA型樹脂とビスフェノールS型樹脂の組み合わせにするとプリプレグのドレープ性と繊維強化複合材料の耐熱性とが高度にバランスがとれるのでさらに好ましい。式(II)で表されるフェノールノボラック型エポキシ樹脂(3)が5質量%以上であれば、硬化樹脂の架橋密度が低くなりすぎず、耐熱性が損なわれることがない、25質量%以下であれば繊維強化複合材料での機械特性が損なわれることがない。フェノールノボラック型エポキシ樹脂(3)の配合量は、さらに好ましくは10~20質量%である。
 塩化ホウ素アミン錯体(B)
 本発明においては、硬化剤として塩化ホウ素アミン錯体(B)が用いられる。塩化ホウ素アミン錯体(B)を用いることによりプリプレグの製造方法や形態、繊維強化複合材料の成形方法に影響されず、マトリクス樹脂本来の耐熱性を発揮するプリプレグを提供することができる。また、この繊維強化複合材料を用いて得られるサンドイッチ構造成形物の表面に白点が表れることもない。
 塩化ホウ素アミン錯体(B)は商業的に入手することができる。この塩化ホウ素アミン錯体(B)の好ましい配合量は、エポキシ樹脂(A)のエポキシ当量から計算されるエポキシ基のモル数に対して塩化ホウ素アミン錯体(B)中のホウ素原子のモル数比が4~7モル%となる量である。この範囲であれば得られるプリプレグの耐熱性の発現性に優れるので好ましい。
 本発明で用いるエポキシ樹脂(A)と硬化剤としての塩化ホウ素アミン錯体(B)からなるマトリクス樹脂には熱可塑性樹脂が配合されても良い。かかる熱可塑性樹脂としては、例えば、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド、ポリテトラフルオロエチレン、ポリエーテル、ポリオレフィン、液晶ポリマー、ポリアリレート、ポリスルホン、ポリアクリロニトリルスチレン、ポリスチレン、ポリアクリロニトリル、ポリメタクリレート、ABS、AES、ASA、ポリ塩化ビニル、ポリビニルホルマール、フェノキシ樹脂等が挙げられる。好ましい熱可塑性樹脂としては、ポリビニルホルマール、フェノキシ樹脂、ポリエーテルスルホン等が挙げられる。さらに好ましくはフェノキシ樹脂である。本発明で用いるエポキシ樹脂(A)と硬化剤としての塩化ホウ素アミン錯体(B)からなるマトリクス樹脂には、必要に応じて公知の様々な添加剤を併用することができる。例えば、種々の硬化促進剤、シリコーンオイル、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド、エステル類、パラフィン類等の離型剤、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、タルク、硫酸バリウム等の粉体やガラス繊維、炭素繊維等の無機充填剤、塩素化パラフィン、ブロムトルエン、ヘキサブロムベンゼン、三酸化アンチモン等の難燃剤、カーボンブラック、ベンガラ等の着色剤、シランカップリング剤等を使用することができる。
 繊維基材(C)
 本発明に有用な繊維基材(C)としては、繊維強化複合材料に一般に用いられる強化繊維を用いることができる。例えば、炭素繊維、黒鉛繊維、アラミド繊維、炭化珪素繊維、アルミナ繊維、ボロン繊維、高強度ポリエチレン繊維、タングステンカーバイド繊維、PBO繊維、ガラス繊維等などが挙げられ、これらを単独で、または2種以上を組み合わせて用いることができる。好ましくは炭素繊維である。繊維基材(C)は、そのままのトウの形態で、強化繊維トウを一方向に引き揃えた一方向材の形態で、製織した織物の形態で、あるいは短く裁断した強化繊維からなる不織布の形態などで使用することができる。織物の場合は、平織、綾織、朱子織、若しくはノンクリンプファブリックに代表される繊維束を一方向に引き揃えたシートや角度を変えて積層したようなシートをほぐれないようにステッチしたステッチングシート等が例示することができる。得られる繊維強化複合材料の機械特性が優れるため、一方向材が好ましい。取り扱い性からは織物が好ましい。本発明では、用いる強化繊維の繊維目付けに制限はないが、繊維目付けが大きいほどその性能優位性を発揮することができる。
 本発明に係るプリプレグは、その製造方法に特段の制限はなく、一般的な方法で製造することができる。マトリクス樹脂組成物はガラスフラスコ、ニーダー、プラネタリーミキサー、一般的な撹拌加熱釜、攪拌加圧加熱釜等で調製することができる。マトリクス樹脂の繊維基材への付与方法としては、ホットメルトフィルム法、ラッカー法等が挙げられる。
 本発明に係るプリプレグの成形方法、つまり、本発明の繊維強化複合材料の製造方法には特段の制限はない。オートクレーブ成形法、オーブン成形法、プレス成形法、連続プレス成形法、引き抜き成形法、内圧成形法等一般的な成形方法が適用できる。好ましい硬化温度は130℃~200℃である。さらに好ましくは145℃~185℃である。
 本発明の第2の特徴である、繊維強化複合材料の製造の際の硬化昇温の途中でデュエルする方法においては、用いる成形機に特段の制限はない。オーブンやオートクレーブ、プレス機などを用いることができる。好ましくはオーブンである。オートクレーブでは空気や窒素による加圧をすることができる。いわゆる内圧成形法にみられるように積層体内部に加圧することもできる。成形の際には、プリプレグ内の気泡をできるだけ抜くために、硬化昇温時および硬化時に型内やバッグ内を真空ポンプ等で減圧することが好ましい。
 この製造方法では、硬化昇温の途中で、60℃~95℃で0.5時間~1.5時間保持(デュエル)することにより、表面にボイドの無い繊維強化樹脂複合材料を得ることができる。前記温度と時間の範囲内であればデュエルの回数に制限はないが、好ましくは1回である。異なる温度で複数回デュエルを行う場合には、2回目以降のデュエルは直前のデュエルよりも高い温度で行うのが好ましい。デュエルの温度が60℃~95℃であれば、樹脂組成物本来の耐熱性が低下することがない。デュエルの時間が0.5時間~1.5時間であれば、樹脂のフロー量が適切であり、かつプリプレグ内の気泡が抜けるため、良好な外観を得ることができる。
 デュエル終了後、さらに樹脂組成物の硬化する温度まで昇温させ、硬化を完了する。硬化温度は、樹脂組成物が硬化する温度範囲であればよい。好ましい硬化温度は130℃~200℃である。さらに好ましくは145℃~185℃である。
 本発明の第3の特徴である、サンドイッチ構造成形物およびその製造方法に用いるプリプレグの製造は、特に限定がなく、前述した一般的な方法で行うことができる。
