WO2011036846A1 - 欠陥検査装置および欠陥検査方法 - Google Patents
欠陥検査装置および欠陥検査方法 Download PDFInfo
- Publication number
- WO2011036846A1 WO2011036846A1 PCT/JP2010/005312 JP2010005312W WO2011036846A1 WO 2011036846 A1 WO2011036846 A1 WO 2011036846A1 JP 2010005312 W JP2010005312 W JP 2010005312W WO 2011036846 A1 WO2011036846 A1 WO 2011036846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- defect
- classification
- unit
- evaluation value
- feature amount
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N21/95607—Inspecting patterns on the surface of objects using a comparative method
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8822—Dark field detection
- G01N2021/8825—Separate detection of dark field and bright field
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N2021/9513—Liquid crystal panels
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30121—CRT, LCD or plasma display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention relates to a defect inspection apparatus and a defect inspection method for inspecting minute defects existing on a sample surface with high sensitivity.
- Thin film devices such as semiconductor wafers, liquid crystal displays, and hard disk magnetic heads are manufactured through a number of processing steps.
- visual inspection is carried out for each of several series of processes for the purpose of improving yield and stabilization.
- the corresponding areas of two patterns originally formed to have the same shape in appearance inspection Detect defects such as pattern defects or foreign objects. That is, the difference between the reference image and the inspection image is calculated and a difference is calculated, and a portion where the difference is larger than a separately defined threshold value is detected as a defect or a foreign object.
- Patent Document 1 Japanese Patent No.
- a slit-shaped beam of substantially parallel light in the longitudinal direction is applied to a substrate to be inspected on which a circuit pattern is formed.
- a defect inspection method characterized by having a detection process for detecting a defect and extracting a signal indicating a defect such as a foreign substance based on a signal detected in the detection process.
- Patent Document 2 Japanese Patent Laid-Open No. 2004-79593 describes “Preliminary inspection, confirming the position of the generated false information, and detecting the inspection area by the preliminary inspection.
- Patent Document 3 Japanese Patent Application Laid-Open No.
- Patent Document 4 Japanese Patent No.
- 4095860 discloses a “step of capturing an appearance image of an observation target, a step of detecting a region different from the expected appearance of the appearance image of the observation target, A region that is different from the expected appearance detected by sequentially performing a step of calculating a feature amount and a plurality of observation targets that should have the same appearance of the sample from the imaging step to the calculation step.
- a step of grouping regions including adjacent defect candidates that are not necessarily the same, including a plurality of images that are adjacent to each other and including defect candidates that are caused by distances in the vicinity of grains or film thickness interference, and for each of the grouped groups The step of aggregating the feature amount of the detected region, and the feature amount of the detected region belonging to the group and the distribution of the aggregated feature amount Compare defect inspection method for inspecting defects of a sample, characterized in that it comprises the step of determining the attributes of an area the detected "is disclosed.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2006-98155 states that “a sample is inspected, an image of a defect detected by the inspection is displayed on a screen, and a defect of interest is selected from the displayed defects.
- a defect having a feature amount similar to the feature amount of the designated target defect is extracted from the detected defect image, and the extracted defect image is displayed on the screen, and the display
- a defect similar to the designated defect of interest is taught in the image of the designated defect, a defect inspection condition is set based on the taught information, and a sample is inspected based on the set inspection condition "Inspection method" is disclosed.
- the semiconductor wafer that is the object to be inspected is caused by flattening due to CMP, etc., and there is a subtle difference in film thickness even between adjacent chips. is doing. There are other factors such as grains (small surface irregularities) and line edge roughness (LER) that cause unevenness in brightness that varies from region to region.
- grains small surface irregularities
- LER line edge roughness
- the part where the difference is greater than or equal to a specific threshold th is defined as a defect, such a difference in film thickness or pattern thickness Due to the variation in the area, the areas having different brightness between the comparison images are also detected as defects. This should not be detected as a defect. In other words, it is a false report.
- the threshold th for defect detection is increased. However, this lowers the sensitivity, and a defect with a difference value less than or equal to that cannot be detected.
- An object of the present invention is to provide a defect inspection method capable of classifying defect candidates in order to realize the above-described noise and nuisance suppression and DOI extraction that increase with high sensitivity detection and high sensitivity of various defect types, and It is to provide a defect inspection apparatus.
- the problems of the conventional inspection technique are solved, the images of the corresponding regions of the two patterns originally formed to have the same shape are compared, and the inconsistent portion of the image is regarded as a defect.
- the defect inspection to be judged high-sensitivity and high-speed extraction of the DOI that the user wants to detect and suppression of false alarms caused by uneven brightness between comparative images caused by subtle differences in film thickness or grain, etc.
- a method for realizing a defect inspection technique is disclosed.
- a defect inspection apparatus comprising: an illumination optical system that irradiates illumination light to a sample; and a detection optical system that detects scattered light from the sample scattered by illumination from the illumination optical system.
- a defect feature amount calculation unit that calculates a feature amount for each defect candidate extracted based on the scattered light detected by the detection optical system; and the defect candidate based on the feature amount calculated by the defect feature amount calculation unit
- a defect classification evaluation value update unit that updates the evaluation value calculated based on the teaching, and the defect type of the defect candidate based on the evaluation value updated by the defect classification evaluation value update unit.
- a defect classification threshold value determination unit that determines a classification boundary that is a threshold value for classification, and a defect detection unit that detects a defect using the threshold value determined by the defect classification threshold value determination unit, It is a defect inspection apparatus characterized by having.
- FIG. 7 is a modification of the defect candidate teaching GUI in the defect inspection apparatus according to the present invention of FIG. 6. It is a figure which shows an example of the additional display of GUI for defect candidate teaching in the defect inspection apparatus which concerns on this invention. It is a figure which shows the change of a classification boundary by addition of a teaching image and reselection of the feature-value in 1st embodiment of the defect inspection apparatus which concerns on this invention.
- FIG. 1st embodiment of the defect inspection apparatus It is a modification of defect candidate grouping by a user's teaching in 1st embodiment of the defect inspection apparatus which concerns on this invention of FIG.
- FIG. 1st embodiment of the defect inspection apparatus It is a figure which shows the structure of the inspection post-processing system in the case of utilizing a defect classification database. It is a figure which shows the example of the search by comparison of feature-value distribution. It is a figure which shows an example of a structure in the case of utilizing a defect classification database about the defect classification calculating part in 1st embodiment of the defect inspection apparatus which concerns on this invention. It is explanatory drawing shown about the method of utilizing the classified defect as a teaching.
- Embodiment 1 of the defect inspection technique (defect inspection method and defect inspection apparatus) of the present invention will be described in detail.
- a defect inspection apparatus and defect inspection method using dark field illumination for a semiconductor wafer will be described as an example.
- FIG. 1 shows an example of the configuration of a defect inspection apparatus using dark field illumination according to the first embodiment.
- the defect inspection apparatus includes a defect candidate detection unit 100, a post-inspection processing unit 108, and an overall control unit 109 (user interface unit 109-1, storage device 109-2). Configured.
- the defect candidate detection unit 100 includes a stage 102, a mechanical controller 103, an illumination optical system (illumination unit) 104, a detection optical system (upward detection system) 105, a spatial frequency filter 111, an analyzer 112, and an image sensor 106.
- the sample 101 is an inspection object such as a semiconductor wafer.
- the stage 102 mounts the sample 101 and can move and rotate ( ⁇ ) in the XY plane and move in the Z direction.
- the mechanical controller 103 is a controller that drives the stage 102.
- the sample 101 is irradiated with the light from the illumination unit 104, the scattered light from the sample 101 is imaged by the detection optical system (upper detection system) 105, and the formed optical image is received by each image sensor 106. , Convert to image signal.
- the sample 101 is mounted on the stage 102 driven by XYZ- ⁇ , and the foreign matter scattered light is detected while moving the stage 102 in the horizontal direction. Get as.
- the illumination light source of the illumination unit 104 may be a laser or a lamp. Moreover, the light of the wavelength of each illumination light source may be a short wavelength, or may be light of a broad wavelength (white light). In the case of using light with a short wavelength, in order to increase the resolution of an image to be detected (detect a fine defect), light having an ultraviolet wavelength (Ultra Violet Light: UV light) can also be used.
- UV light Ultra Violet Light
- a laser if it is a single wavelength laser, means (not shown) for reducing coherence can be provided in each illumination unit 104.
- TDI image sensor time delay integration type image sensor
- a time delay integration type image sensor in which a plurality of one-dimensional image sensors are arranged two-dimensionally in the image sensor 106 is adopted, and the stage is adopted. Synchronized with the movement of 102, the signals detected by each one-dimensional image sensor are transferred to the next-stage one-dimensional image sensor and added to obtain a two-dimensional image at a relatively high speed and with high sensitivity. become.
- a parallel output type sensor having a plurality of output taps as the TDI image sensor, the output from the sensor can be processed in parallel, and detection at a higher speed becomes possible.
- An image comparison processing unit 107 that extracts defect candidates in the wafer that is the sample 101 is corrected by a preprocessing unit 107-1 that performs image correction such as shading correction and dark level correction on the detected image signal.
- the image memory 107-2 for storing the digital signal of the image, the image of the corresponding area stored in the image memory 107-2, and the defect candidate detection unit 107-3 for extracting the defect candidate, the processing parameters A parameter setting unit 107-4 for setting data, and a cut-out image creation unit 107-5 for creating an image (divided image, patch image) cut out in a small area including the detected defect candidate.
- the pre-processing unit 107-1 performs image correction such as shading correction and dark level correction on the image signal, divides the image into images of a certain unit size, and stores them in the image memory 107-2.
- a defect candidate detection unit 107-3 reads a digital signal of an image of an area (hereinafter referred to as a reference image) corresponding to an image of the area to be inspected (hereinafter referred to as a detected image) stored in the image memory 107-2.
- a correction amount for adjusting the position is calculated, the detected image and the reference image are aligned using the calculated correction amount of the position, and a deviation value is obtained in the feature space using the feature amount of the corresponding pixel.
- the pixel is output as a defect candidate.
- the parameter setting unit 107-4 sets inspection parameters such as the type of feature quantity and the threshold value used when extracting defect candidates, which are input from the outside, and supplies the inspection parameters to the defect candidate detection unit 107-3. .
- the overall control unit 109 includes a CPU (incorporated in the overall control unit 109) that performs various controls, and accepts or detects changes in inspection parameters (type of feature amount, threshold value, etc.) from the user. Connected to a user interface unit 109-1 having a display means for displaying the defect information and an input means, and a storage device 109-2 for storing the feature amount and image of the detected defect candidate. Yes.
- the mechanical controller 103 drives the stage 102 based on a control command from the overall control unit 109. Note that the image comparison processing unit 107, the optical system, and the like are also driven by commands from the overall control unit 109.
