WO2011037155A1 - 低リンホエイの製造方法 - Google Patents

低リンホエイの製造方法 Download PDF

Info

Publication number
WO2011037155A1
WO2011037155A1 PCT/JP2010/066482 JP2010066482W WO2011037155A1 WO 2011037155 A1 WO2011037155 A1 WO 2011037155A1 JP 2010066482 W JP2010066482 W JP 2010066482W WO 2011037155 A1 WO2011037155 A1 WO 2011037155A1
Authority
WO
WIPO (PCT)
Prior art keywords
whey
content
chlorine
liquid
exchange resin
Prior art date
Application number
PCT/JP2010/066482
Other languages
English (en)
French (fr)
Inventor
信夫 関
正俊 大西
貴絵 木下
田村 吉隆
仁志 齋藤
越智 浩
木村 隆文
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to JP2011533012A priority Critical patent/JP5531020B2/ja
Priority to EP10818827.7A priority patent/EP2481292B1/en
Priority to RU2012112230/10A priority patent/RU2525711C2/ru
Priority to US13/497,646 priority patent/US8795750B2/en
Priority to AU2010299077A priority patent/AU2010299077B2/en
Priority to CN201080042330.7A priority patent/CN102548421B/zh
Priority to CA2774689A priority patent/CA2774689C/en
Priority to KR1020127006779A priority patent/KR101381624B1/ko
Priority to NZ598888A priority patent/NZ598888A/xx
Priority to DK10818827.7T priority patent/DK2481292T3/en
Publication of WO2011037155A1 publication Critical patent/WO2011037155A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/142Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration
    • A23C9/1425Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by dialysis, reverse osmosis or ultrafiltration by ultrafiltration, microfiltration or diafiltration of whey, e.g. treatment of the UF permeate
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • A23C21/06Mixtures of whey with milk products or milk components
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/146Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by ion-exchange
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a method for producing low phosphorus whey with a reduced phosphorus content.
  • the present application claims priority based on Japanese Patent Application No. 2009-220086 filed in Japan on September 25, 2009, the contents of which are incorporated herein by reference.
  • Cheese whey is a by-product during cheese manufacture.
  • whey whey
  • whey is used as a raw material for whey protein and lactose, as well as a raw material for improving the flavor of bread or baked confectionery, a raw material for beverages, and a formula for infants.
  • whey as a raw material for infant formula
  • the protein content in 100 g of milk powder is 9.5 to 11 g and the phosphorus content is about 6.8 mmol for the purpose of approximating human breast milk composition.
  • it is basically 40% casein and 60% whey protein.
  • a high-purity whey protein isolate or whey protein concentrate contains a lot of minerals, including phosphorus, and the composition of infant formulas in terms of protein content and phosphorus content. Has a composition that can be used to approximate breast milk.
  • milk-derived micronutrients that are particularly necessary for newborns are still under study, and as much as possible, while using cheese whey and other milk-derived ingredients that contain milk-derived micronutrients, infants such as phosphorus It is desirable to prepare a formula powder from which excessive components have been removed.
  • casein casein 84%, phosphorus 23 mmol / 100 g
  • skimmed milk powder casein 27.2%, whey protein 6.8%, It is desirable to use whey as much as possible as a source of whey protein using 31 mmol / 100 g of phosphorus).
  • a technique for reducing the phosphorus content in whey is important in bringing infant formula close to the composition of breast milk.
  • Non-Patent Document 1 As a method for reducing the phosphorus content in whey, there is an ion exchange resin method (for example, Non-Patent Document 1).
  • a method using only an ion exchange resin for example, Patent Document 1 as a method for producing low phosphorus whey
  • Patent Document 2 for the purpose of reducing the desalting load with the ion exchange resin
  • a method of passing a strong acid cation exchange resin and a strongly basic anion exchange resin after desalting with a filtration (NF) membrane for example, Patent Document 2), or (C) hydrogen first.
  • Patent Document 3 There is known a method (for example, Patent Document 3) in which electrodialysis or nanofiltration is performed after passing through a liquid type cation exchange resin step and a chlorine type anion exchange resin step.
  • Non-Patent Document 1 the whey is first passed through a cation exchange resin regenerated into a hydrogen type, and metal cations are replaced with hydrogen ions and flow out as an acid.
  • the effluent is passed through an anion exchange resin regenerated to a hydroxyl type, and anions (citric acid, phosphoric acid, chlorine, lactic acid) are replaced with hydroxide ions, and desalting is performed.
  • a high desalting rate of 90 to 98% can be achieved.
  • a whey protein concentrate having a protein content of 70% by mass is diluted, and the pH of the diluted solution is adjusted to 4 or less.
  • a method for producing a low-phosphorus whey protein is described in which the solution is sequentially contacted with an H + -type cation exchange resin and an anion exchange resin to reduce the phosphorus content per gram of protein to 0.15 mg or less.
  • Patent Document 2 relates to a method for concentrating and desalting cheese whey.
  • Example 4 after removing high protein substances from a defatted cheese whey solution with an ultrafiltration membrane, a reverse osmosis membrane having a particularly low salt rejection rate is used. Use for concentration and desalting at the same time.
  • a method is described in which the obtained whey concentrate is desalted by passing it through a mixed bed type ion exchange apparatus of a strongly acidic cation exchange resin and a strongly basic anion exchange resin.
  • concentrated whey is first introduced into a weakly cationic or carboxylic acid column, 60 to 70% of divalent cations are ion-exchanged to protons, and 5 to 15% of monovalent cations are protons. Ion exchanged.
  • the resulting effluent is then introduced into a mixed bed column of strong cationic ion exchange resin and strong anionic ion exchange resin, and the remaining calcium ions and magnesium ions are exchanged for protons.
  • sodium and potassium ions are exchanged for protons, and sulfate anions are exchanged for chloride anions, resulting in strong acidity (pH 2 to 2.5).
  • the resulting effluent is then introduced into an electrodialyzer to remove most of the chloride anions and most of the protons. Further, it is introduced into a strong anionic ion exchange resin to exchange citrate ions and phosphate ions with chloride ions.
  • Calcium and magnesium are important nutrients whose intake standards are set in each country, as shown in the “Japanese dietary intake standards (2005 edition)”. However, in Japan, for example, according to the “2005 National Health and Nutrition Survey Results”, the rate of satisfaction with the dietary intake standard is insufficient. For this reason, calcium and magnesium fortified foods and supplements are widely distributed. Calcium and magnesium are defined as nutritional ingredients that can be labeled as functional nutritional foods. By satisfying certain requirements, it is possible to demonstrate the functions of calcium and magnesium, and their nutritional importance is widely recognized. Yes. Dairy products are expected to be a good source of calcium and whey is no exception, as is low phosphorus whey with reduced phosphorus content. That is, a low phosphorus whey in which the phosphorus content is reduced while calcium and magnesium originally contained in the raw material whey remain is preferable.
  • whey as a raw material of formula milk
  • sodium and potassium in the whey are reduced, so that the calcium and magnesium originally contained in the whey remain, It is preferable that a low phosphorus whey with a reduced content of phosphorus, sodium, and potassium can be produced.
  • Patent Documents 1 to 3 and Non-Patent Document 1 have a desalting step using a cation exchange resin, thereby allowing not only monovalent cations but also nutritional treatment. It also removes divalent cations such as calcium and magnesium, which are highly valuable.
  • the desalting rate of whey desalted with an ion exchange resin described in Table II-4.3 of Non-Patent Document 1 is 97%, and the composition after desalting is converted per 100 g of solid content. Then, the total of the calcium content and the magnesium content is 5.43 mmol / 100 g solid, the phosphorus content is 10 mmol / 100 g solid, the total content of sodium and potassium is 1.71 mmol / 100 g solid, and the calcium and magnesium are Highly eliminated.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a low phosphorus whey capable of reducing the phosphorus content while suppressing the reduction of the calcium and magnesium content contained in the whey. With the goal. It is also preferable to provide a method for producing low phosphorus whey that can reduce the contents of phosphorus, sodium, and potassium while suppressing the reduction of the contents of calcium and magnesium contained in whey. .
  • the present inventors have conducted intensive research. As a result, by passing the liquid through a chlorine-type anion exchange resin with a low chlorine content in the raw material whey liquid, The inventors have found that the phosphorus content can be efficiently reduced while suppressing the reduction, and have completed the present invention.
  • a first desalting step for obtaining a low chlorine whey solution in which a chlorine content is reduced to 30 mmol or less per 100 g of a solid content by subjecting the raw material whey solution to a desalting treatment by a nanofiltration method
  • the present invention relates to a method for producing low phosphorus whey.
  • the pH of the raw material whey liquid is in the range of 6 to 7, and the pH of the low chlorine whey liquid and the pH of the effluent from the anion exchange resin are both 6
  • the present invention relates to a method for producing low phosphorus whey, which is ⁇ 7.
  • Another aspect of the present invention relates to a method for producing low phosphorus whey, wherein the chlorine content of the low chlorine whey liquid is 20 mmol or less per 100 g of solid content.
  • the low phosphorus whey has a phosphorus content of 12 mmol or less per 100 g of solid content, and a total of calcium content and magnesium content of 10 mmol or more per 100 g of solid content. It relates to a manufacturing method.
  • Another aspect of the present invention relates to a method for producing low phosphorus whey having a second desalting step of desalting the effluent from the anion exchange resin by a nanofiltration method.
  • the molar ratio of chlorine content to the total value of sodium content and potassium content (chlorine) of the liquid to be treated for the desalting treatment in the second desalting step. / (Sodium + potassium)) relates to a method for producing low phosphorus whey having a value of 0.35 or more.
  • Another aspect of the present invention includes a step of passing a low chlorine whey solution containing whey and having a chlorine content of 30 mmol or less per 100 g of solid content through an ion exchange resin.
  • An anion exchange resin the anion exchange resin is at least a chlorine type anion exchange resin
  • the pH of the low chlorine whey liquid is in the range of 6 to 7
  • the pH of the effluent from the anion exchange resin The present invention relates to a method for producing a low phosphorus whey having a value of 6 to 7.
  • Another aspect of the present invention relates to a method for producing low phosphorus whey, wherein the chlorine content of the low chlorine whey liquid is 20 mmol or less per 100 g of solid content.
  • the low phosphorus whey has a phosphorus content of 12 mmol or less per 100 g of solid content, and a total of calcium content and magnesium content of 10 mmol or more per 100 g of solid content. It relates to a manufacturing method.
  • Another aspect of the present invention relates to a method for producing low phosphorus whey, further comprising desalting the effluent from the anion exchange resin by a nanofiltration method.
  • the effluent from the anion exchange resin is desalted by nanofiltration, and the sodium content and potassium content of the liquid to be treated for desalting are as follows. It is related with the manufacturing method of the low phosphorus whey whose molar ratio (chlorine / (sodium + potassium)) of chlorine content with respect to the total value with quantity is 0.35 or more.
  • Still another aspect of the present invention relates to the low phosphorus whey that is suitable for formula milk powder.
  • the low phosphorus whey with which content of phosphorus was reduced can be manufactured, suppressing reduction of content of calcium and magnesium contained in whey. Furthermore, when the second desalting step is provided, a low phosphorus whey with reduced contents of phosphorus, sodium, and potassium can be produced while suppressing a decrease in the contents of calcium and magnesium contained in the whey.
  • a whey is a transparent liquid remaining after removing coagulated milk in the process of producing cheese, casein, sodium caseinate, yogurt or the like using milk such as cow, sheep or goat as a raw material.
  • the whey used in the present invention may be an untreated whey obtained by separating the coagulated milk, or may be obtained by subjecting the untreated whey to a degreasing and / or deproteinization pretreatment, Untreated whey or pre-treated whey may be powdered by a conventional method such as spray drying or freeze drying. A commercially available whey powder can also be used, and a whey powder having a low chlorine content by pretreatment is preferred.
  • the raw material whey liquid may be a liquid containing whey.
  • liquid whey may be used as it is, or an aqueous solution of whey powder.
  • the whey and the raw material whey liquid are preferably neutral.
  • the pH of the raw material whey solution is preferably in the range of 5.5 to 7.4, and more preferably in the range of 6 to 7.
  • the desalting step by the nanofiltration method described later and the step of passing through the ion exchange resin can be performed in a neutral region without performing the neutralization step. Decomposition, denaturation, acid decomposition of sugar, alkaline reaction and the like can be prevented.
  • the first desalting step is a step of obtaining a low chlorine whey solution having a reduced chlorine content by subjecting the raw material whey solution to a desalting treatment by nanofiltration.