 本発明の第3の特徴に係るサンドイッチ構造成形物の製造方法では、コア材とプリプレグとを積層した後、加熱加圧して前記プリプレグを硬化させて成形を行う。成形方法に特段の制限はない。オートクレーブ成形法、オーブン成形法、プレス成形法、連続プレス成形法、引き抜き成形法、内圧成形法等の一般的な成形方法を適用することができる。好ましい硬化温度は130℃~200℃である。さらに好ましくは145℃~185℃である。
 以下、実施例により本発明を説明するが、本発明はこれにより何らの制限を受けるものでもない。
 実施例1~14および比較例1~4
 実施例1~14および比較例1~4で用いた、樹脂組成物の原材料および繊維材料を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000005
 樹脂組成物Aの調製
 jER828とYP-70を160℃で溶解させてマスターバッチを調製した。このマスターバッチに対して、表2の組成でDY9577以外の成分を120℃で混合した。この混合物を60℃にした後、DY9577を所定量添加混合して、樹脂組成物Aを調製した。
 樹脂組成物Bの調製
 jER828とYP-70を160℃で溶解させてマスターバッチを調製した。また、jER828とDicy15およびDCMUを3本ロールミルで均一に混合分散させてマスターバッチを調製した。YP-70マスターバッチに対して、表2の組成でDicy15/DCMUマスターバッチ以外の成分を100℃で混合した。この混合物を60℃にした後、Dicy15/DCMUマスターバッチを所定量添加混合して、樹脂組成物Bを調製した。
 樹脂組成物Cの調製
 jER828とYP-70を160℃で溶解させてマスターバッチを調製した。また、jER828と2MA-OKおよびL-07Nを3本ロールミルで均一に混合分散させてマスターバッチを調製した。YP-70マスターバッチに対して、表2の組成で2MA-OK/L-07Nマスターバッチ以外の成分を100℃で混合した。この混合物を60℃にした後、2MA-OK/L-07Nマスターバッチを所定量添加混合して、樹脂組成物Cを調製した。
 DMAによるTgの測定
 樹脂板および繊維強化複合材料のパネルを試験片(長さ50mm×幅12mm、樹脂板は厚み2mm、繊維強化複合材料は厚み2.8mm)に加工した。繊維強化複合材料のパネルの場合は長さ方向と強化繊維経糸方向が一致するように試験片を加工した。測定装置としては、レオメトリクス社製レオメーターRDA700またはTAインスツルメント社製ARES-RDAを使用した。測定周波数は1Hz、RDA700の昇温速度は5℃ステップ昇温で、ARES-RDAは5℃/分昇温で測定した。logG´を温度に対してプロットし、logG´の転移する前の平坦領域の近似直線とG´が転移する領域の近似直線との交点から求めた温度をG´-Tgとして記録した。また、tanδを温度に対してプロットし、tanδの極大を示す温度をtanδmaxとして記録した。測定装置間の差として、RDA700によるG´-Tgおよびtanδmaxの測定値は、ARES-RDAによる測定値よりも1.05倍高い値となる。
 DSCによるTgの測定
 TAインスツルメント社製Q100を用い、サンプルをアルミパンに入れ、昇温速度10℃/分にて測定した。
 コンポジット層間せん断強度の測定
 繊維強化複合材料の層間せん断強度は、繊維強化複合材料から、試験片の長手方向に対して強化繊維の経糸方向が0°に配向するように試験片(長さ25mm×幅6.3mm×厚み2.8mm)を切り出し、該試験片について、3点曲げ治具(圧子3.2mmR、サポート1.6mmR、サポート間距離:試験片厚みの4倍、クロスヘッドスピード:サポート間距離の2乗×0.01/6×試験片の厚み)を設置したインストロン社製の万能試験機を用い、層間せん断特性を測定した。
 コンポジット曲げ特性
 繊維強化複合材料から、試験片の長手方向に対して強化繊維の経糸方向が0゜に配向するように試験片(長さ130mm×幅12mm×厚み2.8mm)を切り出し、該試験片について、3点曲げ治具(圧子、サポートとも3.2mmR、サポート間距離:試験片厚みの40倍、クロスヘッドスピード:サポート間距離の2乗×0.01/6×試験片の厚み)を設置したインストロン社製の万能試験機を用い、曲げ特性(曲げ強度及び曲げ弾性率)を測定した。
 実施例1
 繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Aをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを繊維基材の両面に貼り合わせ、温度40℃、圧力0.05MPa、送り速度1.6m/分の条件でフュージングプレス(アサヒ繊維機械工業(株)、JR-600S、処理長1340mm、圧力はシリンダー圧)を通して、プリプレグ1を得た。このプリプレグの樹脂含有率は45質量%であった。得られたプリプレグをカットし、断面を目視観察すると内部に樹脂が含浸していない部分が観察された。得られたプレプレグを、経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに、引き口に真空ポンプを接続させて室温にて4時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 また、樹脂組成物Aを60℃に加熱して脱泡した後、離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Aを挟み、オーブンにて150℃で2時間加熱硬化させて、2mm厚の硬化樹脂板を得た。
 得られた硬化樹脂板より試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 比較例1
 繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Bをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを繊維基材の両面に手で貼り合わせて、プリプレグ2を得た。このプリプレグの樹脂含有率は45質量%であった。得られたプリプレグをカットし、断面を目視観察すると内部に樹脂が含浸していない部分が観察された。得られたプレプレグを、経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて6時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 また、樹脂組成物Bを60℃に加熱して脱泡した後、離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Bを挟み、オーブンにて150℃で2時間加熱硬化させて、2mm厚の硬化樹脂板を得た。