- the post-inspection processing unit 108 reads the defect candidate information stored in the storage unit (storage device) 109-2, performs DOI / Nuisance re-determination on the defect candidate, and sends the result to the overall control unit 109. Output.
- FIG. 2 is a diagram showing an example of the configuration of a chip in the first embodiment of the defect inspection apparatus according to the present invention, and detection of defect candidates by the defect candidate detection unit 100 will be described.
- a sample (also referred to as a semiconductor wafer or wafer) 101 to be inspected is regularly arranged with a large number of chips 200 of the same pattern including a memory mat portion 200-1 and a peripheral circuit portion 200-2.
- the semiconductor wafer 101 as a sample is continuously moved by the stage 102, and in synchronization with this, the chip images are sequentially taken from the image sensor 106, and the detected images are regularly arranged. For the same position of the arranged chips, for example, the region 203 of the detected image in FIG.
- the digital image signals of the regions 201, 202, 204, and 205 are used as reference images, and the corresponding pixels of the reference image and other pixels in the detected image Compared with the pixel, a pixel having a large difference is detected as a defect candidate.
- FIG. 3 is a diagram showing an example of a defect candidate extraction flow in the first embodiment of the defect inspection apparatus according to the present invention.
- An example of the processing flow of the defect candidate detection unit 107-3 is shown for the chip image (region 203) to be inspected shown in FIG.
- an image of a chip to be inspected (detected image 301) and a corresponding reference image 302 (here, an image of an adjacent chip, which is 202 in FIG. 2) are read from the image memory 107-2 to detect a positional deviation.
- a position shift is detected by the alignment unit 303 and alignment is performed (303).
- the feature amount calculation unit 304 calculates a plurality of feature amounts with respect to the corresponding pixels of the reference image 302 for each pixel of the detected image 301 that has been aligned (304).
- the feature amount only needs to represent the feature of the pixel. For example, (1) brightness, (2) contrast, (3) contrast difference, (4) brightness dispersion value of neighboring pixels, (5) correlation coefficient, and (6) brightness with neighboring pixels. There are an increase / decrease, (7) secondary differential value, (8) brightness dispersion value, and the like.
- the feature space forming unit 305 forms a feature space by plotting each pixel in a space having some or all of these feature values as axes (305). Then, a pixel plotted outside the data distribution in the feature space, that is, a pixel having a characteristic outlier value is detected as a defect candidate by the outlier pixel detection unit (306).
- the cut-out image creation unit 107-5 cuts out a small area around the defect candidate detected by the defect candidate detection unit 107-3 from the detected image and the reference image stored in the image memory 107-2.
- the cut-out image (patch image) of the cut-out detected image 307-2 and reference image 307-3, and the feature amount (numerical feature) 307-1 of the defect candidate calculated by the feature amount calculation unit 304 are used as defect candidates. These are collectively stored as 307 and stored in the storage device (storage unit) 109-2.
- FIG. 4 is a diagram showing an example of the configuration of the post-inspection processing unit in the first embodiment of the defect inspection apparatus according to the present invention.
- the post-inspection processing unit 108 includes a data receiving unit 402, a storage device (data storage device) 403, and a defect classification calculation unit 404.
- the overall control unit 109 stores defect candidates 307 (defect numerical feature 307-1, detection image cut-out image (patch image) 307-2, reference image cut-out image 307- stored in the storage unit (storage device) 109-2. 3) is transmitted to the data receiving unit 402 of the post-examination processing unit 108.
- the post-inspection processing unit 108 stores the defect candidate 307 from the data receiving unit 402 in the storage device 403 inside the post-inspection processing unit 108.
- the defect classification calculation unit 404 reads the defect candidates 307 from the storage device 403, classifies them into important defects (DOI) and non-critical defects (Nuisance), and classifies them into the result display unit 407 of the interface unit 109-1. Are displayed to the user sequentially. The user confirms the classification result displayed on the result display unit 407, and if the classification result desired by the user is not obtained, the user is instructed to the teaching input unit 408 whether the defect candidate 307 is DOI or Nuance.
- a classification boundary 406 obtained as a result of the processing in the post-inspection processing unit 108 is a DOI / Nuisance classification boundary for each defect candidate.
- the classification boundary 406 may be a DOI or Nuisance defect label.
- the classification boundary 406 is output, and the post-inspection processing unit 108 stores the defect label thus obtained and the classification boundary 406 in a storage unit (storage device) 109-2 that is a part of the control device (overall control unit) 109. To store. However, when the image data is directly input from the storage unit (storage device) 109-2, the storage device 403 may not be included.
- FIG. 16 shows a modification of the configuration of the post-inspection processing unit in the first embodiment of the defect inspection apparatus according to the present invention shown in FIG.
- the defect candidate 307 further includes design information 307-4 ′ of the sample 101, and the post-inspection processing unit 108 directly transmits from the data reception unit 402 ′ to the defect classification calculation unit 404 without using the storage device.
- the defect classification calculation unit 404 ′ the defect candidate 307 ′ including the design information 307-4 ′ of the sample 101 is classified into a critical defect (DOI) and a non-critical defect (Nuisance), and the interface unit 109-1 ′ The progress of the classification is sequentially displayed to the user on the result display unit 407 ′.
- DOE critical defect
- Nuisance non-critical defect
- the user confirms the classification result displayed on the result display unit 407 ′. If the classification result desired by the user is not obtained, the user is taught to the defect classification calculation unit 404 ′ via the teaching input unit 408 ′. The defect classification calculation unit 404 ′ performs defect classification again based on the user instruction. The above result display and user teaching are repeated until the classification result desired by the user is obtained.
- the user inputs an end determination to the defect classification calculation unit via the end determination input unit 409 ′.
- the defect classification calculation unit 404 ′ receives the end determination from the user, and stores the classification boundary 406 ′ in the storage unit (storage device) 109-2 ′ that is a part of the control device (overall control unit) 109 ′.
- FIG. 5 is a diagram showing an example of the configuration of the defect classification calculation unit in the first embodiment of the defect inspection apparatus according to the present invention.
- the defect classification calculation unit 404 receives the defect candidate 307 from the storage device 403.
- the defect feature amount calculation unit 501 calculates a feature amount from the defect candidate 307.
- the defect candidate grouping unit 502 groups the defect candidates 307 into similar groups based on the feature amounts calculated by the defect feature amount calculation unit 501.
- the grouping criteria include (1) similarity of reference images (background), (2) proximity of defect candidates, and (3) shape similarity of defect candidates.
- the defect feature amount calculation unit 501 uses, as the feature amount used by the defect candidate grouping unit 502, from the detected image 307-2 of the defect candidate 307, the reference image 307-3, and the numerical feature 307-1, (1) brightness, (2) Contrast, (3) Difference in density, (4) Brightness variance value of neighboring pixels, (5) Correlation coefficient, (6) Brightness increase / decrease with neighboring pixels, (7) Secondary differential value, etc. calculate.
- a grouping method for example, generally used pattern identification such as classification based on a decision tree, classification based on a support vector machine, classification based on the nearest neighbor rule, etc. Use the technique.
- the defect classification evaluation value calculation unit 503 receives the feature amount from the defect feature amount calculation unit 501, and calculates an evaluation value for evaluating the DOI likelihood of the defect candidate.
- a feature value for calculating the evaluation value (1) brightness, (2) contrast, (3) light / dark difference, (4) in the defect candidate and its surrounding image, from the feature value calculated by the defect feature value calculation unit 501.
- the defect classification evaluation value g is calculated using the brightness variance value of the neighboring pixels, (5) the correlation coefficient, (6) increase / decrease in brightness with the neighboring pixels, (7) the secondary differential value, and the like.
- the defect classification evaluation value calculation unit 503 calculates a defect classification evaluation value g.
- the defect matrix creation unit 504 creates a defect matrix based on the group obtained by the defect candidate grouping unit 502 and the defect classification evaluation value for each group obtained by the defect classification evaluation value calculation unit 503. .
- the defect matrix displays the arranged defect candidates with the group obtained by the defect candidate grouping unit 502 on the horizontal axis and the defect classification evaluation value obtained by the defect classification evaluation value calculating unit 503 on the vertical axis. It is.
- the defect matrix creation unit 504 transmits the obtained defect matrix to the result display unit 407 of the user interface unit 109-1.
- the result display unit 407 displays the defect matrix to the user.
- the user confirms the defect matrix displayed on the result display unit 407, and teaches DOI or Nuanceance on the defect candidate at the teaching input unit 408.
- the defect classification evaluation value update unit 505 updates the defect classification evaluation value based on the user teaching from the teaching input unit 408 and the defect matrix input from the defect matrix creation unit 504.
- the update of the defect classification evaluation value corresponds to rearrangement of defect candidates arranged in the order of the defect classification evaluation value, as will be described in detail later.
- the defect classification threshold value determination unit 506 determines a classification boundary 406 that classifies whether the defect candidate is a DOI or a nuisance based on the defect candidates rearranged by the defect classification evaluation value update unit.
- the repeated end determination unit 507 displays the defect matrix and the classification boundary 406 to the user.
- the user determines the end if the desired DOI is correctly extracted, and performs end determination in the end determination input unit 409. If the user does not make the end determination, the defect matrix creating unit 504 displays the defect matrix again on the user, and the user teaching input unit 408 is executed again. This is repeated several times until the desired DOI can be extracted.
- the repeat end determination unit 507 When the user inputs an end determination at the end determination input unit 409, the repeat end determination unit 507 outputs the classification boundary 406 at the end of the repetition to the storage unit (storage device) 109-2 and sets the determined classification boundary.
- the defect detection unit 115 detects a defect using 406.
- FIG. 17 shows a modification of the configuration of the defect classification calculation unit in the first embodiment of the defect inspection apparatus according to the present invention shown in FIG.
- a data receiving unit 402 is provided instead of the storage device 403 in FIG. 5, and some steps inside the defect classification calculation unit 404 are added.
- a result display unit 407 for displaying the result of the classification performance calculation unit 509 ′ is added.
- the defect classification calculation unit 404 receives the defect candidate 307 from the data reception unit 402 '.
- a defect feature amount calculation unit 501 in the defect classification calculation unit 404 ′ calculates a feature amount from the defect candidate 307.
- the feature amounts calculated by the defect feature amount calculation unit 501 are (1) brightness, (2) contrast, (3) from the detected image 307-2 of the defect candidate 307, the reference image 307-3, and the numerical feature 307-1.
- Brightness variance value of neighboring pixels (5) Correlation coefficient, (6) Brightness increase / decrease with neighboring pixels, (7) Secondary differential value, etc.
- distribution density centered on each defect candidate, (9) distance to the nearest defect candidate, (10) distance from the center of gravity of the distribution, etc.
- pattern proximity based on design information may be used as a feature amount.