  • the nanofiltration method is a method having a step of separating a liquid to be treated for desalting treatment by nanofiltration into a permeated liquid that has permeated the nanofiltration membrane and a retentate liquid that has not permeated.
  • a nanofiltration (NF) membrane is an intermediate region between an ultrafiltration (UF) membrane and a reverse osmosis (RO) membrane that has a molecular weight of tens to thousands of daltons, that is, a nanometer region when converted to a molecular size. This is a separation membrane to be imaged.
  • inorganic substances carbohydrates, amino acids, vitamins, and the like, particles having a small molecular weight and a low charge pass through the nanofiltration membrane.
  • Specific nanofiltration membranes include DL, DK, HL series manufactured by GE Water Technologies, SR-3 series manufactured by Koch Membrane System, DOW-NF series manufactured by Dow Chemical, and NTR manufactured by Nitto Denko.
  • a series (all are product names) can be exemplified, but is not limited thereto.
  • a nanofiltration membrane suitable for obtaining a low phosphorus whey having a target composition can be appropriately selected and used depending on the use of the finally obtained low phosphorus whey.
  • the nanofiltration method is suitable for selectively desalting monovalent minerals and has a high rejection rate of calcium and magnesium, while suppressing the reduction of the content of calcium and magnesium contained in the raw material whey.
  • Chlorine content can be reduced. That is, when the raw material whey liquid is desalted with the nanofiltration membrane, the chlorine ions contained in the raw material whey liquid permeate the nanofiltration membrane and move to the permeate side. On the other hand, divalent mineral cations hardly pass through the nanofiltration membrane and are contained in the retentate.
  • a retentate liquid (low chlorine whey liquid) in which the chlorine content is reduced while suppressing the reduction of the contents of calcium and magnesium contained in the raw material whey.
  • the pH of the liquid hardly fluctuates. Therefore, by using a neutral raw material whey solution, a neutral low chlorine whey solution can be obtained.
  • the pH of the low chlorine whey solution is preferably in the range of 5.5 to 7.4, and more preferably in the range of 6 to 7.
  • the nanofiltration apparatus used in the present invention can be appropriately selected from known ones.
  • a membrane module equipped with a nanofiltration membrane a supply pump that sends the liquid to be treated to the membrane module, a means for taking out the permeate that has permeated the nanofiltration membrane from the membrane module, and a retentate that did not permeate the nanofiltration membrane Means for taking out the membrane from the membrane module.
  • the batch-type apparatus further includes a stock solution tank that holds the liquid to be treated before being supplied to the membrane module, and means for returning the retentate liquid taken out from the membrane module to the stock solution tank.
  • the membrane separation operation may be a batch concentration type in which the permeate is taken out and the retentate is returned to the stock solution tank.
  • a step of performing diafiltration in which the same amount of water as the taken out permeate is added to the stock solution tank may be provided.
  • a continuous type may be employed in which the liquid to be treated is continuously supplied to the membrane module, and the retentate liquid and the permeated liquid are continuously extracted. These may be combined. According to the batch concentration method, desalting and concentration can be performed simultaneously. When hydrodiafiltration is performed, a higher degree of desalting is possible.
  • the chlorine content in the low chlorine whey liquid obtained in the first desalting step is 30 mmol or less per 100 g of solid content, preferably 20 mmol or less. Preferably it is 15 mmol or less.
  • the chlorine content in the low chlorine whey liquid is 30 mmol or less, the phosphorus content is likely to be reduced when the low chlorine whey liquid is passed through a chlorine-type anion exchange resin. Further, when the chlorine content is 20 mmol or less, the efficiency of reducing the phosphorus content is remarkably improved.
  • the chlorine content in the low chlorine whey liquid can be controlled by the degree of desalting treatment by the nanofiltration method.
  • the chlorine content can be further reduced by increasing the desalting time. That is, since the amount of dechlorination is (permeate amount) ⁇ (chlorine concentration in the permeate), the desalination treatment should be continued while the permeate is generated and the permeate contains chlorine. Thus, the chlorine content can be reduced.
  • the lower limit of the chlorine content is not particularly limited, but the chlorine content is less likely to decrease as the desalting process proceeds.
  • the chlorine content is practically in the range of 5 mmol or more per 100 g of solid content.
  • the desalting treatment by nanofiltration may be performed twice or more under different conditions. Further, when the whey in the raw material whey liquid is pretreated and the chlorine content of the raw material whey liquid is already 30 mmol or less per 100 g of the solid content, the negative whey is not passed through the first desalting step. It can be set as the low chlorine whey liquid made to flow through an ion exchange resin. When the chlorine content of the raw material whey liquid is more than 20 mmol per 100 g of solid content and not more than 30 mmol, in order to efficiently reduce phosphorus by ion exchange, a first desalting step is performed on the raw material whey liquid.
  • the chlorine content is reduced to 20 mmol / 100 g solids or less.
  • the chlorine content of the raw material whey liquid is 20 mmol or less per 100 g of the solid content, it may be passed through an anion exchange resin described later without passing through the first desalting step, A salt process may be performed to further reduce the chlorine content.
  • the low chlorine whey liquid having a reduced chlorine content in the first desalting step is passed through the ion exchange resin.
  • the ion exchange resin in this invention consists of an anion exchange resin. That is, the process of passing the liquid through the cation exchange resin is not performed.
  • the anion exchange resin at least a chlorine type anion exchange resin is used.
  • the liquid passing through the anion exchange resin is preferably performed in a neutral range.
  • the pH of the low chlorine whey liquid passed through the anion exchange resin and the pH of the effluent from the anion exchange resin are both 5 It is preferably within the range of 5 to 7.4, and more preferably within the range of 6 to 7.
  • the OH-type anion exchange resin is used in this respect because it may become alkaline when it is passed through the OH-type anion exchange resin, and the release of phosphorus may be suppressed, making it difficult to reduce the phosphorus content. It is desirable not to.
  • the chlorine type anion exchange resin an anion exchange resin that has been previously made into a chlorine type using saline or hydrochloric acid is used.
  • the anion exchange resin include IRA402BL and IRA958 manufactured by Rohm and Haas, and PA316 manufactured by Mitsubishi Chemical (both are product names).
  • the present invention is not limited thereto, and an anion exchange resin suitable for obtaining a low phosphorus whey having a target composition can be appropriately selected according to the use of the low phosphorus whey.
  • the phosphorus content in the ion-exchange whey solution is preferably 12 mmol or less and more preferably 10 mmol or less per 100 g of the solid content in order to achieve a preferable phosphorus content of low phosphorus whey described later.
  • the condition for passing through the chlorine-type anion exchange resin can be set according to the target value of the phosphorus content in the effluent within a range where lactose does not precipitate.
  • the smaller the amount of solid content per unit exchange capacity of the ion exchange resin the higher the ion exchange efficiency and the reduction of the phosphorus content by the liquid flow.
  • the amount increases. That is, when the volume of the ion exchange resin is A (unit: L) and the amount of solids contained in the effluent is B (unit: kg), the liquid passage represented by B / A is used for comparison with the same resin.
  • the smaller the magnification the lower the phosphorus content in the effluent.
  • the solid concentration of the liquid to be passed is low and the flow rate is small (slow).
  • the solid concentration of the liquid passed through the chlorine-type anion exchange resin is preferably 4 to 40% by mass, for example, and more preferably 5 to 20% by mass. If the solid concentration is less than 4% by mass, it takes time to pass the liquid and the efficiency is not good. Further, the lower the solid concentration, the higher the concentration factor when performing the concentration in the subsequent step. When the solid concentration exceeds 40% by mass, the viscosity of the solution increases and the possibility of lactose precipitation increases.
  • the flow rate when the liquid is passed is preferably 2 to 12 SV, and more preferably 3 to 8 SV.
  • SV represents a relative amount of the liquid passed per unit time with respect to the amount of the ion exchange resin, and a flow rate when the same amount of liquid as the amount of the ion exchange resin is passed for 1 hour is referred to as 1 SV.
  • the temperature of the liquid to be passed is preferably 2 to 50 ° C, more preferably 3 to 15 ° C. When the temperature is less than 2 ° C., the viscosity of the liquid becomes too high. If the temperature is too low, the liquid may freeze. On the other hand, when the temperature exceeds 50 ° C., the possibility of protein denaturation or browning increases. In order to suppress the growth of microorganisms, 10 ° C. or lower is preferable.
  • the ion exchange whey liquid (effluent) thus obtained may be used as it is as a liquid low phosphorus whey, and may be post-treated by a known method as necessary.
  • the post-treatment is preferably a treatment that does not increase the phosphorus content in the liquid.
  • a concentrated liquid low phosphorus whey can be obtained by concentrating the ion exchange whey solution.
  • Low phosphorus whey can be used as a raw material for other products.
  • the low chlorine whey solution desalted by nanofiltration is passed through a chlorine-type anion exchange resin, thereby reducing the phosphorus content as shown in the examples described later.
  • Low phosphorus whey is obtained.
  • the phosphorus content of the finally obtained low phosphorus whey is preferably 12 mmol or less and more preferably 10 mmol or less per 100 g of the solid content. When the phosphorus content is 12 mmol or less, a level suitable for formula milk is satisfied.
  • the total of the calcium content and the magnesium content in the low phosphorus whey is preferably 10 mmol or more per 100 g of the solid content.
  • the total of the calcium content and the magnesium content is in the range of 13 to 17 mmol per 100 g of the solid content, it is suitable as a raw material for formula milk powder.
  • the low phosphorus whey obtained in the present embodiment has a favorable phosphorus content, and since the reduction of the calcium and magnesium contents contained in the raw material whey is suppressed, it is particularly suitable for formula milk powder It is.
  • Prepared milk powder is obtained by processing raw milk, milk or special milk, or foods produced from these raw materials, or using it as a main raw material, and adding it to nutrients necessary for infants and powders.
  • a second desalting step for further desalting the ion-exchange whey solution (effluent) obtained in the first embodiment using a nanofiltration method is provided, so that sodium and potassium are contained. Reduce the amount.
  • the first desalting step and the liquid passing through the anion exchange resin are performed in the same manner as in the first embodiment.
  • the first desalting step when the raw material whey solution is desalted with the nanofiltration membrane, chlorine, sodium, potassium, and the like contained in the raw material whey solution permeate the nanofiltration membrane and move to the permeate side. Therefore, by performing the first desalting step, the chlorine content is reduced and the sodium content and the potassium content are also reduced while suppressing the reduction of the calcium and magnesium contents contained in the raw material whey. Retentate solution (low chlorine whey solution) is obtained.
  • the phosphorus content in the liquid decreases and the chlorine content increases. Therefore, while suppressing the reduction of the contents of calcium and magnesium contained in the raw material whey, the phosphorus content is reduced, and the effluent having an increased chlorine content than the low chlorine whey liquid (in this embodiment, the first 1 ion exchange whey solution).
  • the 1st ion exchange whey liquid obtained in this way is used for a 2nd desalting process.
  • Second desalting step The nanofiltration membrane and nanofiltration device used in the second desalting step can be the same as those in the first desalting step.
  • the first ion exchange whey liquid is desalted by nanofiltration in the second desalting step, thereby suppressing the reduction of the contents of calcium and magnesium in the first ion exchange whey liquid, and sodium and A retentate solution having a reduced potassium content (hereinafter referred to as a second desalted whey solution) is obtained.
  • the molar ratio of chlorine content to the total value of sodium content and potassium content (chlorine / (sodium + potassium) in the liquid to be subjected to the desalting treatment by the nanofiltration method. ) (Hereinafter also referred to as Cl / (Na + K) ratio) is preferably 0.35 or more.
  • Cl / (Na + K) ratio is 0.35 or more
  • the transmittance of sodium and potassium in nanofiltration (hereinafter sometimes referred to as (Na + K) transmittance) is sufficiently high.
  • the Cl / (Na + K) ratio is more preferably 0.5 or more.
  • the (Na + K) transmittance in this specification is a value represented by the following formula (1).