 得られた硬化樹脂板より試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 比較例2
 繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Bをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを繊維基材の両面に貼り合わせ、温度100℃、圧力0.4MPa、送り速度1m/分の条件でフュージングプレス(アサヒ繊維機械工業(株)、JR-600S、処理長1340mm、圧力はシリンダー圧)を通して、プリプレグ3を得た。得られたプリプレグをカットし、断面を目視観察すると繊維基材の大部分に樹脂が含浸しているのが観察された。得られたプレプレグを、経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて6時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 比較例3
 オーブンに代えてオートクレーブを用い、圧力0.3MPa、温度150℃で2時間加熱成形した以外は比較例1と同じ操作を行った。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
 比較例4
 樹脂組成物Bの代わりに樹脂組成物Cを用いた以外は比較例1と同じ操作を行い、プレプレグ4およびそのパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。得られた樹脂組成物Cを60℃に加熱して脱泡した後、離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Aを挟み、オーブンにて150℃で2時間加熱硬化させて、2mm厚の硬化樹脂板を得た。
 得られた硬化樹脂板より試験片を切り出し、DMAによるTgの測定を行った。結果を表2に示す。測定装置としてRDA700を用いた。
Figure JPOXMLDOC01-appb-T000006
 実施例2
 実施例1と同様にして得た樹脂組成物Aの硬化樹脂板からサンプルを取り出し、DSCによるTgを測定した。結果を表3に示す。
 実施例3
 jER828とDY9577を表3の組成で室温にて混合し、樹脂組成物Dを得た。得られた樹脂組成物をアルミ皿内に置き、オーブンにて150℃で2時間加熱硬化させて、硬化樹脂を得た。得られた硬化樹脂からサンプルを取り出し、DSCによりTgを測定した。結果を表3に示す。
 実施例4~8
 組成を表3に示すように変更した以外は実施例3と同じ操作を行って、それぞれ樹脂組成物E、F、G、HおよびIを調製し、DSCによりTgを測定した。結果を表3に示す。
 実施例9
 jER828とjER1001およびDY9577を表3の組成で70℃にて混合および脱泡を行い、樹脂組成物Jを得た。離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Jを挟み、オーブンにて150℃で2時間加熱硬化させて、2mm厚の硬化樹脂板を得た。得られた硬化樹脂板からサンプルを取り出し、DSCによりTgを測定した。結果を表3に示す。
 実施例10
 組成を表3に示すように変更した以外は実施例9と同じ操作を行って、樹脂組成物Kを調製し、DSCによりTgを測定した。結果を表3に示す。
 表2および3に示すように、本発明のプリプレグはマトリクス樹脂本来のTgを示している。従来の技術では、比較例1~4に示すように、マトリクス樹脂本来のTgを発現できていない。
Figure JPOXMLDOC01-appb-T000007
 実施例11
 組成を表4に示すように変更した以外は樹脂組成物Aの調製の操作と同じ操作を行い、樹脂組成物Lを得た。繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Lをフィルムコーターにて離型紙に塗布し、樹脂フィルムを得た。得られた樹脂フィルムを繊維基材の両面に手で貼り合わせて、プリプレグ5を得た。このプリプレグの樹脂含有率は45質量%であった。得られたプリプレグをカットし、断面を目視観察すると内部に樹脂が含浸していない部分が観察された。得られたプレプレグを経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに、引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、95℃で1時間加熱硬化後、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるG´-Tgおよびtanδmaxの測定、コンポジット層間せん断強度およびコンポジット曲げ強度、弾性率の測定を行った。結果を表4に示す。DMAの測定にはARES-RDAを用いた。
 実施例12
 組成を表4に示すように変更した以外は実施例11と同じ操作を行い、樹脂組成物Mからプリプレグ6およびパネルを得た。得られたパネルより試験片を切り出し、DMAによるG´-Tgおよびtanδmaxの測定、コンポジット層間せん断強度およびコンポジット曲げ強度、弾性率の測定を実施した。結果を表4に示す。DMAの測定にはARES-RDAを用いた。
 実施例13
 組成を表4に示すように変更した以外は実施例11と同じ操作を行い、樹脂組成物Nからプリプレグ7およびパネルを得た。得られたパネルより試験片を切り出し、DMAによるG´-Tgおよびtanδmaxの測定、コンポジット層間せん断強度およびコンポジット曲げ強度、弾性率の測定を実施した。結果を表4に示す。DMAの測定にはARES-RDAを用いた。
 実施例14
 組成を表4に示すように変更した以外は実施例11と同じ操作を行い、樹脂組成物Oからプリプレグ8およびパネルを得た。得られたパネルより試験片を切り出し、DMAによるG´-Tgおよびtanδmaxの測定、コンポジット層間せん断強度およびコンポジット曲げ強度、弾性率の測定を実施した。結果を表4に示す。DMAの測定にはARES-RDAを用いた。
Figure JPOXMLDOC01-appb-T000008
 表4に示すように、本発明のプリプレグはマトリクス樹脂本来のG´-Tgを示している。
 実施例15、16および比較例5、6
 実施例15、16および比較例5、6で用いた、樹脂組成物の原材料および繊維材料を下記の表5に示す。
Figure JPOXMLDOC01-appb-T000009
 樹脂組成物Pの調製