- the defect candidate grouping unit 502 groups the defect candidates 307 into similar groups based on the feature amounts calculated by the defect feature amount calculation unit 501.
- the grouping criteria include (1) similarity of reference images (background), (2) proximity of defect candidates, (3) shape similarity of defect candidates, and (4) coarse density of design pattern. .
- the feature amount selection unit 503 selects at least one feature amount from the feature amounts calculated by the defect feature amount calculation unit 501, and creates a feature space. Since the feature amount effective for the classification differs for each DOI type that the user desires to extract, the feature amount is selected based on the user instruction. As a method for selecting a feature amount, a feature amount that can be classified with the highest accuracy based on taught defects may be selected, or may be determined by discriminant analysis, or may be arbitrarily selected by the user. good. In an initial stage before the user teaching is performed, a predetermined feature amount may be used, or a feature amount applied in the past classification may be used.
- the teaching defect selection unit 505 selects a defect to be used for user teaching from the defect candidates 307.
- the method for selecting defect candidates may be selected randomly from all defect candidates for each group, or may be automatically selected from the vicinity of the classification boundary that is the output result of the defect classification boundary determination unit 508, or the user May be arbitrarily selected.
- the teaching defect cannot be selected using the classification boundary at the initial classification stage where the classification boundary is not calculated.
- rough classification by principal component analysis or k-means clustering method can be performed, and the defect classification boundary obtained there can be used, or the teaching image can be selected using the classification boundary of past classification results. It can also be done.
- the number of defect candidates to be compared by the user for teaching can be reduced, reducing the burden on the user, shortening the teaching time, improving the accuracy of teaching, etc. DOI / Nuisance classification can be realized.
- the defect matrix creation unit 506 selects the teaching defect selection unit 505 with the group obtained by the defect candidate grouping unit 502 on the horizontal axis and the defect classification evaluation value obtained by the defect classification evaluation value calculation unit 504 on the vertical axis. Displayed defect candidates side by side. Also, in the DOI or Nuisance teaching for defect candidates in the teaching input unit 408, as a method of user teaching, in addition to the determination based on the defect candidate image, determination may be made by visual confirmation of an optical microscope image or an electron beam microscope image. good. At this time, when teaching is performed based on information other than the input defect candidate 307, the defect classification calculation unit 404 determines that the defect candidate is an ambiguous defect that cannot be classified only by the defect candidate information.
- the defect candidate can be deleted.
- the defect classification evaluation value update unit 507 updates the defect classification evaluation value based on the user teaching from the teaching input unit 408.
- the defect classification boundary determination unit 508 determines a classification boundary 406 that classifies whether the defect candidate is a DOI or a nuisance based on the defect candidates rearranged by the defect classification evaluation value update unit 507.
- a general classification method can be applied. For example, classification based on a decision tree, classification based on a support vector machine, classification based on the nearest neighbor rule, and the like. At this time, a different classification boundary can be set for each group, and a uniform classification boundary can be set for each group.
- the classification boundary can also be designated and changed directly by the user to the teaching input unit 408.
- the user repeats a series of operations of the defect classification evaluation value update 507 a plurality of times using the matrix result display unit 407 and the teaching input unit 408, thereby realizing flexible DOI / Nuiance classification based on different criteria for each user. be able to.
- the classification performance calculation unit 509 calculates the classification correct answer rate for the taught defect and the estimated performance improvement amount due to the addition of the teaching defect based on the taught defect and the classification boundary 406 determined by the classification boundary determination unit 508.
- the performance improvement amount and the classification accuracy rate calculated here are displayed to the user via the result display unit 407.
- FIG. 18 is a graph showing the relationship between the number of teaching defects and the classification performance. As shown in FIG. 18, the relationship between the number of teaching defects and the classification performance generally improves the classification performance as the number of teaching points increases, but the improvement converges with a certain number of teachings.
- the estimated performance improvement amount is obtained from the variation range of the classification accuracy rate or the differential value of the estimated performance. Further, the classification correct answer rate may be obtained by performing fitting using an arbitrary polynomial, and extrapolating the classification estimated value.
- the teaching image addition determination unit 510-1 receives the classification accuracy rate and the performance estimation improvement amount from the classification performance calculation unit 509, determines whether or not to add a teaching defect, and the classification performance is improved by adding the teaching defect. In the case of improvement, the processing after the teaching defect selection unit 505 is repeated. When the classification performance does not improve due to the addition of the teaching defect, the processing of the feature amount reselection determination unit 510-2 is performed.
- the feature amount reselection determination unit 510-2 receives the classification accuracy rate from the classification performance calculation unit 509, and if the classification accuracy rate is lower than the user default value input by the end determination input unit 410, the feature amount reselection determination unit 510-2 Repeat the process. If the classification accuracy rate is higher than the specified value, the above repetition is terminated. In addition, the user confirms the classification performance displayed on the result display unit 407, and if it is determined that the desired DOI / Nuisance classification is realized, the user inputs a repeated end determination to the end determination input unit 410, and You can also end the iteration.
- the classification boundary 406 at the end of repetition, the feature amount of each defect candidate, the selected feature amount, the teaching result for the selected defect candidate, the grouping criterion, and the like are output to the storage unit (storage device) 109-2.
- FIG. 6 is a diagram showing an example of a defect candidate teaching GUI in the defect inspection apparatus according to the present invention.
- a display example of the defect matrix created by the defect matrix creation unit 504 and an example of user teaching are shown in FIG.
- the defect matrix creation unit 504 displays the defect matrix shown on the defect matrix display screen (defect candidate display screen) 601.
- the display defect matrix is a display in which defect candidates are displayed side by side with a group on the horizontal axis and a defect determination evaluation value on the vertical axis.
- a DOI / Nuiance classification boundary 406 is displayed in the defect matrix.
- the user selects a defect candidate using an input device such as a mouse. In the example of FIG. 6, the defect candidate 606 is selected.
- a reference image 307-3, a detected image 307-2, a numerical feature amount 307-1, and the like of the selected defect candidate 606 are displayed. Further, the generation position of the selected defect candidate in the wafer and the generation position in the cell are displayed.
- the user refers to the defect candidate teaching screen 602, determines whether it is DOI or Nuance, and selects DOI or Nuance for the teaching menu 604 on the defect candidate teaching screen 603. At this time, the defect candidate information display screen 602 may display an SEM image, an optical microscope image, or the like of the defect candidate 606, and the user can make a judgment of DOI and Nuance by referring to them.
- a defect candidate teaching screen 603 corresponds to the teaching input unit 408.
- the defect matrix creation unit 504 performs sampling in order to limit the defect candidates to be displayed in the defect matrix. Sampling is performed when all defect candidates cannot be displayed in the defect matrix, such as when there are many defect candidates.
- the sampling method there are a method of sampling randomly from all defect candidates, a method of sampling at regular intervals, etc., and a method of sampling only the defect candidates around the classification boundary 406. Sampling can reduce the number of defect candidates that the user compares for teaching, reducing the burden on the user, shortening the teaching time, and improving the accuracy of teaching. DOI / Nuisance classification can be realized.
- FIG. 19 shows a modification of the GUI for teaching defect candidates in the defect inspection apparatus according to the present invention shown in FIG.
- the defect matrix creation units 504 and 506 in FIGS. 5 and 17 display the defect matrix shown in the defect matrix display screen (defect candidate display screen) 601 in the result display units 407 and 407 ′.
- the defect matrix is a group in which the horizontal axis represents groups and the vertical axis represents defect determination evaluation values, and defect candidate images are displayed side by side.
- a DOI / Nuisance classification boundary 406 ′ is also displayed.
- a distribution display screen 605 of defect determination evaluation values for each group based on all defect candidates is also displayed.
- wafer information, an inspection recipe, the total number of defects, and the like are also displayed as inspection data.
- the user can select a defect candidate to be taught using an input device such as a mouse.
- the defect candidate 606 ′ is selected.
- a reference image 606-3 ′, a detected image 606-2 ′, a numerical feature quantity 606-1 ′, and the like of the selected defect candidate 606 ′ are displayed. Further, the generation position of the selected defect candidate in the wafer, the generation position in the chip, and the like are displayed.
- the user refers to the defect candidate teaching screen 602 ′, determines whether it is DOI or Nuance, and selects either DOI or Nuance at the defect candidate teaching unit 607 ′.
- an SEM image 606-5 ′ of the defect candidate 606 ′, an optical microscope image 606-4 ′, or the like may be displayed, and the user refers to them for the DOI and Nuanceance. Judgment can also be made.
- a defect classification status display screen 603 ′ representing the current classification status is displayed.
- the distribution of defect candidates in the feature space consisting of the selected feature amount, the distribution of defect candidates divided into untaught and taught, the classification boundary 406 ′, The selected feature value and its weight are also displayed.
- the estimated performance display screen 609 ′ On the other hand, on the estimated performance display screen 609 ′, the number of taught defects, the classification accuracy rate based on the taught defects, and the estimated performance improvement amount are displayed.
- the user confirms the defect matrix display screen 601 'and the defect classification status display screen 603', and inputs the addition of teaching defects and the determination of feature amount reselection to the repeated determination screen 604 '. It is also possible to automatically make repeated determinations and to select automatic determination.
- FIG. 20 is a diagram showing an example of additional display of a defect candidate teaching GUI in the defect inspection apparatus according to the present invention.
- An additional display screen 609 ′ is an additional display of the defect candidate information display screen 602 ′.
- the user visually checks the defect candidate images 606-2 ′ and 606-3 ′ to determine whether the defect candidate is DOI or Nuance, and teaches the defect candidate teaching unit 607 ′.
- the defect candidate images 606-2 ′ and 606-3 ′ cannot be determined alone, the user can use the information for determining the optical microscope image (OM image) 611 and the electron beam microscope image (SEM image) 612 ′. Can be added as When adding an image other than a defect candidate, the user checks the check box 613 ′.
- OM image optical microscope image
- SEM image electron beam microscope image
- the microscope image 611 ′ and the SEM image 612 ′ are acquired for the checked defect candidates, and the acquired images are displayed on the defect candidate information display screen 609 ′.
- the user can determine how much the teaching result by the image other than the defect candidate is reflected in the subsequent classification, and can input it as a numerical value to the classification influence input unit 614 ′.
- a low value may be input to the classification influence input unit as an ambiguous defect that could not be determined only by defect candidate information, or a high value as a highly reliable defect determined from a plurality of pieces of information. You may enter.
- the feature amount distribution of the defect candidates and the classification boundary calculated based on the defect candidate feature distribution are displayed on the teaching status display screen 610 ′.
- the screen 615 ′ in the teaching status display screen 610 ′ displays defect candidates taught based on any of the DF, OM, and SEM images and the classification boundary calculated based on the defect candidates.
- the screen 616 ′ displays the DF image. Or the defect candidate taught based on the OM image and the classification boundary calculated based on the defect candidate are shown.