  • the unit of sodium content (hereinafter sometimes referred to as Na content) and potassium content (hereinafter sometimes referred to as K content) is mmol / L solution.
  • Na + K) permeability (total Na content and K content in permeate) / (total Na content and K content in retentate) (1)
  • the Cl of the obtained first ion exchange whey solution is usually sufficiently higher than 0.35, for example, 0.8 or more.
  • the Cl / (Na + K) ratio in the liquid to be treated becomes small, (Na + K) permeability decreases, and desalting efficiency Decreases. Therefore, it is preferable to maintain the Cl / (Na + K) ratio in the liquid to be treated at 0.35 or more, preferably 0.5 or more by passing the solution again through a chlorine-type anion exchange resin. In this case, if the Cl / (Na + K) ratio of the first ion-exchange whey liquid used in the second desalting step is 0.8 or more, there is no need to newly provide a step for increasing the chlorine content.
  • the Cl / (Na + K) ratio tends to be maintained above 0.35.
  • An example of the upper limit of the Cl / (Na + K) ratio is 1.2 when all three of chlorine, sodium, and potassium are reduced in the desalted whey obtained according to the present invention. In the obtained desalted whey, when a relatively large amount of chlorine may remain as compared with sodium and potassium, the upper limit of the Cl / (Na + K) ratio is exemplified as 1.5.
  • Second ion exchange process in order to increase the chlorine content in the treatment liquid to be subjected to the desalting treatment by the nanofiltration method, before the treatment liquid is subjected to the desalting treatment, A step of passing the treatment liquid through the chlorine-type anion exchange resin (referred to as a second ion exchange step in this embodiment) may be provided.
  • the second ion exchange step can increase the chlorine content while suppressing a decrease in the calcium and magnesium contents, and if the chlorine content is 30 mmol / 100 g solids or less, Further decline can be expected.
  • the first ion exchange whey solution was subjected to a desalting treatment by nanofiltration, and the resulting retentate solution was passed through a chlorine-type anion exchange resin (second ion exchange step). Then, you may use for the desalination process by nanofiltration again. It is also possible to repeatedly pass the liquid through the chlorine-type anion exchange resin (second ion exchange step) and the desalting treatment by the nanofiltration method plural times, and finally perform the desalting treatment by the nanofiltration method. .
  • the condition for passing through the chlorine-type anion exchange resin can be set in accordance with the target value of the chlorine content in the effluent as long as lactose does not precipitate.
  • the smaller the flow rate (solid content contained in the effluent) / (volume of ion exchange resin), that is, the smaller the whey solid flow rate per unit exchange capacity of ion exchange resin, the smaller the flow rate. Since the ion exchange efficiency increases, the amount of increase in the chlorine content due to the flow of liquid increases. Therefore, in order to further increase the chlorine content in the effluent, it is preferable that the solid concentration of the liquid to be passed is low and the flow rate is small (slow).
  • Preferable liquid passage conditions in the second ion exchange step are the same as those in the first ion exchange step.
  • the retentate solution (second desalted whey solution) obtained after the final nanofiltration may be used as it is as a liquid, desalted low phosphorus whey. Moreover, you may concentrate as needed and it is good also as a powder form by drying by a well-known method. However, since the low phosphorus whey of the present invention tends to cause precipitation due to heating compared to general whey, when it is desired to suppress precipitation, the heating temperature is lowered and the heating time is shortened. Alternatively, means such as lowering the solid content concentration during heating may be appropriately implemented. According to this embodiment, the ion-exchange whey liquid obtained in the first embodiment is further desalted by nanofiltration to reduce the content of calcium and magnesium contained in the raw material whey.
  • a low phosphorus whey with reduced phosphorus, sodium, and potassium content is obtained.
  • the total sodium content and potassium content in the desalted low phosphorus whey finally obtained is preferably 40 mmol or less, more preferably 32 mmol or less, per 100 g of the solid content.
  • the phosphorus content is preferably 12 mmol or less per 100 g of solid content, and more preferably 10 mmol or less.
  • the total of the calcium content (hereinafter sometimes referred to as Ca content) and the magnesium content (hereinafter sometimes referred to as Mg content) is the same as in the first embodiment. 10 mmol or more per 100 g is preferable.
  • the total of the calcium content and the magnesium content is in the range of 13 to 17 mmol per 100 g of solid content, it is suitable as a raw material for formula milk powder.
  • DL3840C-30D manufactured by GE Water & Process Technologies
  • it is a hydrodiafiltration method that keeps the amount of liquid in the stock solution tank constant by returning the retentate solution to the stock solution tank and adding water equal to the amount of the permeate to the stock solution tank until the permeate reaches 50 kg.
  • a desalting treatment according to the formula was performed.
  • the liquid in the undiluted liquid tank thus obtained is used as a low chlorine whey liquid.
  • the recovered amount of the low chlorine whey liquid is 64.0 kg and contains 4.4 kg of solid content.
  • the pH values of the raw material whey liquid, the low chlorine whey liquid, and the ion exchange whey liquid are 6.6 to 6.8, and hardly change.
  • the ion exchange whey solution has a sufficiently reduced phosphorus content, and the decrease in the contents of calcium and magnesium is small.
  • the Cl / (Na + K) ratio in the ion exchange whey solution is 1.06.
  • the ion exchange whey liquid is a liquid to be treated that is first subjected to the desalting treatment in the second desalting step.
  • the ion exchange whey solution was desalted using the same nanofiltration apparatus as in the first desalting step of Example 1.
  • the desalination treatment is performed by batch concentration until the permeate reaches 50 kg, and then nanofiltration is continued by the hydrodiafiltration method, and the permeate is 13 kg (desalted).
  • the desalting treatment was performed until the total reached 63 kg from the start of the treatment.
  • the solution in the stock solution tank thus obtained is used as a second desalted whey solution (desalted low phosphorus whey solution).
  • the recovered amount of the second desalted whey solution was 24.8 kg, the solid concentration was 14.7%, and the pH was 6.4.
  • Table 2 shows the composition of the obtained second desalted whey solution (desalted low phosphorus whey solution) per 100 g of solid content.
  • the Cl / (Na + K) ratio in the second desalted whey solution is 0.98.
  • the second desalted whey solution is the solution after the desalting treatment last performed for the desalting treatment by nanofiltration.
  • the Cl / (Na + K) ratio does not become larger than the treated liquid.
  • the Cl / (Na + K) ratio of the liquid to be processed (ion exchange whey liquid) first supplied to the desalting treatment in the second desalting step is 1.06, and the liquid to be processed finally supplied Since the Cl / (Na + K) ratio is 0.98 or more, it can be seen that the Cl / (Na + K) ratio of the liquid to be treated was maintained at a value sufficiently higher than 0.35.
  • Example 3 (First desalting step) Pre-treated (desalted) cheese whey powder (protein 12.4%, lipid 1.1%, carbohydrate 77.1%, ash 5.6%, moisture 3.8%, phosphorus 19mmol / 100g ) 8 kg of water was added and dissolved to obtain 87 kg of a raw material whey solution.
  • the obtained raw material whey solution was subjected to a desalting treatment by a batch method using the same nanofiltration membrane as that of Example 1 and using a hydrodiafiltration method until the permeate became 24 kg.
  • the liquid in the undiluted liquid tank thus obtained is used as a low chlorine whey liquid.
  • the pH values of the raw material whey liquid, the low chlorine whey liquid, and the ion exchange whey liquid are 6.1 to 6.4 and hardly change.
  • the ion exchange whey solution has a sufficiently reduced phosphorus content, and the decrease in the contents of calcium and magnesium is small.
  • the Cl / (Na + K) ratio in the ion exchange whey solution is 1.23.
  • the ion exchange whey liquid is a liquid to be treated that is first subjected to the desalting treatment in the second desalting step.
  • the ion exchange whey solution was desalted using the same nanofiltration apparatus as in the first desalting step of Example 3. That is, desalting was performed by a batch concentration method until the permeate reached 45 kg.
  • the Cl / (Na + K) ratio in the second desalted whey solution is 1.17.
  • the second desalted whey solution is the solution after the desalting treatment last performed for the desalting treatment by nanofiltration.
  • the treated liquid has a Cl / (Na + K) ratio of 1.17 or more. That is, it can be seen that the Cl / (Na + K) ratio of the liquid to be treated was maintained at a value sufficiently higher than 0.35.
  • Example 2 desalting treatment by nanofiltration was performed until a considerably larger permeate than that in Example 1 was obtained, but phosphorus was hardly reduced.
  • the total of Na content and K content in the obtained liquid was more than the target value of 40 mmol / 100 g, and phosphorus was also contained more than 12 mmol / 100 g.
  • Example 2 This was hydrated to 108 kg and supplied to the same nanofiltration apparatus as in Example 1 for desalting.
  • the conditions for passing through the chlorine type anion exchange resin were a flow rate of 6 SV and a liquid temperature of 5 to 10 ° C.
  • the pH of the effluent (ion exchange whey solution) was 6.5.
  • the desalting treatment by nanofiltration was performed by batch concentration while returning the retentate solution to the stock solution tank until the permeate amounted to 68.6 kg.
  • the liquid in the stock solution tank at this time is defined as desalted whey liquid (I).
  • the total amount of the desalted whey solution (I) was 39 kg, the solid concentration was 15.6%, and the pH was 6.3.
  • the liquid in the stock solution tank thus obtained is designated as desalted whey liquid (II).
  • the pH of the desalted whey solution (II) was 6.3.
  • the total, phosphorus content, and chlorine content are shown in Table 6.
  • Example 2 For the purpose of reducing the chlorine concentration in the obtained raw material whey solution, the same nanofiltration membrane as in Example 1 was used for hydrodiafiltration to return the retentate solution to the stock solution tank and add water equal to the permeate amount. A desalting treatment was performed. In the course of this desalting treatment, 10 kg each of the sample solution was collected from the retentate solution (low chlorine whey solution) over time. The pH of the five sample liquids (sample numbers 1 to 5) including the raw material whey liquid was 6.8. Table 7 shows the mineral composition of each sample solution.
  • the amount of liquid to be collected is the amount corresponding to about 10 g of solid in the first collection (0 to 0.67 times the flow rate), and the amount corresponding to about 12.5 g of solid in the second time (flow rate) 0.67 to 1.5 times).
  • an effluent having a flow rate of 0 to 0.67 times and an effluent having a flow rate of 0.67 to 1.5 times were obtained, and a total of 10 types of ions were obtained.
  • a sample of replacement whey liquid was obtained. The pH of these samples was 6.6.
  • Table 8 shows the mineral composition of each ion exchange whey solution sample.
  • the composition of the effluent having a flow rate of 0 to 0.67 times (0 to 0.67 times passed product) is the analysis value as it is described.
  • the composition of the effluent with a flow rate of 0 to 1.5 times (0 to 1.5 times passed product) is 0 to 0.67 times the effluent analysis value and 0.67 to 1.5 times the analysis value. It is a weighted average value with the analysis value of the effluent.
  • the unit of mineral content is mmol / 100g solid.
  • the 0-0.67-fold product has a phosphorus content. Is lower and the chlorine content after ion exchange is more increased. That is, the smaller the liquid flow rate, the higher the ion exchange efficiency.
  • the raw material whey (sample 1) containing 44 mmol / 100 g of chlorine is passed as it is, phosphorus is hardly reduced in the 0 to 1.5 times passing product, and phosphorus is contained even in the 0 to 0.67 times passing product. The amount could not be reduced to 12 mmol / 100 g or less.
  • the chlorine content of the liquid (low chlorine whey liquid) that is passed through the chlorine-type strongly basic ion exchange resin is 30 mmol / 100 g solid or less (sample 2)
  • the amount of phosphorus reduction increases, 0 to 0.67 times It was possible to achieve a phosphorus content of 12 mmol / 100 g or less in the flow-through product.
  • the chlorine content of the liquid (low chlorine whey liquid) that is passed through the chlorine-type strongly basic ion exchange resin is 20 mmol / 100 g solid or less (samples 3 to 5)
  • the amount of phosphorus reduction is significantly increased. The lower the amount, the greater the amount of phosphorus reduction.
  • the low phosphorus whey with which content of phosphorus was reduced can be manufactured, suppressing reduction of content of calcium and magnesium contained in whey. Furthermore, when the second desalting step is provided, a low phosphorus whey with reduced contents of phosphorus, sodium, and potassium can be produced while suppressing a reduction in the contents of calcium and magnesium contained in the whey.
  • the present invention is useful in the field of food products.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Water Supply & Treatment (AREA)
  • Mycology (AREA)
  • Pediatric Medicine (AREA)
  • Dairy Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明は低リンホエイの製造方法であって、原料ホエイ液をナノろ過法で脱塩処理して、塩素含有量が固形分100gあたり30mmol以下に低減された低塩素ホエイ液を得ること、および、前記低塩素ホエイ液をイオン交換樹脂に通液させて、リン含有量が低減されたイオン交換ホエイ液を得ることを含み、前記イオン交換樹脂が陰イオン交換樹脂からなり、前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いる前記方法に関する。本発明はホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リンの含有量を低減させることができる低リンホエイの製造方法を提供することができる。