 jER828とYP-70を、ガラスフラスコを用い、160℃で溶解させて、マスターバッチを調製した。このマスターバッチに対して、表6の組成でDY9577以外の成分を120℃で混合した。この混合物を60℃にした後、DY9577を所定量添加混合して、樹脂組成物Pを調製した。
Figure JPOXMLDOC01-appb-T000010
 コンポジット外観の確認
 繊維強化複合材料のパネル表面のボイドの発生の有無を目視で確認した。
 DMAによるTgの測定
 硬化樹脂板および繊維強化複合材料のパネル(コンポジット)を試験片(長さ50mm×幅12mm、硬化樹脂板の厚み2mm、繊維強化複合材料の厚み2.8mm)に加工した。コンポジットについては、長さ方向と強化繊維経糸方向が一致するように試験片を加工した。測定装置としてTAインスツルメント社製ARES-RDAを使用した。測定周波数1Hzで、5℃/分の昇温で測定した。logG´を温度に対してプロットし、logG´の転移する前の平坦領域の近似直線とG´が転移する領域の近似直線との交点から求めた温度をG´-Tgとして記録した。また、tanδを温度に対してプロットし、tanδの極大を示す温度をtanδmaxとして記録した。
 実施例15
 繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Pをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを繊維基材の両面に貼り合わせ、温度40℃、圧力0.05MPa、送り速度1.6m/分の条件でフュージングプレス(アサヒ繊維機械工業株式会社製、JR-600S、処理長1340mm、圧力はシリンダー圧)を通して、プリプレグ9を得た。このプリプレグの樹脂含有率は45質量%であった。得られたプリプレグをカットし、断面を目視観察すると内部に樹脂が含浸していない部分が観察された。得られたプレプレグを、経糸方向を揃えて積層し、この積層体について図1に示す構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて4時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、95℃で1時間のデュエルを行い、その後150℃で2時間加熱硬化させてコンポジットを得た。昇温は1℃/分で行った。
 得られたコンポジットの外観を目視確認した結果と、得られたコンポジットより試験片を切り出し、DMAによりTgの測定をした結果を表7に示す。
 実施例16
 デュエル温度を60℃とした以外は実施例15と同じ操作を行ってコンポジット外観を確認した結果を表7に示す。
 また、得られたコンポジットより試験片を切り出し、DMAによりTgを測定した結果を表7に示す。
 比較例5
 デュエル温度を100℃とした以外は実施例15と同じ操作を行ってコンポジット外観を確認した結果を表7に示す。
 また、得られたコンポジットより試験片を切り出し、DMAによりTgを測定した結果を表7に示す。
 また、樹脂組成物Pを60℃に加熱して脱泡した後、離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Pを挟み、オーブンにて100℃で1時間のデュエルを行い、その後150℃で2時間加熱硬化させて硬化樹脂板を得た。昇温は1℃/分で行った。
 得られた硬化樹脂板より試験片を切り出し、DMAによりTgを測定した結果を表7に示す。
 比較例6
 デュエル温度を50℃とした以外は実施例15と同じ操作を行ってコンポジット外観を確認した結果を表7に示す。
 また、得られたコンポジットより試験片を切り出し、DMAによりTgを測定した結果を表7に示す。
Figure JPOXMLDOC01-appb-T000011
 表7に示すように、本発明の第2の特徴に係る繊維強化複合材料の製造方法によれば、良好な外観を有し、樹脂組成物本来の耐熱性を発現する繊維強化複合材料が得られる。
 参考例
 樹脂組成物Pを60℃に加熱して脱泡した後、離型処理を施してある2枚のガラス板で2mm厚のスペーサーを介して樹脂組成物Pを挟み、オーブンにて150℃で2時間加熱硬化させて硬化樹脂板を得た。昇温は1℃/分で行った。
 得られた硬化樹脂板より試験片を切り出し、DMAにより樹脂組成物本来のTgを測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例17、18および比較例7、8
 実施例17、18および比較例7、8で用いた、樹脂組成物の原材料および強化繊維基材を下記の表9に示す。
Figure JPOXMLDOC01-appb-T000013
 樹脂組成物Qの調製
 ガラスフラスコを用い、表10の組成でjER828とjER807とDY9577を室温で混合して、マスターバッチを調製した。このマスターバッチを予備反応物と60℃で混合し、樹脂組成物Qを調製した。
 樹脂組成物Rの調製
 ガラスフラスコを用い、jER828とYP-70を160℃で溶解させて、マスターバッチを調製した。このマスターバッチに対して、表2の組成でDY9577以外の成分を120℃で混合した。この混合物を60℃にした後、DY9577を所定量添加混合して、樹脂組成物Rを調製した。
 樹脂組成物Sの調製
 表10の組成で、jER828とjER807とDicy15およびDCMUを3本ロールミルで均一に混合分散させて、マスターバッチを調製した。このマスターバッチを、ガラスフラスコを用いて、予備反応物と60℃で混合し、樹脂組成物Cを調製した。
 樹脂組成物Tの調製
 ガラスフラスコを用い、jER828とYP-70を160℃で溶解させて、マスターバッチを調製した。また、jER828とDicy15およびDCMUを3本ロールミルで均一に混合分散させて、マスターバッチを調製した。YP-70マスターバッチに、ガラスフラスコを用い、表10の組成でDicy15/DCMUマスターバッチ以外の成分を100℃で混合した。この混合物を60℃にした後、Dicy15/DCMUマスターバッチを所定量添加混合して、樹脂組成物Tを調製した。
 DMAによるTgの測定
 プリプレグを経糸方向を揃えて積層し、硬化させて作成した繊維強化複合材料のパネルを試験片(長さ50mm×幅12mm、厚み2.8mm)に加工した。得られたパネルについて、長さ方向と強化繊維経糸方向が一致するようにして、試験片を加工した。測定装置には、レオメトリクス社製レオメーターRDA700またはARES-RDAを使用した。測定周波数は1Hzで、RDA700の昇温速度は5℃ステップ昇温で、ARES-RDAは5℃/分の昇温で測定した。測定装置間の差として、RDA700による測定値は、ARES-RDAによる測定値よりも1.05倍高い値となる。logG´を温度に対してプロットし、logG´の転移する前の平坦領域の近似直線とG´が転移する領域の近似直線との交点から求めた温度をG´-Tgとして記録した。また、tanδを温度に対してプロットし、tanδの極大を示す温度をtanδmaxとして記録した。