- defect candidates that can be taught only by the DF image and classification boundaries calculated based on the defect candidates are shown.
- FIG. 7 is a diagram showing an example of DOI / Nuissance classification by updating the defect classification evaluation value in the first embodiment of the defect inspection apparatus according to the present invention, and updating the defect classification evaluation value in FIG. 5 and FIG.
- the contents of defect classification evaluation value update processing in sections 505 and 507 are shown.
- the classification threshold value for classifying defect candidates into DOI and Nuance is set to a value with a defect classification evaluation value g. But no matter where you set it, it is impossible to classify it correctly.
- the defect defect candidate array By updating the evaluation value in the defect classification evaluation value update unit 505, the defect defect candidate array can be changed from A, B, C, D, and E to D, A, E, C, and B. It is possible to determine a threshold value for classifying B, E and D, which is defined as Nuance.
- the defect classification evaluation value update unit 505 can update different defect classification evaluation values for each group, or can perform similar updates for all groups. That is, different defect classification evaluation values may be used for each group, or all groups may have the same defect classification evaluation value.
- the defect classification threshold value determination unit 506 determines a threshold value for DOI and Nuanceance classification for defect candidates arranged in the order of evaluation value of each group.
- the threshold is determined so as to discriminate between DOI and Nuance taught by the user, and a general classification method can be applied. For example, classification based on a decision tree, classification based on a support vector machine, classification based on the nearest neighbor rule, and the like.
- the defect classification threshold value determination unit 506 can automatically determine the threshold value. The user repeats a series of operations for updating the defect classification evaluation value (505) a plurality of times by the matrix result display unit 407 and the teaching input unit 408, so that flexible DOI / Nuiance classification can be performed according to different criteria for each user. Can be realized.
- FIG. 21 is a diagram showing a change in classification boundary due to addition of a teaching image and reselection of a feature amount in the first embodiment of the defect inspection apparatus according to the present invention. And changes in the DOI / Nuisance distribution in the feature space due to reselection of the feature values.
- the user is taught about several points from the non-taught defect candidates, and the classification boundary is determined based on the taught defects.
- the middle part of FIG. 21 shows how the classification boundary in the upper part is updated by the addition of the user teaching defect. However, the classification performance does not improve even if a teaching defect is further added in the middle state of FIG.
- FIG. 8 is a diagram showing an example of a defect inspection processing flow in the first embodiment of the defect inspection apparatus according to the present invention, including the processes of the defect candidate detection unit 100 and the post-inspection processing unit 108.
- the flow of processing is shown.
- the user designates a trial inspection chip (801), sets parameters (802), and performs a trial inspection (803).
- the trial inspection (820) is an inspection method for setting inspection parameters so that an inspection is performed on a partial area of a wafer, and the ratio between the actual defect and the false alarm detected there is appropriate. is there.
- the post-inspection processing unit 108 performs defect classification (807) on the defect candidate (numerical feature) (307-1) detected by the trial inspection, confirms the classification result (808), and classifies the defect as a defect matrix 601.
- the result is displayed to the user (812).
- the user Based on the result display, the user performs DOI and Nuisance teaching (810) for each defect candidate. It is determined whether or not the classification is optimal (809), and the result display (812) and user teaching (810) are repeated (811) until the defect classification desired by the user is realized.
- the entire wafer surface is inspected (814).
- the defect candidates detected are classified into DOI and Nuanceance (817) using the classification boundary 816 determined by the defect candidate classification (821), and the classification result is displayed to the user. (818).
- the user teaching is performed for updating the defect classification evaluation value, but the user teaching may be performed for grouping defect candidates.
- FIG. 9 shows an example of defect candidate grouping according to the user's teaching in the first embodiment of the defect inspection apparatus according to the present invention.
- a grouping result display unit 901, a grouping condition change unit 902, and a repeat end determination unit 903 are added to the defect candidate grouping unit 502.
- a defect candidate is input to the defect classification calculation unit 404, and the feature amount of the defect candidate is output in the defect feature amount calculation unit 501.
- the defect feature amount calculation unit 501 calculates the feature amount, and the defect candidate grouping unit 502 groups the similar group based on the calculated feature amount.
- the grouping criteria include (1) similarity of reference images (background), (2) proximity of defect candidates, and (3) defect shape similarity of defect candidates.
- feature quantities used for defect candidate grouping (1) brightness, (2) contrast, (3) shade difference, (4) brightness dispersion value of neighboring pixels, and (5) phase There are the number of relations, (6) increase / decrease in brightness with neighboring pixels, (7) secondary differential value, and the like.
- the grouping result is displayed to the user, and if the grouping result is not correct, the user teaches the correct group.
- FIG. 22 shows a modification of the defect candidate grouping according to the user's instruction in the first embodiment of the defect inspection apparatus according to the present invention shown in FIG.
- a grouping condition change unit 901 ′ and a repeat end determination unit 902 ′ are added to the defect candidate grouping unit 502 ′.
- the defect candidate 307 ′ is input from the data receiving unit 402 ′ to the defect feature amount calculating unit 501 ′, and the defect feature amount calculating unit 501 ′ calculates the feature amount of the defect candidate 307 ′. .
- the defect candidate grouping unit 502 ′ grouping into similar groups is performed based on the calculated feature amount.
- the grouping result is displayed to the user via the result display unit 903 '. If the grouping result is not correct, the user inputs the correct group to the grouping condition changing unit 901' via the teaching input unit 904 '.
- FIG. 10 is a diagram showing an example of a defect candidate teaching GUI in the defect candidate grouping of the defect inspection apparatus according to the first embodiment of the present invention.
- defect candidates for which incorrect grouping has been performed are selected.
- the user selects the correct group on the defect candidate teaching screen 1002 with reference to the reference image 307-3.
- This operation is an operation at the teaching input unit 904.
- a grouping method in the defect candidate grouping unit 502 a generally used pattern identification method is used. For example, classification based on a decision tree, classification based on a support vector machine, classification based on the nearest neighbor rule, and the like can be applied. These methods need to learn grouping conditions in advance.
- the grouping condition changing unit 902 sets a new grouping condition for the pattern identification method based on the teaching of the correct group. Thereafter, defect candidates are grouped again based on the new grouping conditions and displayed to the user. When this operation is repeated and the user is satisfied with the grouping, the user makes a determination to end the repetition to the end determination input unit 906, and the repetition end determination unit 903 ends the repetition. To do.
- the defect matrix creation unit 504 creates a defect matrix and displays it on the user by the grouping by the defect candidate grouping unit 502 and the calculation of the defect classification evaluation value by the defect classification evaluation value calculation unit 503.
- the user realized the classification of defect candidates by teaching from the user interface unit 109-1.
- Defect classification is realized by defect candidate grouping and user teaching, but here, user teaching is not performed, and features calculated from DOI feature quantities and defect candidates defined in advance, such as past data, etc. An example is shown in which defect candidates are classified into DOI and Nuance based on the quantity.
- FIG. 11 is a diagram showing an example of the configuration of the post-inspection processing unit using the DOI definition dictionary in the first embodiment of the defect inspection apparatus according to the present invention, and an embodiment of the post-inspection processing unit without teaching. Will be described below.
- defect candidates 307 (defect numerical value feature 404-1, detected image cutout image 404-2, reference image cutout image 404-3) are input to data receiving unit 402 and stored.
- the defect candidate feature stored in the storage device 403 is compared with the DOI feature contained in the DOI definition dictionary 1103 stored in the storage unit (storage device) 109-2 of the overall control unit, and the defect candidate is determined. Classify into DOI and Nuisance.
- the DOI definition dictionary 1103 stores defect candidates for which DOI or Nuance has already been defined, and feature values extracted from the defect candidates, which are input in advance by the user. Also, the DOI definition dictionary 1103 may be a DOI / Nuisance classification boundary calculated in advance. Further, the design information 307-4 of the sample 101 may be included as the defect candidate 307 in correspondence with FIG.
- FIG. 12 is a diagram showing an example of the configuration of the defect classification calculation unit using the DOI definition dictionary in the first embodiment of the defect inspection apparatus according to the present invention.
- the defect feature amount calculation unit 501 calculates a feature amount from the input defect candidate 307.
- As feature quantities used for defect classification (1) brightness, (2) contrast, (3) density difference, (4) brightness variance value of neighboring pixels, (5) correlation coefficient, (6) neighborhood Increase / decrease in brightness with pixels, (7) secondary differential value, and the like.
- the defect feature amount matching unit 1201 compares the feature amount of the DOI stored in the DOI definition dictionary 1103 with the feature amount of the defect candidate 307. For comparison of the feature quantities, a nearest neighbor rule or a support vector machine that is generally used can be used.
- a defect classification threshold value calculation unit (defect classification boundary calculation unit) 1202 determines whether the defect candidate 307 is DOI or Nuance and calculates a classification boundary 406.
- the defect classification database includes (1) classification boundaries, (2) feature amounts of each defect candidate, (3) selected feature amounts, and (4) teaching results to selected defect candidates, which are outputs of past defect classification results. (5) Grouping criteria and the like are stored, and the information is used for classification.
- FIG. 23 shows the configuration of the inspection post-processing system when the defect classification database is used.
- the defect candidate 307 (defect numerical value feature 307-1, cut-out image 307-2 of the detected image, cut-out image 307-3 of the reference image, design information 307 stored in the storage unit 109-2. -4) is input to the data receiving unit 402.
- the search unit 1501 receives the defect candidate 307 to be classified from the data reception unit 402 and searches for a defect candidate similar to the defect candidate 307 from the group of classified defect candidates stored in the defect classification database 1502.
- the defect candidate search may be evaluated based on (1) information on the type / process of the sample 101, (2) similarity of detected images, (3) similarity of feature quantity distribution, etc.
- a defect candidate to be specified may be designated.
- the defect classification is performed using the grouping standard and the user input from the interface 109-1, and the classification boundary 406 is output to the storage unit 109-2.
- FIG. 24 is a diagram showing an example of search by comparison of feature quantity distributions.
- a defect candidate similar to the feature quantity distribution 1601 to be classified is searched from the defect candidate group 1602 which is a past classification result.
- the search is performed by evaluating the similarity between the feature amount distribution of the defect candidate 1601 to be classified and the feature amount distributions of the classification result A, the classification result B, and the classification result C.
- the similarity is evaluated by (1) the sum of the distances between the nearest defect candidates when the defect candidates to be compared are superimposed, and (2) a comparison of local defect densities in the feature space. Is called.
- the classification result C is selected as a search defect candidate by the similarity evaluation, and the grouping criteria, the selected feature amount, the classification boundary, and the like are used for the DOI / Nuiance classification in the defect classification calculation unit described later. Is done.