Description

低リンホエイの製造方法
 本発明はリン含有量が低減された低リンホエイの製造方法に関する。
 本願は、2009年9月25日に、日本に出願された特願2009-220086号に基づき優先権を主張し、その内容をここに援用する。
 チーズホエイは、チーズ製造時の副生成物である。一般にホエイ(乳清)は、ホエイ蛋白質、乳糖の原料として用いられる他、パンもしくは焼き菓子の風味改良用原料、飲料の原料または育児用調製粉乳などの原料として用いられている。
 ところで、ホエイを育児用調製粉乳の原料として用いる際には、大量のミネラルを含むことから用途に制限がある。
 一般的な乳児用調製粉乳は、人の母乳組成に近似させる目的から、粉乳100g中におけるタンパク質の含有量は9.5~11g、リンの含有量は6.8mmol前後とされている。またタンパク質の組成は人乳に近似させるため、40%をカゼインとし60%を乳清タンパク質とするのが基本となっている。
 純度の高い乳清タンパク質単離物または乳清タンパク質濃縮物は、リンも含めて多くのミネラルが脱塩されており、そのタンパク質含有量とリン含有量の点からは、乳児用調製粉乳の組成を母乳に近似させるのに使用可能な組成を有する。
 しかしながら、特に新生児に必要な乳由来の微量栄養成分については研究の途上にあり、できる限り、乳由来の微量栄養成分を含むチーズホエイおよび他の乳由来の原料を用いながら、リン等の、乳児に過剰となる成分が除去された調製粉乳とするのが望ましいとされている。
 例えばカゼインの供給源として、酸カゼイン(カゼイン84%、リン23mmol/100g)を用いればカゼイン含有量を調整しやすいが、できる限り脱脂粉乳(カゼイン27.2%、乳清タンパク質6.8%、リン31mmol/100g)を用い、乳清タンパク質の供給源としては、できる限りホエイを用いるのが望ましい。
 この場合、ホエイ中には18~22mmol/100g固形のリンが含まれているので、このリン含有量を6~12mmol/100g固形以下にしておく必要がある。従って、乳児用調製粉乳を母乳の組成に近づけるうえで、ホエイ中のリン含有量を低減する技術は重要である。
 ホエイ中のリン含有量を低減させる手法としては、イオン交換樹脂法がある(例えば、非特許文献1)。
 また、低リンホエイの製造方法として(A)イオン交換樹脂のみを用いる方法(例えば、特許文献1)のほか、(B)イオン交換樹脂での脱塩負荷を下げる目的で、電気透析膜や、ナノフィルトレーション(NF)膜で、脱塩を行った後に、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂に通液する方法(例えば、特許文献2)、または(C)先に水素型陽イオン交換樹脂工程および塩素型陰イオン交換樹脂工程を通液したのち電気透析あるいはナノフィルトレーションを行う方法(例えば、特許文献3)が知られている。
 非特許文献1に記載されている方法では、ホエイは、まず水素型に再生された陽イオン交換樹脂に通液され、金属陽イオンが水素イオンに置換されて酸性となって流出する。次いで、この流出液は水酸基型に再生された陰イオン交換樹脂に通液され、陰イオン(クエン酸、リン酸、塩素、乳酸)が水酸イオンに置換されて脱塩が実施される。この方法によれば90~98%の高脱塩率を達成することができる。
 特許文献1に記載の低リンホエータンパク質の製造方法では、タンパク質含有量70質量%のホエータンパク質濃縮物を希釈し、その希釈した溶液のpHを4以下に調整する。次いで、前記溶液をH形陽イオン交換樹脂および陰イオン交換樹脂に順次接触させ、タンパク質1g当たりのリン含有量を0.15mg以下に減少させる低リンホエータンパク質の製造方法が記載されている。
 特許文献2はチーズホエーの濃縮・脱塩方法に関するもので、実施例4では、脱脂酸チーズホエー溶液の高蛋白物質を限外ろ過膜で除去した後、塩排除率が特に低い逆浸透膜を用いて濃縮と脱塩を同時に行う。次いで、得られたホエー濃縮液を、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂の混床式イオン交換装置に通して脱塩する方法が記載されている。
 特許文献3に記載の方法では、濃縮ホエーが、まず弱カチオン性またはカルボン酸カラムに導入され、二価カチオンの60~70%がプロトンにイオン交換され、一価カチオンの5~15%がプロトンにイオン交換される。次いで、得られた流出液は強カチオン性イオン交換樹脂と強アニオン性イオン交換樹脂の混合床カラムに導入され、残りのカルシウムイオンおよびマグネシウムイオンがプロトンに交換される。更に、ナトリウムおよびカリウムイオンがプロトンに交換され、スルフェートアニオンが塩化物アニオンにイオン交換されて強酸性(pH2~2.5)となる。その後、得られた流出液は電気透析装置に導入され、塩化物アニオンの大部分およびプロトンの大部分が除去される。さらに強アニオン性イオン交換樹脂に導入されてシトレートイオンおよびホスフェートイオンが塩化物イオンに交換される。
日本国特許第3411035号公報 特開昭58-175438号公報 日本国特許第3295696号公報
「ミルク総合事典、朝倉書店、1992年1月20日初版、p.375~377
 カルシウムおよびマグネシウムは、「日本人の食事摂取基準(2005年版)」にもその摂取基準が示されているように、各国において摂取基準が定められている重要な栄養素である。しかしながら、例えば日本では、「平成17年 国民健康・栄養調査結果」によれば、食事摂取基準に対する充足率が足りていない。そのため、カルシウム・マグネシウム強化食品や、サプリメントが幅広く流通している。カルシウムおよびマグネシウムは栄養機能食品として表示出来る栄養成分に定められており、一定の要件を満たすことで、カルシウムおよびマグネシウムの機能を示すことが可能であり、その栄養上の重要性は広く認識されている。
 乳製品はカルシウムの良質な供給源として期待されており、ホエイもその例外ではなく、それはリン含有量が低減された低リンホエイにおいても同様である。
 すなわち、原料ホエイに元々含まれているカルシウムおよびマグネシウムを残存させつつ、リン含有量を低減させた低リンホエイが好ましい。
 また、ホエイを調製粉乳の原料として使用する場合には、前記ホエイ中のナトリウムおよびカリウムが低減されていることが望ましいことが多いため、ホエイに元々含まれているカルシウムおよびマグネシウムを残存させつつ、リン、ナトリウム、およびカリウムの含有量を低減させた低リンホエイを製造できることが好ましい。
 しかしながら、上記特許文献1~3および非特許文献1に記載されている方法はいずれも、陽イオン交換樹脂による脱塩工程を有しており、これによって1価のカチオンだけでなく、栄養学的に価値の高い、カルシウムおよびマグネシウムなどの2価のカチオンも除去する。
 例えば、非特許文献1の表II-4.3に記載されている、イオン交換樹脂により脱塩されたホエイの脱塩率は97%であり、脱塩後の組成を固形分100g当たりに換算すると、カルシウム含有量およびマグネシウム含有量の合計が5.43mmol/100g固形、リン含有量が10mmol/100g固形、ナトリウムおよびカリウムの含有量の合計が1.71mmol/100g固形であり、カルシウムおよびマグネシウムが高度に除去されている。
 また特許文献1記載の方法では、タンパク質1g当たり、カルシウム0.227mg以下、マグネシウム0.057mg以下、リン0.15mg以下(すなわち、タンパク質含有量12質量%のホエイ固形分に対する値に換算すると、カルシウム含有量およびマグネシウム含有量の合計0.0961mmol/100g固形以下、リンの含有量0.0581mmol/100g固形以下)を目標としており、カルシウムおよびマグネシウムを残存させるという技術思想は全く無い。
 本発明は前記事情に鑑みてなされたもので、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リンの含有量を低減させることができる低リンホエイの製造方法を提供することを目的とする。
 また好ましくは、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン、ナトリウム、およびカリウムの含有量を低減させることができる低リンホエイの製造方法を提供することを目的とする。
 前記課題を解決するために、本発明者らは鋭意研究を行った結果、原料ホエイ液中の塩素含有量が低い状態で、塩素型陰イオン交換樹脂に通液させることにより、カルシウムおよびマグネシウムの低減を抑えつつ、リン含有量を効率よく低減できることを見出して本発明を完成させるに至った。
 また、そのようにしてリン含有量が低減された、陰イオン交換樹脂からの流出液をナノろ過法により脱塩処理することによって、カルシウムおよびマグネシウムの含有量の低減を抑えつつ、ナトリウムおよびカリウムの含有量を低減できること、および、その際に、ナノろ過による脱塩処理に供される被処理液中におけるナトリウム含有量とカリウム含有量の合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))が大きいと、ナノろ過におけるナトリウムおよびカリウムの透過率が高く、脱塩効率が向上することも見出した。
 本発明の1つの側面としては、原料ホエイ液をナノろ過法で脱塩処理して、塩素含有量が固形分100gあたり30mmol以下に低減された低塩素ホエイ液を得る第1の脱塩工程と、前記低塩素ホエイ液をイオン交換樹脂に通液させる工程を有し、前記イオン交換樹脂が陰イオン交換樹脂からなり、前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いることを特徴とする低リンホエイの製造方法に関する。
 本発明の別の側面としては、前記原料ホエイ液のpHが6~7の範囲内であり、前記低塩素ホエイ液のpH、および前記陰イオン交換樹脂からの流出液のpHが、いずれも6~7である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記低塩素ホエイ液の、塩素含有量が固形分100gあたり20mmol以下である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記低リンホエイの、リン含有量が固形分100gあたり12mmol以下であり、かつカルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり10mmol以上である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理する第2の脱塩工程を有する低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記第2の脱塩工程で脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))が0.35以上である低リンホエイの製造方法に関する。
 また本発明のまた別の側面としては、ホエイを含み、塩素含有量が固形分100gあたり30mmol以下である低塩素ホエイ液をイオン交換樹脂に通液させる工程を有し、前記イオン交換樹脂が陰イオン交換樹脂からなり、前記陰イオン交換樹脂が少なくとも塩素型陰イオン交換樹脂からなり、前記低塩素ホエイ液のpHが6~7の範囲内であり、前記陰イオン交換樹脂からの流出液のpHが6~7である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記低塩素ホエイ液の、塩素含有量が固形分100gあたり20mmol以下である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記低リンホエイの、リン含有量が固形分100gあたり12mmol以下であり、かつカルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり10mmol以上である低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することを更に含む低リンホエイの製造方法に関する。
 本発明のまた別の側面としては、前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することにおいて、脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))が0.35以上である低リンホエイの製造方法に関する。