 実施例17
 強化繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が40質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Qをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを強化繊維基材の両面に貼り合わせ、温度60℃、圧力0.05MPa、送り速度1.2m/分の条件でフュージングプレス(アサヒ繊維機械工業株式会社製、JR-600S、処理長1340mm、圧力はシリンダー圧)を通して、プリプレグ10を得た。このプリプレグの樹脂含有率は40質量%であった。プリプレグ10をカットし、高さ5mmの端部をテーパー処理したアルミハニカムをプリプレグ中央に配置し、プリプレグでアルミハニカムを覆って、図2に示す積層体とした。この積層体について、図2に示した構成でバギングを行った。さらに、引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オートクレーブ内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、2℃/分にて昇温した。80℃に達したところで20分間温度を保持した。その後3.3℃/分で昇温させ、130℃に到達後0.3MPaで加圧し、90分間加熱硬化させて、サンドイッチ構造成形物を得た。
 得られたパネルを純水に12時間浸漬させ、取り出し後水滴をふき取り、表面の白点の有無を確認した結果を表10に示す。
 得られたプレプレグ10を経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて6時間予備脱気させた。オートクレーブ内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、2℃/分にて昇温した。80℃に達したところで20分間温度を保持した。その後3.3℃/分で昇温させ、130℃に到達後0.3MPaで加圧し、90分間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。結果を表10に示す。DMAの測定にはARES-RDAを用いた。実施例17で得られた繊維強化複合材料は十分な耐熱性を持つものであった。
 実施例18
 強化繊維基材として、三菱レイヨン株式会社製のTRK510を用意した。プリプレグの樹脂含有率が45質量%となるように樹脂フィルム目付けを設定し、60℃の条件で樹脂組成物Rをフィルムコーターにて離型紙に塗布して、樹脂フィルムを得た。得られた樹脂フィルムを強化繊維基材の両面に貼り合わせ、温度40℃、圧力0.05MPa、送り速度1.6m/分の条件でフュージングプレス(アサヒ繊維機械工業株式会社製、JR-600S、処理長1340mm、圧力はシリンダー圧)を通して、プリプレグ11を得た。このプリプレグの樹脂含有率は45質量%であった。得られたプリプレグ11をカットし、断面を目視観察すると内部に樹脂が含浸していない部分が観察された。プリプレグ11をカットし、高さ5mmの端部をテーパー処理したアルミハニカムをプリプレグ中央に配置し、プリプレグでアルミハニカムを覆って、図2に示す積層体とした。この積層体について図2に示す構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、1℃/分で昇温させ、95℃で1時間加熱硬化後、150℃で2時間加熱硬化させて、サンドイッチ構造成形物を得た。
 得られたサンドイッチ構造成形物を純水に12時間浸漬させ、取り出し後水滴をふき取り、表面の白点の有無を確認した結果を表10に示す。
 得られたプレプレグ11を経糸方向を揃えて積層し、この積層体について図1に示す構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、1℃/分で昇温させ、95℃で1時間加熱硬化後、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによるTgの測定を行った。得られた結果を表10に示す。測定装置にはARES-RDAを用いた。実施例18で得られた繊維強化複合材料は十分な耐熱性を持つものであった。
 比較例7
 樹脂組成物Sを用いた以外は実施例17と同じ操作を行って、プリプレグ12を得た。次いで、このプリプレグ12を用いた以外は実施例17と同じ操作を行って、サンドイッチ構造成形物を得た。
 得られたサンドイッチ構造成形物を純水に12時間浸漬させ、取り出し後水滴をふき取り、表面の白点の有無を確認した結果を表10に示す。
 プレプレグ12を経糸方向を揃えて積層し、この積層体について図1に示す構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オートクレーブ内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、2℃/分にて昇温した。80℃に達したところで20分間温度を保持した。その後3.3℃/分で昇温させ、130℃に到達後0.3MPaで加圧し、90分間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによりTgの測定を行った。得られた結果を表10に示す。DMAの測定にはARES-RDAを用いた。
 比較例8
 樹脂組成物Tを用いた以外は実施例18と同じ操作を行って、プリプレグ13を得た。次いで、このプリプレグ13を用いた以外は実施例18と同じ操作を行って、サンドイッチ構造成形物を得た。
 得られたサンドイッチ構造成形物を純水に12時間浸漬させ、取り出し後水滴をふき取り、表面の白点の有無を確認した結果を表10に示す。
 プレプレグ13を経糸方向を揃えて積層し、この積層体について図1に示した構成でバギングを行った。さらに引き口に真空ポンプを接続させて室温にて12時間予備脱気させた。オーブン内にバギングした積層体を入れ、引き口に真空ポンプを接続させて脱気しながら、1℃/分で昇温させ、95℃で1時間加熱硬化後、150℃で2時間加熱硬化させてパネルを得た。
 得られたパネルより試験片を切り出し、DMAによりTgの測定を行った。得られた結果を表10に示す。測定装置にはRDA700を用いた。