- FIG. 25 is a diagram showing an example of a configuration when a defect classification database is used for the defect classification calculation unit in the first embodiment of the defect inspection apparatus according to the present invention.
- a grouping criterion can be input to the defect candidate grouping unit 502 ′, and a combination of feature amounts effective for classification can be input to the feature amount selection unit 503 ′ to calculate a defect classification evaluation value.
- a feature quantity integration function for calculating defect classification evaluation values can be input to the unit 504 ′, and classified defects and taught defects are input to the defect classification evaluation value update unit 507 ′ instead of user teaching.
- the classification boundary can be input to the defect classification boundary determination unit 508 ′.
- FIG. 26 is an explanatory diagram showing a method of using a classified defect as a teaching.
- the defect type of the defect candidate 1703 of the classification result having a short distance in the feature space is referred to (1701), and DOI / Nuiance is given to the defect candidate 1702 instead of the user teaching.
- a defect candidate 1705 effective for classification is extracted from the defect candidates of the classification result, inserted into the feature space to be classified (1704), and the classification boundary 406 can be determined based on the extracted defect candidate.
- the classification boundary stored in the defect classification database and the newly classified classification boundary using the defect classification database have relatively similar outputs, so the variation in classification results that occur between the same device or different devices Can be suppressed.
- the number of teaching defects can be reduced or classification can be performed without performing teaching, so that the burden on the user can be reduced.
- the classification boundary can be calculated without repeating teaching and classification, the processing time can be reduced.
- FIG. 13 is a diagram showing an example of the configuration of the second embodiment of the defect inspection apparatus according to the present invention.
- the illumination optical system and the detection optical system are This is an example of two. It has illumination optical systems 104-1 and 104-2, an upper detection system (detection optical system) 105-1, an oblique detection system (detection optical system) 105-2, and image sensors 106-1 and 106-2.
- the image comparison processing unit 107 (a preprocessing unit 107-1, an image memory 107-2, a defect candidate detection unit 107-3, a parameter setting unit 107-4, a cut-out image creation unit 107-5) and the like are included.
- the plurality of illumination units 104-1 and 104-2 irradiate the sample 101 with light having different illumination conditions (for example, different illumination angles, illumination orientations, illumination wavelengths, polarization states, etc.), and the scattered light from the sample 101 is directed upward.
- An image is formed by the detection system (detection optical system) 105-1 or the oblique detection system (detection optical system) 105-2, and the formed optical image is received by the respective image sensors 106-1 and 106-2. Then, it is converted into an image signal. Defect candidates are detected for images captured under two or more different combination conditions of each illumination condition and each detection condition, and DOI / Nuiance by the post-inspection processing unit is detected for the detected defect candidates. Classification can also be performed. At this time, automatically selecting a feature quantity effective for classification by the feature quantity selection unit from the feature quantities extracted from images captured under two or more different combination conditions is effective for classification. This is equivalent to automatically determining the conditions.
- this defect device having the image processing system with the system configuration described above applies an optical system that irradiates light of a plurality of wavelengths and a detection optical system that can receive light of each wavelength separately. The case will be described.
- FIG. 14 is a diagram showing an example of the configuration of the third embodiment of the defect inspection apparatus according to the present invention.
- the illumination unit 104-3 irradiates the sample 101 with light having different wavelengths (for example, ⁇ 1 and ⁇ 2), and scatters the scattered light from the sample 101 with a dichroic mirror 110 or the like, thereby detecting a detection system (detection optical system) 105. -3 and 105-4, and the formed optical images are received by the respective image sensors 106-3 and 106-4 and converted into image signals.
- Defect candidates are detected for images picked up under two or more different conditions by light of each wavelength and a detection system that receives the light, and DOI / Nuiance by post-processing is performed on the detected defect candidates. Classification can also be performed. At this time, automatically selecting a feature quantity effective for classification by the feature quantity selection unit from the feature quantities extracted from images captured under two or more different combination conditions is effective for classification. This is equivalent to automatically determining the conditions.
- this defect apparatus having the image processing system having the above-described system configuration is an optical system capable of simultaneously illuminating different areas with a plurality of illumination systems and simultaneously acquiring images of different areas with a plurality of detection systems. This will be described with a system.
- FIG. 15 is a diagram showing an example of the configuration of Embodiment 4 of the defect inspection apparatus according to the present invention.
- Two illumination optical systems 104-5 and 104-6 simultaneously illuminate a plurality of areas and emit light.
- the sample 101 is irradiated, and the scattered light from the sample 101 is imaged by a detection optical system (upper detection system) 105, and image sensors 106-5 and 106 are applied to the optical images of the formed regions.