 本発明の更に別の側面としては、調製粉乳用として好適である前記低リンホエイに関する。
 本発明によれば、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リンの含有量が低減された低リンホエイを製造できる。
 さらに前記第2の脱塩工程を設けると、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン、ナトリウム、およびカリウムの含有量が低減された低リンホエイを製造できる。
試験例に係る、塩素型陰イオン交換樹脂への通液によるリンの減少量と、通液前の塩素含有量との関係を示したグラフである。
 本発明について、詳細に説明する。
<<原料ホエイ液>>
 ウシ、ヒツジ、またはヤギ等の乳を原料として、チーズ、カゼイン、カゼインナトリウム、またはヨーグルト等を製造する過程において、凝固させた乳分を取り除いて残る透明な液をホエイと言う。本発明で用いられるホエイは、凝固した乳分を分離しただけの未処理のホエイでもよく、前記未処理のホエイに対して、脱脂および/または脱蛋白質の前処理を施したものでもよく、前記未処理のホエイまたは前処理後のホエイを、噴霧乾燥や凍結乾燥等の常法により粉末化したものでもよい。市販のホエイパウダーも使用可能であり、前処理によって塩素含有量が低くなっているホエイパウダーは好適である。
 原料ホエイ液はホエイを含む液体であればよく、例えば液体のホエイをそのまま用いてもよく、ホエイパウダーの水溶液でもよい。必要に応じて予め濃縮した濃縮液を原料ホエイ液として用いてもよい。
 ホエイおよび原料ホエイ液は中性であることが好ましい。具体的に、原料ホエイ液のpHが5.5~7.4の範囲内であることが好ましく、6~7の範囲内であることがより好ましい。
 原料ホエイ液が前記範囲内であると、中和工程を行うことなく、後述するナノろ過法による脱塩工程およびイオン交換樹脂に通液させる工程を中性域で行うことができるため、ホエイタンパク質の分解、変性、糖の酸分解やアルカリ反応などを防ぐことができる。また耐アルカリ性が低いナノろ過膜を用いても膜寿命が短命化するおそれがないため好ましい。
<第1の実施形態>
<<第1の脱塩工程>>
 第1の脱塩工程は、原料ホエイ液をナノろ過法で脱塩処理して、塩素含有量が低減された低塩素ホエイ液を得る工程である。
 ナノろ過法は、ナノろ過による脱塩処理に供される被処理液を、ナノろ過膜を透過した透過液と透過しないリテンテート液とに分離する工程を有する方法である。
 ナノろ過(NF)膜とは、限外ろ過(UF)膜と逆浸透(RO)膜の中間領域である分子量数十から千ダルトン、すなわち、分子の大きさに換算するとナノメートルの領域を分画対象とした分離膜である。無機質、糖質、アミノ酸、およびビタミンなどのうち、分子量が小さく、荷電の低い粒子はナノろ過膜を透過する。
 具体的なナノろ過膜としては、GE Water Technologies社製のDL、DK、HLシリーズ、Koch Membrane System社製のSR-3シリーズ、Dow Chemical社製のDOW-NFシリーズ、および日東電工社製のNTRシリーズ(いずれも製品名)などを例示することができるが、これらに限られるものではない。
 最終的に得られる低リンホエイの用途に応じて、目的とする組成の低リンホエイを得るのに好適なナノろ過膜を適宜選択して用いることができる。
 ナノろ過法は、1価のミネラルを選択的に脱塩するのに好適であり、カルシウムおよびマグネシウムの阻止率が高いため、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、塩素含有量を低減させることができる。
 すなわち、原料ホエイ液をナノろ過膜で脱塩処理すると、原料ホエイ液に含まれる塩素イオンはナノろ過膜を透過して透過液側へ移動する。一方、2価のミネラルの陽イオンはほとんどナノろ過膜を透過せず、リテンテート液に含まれる。
 したがって、ナノろ過法を用いることにより、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、塩素含有量が低減されたリテンテート液(低塩素ホエイ液)が得られる。
 ナノろ過法による脱塩処理において、液のpHはほとんど変動しない。したがって、中性の原料ホエイ液を用いることにより、中性の低塩素ホエイ液を得ることができる。低塩素ホエイ液のpHは5.5~7.4の範囲内であることが好ましく、6~7の範囲内であることがより好ましい。
 本発明で用いるナノろ過装置は、公知のものを適宜選択して用いることができる。
 例えば、ナノろ過膜を備えた膜モジュールと、膜モジュールに被処理液を送る供給ポンプと、ナノろ過膜を透過した透過液を膜モジュールから取り出す手段と、ナノろ過膜を透過しなかったリテンテート液を膜モジュールから取り出す手段を備えている。回分式の装置はさらに膜モジュールに供給される前の被処理液を保持する原液タンクと、膜モジュールから取り出したリテンテート液を原液タンクに戻す手段を備えている。
 膜分離操作は、透過液を取り出し、リテンテート液を原液タンクに戻す回分濃縮式でもよい。透過液を取り出し、リテンテート液を原液タンクに戻す工程のほかに、取り出した透過液と同量の水を原液タンクに加えるダイアフィルトレーション(加水透析ろ過)を行う工程を設けてもよい。または被処理液を膜モジュールに連続的に供給し、リテンテート液および透過液をそれぞれ連続的に取り出す連続式でもよい。これらを組み合わせてもよい。
 回分濃縮式によれば、脱塩および濃縮を同時に行うことができる。加水透析ろ過を行うと、より高度な脱塩が可能である。
 第1の脱塩工程で得られる低塩素ホエイ液、すなわち後述の陰イオン交換樹脂に通液される液における塩素含有量は、固形分100g当たり30mmol以下であり、好ましくは20mmol以下が好ましく、より好ましくは15mmol以下である。低塩素ホエイ液中の塩素含有量が30mmol以下であると、前記低塩素ホエイ液を塩素型陰イオン交換樹脂に通液したときにリン含有量が低減しやすい。また前記塩素含有量が20mmol以下であると、リン含有量低減の効率が顕著に向上する。
 低塩素ホエイ液中の塩素含有量はナノろ過法による脱塩処理の程度によって制御でき、例えば、脱塩処理時間を長くすることにより塩素含有量をより低下させることができる。
 すなわち、脱塩素量は(透過液量)×(透過液中における塩素濃度)となるため、透過液が発生し、かつ透過液に塩素が含まれている間では、脱塩処理を継続することにより、塩素含有量を低下させることができる。
 なお、前記塩素含有量の下限値は特に制限されないが、脱塩処理が進むほど塩素含有量は低下しにくくなる。前記塩素含有量は固形分100gあたり5mmol以上の範囲が実用的である。
 第1の脱塩工程において、ナノろ過法による脱塩処理を、条件を変えて2回以上行ってもよい。
 また原料ホエイ液中のホエイが前処理されたものであって、原料ホエイ液の塩素含有量が既に固形分100gあたり30mmol以下である場合には、第1の脱塩工程を経ずに、陰イオン交換樹脂に通液させる低塩素ホエイ液とすることができる。原料ホエイ液の塩素含有量が固形分100gあたり20mmol超、かつ30mmol以下である場合には、イオン交換によってリンを効率良く低減させるために、前記原料ホエイ液に対して第1の脱塩工程を行って塩素含有量を20mmol/100g固形以下に低減させることが好ましい。
 原料ホエイ液の塩素含有量が固形分100gあたり20mmol以下である場合には、第1の脱塩工程を経ずに、後述の陰イオン交換樹脂に通液させてもよいし、第1の脱塩工程を行って塩素含有量をさらに低下させてもよい。
<<陰イオン交換樹脂への通液>>
 第1の脱塩工程で塩素含有量が低減された低塩素ホエイ液を、イオン交換樹脂に通液させる。
 本発明におけるイオン交換樹脂は陰イオン交換樹脂からなる。すなわち、陽イオン交換樹脂に通液させる処理は行わない。
 陰イオン交換樹脂としては、少なくとも塩素型陰イオン交換樹脂を用いる。
 陰イオン交換樹脂への通液は中性域で行うことが好ましい。具体的には、陰イオン交換樹脂に通液される低塩素ホエイ液のpH、および前記陰イオン交換樹脂からの流出液(以下、イオン交換ホエイということもある。)のpHが、いずれも5.5~7.4の範囲内であることが好ましく、6~7の範囲内であることがより好ましい。
 このためには、陰イオン交換樹脂としてOH型陰イオン交換樹脂を使用しないことが望ましく、陰イオン交換樹脂として塩素型陰イオン交換樹脂のみを用いることが好ましい。また、OH型陰イオン交換樹脂に通液させると液がアルカリ性になり、リンの遊離が抑制されてリン含有量が低減しにくくなるおそれもあるため、この点でもOH型陰イオン交換樹脂を使用しないことが望ましい。
 塩素型陰イオン交換樹脂としては、陰イオン交換樹脂を、予め食塩水、または塩酸などを用いて塩素型にしたものを用いる。陰イオン交換樹脂の例としては、ロームアンドハース社製IRA402BL、IRA958、および三菱化学社製PA316(いずれも製品名)などを例示することができる。しかし、これらに限られず、低リンホエイの用途に応じて、目的とする組成の低リンホエイを得るのに好適な陰イオン交換樹脂を適宜選択することができる。
 塩素含有量が低減された低塩素ホエイ液を塩素型陰イオン交換樹脂に通液させることにより、液中のリン含有量が低下する。したがって、リン含有量が低減されたイオン交換ホエイ液が得られる。一方、2価のミネラルの陽イオンの含有量は、塩素型陰イオン交換樹脂への通液によってわずかしか減少しない。
 したがって、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン含有量が低減されたイオン交換ホエイ液が得られる。
 イオン交換ホエイ液におけるリン含有量は、後述する低リンホエイの好ましいリン含有量を達成するために、固形分100g当たり12mmol以下が好ましく、10mmol以下がより好ましい。
 塩素型陰イオン交換樹脂への通液条件は、乳糖が析出しない範囲で、流出液におけるリン含有量の目標値に応じて設定できる。
 ホエイを含む液を塩素型陰イオン交換樹脂に通液させる場合、イオン交換樹脂単位交換容量あたりの固形分の通液量が少ないほど、イオン交換効率が高くなり、通液によるリン含有量の低減量は多くなる。すなわちイオン交換樹脂の体積をA(単位:L)とし、流出液に含まれる固形分量をB(単位:kg)とするとき、同じ樹脂で比較する場合においては、B/Aで表わされる通液倍率が小さいほど、流出液中のリン含有量は低下する。また、流出液中のリン含有量をより低下させるためには、通液させる液の固形濃度が低く、かつ流速が小さい(遅い)方が好ましい。
 塩素型陰イオン交換樹脂に通液させる液の固形濃度は、例えば4~40質量%が好ましく、5~20質量%がより好ましい。前記固形濃度が4質量%未満であると通液に時間がかかり、効率がよくない。また、前記固形濃度が低いほど、後工程において濃縮を行う際に濃縮倍率を高くする必要がある。前記固形濃度が40質量%を超えると、溶液の粘度が高くなり、乳糖析出の可能性も高くなる。
 通液させる際の流速は、例えば2~12SVが好ましく、3~8SVがより好ましい。前記流速が2SV未満であると通液に時間がかかり効率がよくない。前記流速が12SVを超えると、圧力損失が高くなる。なおSVとは、単位時間当たりに通液した液の、イオン交換樹脂量に対する相対量を表し、1時間にイオン交換樹脂量と同量の液を通液した場合の流速を1SVという。
 通液させる液の温度は2~50℃が好ましく、3~15℃がより好ましい。前記温度が2℃未満であると、液の粘度が高くなりすぎる。また温度が下がりすぎると液が凍結をおこすおそれもある。一方、50℃を超えると蛋白質の変性、または褐変等が生じる可能性が高くなる。微生物の増殖を抑えるためには10℃以下が好ましい。
 こうして得られるイオン交換ホエイ液(流出液)をそのままの状態で液状の低リンホエイとして用いてもよく、必要に応じて、公知の方法で後処理を施してもよい。前記後処理は液中のリンの含有量を増加させない処理であることが好ましい。また液中のカルシウム含有量およびマグネシウム含有量を低減させない処理であることが好ましい。
 例えば、イオン交換ホエイ液を濃縮することにより濃縮液状の低リンホエイを得ることができる。また得られたイオン交換ホエイ液を必要に応じて濃縮した後、凍結乾燥、または噴霧乾燥等の乾燥工程を経て、粉末状の低リンホエイとしてもよい。低リンホエイは他製品の原料として用いることが可能である。