Figure JPOXMLDOC01-appb-T000014
 表10に示すように、本発明の第3の特徴に係るサンドイッチ構造成形物およびその製造方法によれば、水に濡れても表面に白点が生じないサンドイッチ構造成形物が得られる。
 本発明は、優れた性能を有する繊維強化樹脂成形体を与えることができるので、産業上有用である。
 添付の図1および図2における記号は以下のものを示す。
 1  不織布
 2  引き口
 3  シーラント
 4  ツール
 5  積層体
 6  ナイロンバッグフィルム
 7  プレッシャープレート
 8  離型フィルム
 9  アルミハニカム

Claims (8)

  1.  エポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および繊維基材(C)からなるプリプレグ。
  2.  エポキシ樹脂(A)中に含まれるエポキシ基のモル数に対し塩化ホウ素アミン錯体(B)中のホウ素のモル数比が4~7モル%である請求項1記載のプリプレグ。
  3.  エポキシ樹脂(A)が下記式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)、ビスフェノール型エポキシ樹脂(2)および下記式(II)で表されるフェノールノボラック型エポキシ樹脂(3)からなる請求項1または2に記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  4.  請求項1~3のいずれかに記載のプリプレグを硬化させてなる繊維強化複合材料。
  5.  エポキシ樹脂(A)および塩化ホウ素アミン錯体(B)を含んでなる樹脂組成物と繊維基材(C)とからなるプリプレグを成形する際に、60℃~95℃で0.5~1.5時間保持した後、前記樹脂組成物の硬化温度で硬化させることを含む繊維強化複合材料の製造方法。
  6.  エポキシ樹脂(A)が請求項3に記載した式(I)で表されるオキサゾリドン環構造を有する二官能エポキシ樹脂(1)、ビスフェノール型エポキシ樹脂(2)および請求項3に記載した式(II)で表されるフェノールノボラック型エポキシ樹脂(3)からなる請求項5に記載の繊維強化複合材料の製造方法。
  7.  スキン材とコア材とからなるサンドイッチ構造成形物であって、スキン材がエポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および強化繊維基材(C)からなるサンドイッチ構造成形物。
  8.  スキン材とコア材とからなるサンドイッチ構造成形物の製造方法であって、コア材とエポキシ樹脂(A)、塩化ホウ素アミン錯体(B)および強化繊維基材(C)とからなるプリプレグとを積層した後、加熱加圧して前記プリプレグを硬化させることを含むサンドイッチ構造成形物の製造方法。
PCT/JP2010/066732 2009-09-28 2010-09-27 繊維強化複合材料 WO2011037239A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080043278.7A CN102666683B (zh) 2009-09-28 2010-09-27 纤维强化复合材料
EP10818911.9A EP2484715A4 (en) 2009-09-28 2010-09-27 Fiber-reinforced composite material
US13/498,506 US20120202071A1 (en) 2009-09-28 2010-09-27 Fiber-reinforced composite material
US14/812,526 US20150328828A1 (en) 2009-09-28 2015-07-29 Fiber-reinforced composite material
US14/812,395 US20150337099A1 (en) 2009-09-28 2015-07-29 Fiber-reinforced composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009222073A JP5590371B2 (ja) 2009-09-28 2009-09-28 サンドイッチ構造成形物
JP2009-222073 2009-09-28
JP2009-227153 2009-09-30
JP2009227153A JP5590372B2 (ja) 2009-09-30 2009-09-30 繊維強化樹脂複合材料の製造法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/498,506 A-371-Of-International US20120202071A1 (en) 2009-09-28 2010-09-27 Fiber-reinforced composite material
US14/812,526 Division US20150328828A1 (en) 2009-09-28 2015-07-29 Fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
WO2011037239A1 true WO2011037239A1 (ja) 2011-03-31

Family

ID=43795979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066732 WO2011037239A1 (ja) 2009-09-28 2010-09-27 繊維強化複合材料

Country Status (4)

Country Link
US (3) US20120202071A1 (ja)
EP (1) EP2484715A4 (ja)
CN (1) CN102666683B (ja)
WO (1) WO2011037239A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183667A1 (ja) 2012-06-05 2013-12-12 三菱レイヨン株式会社 エポキシ樹脂組成物
WO2014000158A1 (en) * 2012-06-26 2014-01-03 Dow Global Technologies Llc Insulating composites for power transmission and distribution