- the light is received at -6 and converted into an image signal.
- Detect defect candidates Alignment and merge are performed on images detected from each region, defect candidates are detected from the images, and post-processing DOI / Nuisance classification is performed on the detected defect candidates. You can also.
- automatically selecting a feature quantity effective for classification by the feature quantity selection unit from the feature quantities extracted from images captured under two or more different combination conditions is effective for classification. This is equivalent to automatically determining the conditions.
- defect candidates are classified into two types, DOI and Nuance, but classification into two or more defect types (scratch, foreign matter, bridge, etc.), fatal and non-fatal It is possible to apply to any classification object such as classification of real defects and classification of real defects and false reports.
- the present invention is not limited to this, for example, a TFT panel manufacturing process and its evaluation,
- the present invention can be applied to any object such as inspection and evaluation of defects in a GMR head manufacturing process of a hard disk and inspection and evaluation of defects on a printed circuit board.
- a dark field inspection apparatus was shown, it can apply to inspection apparatuses of all systems, such as a bright field inspection apparatus and a SEM type
- DESCRIPTION OF SYMBOLS 100 ... Defect candidate detection part, 101 ... Sample, 102 ... Stage, 103 ... Mechanical controller, 104 ... Illumination optical system, 105 ... Upper detection system (detection optics) 111) Spatial frequency filter, 112 ... Analyzer, 106 ... Image sensor, 107 ... Image comparison processing unit, 107-1 ... Pre-processing unit, 107-2 ... Image memory, 107-3 ... defect candidate detection unit, 107-4 ... parameter setting unit, 107-5 ... cut-out image creation unit, 109 ... overall control unit, 109-1 ..User interface section 109-2... Storage device 115. Defect detection section 307 ... Defect candidate 307-1 ...
Landscapes
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
照明光学系と、検出光学系と、前記検出光学系により検出された散乱光に基づき抽出された欠陥候補の各々について特徴量を算出する欠陥特徴量算出部と、前記欠陥特徴量算出部により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング部と、前記欠陥特徴量算出部により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出部と、前記欠陥分類評価値算出部により算出された評価値を、教示に基づいて更新する欠陥分類評価値更新部と、前記欠陥分類評価値更新部により更新された評価値に基づいて、前記欠陥候補の欠陥種を分類するためのしきい値である分類境界を決定する欠陥分類しきい値決定部と、前記欠陥分類しきい値決定部により決定されたしきい値を用いて欠陥を検出する欠陥検出部と、を有する欠陥検査装置である。
Description
本発明は、試料表面に存在する微小な欠陥を高感度に検査する欠陥検査装置および欠陥検査方法に関する。
半導体ウェハ、液晶ディスプレイ、ハ-ドディスク磁気ヘッドなどの薄膜デバイスは多数の加工工程を経て製造される。このような薄膜デバイスの製造においては、歩留まり向上および安定化を目的として、いくつかの一連の工程毎に外観検査が実施される。外観検査では本来同一形状となるように形成された2つのパタ-ンの対応する領域を、ランプ光、レ-ザ光または電子線などを用いて得られた参照画像と検査画像を元に、パタ-ン欠陥あるいは異物などの欠陥を検出する。すなわち、参照画像と検査画像の位置合せを行った上で差を算出し、別途定めたしきい値と比較して差が大きくなる部分を欠陥あるいは異物として検出する。しきい値の算出方法として、特許文献1(特許3566589号公報)に、「長手方向にはほぼ平行光のスリット状ビームを、回路パターンが形成された被検査対象基板に対して、該基板の法線方向から所定の傾きを有し、前記回路パターンの主要な直線群に対して平面状所定の傾きを有し、長手方向が前記被検査対象基板を載置して走行させるステージの走行方向に対してほぼ直角になるように照明する照明過程と、該照明過程で照明された被検査対象基板上に存在する異物等の欠陥から得られる反射散乱光をイメージセンサで受光して信号に変換して検出する検出過程と、該検出過程で検出された信号に基づいて異物等の欠陥を示す信号を抽出する欠陥判定過程とを有することを特徴とする欠陥検査方法」が開示されている。
このような検査において、微小な欠陥を検出するためには、しきい値を低く設定して判定を行う必要がある。しかし、しきい値を低くするとサンプリング誤差やラフネス、グレインといったパタ-ンの微小な相違、あるいは膜厚ムラによる明るさムラなどに起因する虚報が多く発生してしまう。ウェハ全体の虚報の比率が充分小さくなるようにしきい値を高く設定すると、感度が犠牲となり、微細な欠陥の検出が困難となる。ここで、感度を向上させるための方法として、特許文献2(特開2004-79593号公報)に「予備検査を行って、発生した虚報の位置を確認し、検査領域を予備検査で発生した虚報の密度に応じて複数に分割し、分割された複数の領域ごとに異なるしきい値を用いて、検出された反射光又は散乱光の強度から被検査物の表面に異物があるか否かの判定を行うことを特徴とする異物検査方法」が開示されている。また、特許文献3(特開2009-2743号公報)には、「被検査基板上に光または電子線を照射して得られる検出信号を用いて欠陥を検出する外観検査方法であって、前記検出された欠陥の画像をもとに画像特徴量を算出する工程と、前記検出された欠陥の位置情報をもとに座標特徴量を算出する工程と、前記画像特徴量及び画像特徴量のいずれかに対するしきい値処理で構成される決定木に従って虚報判定を行うことにより実欠陥の情報を出力する工程を有することを特徴とする外観検査方法。」が開示されている。また、特許文献4(特許4095860号公報)には、「観察対象の外観画像を撮像する工程と、前記観察対象の外観画像が期待した外観と異なる領域を検出する工程と、前記検出した領域の特徴量を算出する工程と、前記撮像する工程から前記算出する工程までを前記試料の本来同一の外観になるべき複数の観察対象に対して順次行うことにより検出した前記期待した外観と異なる領域を含む画像を複数重ね合わせて距離的に近傍にあるグレインや膜厚干渉により生じた欠陥候補を含む必ずしも同一ではない近接している欠陥候補を含む領域同士をグルーピングする工程と、前記グルーピングしたグループ毎に前記検出した領域の特徴量を集計する工程と、前記グループに属する前記検出した領域の特徴量と前記集計した特徴量の分布とを比較して前記検出した領域の属性を決定する工程とを有することを特徴とする試料の欠陥を検査する欠陥検査方法」が開示されている。また、特許文献5(特開2006-98155号公報)には、「試料を検査し、該検査して検出された欠陥の画像を画面に表示し、該表示された欠陥の中から注目欠陥を指定し、該指定された注目欠陥の特徴量に類似した特徴量を有する欠陥を前記検出された欠陥の画像の中から抽出し、該抽出した欠陥の画像を前記画面上に表示し、該表示された欠陥の画像のうち前記指定した注目欠陥に類似した欠陥を教示し、該教示した情報に基づいて欠陥検査条件を設定し、該設定した検査条件に基づいて試料を検査することをと特徴とする検査方法」が開示されている。
被検査対象物である半導体ウェハでは、CMPによる平坦化等が要因となり、隣接チップであっても膜厚に微妙な違いが生じており、チップ間の画像に局所的に明るさの違いが発生している。他にもグレイン(表面の微小な凹凸)やラインエッジラフネス(LER)など、領域毎に異なる明るさムラを生む要因がある。
従来方式のように、参照チップの画像と明るさを比較し、差が特定のしきい値th以上となる部分を欠陥とするならば、このような膜厚の違いやパタ-ンの太さのばらつきにより比較画像間で明るさの異なる領域も欠陥として検出されることになる。これは本来、欠陥として検出されるべきものではない。つまり虚報である。従来は虚報発生を避けるための1つの方法として、欠陥検出のためのしきい値thを大きくしていた。しかし、これは感度を下げることになり、同程度以下の差分値の欠陥は検出できない。
一方、LSIパタ-ンの微細化・複雑化に伴い、欠陥が歩留りに影響を与えるかどうかの判定を一意に決定することが難しくなってきている。そのため、ユ-ザにより異なる、柔軟な欠陥判定を実現する必要がある。ユ-ザが検出を希望しない欠陥(以下、Nuisanceと記述)と検出を希望する欠陥(DOI)とに大別できる。本発明の目的は、多様な欠陥種の高感度検出と高感度化に伴い増加する上記ノイズやNuisanceの抑制と、DOIの抽出を実現するため、欠陥候補の分類が実現可能な欠陥検査方法および欠陥検査装置を提供することにある。
但し、上記欠陥候補の分類を実施しようとする場合、教示などによりユーザの意志を反映する手段が必要となるが、ユーザが一つ一つの欠陥候補を確認し教示することは、処理時間とユーザ負担の観点から現実的ではない。それに対し、一部の欠陥のみを教示すると、DOIとNuisanceを正しく教示できなくなる場合があり、分類精度が低下してしまう。
但し、上記欠陥候補の分類を実施しようとする場合、教示などによりユーザの意志を反映する手段が必要となるが、ユーザが一つ一つの欠陥候補を確認し教示することは、処理時間とユーザ負担の観点から現実的ではない。それに対し、一部の欠陥のみを教示すると、DOIとNuisanceを正しく教示できなくなる場合があり、分類精度が低下してしまう。
そこで、本願では、このような従来検査技術の問題を解決して、本来同一形状となるように形成された2つのパタ-ンの対応する領域の画像を比較し、画像の不一致部分を欠陥と判定する欠陥検査において、膜厚の微妙な違いやグレインなどによって生じる、比較画像間の明るさムラによる虚報発生の抑制とユ-ザが検出を希望するDOIの抽出を高感度、かつ高速に実施する欠陥検査技術を実現する方法を開示する。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
(1)試料に対して照明光を照射する照明光学系と、前記照明光学系からの照明により散乱する該試料からの散乱光を検出する検出光学系と、を備えた欠陥検査装置であって、前記検出光学系により検出された散乱光に基づき抽出された欠陥候補の各々について特徴量を算出する欠陥特徴量算出部と、前記欠陥特徴量算出部により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング部と、前記欠陥特徴量算出部により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出部と、前記欠陥分類評価値算出部により算出された評価値を、教示に基づいて更新する欠陥分類評価値更新部と、前記欠陥分類評価値更新部により更新された評価値に基づいて、前記欠陥候補の欠陥種を分類するためのしきい値である分類境界を決定する欠陥分類しきい値決定部と、前記欠陥分類しきい値決定部により決定されたしきい値を用いて欠陥を検出する欠陥検出部と、を有することを特徴とする欠陥検査装置である。