 本実施形態によれば、ナノろ過法で脱塩処理された低塩素ホエイ液を、塩素型陰イオン交換樹脂に通液させることにより、後述の実施例に示されるように、リン含有量が低減された低リンホエイが得られる。また、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減は良好に抑えられる。
 最終的に得られる低リンホエイのリン含有量は、固形分100gあたり12mmol以下が好ましく、10mmol以下がより好ましい。前記リン含有量が12mmol以下であると、調製粉乳用に好適なレベルを満たす。
 また、低リンホエイにおけるカルシウム含有量およびマグネシウム含有量の合計は固形分100gあたり10mmol以上が好ましい。特に、カルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり13~17mmolの範囲にあると、調製粉乳用の原料として好適である。
 本実施形態で得られる低リンホエイは、リン含有量が良好に低減されており、かつ原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減が抑えられているため、特に調製粉乳用として好適である。
 調製粉乳とは生乳、牛乳若しくは特別牛乳、またはこれらを原料として製造した食品を加工し、または主要原料とし、これに乳幼児に必要な栄養素を加え粉末状にしたものである。
<第2の実施形態>
 本実施形態では、第1の実施形態で得られたイオン交換ホエイ液(流出液)を、さらにナノろ過法を用いて脱塩処理する第2の脱塩工程を設けて、ナトリウムおよびカリウムの含有量を低減させる。
<<第1の脱塩工程・第1のイオン交換工程>>
 本実施形態において、第1の脱塩工程および陰イオン交換樹脂への通液(本実施形態では第1のイオン交換工程という)は第1の実施形態と同様に行う。
 第1の脱塩工程において、原料ホエイ液をナノろ過膜で脱塩処理すると、原料ホエイ液に含まれる塩素、ナトリウム、およびカリウム等がナノろ過膜を透過して透過液側へ移動する。したがって、第1の脱塩工程を行うことにより、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、塩素含有量が低減されるとともに、ナトリウム含有量およびカリウム含有量も低減したリテンテート液(低塩素ホエイ液)が得られる。
 次いで、第1のイオン交換工程において、低塩素ホエイ液を陰イオン交換樹脂に通液させると、液中のリン含有量が低下するとともに、塩素含有量が増加する。したがって、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン含有量が低減されるとともに、低塩素ホエイ液よりも塩素含有量が増加した流出液(本実施形態では第1のイオン交換ホエイ液という)が得られる。本実施形態では、こうして得られる第1のイオン交換ホエイ液を第2の脱塩工程に供する。
<<第2の脱塩工程>>
 第2の脱塩工程で用いられるナノろ過膜およびナノろ過装置は、第1の脱塩工程と同様のものを用いることができる。
 第1のイオン交換ホエイ液を、第2の脱塩工程でナノろ過法により脱塩処理することにより、第1のイオン交換ホエイ液中のカルシウムおよびマグネシウムの含有量の低減を抑えつつ、ナトリウムおよびカリウムの含有量が低減されたリテンテート液(以下、第2の脱塩ホエイ液という。)が得られる。
 第2の脱塩工程において、ナノろ過法による脱塩処理に供される被処理液中の、ナトリウム含有量とカリウム含有量の合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))(以下、Cl/(Na+K)比ということもある)が0.35以上であることが好ましい。前記Cl/(Na+K)比が0.35以上であると、ナノろ過におけるナトリウムおよびカリウムの透過率(以下(Na+K)透過率ということもある。)が充分に高くなる。前記Cl/(Na+K)比は、より好ましくは0.5以上である。
 本明細書における(Na+K)透過率は、下記式(1)で表わされる値である。なおナトリウム含有量(以下、Na含有量と記載することもある。)およびカリウム含有量(以下、K含有量と記載することもある。)の単位はmmol/L液である。
(Na+K)透過率=(透過液中のNa含有量とK含有量の合計)/(リテンテート液中のNa含有量とK含有量の合計)…(1)
 本実施形態において、第1のイオン交換工程を、第1の実施形態と同様にリンの含有量が固形分100g当たり12mmol以下となるように行うと、得られる第1のイオン交換ホエイ液のCl/(Na+K)比は、通常、0.35よりも充分高くなり、例えば0.8以上となる。
 また、第2の脱塩工程において、回分濃縮式またはダイアフィルトレーションでナノろ過を行う場合、被処理液におけるCl/(Na+K)比が小さくなると(Na+K)透過率が減少し、脱塩効率が低下する。したがって、再度、塩素型陰イオン交換樹脂に通液する等して、前記被処理液におけるCl/(Na+K)比を0.35以上、好ましくは0.5以上に維持することが好ましい。
 この場合、第2の脱塩工程に供される第1のイオン交換ホエイ液のCl/(Na+K)比が0.8以上であると、塩素含有量を増大させる工程を新たに設けなくても、ナトリウムおよびカリウムの含有量が所望のレベルに低減するまで、Cl/(Na+K)比が0.35以上に維持されやすい。
 Cl/(Na+K)比の上限としては、本発明によって得られる脱塩ホエイにおいて、塩素、ナトリウム、及びカリウムの3つの全てを低減した場合、1.2を例示することができる。得られた脱塩ホエイにおいて、ナトリウム、及びカリウムに比して塩素が相対的に多く残存しても良い場合には、Cl/(Na+K)比の上限は、1.5が例示される。
<<第2のイオン交換工程>>
 第2の脱塩工程において、ナノろ過法による脱塩処理に供される被処理液中の塩素含有量を増加させるために、前記被処理液が脱塩処理に供される前に、前記被処理液を塩素型陰イオン交換樹脂に通液させる工程(本実施形態では第2のイオン交換工程という。)を設けてもよい。第2のイオン交換工程は、カルシウムおよびマグネシウムの含有量の低下を抑えつつ、塩素含有量を増加させることができるとともに、塩素含有量が30mmol/100g固形以下であるとイオン交換によるリン含有量のさらなる低下も期待できる。
 例えば第2の脱塩工程において、第1のイオン交換ホエイ液をナノろ過による脱塩処理に供し、得られるリテンテート液を塩素型陰イオン交換樹脂に通液(第2のイオン交換工程)させた後、再びナノろ過による脱塩処理に供してもよい。前記塩素型陰イオン交換樹脂への通液(第2のイオン交換工程)と、ナノろ過法による脱塩処理とを交互に複数回繰り返し、最後にナノろ過法による脱塩処理を行ってもよい。
 さらに、回分濃縮方式でナノ濾過法により脱塩処理を行う場合には、原料タンクからホエイ液を抜き出して塩素型陰イオン交換樹脂に通液し、得られた液を原料タンクに戻す操作を追加しても良い。
 また、ナノ濾過法による脱塩処理の途中で、Cl/(Na+K)比が低下した場合は、前記のように被脱塩処理液を塩素型陰イオン交換樹脂に通液することによりCl/(Na+K)比を上昇させることが可能である。
 第2のイオン交換工程における、塩素型陰イオン交換樹脂への通液条件は、乳糖が析出しない範囲で、流出液における塩素含有量の目標値に応じて設定できる。上述したように、通液倍数=(流出液に含まれる固形分量)/(イオン交換樹脂の体積)が小さいほど、すなわち、イオン交換樹脂単位交換容量あたりのホエイ固形分の通液量が少ないほど、イオン交換効率が高くなるため、通液による塩素含有量の増加量は多くなる。したがって、流出液中の塩素含有量をより増大させるためには、通液させる液の固形濃度が低く、かつ流速が小さい(遅い)方が好ましい。
 第2のイオン交換工程における好ましい通液条件は、第1のイオン交換工程と同じである。
 最後のナノろ過後に得られるリテンテート液(第2の脱塩ホエイ液)をそのままの状態で、液状の、脱塩された低リンホエイとして用いてもよい。また、必要に応じて濃縮してもよく、公知の方法で乾燥して粉末状としてもよい。ただし、本発明の低リンホエイは、一般のホエイに比して、加熱により沈殿を生じやすい傾向があると考えられるため、沈殿を抑えたい場合には、加熱温度を低くする、加熱時間を短くする、又は加熱時の固形分濃度を低くする等の手段を適宜実施しても良い。
 本実施形態によれば、第1の実施形態で得られたイオン交換ホエイ液を、さらにナノろ過法により脱塩処理することにより、原料ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン、ナトリウム、およびカリウムの含有量が低減された低リンホエイが得られる。
 本実施形態において、最終的に得られる、脱塩された低リンホエイにおける、ナトリウム含有量とカリウム含有量の合計は固形分100g当たり40mmol以下であることが好ましく、32mmol以下であることがより好ましい。
 リン含有量は、第1の実施形態と同様に固形分100g当たり12mmol以下が好ましく、10mmol以下がより好ましい。
 またカルシウム含有量(以下、Ca含有量と記載することもある。)およびマグネシウム含有量(以下、Mg含有量と記載することもある。)の合計は、第1の実施形態と同様に固形分100gあたり10mmol以上が好ましい。特にカルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり13~17mmolの範囲にあると、調製粉乳用の原料として好適である。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。以下において、含有率の単位を表わす「%」は特に断りのない限り「質量%」である。
<<実施例1>>
(第1の脱塩工程)
 チーズホエイパウダー(タンパク質13.0%、脂質1.0%、炭水化物76.2%、灰分7.8%、水分2.0%、リン19mmol/100g)5kgに水を加えて溶解し、55kgの原料ホエイ液(pH=6.8)を得た。
 得られた原料ホエイ液をナノろ過膜(DL3840C-30D:GE Water&Process Technologies社製)に通液し、加水透析ろ過方式で脱塩処理を行った。すなわち、リテンテート液を原液タンクに戻しながら、かつ透過液量に等しい水量を原液タンクに加水することで原液タンク内の液量を一定に保つ加水透析ろ過方式で、透過液が50kgになるまでバッチ式による脱塩処理を行った。こうして得られた原液タンク内の液を低塩素ホエイ液とする。低塩素ホエイ液の回収量は64.0kgで、固形分4.4kgを含む。
(イオン交換工程)
 次いで、上記で得られた、固形濃度約6.9%の低塩素ホエイ液64kgを、塩素型陰イオン交換樹脂(ロームアンドハース社製、製品名:IRA402BL)4Lを充填したカラムに、流速6SV、液温5~10℃で通液し、固形濃度6.0%のイオン交換ホエイ液(流出液)71.2kgを得た。本例において、前記イオン交換ホエイ液は、液状の低リンホエイである。
 原料ホエイ液、低塩素ホエイ液およびイオン交換ホエイ液について、pH、固形分100gあたりのナトリウム(Na)含有量とカリウム(K)含有量の合計(表にはNa+Kと記載する。)、固形分100gあたりのCa含有量とMg含有量の合計(表にはCa+Mgと記載する。)、リン含有量(表にはPと記載する。)、および塩素含有量(表にはClと記載する。)を表1に示す。ミネラル含有量の単位はmmol/100g固形である(以下同様。)。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、原料ホエイ液、低塩素ホエイ液、およびイオン交換ホエイ液のpHは6.6~6.8でほとんど変化しない。
 原料ホエイ液に比べて、イオン交換ホエイ液は、リンが充分に低減されており、カルシウムおよびマグネシウムの含有量の低下は小さい。
<<実施例2>>
 実施例1で得られたイオン交換ホエイ液(固形濃度6.0%、pH=6.6)71.2kgを加水して78.7kgとした。イオン交換ホエイ液におけるCl/(Na+K)比は、表1から算出すると1.06である。本例において、イオン交換ホエイ液は、第2の脱塩工程の脱塩処理に最初に供される被処理液である。(第2の脱塩工程)
 前記イオン交換ホエイ液を実施例1の第1の脱塩工程と同じナノろ過装置で脱塩処理した。すなわち、リテンテート液を原液タンクに戻しながら、回分濃縮式で、透過液が50kgとなるまで脱塩処理を行い、続いて加水透析ろ過方式で、ナノろ過を継続し、透過液が13kg(脱塩処理開始からの合計63kg)となるまで脱塩処理を行った。こうして得られた原液タンク内の液を第2の脱塩ホエイ液(脱塩された低リンホエイ液)とする。第2の脱塩ホエイ液の回収量は24.8kgで固形濃度14.7%、pH=6.4であった。