US20140235757A1 (en) * 2011-11-29 2014-08-21 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520207B1 (ko) * 2011-03-22 2015-05-13 미쯔비시 레이온 가부시끼가이샤 에폭시 수지 조성물, 프리프레그, 섬유 강화 복합 재료, 및 전자·전기 기기용 하우징
EP2886576A4 (en) * 2012-08-20 2015-09-02 Mitsubishi Rayon Co EPOXY RESIN COMPOSITION AND FILM, PREPREG AND FIBER REINFORCED PLASTIC THEREFOR
US20140265058A1 (en) * 2013-03-13 2014-09-18 North Thin Ply Technology Llc System and method for maneuvering thin ply technology complexes
WO2015083714A1 (ja) 2013-12-02 2015-06-11 三菱レイヨン株式会社 エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び繊維強化プラスチック
JP6238881B2 (ja) * 2014-08-22 2017-11-29 三菱電機株式会社 炭素繊維強化炭化珪素成形体の製造方法
EP3741787A4 (en) * 2018-01-16 2021-03-10 Mitsubishi Chemical Corporation PREPREG AND FIBER REINFORCED COMPOSITE MATERIAL
JP6743324B1 (ja) * 2018-10-18 2020-08-19 株式会社クラレ 熱可塑性液晶ポリマー構造体の製造方法
IT201800010629A1 (it) * 2018-11-27 2020-05-27 Microtex Composites S R L Prepreg per componenti estetici ad alta resistenza termica e privi di difetti quali macchie e puntini e loro metodo di produzione.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513110A (ja) 1998-05-20 2003-04-08 サイテック テクノロジー コーポレーション 空隙のない積層品の製造およびその使用法
JP2004058609A (ja) 2002-07-31 2004-02-26 Toho Tenax Co Ltd 積層板の製造方法
JP2006272829A (ja) * 2005-03-30 2006-10-12 Yokohama Rubber Co Ltd:The ハニカムパネルの製造方法
JP2008255234A (ja) * 2007-04-05 2008-10-23 Mitsubishi Rayon Co Ltd プリプレグ
JP2009108217A (ja) * 2007-10-31 2009-05-21 Toho Tenax Co Ltd 保護フィルム付プリプレグ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE256164T1 (de) * 1996-09-20 2003-12-15 Vantico Gmbh Verfahren zum transfer-spritzgiessen von stabilen epoxidharzzusammensetzungen
TW359642B (en) * 1997-04-21 1999-06-01 Toray Industries Resin composition for fiber-reinforced complex material, prepreg and fiber-reinforced complex material
JP3744741B2 (ja) * 1999-09-02 2006-02-15 株式会社クボタ 焼却炉の運転制御方法
US7070670B2 (en) * 2000-03-31 2006-07-04 Hitachi Chemical Co., Ltd. Adhesive composition, method for preparing the same, adhesive film using the same, substrate for carrying semiconductor and semiconductor device
JP4651779B2 (ja) * 2000-06-16 2011-03-16 東邦テナックス株式会社 ロービングプリプレグ及びその製造方法
US7008555B2 (en) * 2003-05-22 2006-03-07 Applied Poleramic Inc. Epoxy resin curing agents and epoxy resin compositions
KR20070009570A (ko) * 2004-03-02 2007-01-18 도레이 가부시끼가이샤 섬유강화 복합재료용 에폭시 수지 조성물, 프리프레그, 및섬유강화 복합재료
JP5157444B2 (ja) * 2005-04-15 2013-03-06 日立化成株式会社 硬化促進性化合物−シリカ複合体、硬化促進性化合物−シリカ複合体の製造方法、硬化促進剤、硬化性樹脂組成物及び電子部品装置
US20090099312A1 (en) * 2007-10-15 2009-04-16 Carl Duane Weber Amine terminated tougheners for epoxy resin based adhesives and materials
US8231820B2 (en) * 2007-12-31 2012-07-31 Aditya Birla Chemicals (Thailand) Ltd. Epoxy resin composition
CN103429658B (zh) * 2011-03-03 2016-01-06 三菱丽阳株式会社 基体树脂组合物、预浸料及其制造方法、以及纤维强化复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513110A (ja) 1998-05-20 2003-04-08 サイテック テクノロジー コーポレーション 空隙のない積層品の製造およびその使用法