(1)試料に対して照明光を照射する照明光学系と、前記照明光学系からの照明により散乱する該試料からの散乱光を検出する検出光学系と、を備えた欠陥検査装置であって、前記検出光学系により検出された散乱光に基づき抽出された欠陥候補の各々について特徴量を算出する欠陥特徴量算出部と、前記欠陥特徴量算出部により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング部と、前記欠陥特徴量算出部により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出部と、前記欠陥分類評価値算出部により算出された評価値を、教示に基づいて更新する欠陥分類評価値更新部と、前記欠陥分類評価値更新部により更新された評価値に基づいて、前記欠陥候補の欠陥種を分類するためのしきい値である分類境界を決定する欠陥分類しきい値決定部と、前記欠陥分類しきい値決定部により決定されたしきい値を用いて欠陥を検出する欠陥検出部と、を有することを特徴とする欠陥検査装置である。
本願において開示される発明によれば、試料表面に存在する微小な欠陥を高感度に検査する欠陥検査方法および欠陥検査装置を提供することが可能となる。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
以下において、本発明の欠陥検査技術(欠陥検査方法および欠陥検査装置)の実施の形態1を詳細に説明する。
本発明のパタ-ン検査技術の実施の形態1として、半導体ウェハを対象とした暗視野照明による欠陥検査装置および欠陥検査方法を例にとって説明する。
図1は実施の形態1の暗視野照明による欠陥検査装置の構成の一例を示したものである。実施の形態1に係る欠陥検査装置は、欠陥候補検出部100と、検査後処理部108、全体制御部109(ユ-ザインタ-フェ-ス部109-1、記憶装置109-2)を有して構成される。
欠陥候補検出部100は、ステ-ジ102、メカニカルコントロ-ラ103、照明光学系(照明部)104、検出光学系(上方検出系)105、空間周波数フィルタ111、検光子112、イメ-ジセンサ106、画像比較処理部107(前処理部107-1、画像メモリ107-2、欠陥候補検出部107-3、パラメ-タ設定部107-4、切り出し画像作成部(パッチ画像切り出し部)107-5)を有して構成される。
試料101は例えば半導体ウェハなどの被検査物である。ステ-ジ102は試料101を搭載してXY平面内の移動および回転(θ)とZ方向への移動が可能である。メカニカルコントロ-ラ103はステ-ジ102を駆動するコントロ-ラである。照明部104の光を試料101に照射し、試料101からの散乱光を検出光学系(上方検出系)105で結像させ、結像された光学像を各々のイメ-ジセンサ106で受光して、画像信号に変換する。このとき、試料101をX‐Y‐Z‐θ駆動のステ-ジ102に搭載し、該ステ-ジ102を水平方向に移動させながら異物散乱光を検出することで、検出結果を2次元画像として得る。
欠陥候補検出部100は、ステ-ジ102、メカニカルコントロ-ラ103、照明光学系(照明部)104、検出光学系(上方検出系)105、空間周波数フィルタ111、検光子112、イメ-ジセンサ106、画像比較処理部107(前処理部107-1、画像メモリ107-2、欠陥候補検出部107-3、パラメ-タ設定部107-4、切り出し画像作成部(パッチ画像切り出し部)107-5)を有して構成される。
試料101は例えば半導体ウェハなどの被検査物である。ステ-ジ102は試料101を搭載してXY平面内の移動および回転(θ)とZ方向への移動が可能である。メカニカルコントロ-ラ103はステ-ジ102を駆動するコントロ-ラである。照明部104の光を試料101に照射し、試料101からの散乱光を検出光学系(上方検出系)105で結像させ、結像された光学像を各々のイメ-ジセンサ106で受光して、画像信号に変換する。このとき、試料101をX‐Y‐Z‐θ駆動のステ-ジ102に搭載し、該ステ-ジ102を水平方向に移動させながら異物散乱光を検出することで、検出結果を2次元画像として得る。
照明部104の照明光源は、レ-ザを用いても、ランプを用いてもよい。また、各照明光源の波長の光は短波長であってもよく、また、広帯域の波長の光(白色光)であってもよい。短波長の光を用いる場合、検出する画像の分解能を上げる(微細な欠陥を検出する)ために、紫外領域の波長の光(Ultra Violet Light:UV光)を用いることもできる。レ-ザを光源として用いる場合、それが単波長のレ-ザである場合には、可干渉性を低減する手段(図示せず)を照明部104の各々に備えることも可能である。
また、イメ-ジセンサ106に複数の1次元イメ-ジセンサを2次元に配列して構成した時間遅延積分型のイメ-ジセンサ(Time Delay Integration Image Sensor:TDIイメ-ジセンサ)を採用し、ステ-ジ102の移動と同期して各1次元イメ-ジセンサが検出した信号を次段の1次元イメ-ジセンサに転送して加算することにより、比較的高速で高感度に2次元画像を得ることが可能になる。このTDIイメ-ジセンサとして複数の出力タップを備えた並列出力タイプのセンサを用いることにより、センサからの出力を並列に処理することができ、より高速な検出が可能になる。また、イメ-ジセンサ106に、裏面照射型のセンサを用いると表面照射型のセンサを用いた場合と比べて検出効率を高くすることができる。
試料101であるウェハ内の欠陥候補を抽出する画像比較処理部107は、検出された画像信号に対してシェ-ディング補正、暗レベル補正等の画像補正を行う前処理部107-1、補正された画像のデジタル信号を格納しておく画像メモリ107-2、画像メモリ107-2に記憶された対応する領域の画像を比較し、欠陥候補を抽出する欠陥候補検出部107-3、処理のパラメ-タをセットするパラメ-タ設定部107-4、検出した欠陥候補を含む小領域に切り出した画像(分割した画像、パッチ画像)を作成する切り出し画像作成部107-5とを備えてなる。
試料101であるウェハ内の欠陥候補を抽出する画像比較処理部107は、検出された画像信号に対してシェ-ディング補正、暗レベル補正等の画像補正を行う前処理部107-1、補正された画像のデジタル信号を格納しておく画像メモリ107-2、画像メモリ107-2に記憶された対応する領域の画像を比較し、欠陥候補を抽出する欠陥候補検出部107-3、処理のパラメ-タをセットするパラメ-タ設定部107-4、検出した欠陥候補を含む小領域に切り出した画像(分割した画像、パッチ画像)を作成する切り出し画像作成部107-5とを備えてなる。
まず、前処理部107-1では画像信号に対してシェーディング補正、暗レベル補正等の画像補正を行い、一定単位の大きさの画像に分割し、画像メモリ107-2へ格納する。画像メモリ107-2に格納された被検査領域の画像(以下、検出画像と記載)と対応する領域の画像(以下、参照画像と記載)のデジタル信号を読み出し、欠陥候補検出部107-3において位置を合わせるための補正量を算出し、算出された位置の補正量を用いて、検出画像と参照画像の位置合せを行い、対応する画素の特徴量を用いて特徴空間上ではずれ値となる画素を欠陥候補として出力する。パラメ-タ設定部107-4は、外部から入力される、欠陥候補を抽出する際の特徴量の種類やしきい値などの検査パラメ-タを設定し、欠陥候補検出部107-3に与える。
全体制御部109は、各種制御を行うCPU(全体制御部109に内蔵)を備え、ユ-ザからの検査パラメ-タ(特徴量の種類、しきい値など)の変更を受け付けたり、検出された欠陥情報を表示したりする表示手段と入力手段を持つユ-ザインタ-フェ-ス部109-1、検出された欠陥候補の特徴量や画像などを記憶する記憶装置109-2と接続されている。メカニカルコントロ-ラ103は、全体制御部109からの制御指令に基づいてステ-ジ102を駆動する。尚、画像比較処理部107、光学系等も全体制御部109からの指令により駆動される。
検査後処理部108は、記憶部(記憶装置)109-2に格納されている欠陥候補の情報を読み出し、欠陥候補に対し、DOI・Nuisanceの再判定を実施し、全体制御部109へ結果を出力する。
検査後処理部108は、記憶部(記憶装置)109-2に格納されている欠陥候補の情報を読み出し、欠陥候補に対し、DOI・Nuisanceの再判定を実施し、全体制御部109へ結果を出力する。
図2は、本発明に係る欠陥検査装置の第一の形態におけるチップの構成の一例を示す図であり、欠陥候補検出部100での欠陥候補の検出について説明する。検査対象となる試料(半導体ウェハ、ウェハとも記す)101はメモリマット部200-1と周辺回路部200-2とを備えてなる同一パタ-ンのチップ200が多数、規則的に並んでいる。全体制御部109では試料である半導体ウェハ101をステ-ジ102により連続的に移動させ、これに同期して、順次、チップの像をイメ-ジセンサ106より取り込み、検出画像に対し、規則的に配列されたチップの同じ位置、例えば図2の検出画像の領域203に対し、領域201、202、204、205のデジタル画像信号を参照画像とし、参照画像の対応する画素や検出画像内の他の画素と比較し、差異の大きな画素を欠陥候補として検出する。
図3は、本発明に係る欠陥検査装置の第一の実施の形態における欠陥候補抽出フロ-の一例を示す図である。図2に示した検査対象となるチップの画像(領域203)について、欠陥候補検出部107-3の処理フロ-の例を示したものである。まず検査対象となるチップの像(検出画像301)と、対応する参照画像302(ここでは、隣接するチップの像、図2の202とする)を画像メモリ107-2から読み出し、位置ずれ検出・位置あわせ部303にて位置のずれを検出し、位置合せを行う(303)。次に、特徴量演算部304において、位置合せを行った検出画像301の各画素に対して、参照画像302の対応する画素との間で複数の特徴量を演算する(304)。特徴量は、その画素の特徴を表すものであればよい。その一例としては、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値、(8)明るさ分散値などがある。
そして、特徴空間形成部305において、これらの特徴量のうちのいくつか、あるいは全ての特徴量を軸とする空間に各画素をプロットすることにより特徴空間を形成する(305)。そして、この特徴空間におけるデ-タ分布の外側にプロットされる画素、すなわち特徴的なはずれ値となる画素を、はずれ画素検出部において欠陥候補として検出する(306)。
切り出し画像作成部107-5では、画像メモリ107-2に格納された検出画像と参照画像から、欠陥候補検出部107-3で検出された欠陥候補を含む周辺の小領域を切り出す。切り出された検出画像307-2と参照画像307-3の切り出し画像(パッチ画像)と、特徴量演算部304にて算出された欠陥候補の特徴量(数値特徴)307-1とを、欠陥候補307として纏めて、記憶装置(記憶部)109-2へ格納する。
切り出し画像作成部107-5では、画像メモリ107-2に格納された検出画像と参照画像から、欠陥候補検出部107-3で検出された欠陥候補を含む周辺の小領域を切り出す。切り出された検出画像307-2と参照画像307-3の切り出し画像(パッチ画像)と、特徴量演算部304にて算出された欠陥候補の特徴量(数値特徴)307-1とを、欠陥候補307として纏めて、記憶装置(記憶部)109-2へ格納する。
図4は、本発明に係る欠陥検査装置の第一の実施の形態における検査後処理部の構成の一例を示す図である。検査後処理部108は、デ-タ受信部402、記憶装置(デ-タ記憶装置)403、欠陥分類演算部404を有して構成される。
全体制御部109は記憶部(記憶装置)109-2に格納されている欠陥候補307(欠陥数値特徴307-1、検出画像の切り出し画像(パッチ画像)307-2、参照画像の切り出し画像307-3)を検査後処理部108のデ-タ受信部402へ送信する。検査後処理部108はデータ受信部402から欠陥候補307を検査後処理部108内部の記憶装置403に格納する。
欠陥分類演算部404では、記憶装置403から欠陥候補307を読み出し、重要欠陥(DOI)と非重要欠陥(Nuisance)とに分類し、インタ-フェ-ス部109-1の結果表示部407へ分類の経過を逐次ユーザへ表示する。ユーザは結果表示部407に表示された分類結果を確認し、ユーザが希望する分類結果が得られていなければ、教示入力部408に対し、欠陥候補307がDOIかNuisanceかを教示する。ユーザが希望する分類結果が得られるまで、結果の表示とユーザ教示を繰り返し、ユーザが希望する分類結果が得られた時点で、終了判定入力部409へ終了を入力する。検査後処理部108での処理の結果得られる分類境界406は、それぞれの欠陥候補に対する、DOI・Nuisanceの分類境界である。また、分類境界406はDOIまたはNuisanceの欠陥ラベルとしても良い。分類境界406を出力し、検査後処理部108は、このようにして得られた欠陥ラベルと分類境界406を制御装置(全体制御部)109の一部である記憶部(記憶装置)109-2へ格納する。ただし、記憶部(記憶装置)109-2から直接画像データを入力する場合には、記憶装置403を含めなくてもよい。
全体制御部109は記憶部(記憶装置)109-2に格納されている欠陥候補307(欠陥数値特徴307-1、検出画像の切り出し画像(パッチ画像)307-2、参照画像の切り出し画像307-3)を検査後処理部108のデ-タ受信部402へ送信する。検査後処理部108はデータ受信部402から欠陥候補307を検査後処理部108内部の記憶装置403に格納する。
欠陥分類演算部404では、記憶装置403から欠陥候補307を読み出し、重要欠陥(DOI)と非重要欠陥(Nuisance)とに分類し、インタ-フェ-ス部109-1の結果表示部407へ分類の経過を逐次ユーザへ表示する。ユーザは結果表示部407に表示された分類結果を確認し、ユーザが希望する分類結果が得られていなければ、教示入力部408に対し、欠陥候補307がDOIかNuisanceかを教示する。ユーザが希望する分類結果が得られるまで、結果の表示とユーザ教示を繰り返し、ユーザが希望する分類結果が得られた時点で、終了判定入力部409へ終了を入力する。検査後処理部108での処理の結果得られる分類境界406は、それぞれの欠陥候補に対する、DOI・Nuisanceの分類境界である。また、分類境界406はDOIまたはNuisanceの欠陥ラベルとしても良い。分類境界406を出力し、検査後処理部108は、このようにして得られた欠陥ラベルと分類境界406を制御装置(全体制御部)109の一部である記憶部(記憶装置)109-2へ格納する。ただし、記憶部(記憶装置)109-2から直接画像データを入力する場合には、記憶装置403を含めなくてもよい。