 得られた第2の脱塩ホエイ液(脱塩された低リンホエイ液)の固形分100gあたりの組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、リン、ナトリウム、およびカリウムの含有量が充分に低減された低リンホエイが得られた。また原料ホエイ液に比べて、カルシウム、マグネシウムの含有量の低下は小さい。
 第2の脱塩ホエイ液におけるCl/(Na+K)比は、表2から算出すると0.98である。本例において、第2の脱塩ホエイ液は、ナノろ過による脱塩処理に最後に供された被処理液が、脱塩処理された後の液であるから、前記脱塩処理に最後に供された被処理液よりもCl/(Na+K)比は大きくはならない。したがって、第2の脱塩工程の脱塩処理に最初に供された被処理液(イオン交換ホエイ液)のCl/(Na+K)比は1.06であり、最後に供された被処理液のCl/(Na+K)比は0.98以上であるから、被処理液のCl/(Na+K)比が0.35より充分に高い値に維持されたことがわかる。
<<実施例3>>
(第1の脱塩工程)
 ナノろ過法で前処理(脱塩処理)したチーズホエイパウダー(タンパク質12.4%、脂質1.1%、炭水化物77.1%、灰分5.6%、水分3.8%、リン19mmol/100g)8kgに水を加えて溶解して、87kgの原料ホエイ液を得た。
 得られた原料ホエイ液を実施例1と同じナノろ過膜を用い、加水透析ろ過方式で、透過液が24kgになるまでバッチ式による脱塩処理を行った。こうして得られた原液タンク内の液を低塩素ホエイ液とする。
(イオン交換工程)
 次いで、得られた低塩素ホエイ液87kgのうち、66.7kg(固形量6kg)を分取した。これに固形濃度約8%になるように加水した液75.1kgを、実施例1と同じ塩素型陰イオン交換樹脂の6Lを充填したカラムに、流速6SV、液温5~10℃で通液し、固形濃度7.4%のイオン交換ホエイ液(流出液)76.1kgを得た。本例において、前記イオン交換ホエイ液は、液状の低リンホエイである。
 原料ホエイ液、低塩素ホエイ液およびイオン交換ホエイ液について、pH、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、リン含有量、および塩素含有量を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、原料ホエイ液、低塩素ホエイ液、およびイオン交換ホエイ液のpHは6.1~6.4でほとんど変化しない。原料ホエイ液に比べて、イオン交換ホエイ液は、リンが充分に低減されており、カルシウムおよびマグネシウムの含有量の低下は小さい。
<<実施例4>>
 実施例3で得られた、イオン交換ホエイ液(固形濃度7.4%、pH=6.1)76.1kgを加水して83.2kgとした。イオン交換ホエイ液におけるCl/(Na+K)比は、表1から算出すると1.23である。本例において、イオン交換ホエイ液は、第2の脱塩工程の脱塩処理に最初に供される被処理液である。
(第2の脱塩工程)
 前記イオン交換ホエイ液を実施例3の第1の脱塩工程と同じナノろ過装置で脱塩処理した。すなわち、回分濃縮式で、透過液が45kgとなるまで脱塩処理を行った。続いて加水透析ろ過方式で、ナノろ過を継続し、透過液が25kg(脱塩処理開始からの合計70kg)となるまで脱塩処理を行った。こうして得られた原液タンク内の液を第2の脱塩ホエイ液(脱塩された低リンホエイ液)とする。第2の脱塩ホエイ液の回収量は30kgで、固形濃度14.0%、pH=6.2であった。
 得られた第2の脱塩ホエイ液(脱塩された低リンホエイ液)の固形分100gあたりの組成を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、リン、ナトリウム、およびカリウムの含有量が充分に低減された低リンホエイが得られた。また原料ホエイ液に比べて、カルシウム、およびマグネシウムの含有量の低下は小さい。
 第2の脱塩ホエイ液におけるCl/(Na+K)比は、表4から算出すると1.17である。本例において、第2の脱塩ホエイ液は、ナノろ過による脱塩処理に最後に供された被処理液が、脱塩処理された後の液であるから、前記脱塩処理に最後に供された被処理液のCl/(Na+K)比は1.17以上である。すなわち、被処理液のCl/(Na+K)比が0.35より充分に高い値に維持されたことがわかる。
<<比較例1>>
 本例では、ナノろ過法による脱塩処理だけを行い、イオン交換樹脂に通液させる工程は行わなかった。脱塩処理は実施例1における第1の脱塩処理よりも透過液量が多くなるように行った。
 すなわち、チーズホエイパウダー(タンパク質12.6%、脂質1.0%、炭水化物76.8%、灰分8.08%、水分1.6%、リン18.3mmol/100g)5.6kgに水を加えて溶解し、100kgの原料ホエイ液(pH=6.9)を得た。
 得られた原料ホエイ液を実施例1と同じナノろ過膜で、透過液が50kgになるまでバッチ式による脱塩処理を行った。
 続いて、50kgの水をリテンテートに加水しては、再び50kgの透過液を得るナノろ過工程を3回繰り返して脱塩処理した。こうして得られた原液タンク内の液を脱塩ホエイ液(比較例)とする。
 原料ホエイ液、および脱塩ホエイ液(比較例)について、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、リン含有量、および塩素含有量を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本例では、実施例1よりもかなり多い透過液が得られるまで、ナノろ過による脱塩処理を行ったが、リンはほとんど低減しなかった。得られた液におけるNa含有量とK含有量の合計は目標値である40mmol/100gより多く、リンも12mmol/100gより多く含まれていた。
<<比較例2>>
 本例では、ナノろ過による脱塩処理を、陰イオン交換樹脂に通液させる工程の前に行わず、陰イオン交換樹脂に通液させた後に行った。
 すなわち、チーズホエイパウダー(タンパク質13.2%、脂質0.9%、炭水化物76%、灰分7.9%、水分2.1%、リン21.2mmol/100g、塩素42.6mmol/100g)6.6kgに水を加えて溶解し、93kgの原料ホエイ液(pH=6.8)を得た。
 得られた原料ホエイ液を実施例1と同じ塩素型陰イオン交換樹脂の5Lが充填されたカラムに通液しながら、流出液(イオン交換ホエイ液)99.2kg(固形量6.3kg)を得た。これを加水して108kgとし、実施例1と同じナノろ過装置に供給して脱塩処理を行った。
 塩素型陰イオン交換樹脂への通液条件は、流速6SV、液温5~10℃とした。流出液(イオン交換ホエイ液)のpHは6.5であった。
 ナノろ過による脱塩処理は、リテンテート液を原液タンクに戻しながら、回分濃縮式で、透過液が68.6kgとなるまで行った。この時点での原液タンク内の液を脱塩ホエイ液(I)とする。脱塩ホエイ液(I)の全量は39kgで固形濃度15.6%、pH=6.3であった。
 続いて、加水透析ろ過方式で、バッチ式によるナノろ過を継続し、透過液が39.0kgとなるまで脱塩処理を行った。こうして得られた原液タンク内の液を脱塩ホエイ液(II)とする。脱塩ホエイ液(II)のpHは6.3であった。
 原料ホエイ液、流出液(イオン交換ホエイ液)および脱塩ホエイ液(II)について、固形分100gあたりのNa含有量とK含有量の合計、固形分100gあたりのCa含有量とMg含有量の合計、リン含有量、および塩素含有量を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 本例では、予めナノろ過法による脱塩処理を行なわずに、固形分100gあたり43.5mmolの塩素を含む原料ホエイ液を、そのまま塩素型陰イオン交換樹脂に通液したため、流出液(イオン交換ホエイ液)のリン含有量は、原料ホエイ液と比べてほとんど減少しなかった。
<<試験例1>>
 本例では、第1の脱塩工程による塩素低減量と、これをイオン交換樹脂に通液したときのリンの低減量との関係を調べた。
(第1の脱塩工程)
 チーズホエイパウダー(タンパク質13.1%、脂質0.8%、炭水化物76.2%、灰分7.9%、水分2.0%、ナトリウムとカリウムの合計94.5mmol/100g、カルシウムとマグネシウムの合計17.5mmol/100g、リン21.7mmol/100g、塩素43.2mmol/100g)の10.5kgに水を加えて溶解し115kgの原料ホエイ液(pH=6.7)を得た。
 次に、得られた原料ホエイ液中の塩素濃度を減じる目的で、実施例1と同じナノろ過膜で、リテンテート液を原液タンクにもどしながら、透過液量に等しい水量を加水する加水透析ろ過で、脱塩処理を行った。この脱塩処理の途中で、経時的に、リテンテート液(低塩素ホエイ液)からサンプル液を各10kgずつ、4回採取した。原料ホエイ液を含めて5個のサンプル液(サンプル番号1~5)のpHはいずれも6.8であった。各サンプル液のミネラル組成を表7に示す。
(イオン交換工程)
 上記で得られた各サンプル液の約2kgを凍結乾燥し、それぞれのサンプル粉末を得た。各サンプル粉末22.5gに水を加えて溶解し、固形濃度7%の水溶液とした。前記水溶液を、実施例1と同じ塩素型強塩基性イオン交換樹脂の15mlを充填したカラムに、流速5~6SV、液温5~10℃で通液し、流出液を流出開始から所定量回収(1回目の回収)し、続いてその後の流出液を所定量回収(2回目の回収)した。回収する液量は、1回目の回収は固形約10gに相当する量(通液倍率0~0.67倍)とし、2回目の回収は固形約12.5g分に相当する量(通液倍率0.67~1.5倍)とした。こうして、サンプル番号1~5のサンプル液のそれぞれについて、通液倍率0~0.67倍の流出液と、通液倍率0.67~1.5倍の流出液を得、合計10種のイオン交換ホエイ液のサンプルを得た。これらのサンプルのpHはいずれも6.6であった。
 各イオン交換ホエイ液のサンプルのミネラル組成を表8に示す。なお、表中の、通液倍率が0~0.67倍の流出液(0~0.67倍通液品)の組成は分析値をそのまま記載したものである。通液倍率が0~1.5倍の流出液(0~1.5倍通液品)の組成は、0~0.67倍の流出液の分析値と0.67~1.5倍の流出液の分析値との加重平均の値である。ミネラル含有量の単位はmmol/100g固形である。
 図1は、塩素型陰イオン交換樹脂に通液させた後の液(流出液)におけるリン含有量から、通液前のサンプル(低塩素ホエイ液)におけるリン含有量を減じた差で表されるリンの減少量と、通液前のサンプル(低塩素ホエイ液)における塩素含有量との関係を示したグラフであり、横軸が通液前の塩素含有量(単位:mmol/100g固形)、縦軸がリンの減少量(単位:mmol/100g固形)である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7、8、および図1の結果より、0~0.67倍通液品と0~1.5倍通液品を比べると、0~0.67倍通液品の方がリン含有量はより低下しており、イオン交換後の塩素含有量はより増大している。すなわち、通液倍率が小さいほどイオン交換効率が高い。
 塩素を44mmol/100g固形含む原料ホエイ(サンプル1)をそのまま通液させた場合、0~1.5倍通液品ではリンはほとんど低減せず、0~0.67倍通液品でもリン含有量を12mmol/100g以下にすることはできなかった。
 塩素型強塩基性イオン交換樹脂に通液させる液(低塩素ホエイ液)の塩素含有量が30mmol/100g固形以下(サンプル2)になると、リンの低減量が大きくなり、0~0.67倍通液品において12mmol/100g以下のリン含有量を達成できた。
 塩素型強塩基性イオン交換樹脂に通液させる液(低塩素ホエイ液)の塩素含有量が20mmol/100g固形以下(サンプル3~5)になると、リン低減量が顕著に大きくなり、前記塩素含有量が低いほど、リンの低減量が大きくなる。
 本発明によれば、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リンの含有量が低減された低リンホエイを製造できる。
 更に前記第2の脱塩工程を設けると、ホエイに含まれているカルシウムおよびマグネシウムの含有量の低減を抑えつつ、リン、ナトリウム、およびカリウムの含有量が低減された低リンホエイを製造できるので、本発明は食料品の分野において有用である。