JP2004058609A (ja) 2002-07-31 2004-02-26 Toho Tenax Co Ltd 積層板の製造方法
JP2006272829A (ja) * 2005-03-30 2006-10-12 Yokohama Rubber Co Ltd:The ハニカムパネルの製造方法
JP2008255234A (ja) * 2007-04-05 2008-10-23 Mitsubishi Rayon Co Ltd プリプレグ
JP2009108217A (ja) * 2007-10-31 2009-05-21 Toho Tenax Co Ltd 保護フィルム付プリプレグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484715A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140235757A1 (en) * 2011-11-29 2014-08-21 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same
US9994697B2 (en) * 2011-11-29 2018-06-12 Mitsubishi Chemical Corporation Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same
US10227476B2 (en) 2011-11-29 2019-03-12 Mitsubishi Chemical Corporation Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
WO2013183667A1 (ja) 2012-06-05 2013-12-12 三菱レイヨン株式会社 エポキシ樹脂組成物
US20150148451A1 (en) * 2012-06-05 2015-05-28 Mitsubishi Rayon Co., Ltd. Epoxy resin composition
US10233324B2 (en) 2012-06-05 2019-03-19 Mitsubishi Chemical Corporation Epoxy resin composition
WO2014000158A1 (en) * 2012-06-26 2014-01-03 Dow Global Technologies Llc Insulating composites for power transmission and distribution
CN104583311A (zh) * 2012-06-26 2015-04-29 陶氏环球技术有限责任公司 用于电力传输和配送的绝缘复合材料
RU2609914C2 (ru) * 2012-06-26 2017-02-07 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Изоляционные композитные материалы для систем передачи и распределения электроэнергии

Also Published As

Publication number Publication date
US20150328828A1 (en) 2015-11-19
CN102666683B (zh) 2015-12-16
EP2484715A1 (en) 2012-08-08
US20120202071A1 (en) 2012-08-09
CN102666683A (zh) 2012-09-12
EP2484715A4 (en) 2017-04-12
US20150337099A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2011037239A1 (ja) 繊維強化複合材料
JP6007914B2 (ja) 真空成形用プリプレグ、繊維強化複合材料およびその製造方法
EP2794735B1 (en) Improvements in or relating to fibre reinforced composites
JP5090701B2 (ja) 部分含浸プリプレグとそれを用いた繊維強化複合材料の製造方法
JP5768893B2 (ja) エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
JP7213620B2 (ja) エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料及びこれらの製造方法
JP2012211255A (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
JP5173358B2 (ja) 保護フィルム付プリプレグ
JP7209470B2 (ja) プリプレグ及び炭素繊維強化複合材料
JP5138506B2 (ja) エポキシ樹脂組成物およびプリプレグ
JP5601487B2 (ja) プリプレグ及びこれを硬化した繊維強化複合材料
JP5590372B2 (ja) 繊維強化樹脂複合材料の製造法
JP7167976B2 (ja) エポキシ樹脂組成物、成形材料の製造方法、及び繊維強化複合材料の製造方法
JP5590371B2 (ja) サンドイッチ構造成形物
JP6844740B2 (ja) プリプレグおよび繊維強化複合材料、並びにそれらの製造方法
JP2023056441A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料及びその製造方法
JP2023140385A (ja) 成形材料、繊維強化複合材料、及び繊維強化複合材料の製造方法
JP2023149496A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料及びその製造方法
JP2014105317A (ja) 樹脂組成物、該樹脂組成物を用いるプリプレグ、及び樹脂組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043278.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13498506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010818911

Country of ref document: EP