Claims (12)

  1.  低リンホエイの製造方法であって、
     原料ホエイ液をナノろ過法で脱塩処理して、塩素含有量が固形分100gあたり30mmol以下に低減された低塩素ホエイ液を得ること、および、
     前記低塩素ホエイ液をイオン交換樹脂に通液させることを含み、
     前記イオン交換樹脂が陰イオン交換樹脂からなり、
     前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いる前記方法。
  2.  前記原料ホエイ液のpHが6~7の範囲内であり、前記低塩素ホエイ液のpH、および前記陰イオン交換樹脂からの流出液のpHが、いずれも6~7である、請求項1に記載の低リンホエイの製造方法。
  3.  前記低塩素ホエイ液の、塩素含有量が固形分100gあたり20mmol以下である、請求項1または2に記載の低リンホエイの製造方法。
  4.  前記低リンホエイの、リン含有量が固形分100gあたり12mmol以下であり、かつカルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり10mmol以上である、請求項1~3のいずれか一項に記載の低リンホエイの製造方法。
  5.  前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することを更に含む、請求項1~4のいずれか一項に記載の低リンホエイの製造方法。
  6.  前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することにおいて、脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))を0.35以上に維持する、請求項5に記載の低リンホエイの製造方法。
  7.  低リンホエイの製造方法であって、
     ホエイを含み、塩素含有量が固形分100gあたり30mmol以下である低塩素ホエイ液をイオン交換樹脂に通液させることを含み、
     前記イオン交換樹脂が陰イオン交換樹脂からなり、
     前記陰イオン交換樹脂として少なくとも塩素型陰イオン交換樹脂を用いてなり、
     前記低塩素ホエイ液のpHが6~7の範囲内であり、
     前記陰イオン交換樹脂からの流出液のpHが6~7である前記方法。
  8.  前記低塩素ホエイ液の、塩素含有量が固形分100gあたり20mmol以下である、請求項7に記載の低リンホエイの製造方法。
  9.  前記低リンホエイの、リン含有量が固形分100gあたり12mmol以下であり、かつカルシウム含有量およびマグネシウム含有量の合計が固形分100gあたり10mmol以上である、請求項7または8に記載の低リンホエイの製造方法。
  10.  前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することを更に含む、請求項7~9のいずれか一項に記載の低リンホエイの製造方法。
  11.  前記陰イオン交換樹脂からの流出液を、ナノろ過法により脱塩処理することにおいて、脱塩処理に供される被処理液の、ナトリウム含有量とカリウム含有量との合計値に対する塩素含有量のモル比(塩素/(ナトリウム+カリウム))を0.35以上に維持する、請求項10に記載の低リンホエイの製造方法。
  12.  前記低リンホエイが調製粉乳用である、請求項1~11のいずれか一項に記載の低リンホエイの製造方法。
PCT/JP2010/066482 2009-09-25 2010-09-24 低リンホエイの製造方法 WO2011037155A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2011533012A JP5531020B2 (ja) 2009-09-25 2010-09-24 低リンホエイの製造方法
EP10818827.7A EP2481292B1 (en) 2009-09-25 2010-09-24 Method for manufacturing low-phosphorus whey
RU2012112230/10A RU2525711C2 (ru) 2009-09-25 2010-09-24 Способ получения сыворотки с низким содержанием фосфора
US13/497,646 US8795750B2 (en) 2009-09-25 2010-09-24 Method for manufacturing low-phosphorus whey
AU2010299077A AU2010299077B2 (en) 2009-09-25 2010-09-24 Method for manufacturing low-phosphorus whey
CN201080042330.7A CN102548421B (zh) 2009-09-25 2010-09-24 低磷乳清的制造方法
CA2774689A CA2774689C (en) 2009-09-25 2010-09-24 Method for manufacturing low-phosphorus whey
KR1020127006779A KR101381624B1 (ko) 2009-09-25 2010-09-24 저인 훼이의 제조 방법
NZ598888A NZ598888A (en) 2009-09-25 2010-09-24 Method for manufacturing low-phosphorus whey
DK10818827.7T DK2481292T3 (en) 2009-09-25 2010-09-24 Method of producing phosphorfattig valle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-220086 2009-09-25
JP2009220086 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011037155A1 true WO2011037155A1 (ja) 2011-03-31

Family

ID=43795900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066482 WO2011037155A1 (ja) 2009-09-25 2010-09-24 低リンホエイの製造方法

Country Status (11)

Country Link
US (1) US8795750B2 (ja)
EP (1) EP2481292B1 (ja)
JP (1) JP5531020B2 (ja)
KR (1) KR101381624B1 (ja)
CN (1) CN102548421B (ja)
AU (1) AU2010299077B2 (ja)
CA (1) CA2774689C (ja)
DK (1) DK2481292T3 (ja)
NZ (1) NZ598888A (ja)
RU (1) RU2525711C2 (ja)
WO (1) WO2011037155A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021990A (ja) * 2011-07-25 2013-02-04 Meiji Co Ltd 脱塩処理乳及び脱塩脱脂粉乳、並びに、これらの製造方法
JP2016086671A (ja) * 2014-10-30 2016-05-23 森永乳業株式会社 成分調整乳およびその製造方法
JP2017184682A (ja) * 2016-04-07 2017-10-12 森永乳業株式会社 発酵乳の製造方法
KR20190031482A (ko) * 2016-06-21 2019-03-26 아를라 푸즈 에이엠비에이 우유 단백질 및 우유 당류를 함유하는 개선된 영양 제품의 제조 방법 및 상기 방법에 의해 수득된 제품
JP7478333B2 (ja) 2020-07-29 2024-05-07 和弘 原 成分調整物生産装置及び成分調整物生産方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330989A1 (en) * 2015-05-11 2016-11-17 Land O'lakes, Inc. Dairy products with reduced electrolytes and systems and methods of making same
US11337435B2 (en) 2019-04-12 2022-05-24 Land O'lakes, Inc. Product and method of producing dairy products comprising dairy-derived emulsifying salts

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175438A (ja) 1982-04-05 1983-10-14 Sumitomo Chem Co Ltd チ−ズホエ−の濃縮、脱塩方法
JPS60256342A (ja) * 1984-05-22 1985-12-18 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム リン酸塩およびカルシウム含量を減少させた脱脂乳の製造法
JP2001275562A (ja) * 2000-03-31 2001-10-09 Snow Brand Milk Prod Co Ltd 脱塩乳類の製造方法
JP3295696B2 (ja) 1999-05-17 2002-06-24 ユーロディア アンドゥストリ ソシエテ アノニム 脱塩を目的とするホエーの処理方法
JP3411035B2 (ja) 1992-11-30 2003-05-26 森永乳業株式会社 低リンホエータンパク質,その製造方法,低リン精製ホエータンパク質加水分解物およびその製造方法
FR2848877A1 (fr) * 2004-01-28 2004-06-25 Applexion Ste Nouvelle De Rech Procede de purification par nanofiltration d'une solution aqueuse sucree contenant des anions et cations monovalents et polyvalents
WO2009113861A2 (en) * 2008-03-14 2009-09-17 Friesland Brands B.V. Process for isolating sialic acid containing oligosaccharides, and the compositions containing sialic acid containing oligosaccharides obtainable thereby
JP2009220086A (ja) 2008-03-19 2009-10-01 Marumasu Kikai Kk 精米機の搗精装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295696A (ja) 1990-04-13 1991-12-26 Hitachi Ltd プロツタ
DE69319923T2 (de) * 1992-12-08 1999-02-18 Abbott Lab Entfernung von phosphor aus säugetiermilch mit ionenaustausch
ES2221947T3 (es) * 1996-10-09 2005-01-16 Societe Des Produits Nestle S.A. Desmineralizacion de suero lacteo, dulce, de queseria.
IL150240A (en) * 2002-06-16 2005-07-25 Lipogen Ltd Infant formula supplemented with phospholipids
PL1958514T3 (pl) * 2007-02-07 2013-08-30 Kraft Foods R & D Inc Sposób wytwarzania zmodyfikowanej serwatki w proszku

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175438A (ja) 1982-04-05 1983-10-14 Sumitomo Chem Co Ltd チ−ズホエ−の濃縮、脱塩方法
JPS60256342A (ja) * 1984-05-22 1985-12-18 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム リン酸塩およびカルシウム含量を減少させた脱脂乳の製造法
JP3411035B2 (ja) 1992-11-30 2003-05-26 森永乳業株式会社 低リンホエータンパク質,その製造方法,低リン精製ホエータンパク質加水分解物およびその製造方法
JP3295696B2 (ja) 1999-05-17 2002-06-24 ユーロディア アンドゥストリ ソシエテ アノニム 脱塩を目的とするホエーの処理方法
JP2001275562A (ja) * 2000-03-31 2001-10-09 Snow Brand Milk Prod Co Ltd 脱塩乳類の製造方法
FR2848877A1 (fr) * 2004-01-28 2004-06-25 Applexion Ste Nouvelle De Rech Procede de purification par nanofiltration d'une solution aqueuse sucree contenant des anions et cations monovalents et polyvalents
WO2009113861A2 (en) * 2008-03-14 2009-09-17 Friesland Brands B.V. Process for isolating sialic acid containing oligosaccharides, and the compositions containing sialic acid containing oligosaccharides obtainable thereby
JP2009220086A (ja) 2008-03-19 2009-10-01 Marumasu Kikai Kk 精米機の搗精装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Milk Comprehensive Dictionary", 20 January 1992, ASAKURA PUBLISHING CO., LTD., pages: 375 - 377
DIETARY REFERENCE INTAKES FOR JAPANESE, 2005
See also references of EP2481292A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021990A (ja) * 2011-07-25 2013-02-04 Meiji Co Ltd 脱塩処理乳及び脱塩脱脂粉乳、並びに、これらの製造方法
JP2016086671A (ja) * 2014-10-30 2016-05-23 森永乳業株式会社 成分調整乳およびその製造方法
JP2017184682A (ja) * 2016-04-07 2017-10-12 森永乳業株式会社 発酵乳の製造方法
KR20190031482A (ko) * 2016-06-21 2019-03-26 아를라 푸즈 에이엠비에이 우유 단백질 및 우유 당류를 함유하는 개선된 영양 제품의 제조 방법 및 상기 방법에 의해 수득된 제품
KR102482040B1 (ko) 2016-06-21 2022-12-28 아를라 푸즈 에이엠비에이 우유 단백질 및 우유 당류를 함유하는 개선된 영양 제품의 제조 방법 및 상기 방법에 의해 수득된 제품
JP7478333B2 (ja) 2020-07-29 2024-05-07 和弘 原 成分調整物生産装置及び成分調整物生産方法

Also Published As

Publication number Publication date
JP5531020B2 (ja) 2014-06-25
EP2481292A4 (en) 2014-04-30
JPWO2011037155A1 (ja) 2013-02-21
KR20120055697A (ko) 2012-05-31
CN102548421A (zh) 2012-07-04
EP2481292B1 (en) 2016-03-16
NZ598888A (en) 2013-04-26
US20120263839A1 (en) 2012-10-18
CA2774689C (en) 2014-08-05
DK2481292T3 (en) 2016-04-18
CN102548421B (zh) 2014-03-12
KR101381624B1 (ko) 2014-04-04
RU2525711C2 (ru) 2014-08-20
AU2010299077B2 (en) 2013-11-07
CA2774689A1 (en) 2011-03-31
EP2481292A1 (en) 2012-08-01
RU2012112230A (ru) 2013-10-27
US8795750B2 (en) 2014-08-05
AU2010299077A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5531020B2 (ja) 低リンホエイの製造方法
RU2483559C2 (ru) Способ получения обессоленного молока и обессоленное молоко
CN112423596B (zh) 乳级分利用正向渗透的生产和分离
CN111935986A (zh) 用于乳清脱盐的方法和由此获得的乳清
JP5771520B2 (ja) 脱塩ホエイの製造方法
JP7372232B2 (ja) κ-カゼイングリコマクロペプチドを含む組成物の製造方法
JP6508809B2 (ja) 成分調整乳の製造方法
WO2009119646A1 (ja) 脱塩ホエイの製造方法
JP2017195802A (ja) 成分調整乳の製造方法
CN116648140A (zh) 脱矿物质乳糖浓缩物
CN114680223A (zh) 用于处理甜乳清以便获得适用于低变应原性婴儿配方食品的蛋白质材料的方法
CN114586847A (zh) 一种鲜奶级母乳化牛乳蛋白基料及其制备方法
AU2017231471A1 (en) Fractionation method for whey protein, production method for composition including alpha-lactalbumin, and production method for composition including beta-lactoglobulin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042330.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011533012

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127006779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2774689

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13497646

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010299077

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010818827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010299077

Country of ref document: AU

Date of ref document: 20100924

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012112230

Country of ref document: RU