図4の本発明に係る欠陥検査装置の第一の実施の形態における検査後処理部の構成の変形例を図16に示す。
欠陥候補307は試料101の設計情報307-4’をさらに備え、検査後処理部108は記憶装置を介さずに、データ受信部402’から欠陥分類演算部404に直接送信する。
欠陥分類演算部404’では、試料101の設計情報307-4’を含む欠陥候補307’に対し、重要欠陥(DOI)と非重要欠陥(Nuisance)とに分類し、インターフェース部109-1’の結果表示部407’へ分類の経過を逐次ユーザへ表示する。ユーザは結果表示部407’に表示された分類結果を確認し、ユーザが希望する分類結果が得られていなければ、教示入力部408’を介し、欠陥分類演算部404’へユーザ教示を実施し、欠陥分類演算部404’ではユーザ教示に基づき再度欠陥分類を実施する。
以上の結果表示とユーザ教示をユーザが希望する分類結果が得られるまで繰り返す。ユーザは希望する分類結果が得られた時点で、終了判定入力部409’を介し、欠陥分類演算部へ終了判定を入力する。欠陥分類演算部404’は、ユーザからの終了判定を受け取り、分類境界406’を制御装置(全体制御部)109’の一部である記憶部(記憶装置)109-2’へ格納する。
欠陥候補307は試料101の設計情報307-4’をさらに備え、検査後処理部108は記憶装置を介さずに、データ受信部402’から欠陥分類演算部404に直接送信する。
欠陥分類演算部404’では、試料101の設計情報307-4’を含む欠陥候補307’に対し、重要欠陥(DOI)と非重要欠陥(Nuisance)とに分類し、インターフェース部109-1’の結果表示部407’へ分類の経過を逐次ユーザへ表示する。ユーザは結果表示部407’に表示された分類結果を確認し、ユーザが希望する分類結果が得られていなければ、教示入力部408’を介し、欠陥分類演算部404’へユーザ教示を実施し、欠陥分類演算部404’ではユーザ教示に基づき再度欠陥分類を実施する。
以上の結果表示とユーザ教示をユーザが希望する分類結果が得られるまで繰り返す。ユーザは希望する分類結果が得られた時点で、終了判定入力部409’を介し、欠陥分類演算部へ終了判定を入力する。欠陥分類演算部404’は、ユーザからの終了判定を受け取り、分類境界406’を制御装置(全体制御部)109’の一部である記憶部(記憶装置)109-2’へ格納する。
図5は、本発明に係る欠陥検査装置の第一の実施の形態における欠陥分類演算部の構成の一例を示す図である。欠陥分類演算部404は、記憶装置403から欠陥候補307を入力する。欠陥特徴量算出部501は、欠陥候補307から特徴量を算出する。次に、欠陥候補グル-ピング部502は、欠陥特徴量算出部501が算出した特徴量を基に、欠陥候補307を類似グル-プへグル-ピングする。グル-プ分けの基準として、(1)参照画像(背景)の類似性、(2)欠陥候補同士の近接性、(3)欠陥候補の形状類似性、などがある。欠陥特徴量算出部501は、欠陥候補グルーピング部502で使用する特徴量として、欠陥候補307の検出画像307-2と、参照画像307-3、数値特徴307-1から、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などを算出する。欠陥候補グル-ピング部502では、グル-ピングの方法として、例えば、決定木による分類、サポ-トベクタ-マシンによる分類、最近傍則に基づく分類など、一般的に利用されているパタ-ン識別手法を用いる。
次に、欠陥分類評価値算出部503は、欠陥特徴量算出部501から特徴量を受け取り、欠陥候補のDOIらしさを評価するための評価値を算出する。評価値を算出するための特徴量として、欠陥特徴量算出部501において算出した特徴量から、欠陥候補とその周辺画像における(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などを利用し、欠陥分類評価値gを算出する。欠陥分類評価値算出部503では、欠陥分類評価値gを算出する。例えば、各特徴量をx1,x2,x3としたとき、欠陥分類評価値はg=i(x1,x2,x3)と表すことができる。ここで、iは、特徴量統合関数で、線形、非線型の多項式などで表現できるが、例えば、重み付きの線形和は重みをw1,w2,w3とすると、
i(x1,x2,x3)=w1・x1+w2・x2+w3・x3
として定義することができる。
i(x1,x2,x3)=w1・x1+w2・x2+w3・x3
として定義することができる。
次に、欠陥マトリクス作成部504では、欠陥候補グル-ピング部502で求めたグル-プと、欠陥分類評価値算出部503で求めたグループ毎の欠陥分類評価値に基づき、欠陥マトリクスを作成する。欠陥マトリクスは、欠陥候補グル-ピング部502で求めたグル-プを横軸に、欠陥分類評価値算出部503で求めた欠陥分類評価値を縦軸にし、並べられた欠陥候補を表示するものである。欠陥マトリクス作成部504は、求めた欠陥マトリクスをユーザインタ-フェ-ス部109-1の結果表示部407へ送信する。結果表示部407は、欠陥マトリクスをユーザへ表示する。ユ-ザは、結果表示部407に表示された欠陥マトリクスを確認し、教示入力部408にて、欠陥候補に対してDOIまたはNuisanceの教示を行う。
欠陥分類評価値更新部505は、教示入力部408からのユーザ教示と、欠陥マトリクス作成部504から入力された欠陥マトリクスに基づき、欠陥分類評価値の更新を行う。欠陥分類評価値の更新は、後で詳述するが、欠陥分類評価値順に並べられた欠陥候補の並び替えに相当する。
欠陥分類評価値更新部505は、教示入力部408からのユーザ教示と、欠陥マトリクス作成部504から入力された欠陥マトリクスに基づき、欠陥分類評価値の更新を行う。欠陥分類評価値の更新は、後で詳述するが、欠陥分類評価値順に並べられた欠陥候補の並び替えに相当する。
欠陥分類しきい値決定部506は、欠陥分類評価値更新部にて並び替えられた欠陥候補を基に、欠陥候補がDOIであるかNuisanceであるかを分類する、分類境界406を決定する。繰り返し終了判定部507は、欠陥マトリクスと分類境界406をユ-ザに表示する。ユ-ザは、希望するDOIが正しく抽出されていれば終了と判断し、終了判定入力部409において終了判定を行う。ユーザが終了判定をしなかった場合、欠陥マトリクス作成部504にて再度欠陥マトリクスをユ-ザに表示し、再度、ユ-ザ教示入力部408を実施する。ユ-ザが希望するDOIの抽出ができるまで、何度かこの繰り返しを実施する。ユーザが終了判定入力部409にて、終了の判定を入力した場合、繰り返し終了判定部507は、繰り返し終了時点の分類境界406を記憶部(記憶装置)109-2へ出力し、定めた分類境界406を用いて、欠陥検出部115にて欠陥を検出する。
図5の本発明に係る欠陥検査装置の第一の実施の形態における欠陥分類演算部の構成の変形例を図17に示す。
図5における記憶装置403の代わりにデータ受信部402があり、欠陥分類演算部404の内部のステップが一部追加されている。また、インターフェース109-1においては分類性能算出部509’の結果を表示する結果表示部407が追加されている。
図5における記憶装置403の代わりにデータ受信部402があり、欠陥分類演算部404の内部のステップが一部追加されている。また、インターフェース109-1においては分類性能算出部509’の結果を表示する結果表示部407が追加されている。
図17においては、欠陥分類演算部404は、データ受信部402’から欠陥候補307を受け取る。欠陥分類演算部404’内の欠陥特徴量算出部501は、欠陥候補307から特徴量を算出する。欠陥特徴量算出部501で算出する特徴量は、欠陥候補307の検出画像307-2と、参照画像307-3、数値特徴307-1から、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などである。さらに、上記特徴量による特徴空間内において、(8)各欠陥候補を中心とする分布密度、(9)最近傍の欠陥候補までの距離、(10)分布の重心からの距離、などを特徴量の一つとして扱っても良い。また、(11)設計情報に基づくパターン近接性次などを特徴量としても良い。欠陥候補グルーピング部502は、欠陥特徴量算出部501が算出した特徴量を基に、欠陥候補307を類似グループへグルーピングする。グループ分けの基準として、(1)参照画像(背景)の類似性、(2)欠陥候補同士の近接性、(3)欠陥候補の形状類似性、(4)設計パターンの粗密度、などがある。
特徴量選択部503は、欠陥特徴量算出部501において算出された特徴量から少なくとも1つ以上の特徴量を選択し、特徴空間を作成する。分類に有効な特徴量は、ユーザが抽出を希望するDOI種毎に異なるため、ユーザ教示に基づき、特徴量を選択する。特徴量選択の方法として、教示済みの欠陥に基づき、それらが最も精度良く分類できる特徴量を選択しても良いし、判別分析などにより決定しても良いし、ユーザが任意に選択しても良い。ユーザ教示が実施される前の初期段階では、既定の特徴量を利用しても良いし、過去の分類で適用された特徴量を利用しても良い。
次に、欠陥分類評価値算出部504は、欠陥特徴量選択部503が選択した特徴量を受け取り、欠陥候補のDOIらしさを評価するための欠陥分類評価値gを算出する。例えば、選択した特徴量をx1,x2,x3としたとき、欠陥分類評価値はg=i(x1,x2,x3)と表わすことができる。
次に、教示欠陥選択部505は欠陥候補307から、ユーザ教示に用いる欠陥を選択する。欠陥候補の選択方法は、グループ毎の全欠陥候補からランダムに選択しても良いし、欠陥分類境界決定部508の出力結果である分類境界の周辺から自動的に選択しても良いし、ユーザが任意に選択しても良い。
但し、分類境界の周辺から教示欠陥を選択する場合、分類境界が算出されていない分類初期段階では、分類境界を利用して教示欠陥の選択を行うことができない。そのため、主成分分析やk-meansクラスタリング手法などによる粗分類を実施し、そこで求められた欠陥分類境界を利用することもできるし、過去の分類結果の分類境界を利用して教示画像の選択を行うこともできる。欠陥候補の選択により、ユーザが教示のために比較する欠陥候補数を減らすことができ、ユーザの負担減と、教示時間の短縮、教示の正確性向上などを実現でき、それにより、ユーザフレンドリーなDOI・Nuisanceの分類を実現することができる。
但し、分類境界の周辺から教示欠陥を選択する場合、分類境界が算出されていない分類初期段階では、分類境界を利用して教示欠陥の選択を行うことができない。そのため、主成分分析やk-meansクラスタリング手法などによる粗分類を実施し、そこで求められた欠陥分類境界を利用することもできるし、過去の分類結果の分類境界を利用して教示画像の選択を行うこともできる。欠陥候補の選択により、ユーザが教示のために比較する欠陥候補数を減らすことができ、ユーザの負担減と、教示時間の短縮、教示の正確性向上などを実現でき、それにより、ユーザフレンドリーなDOI・Nuisanceの分類を実現することができる。
次に、欠陥マトリクス作成部506では、欠陥候補グルーピング部502で求めたグループを横軸に、欠陥分類評価値算出部504で求めた欠陥分類評価値を縦軸にし、教示欠陥選択部505により選択された欠陥候補を並べて表示する。
また、教示入力部408における欠陥候補に対するDOIまたはNuisanceの教示においては、ユーザ教示の方法として、欠陥候補画像による判断の他に、光学顕微鏡画像や、電子線顕微鏡画像の目視確認により判断しても良い。このとき、入力された欠陥候補307以外の情報に基づき教示が行われた場合、その欠陥候補は欠陥候補の情報のみでは分類できない曖昧な欠陥として、欠陥分類演算部404において、分類への影響を小さくするように重み付することもできる。例えば、検査後処理部108への入力が暗視野式検査画像のみであったとき、光学顕微鏡画像に基づき教示を行った場合などである。さらに、その欠陥候補の影響を排除するため、欠陥候補を削除することもできる。
また、教示入力部408における欠陥候補に対するDOIまたはNuisanceの教示においては、ユーザ教示の方法として、欠陥候補画像による判断の他に、光学顕微鏡画像や、電子線顕微鏡画像の目視確認により判断しても良い。このとき、入力された欠陥候補307以外の情報に基づき教示が行われた場合、その欠陥候補は欠陥候補の情報のみでは分類できない曖昧な欠陥として、欠陥分類演算部404において、分類への影響を小さくするように重み付することもできる。例えば、検査後処理部108への入力が暗視野式検査画像のみであったとき、光学顕微鏡画像に基づき教示を行った場合などである。さらに、その欠陥候補の影響を排除するため、欠陥候補を削除することもできる。
欠陥分類評価値更新部507は、教示入力部408からのユーザ教示に基づき、欠陥分類評価値の更新を行う。
欠陥分類境界決定部508は、欠陥分類評価値更新部507にて並び替えられた欠陥候補を基に、欠陥候補がDOIであるかNuisanceであるかを分類する、分類境界406を決定する。分類境界406を決定する際には、一般的な分類法を適用することができる。例えば、決定木による分類、サポートベクターマシンによる分類、最近傍則に基づく分類などである。このとき、グループ毎に異なる分類境界を設定することもでき、各グループ均一の分類境界とすることもできる。また、分類境界はユーザにより教示入力部408へ直接指定、変更する事もできる。ユーザは、マトリクス結果表示部407と教示入力部408により、この欠陥分類評価値更新507の一連の作業を複数回繰り返すことにより、ユーザ毎に異なる判定基準により、柔軟なDOI・Nuisance分類を実現することができる。
欠陥分類境界決定部508は、欠陥分類評価値更新部507にて並び替えられた欠陥候補を基に、欠陥候補がDOIであるかNuisanceであるかを分類する、分類境界406を決定する。分類境界406を決定する際には、一般的な分類法を適用することができる。例えば、決定木による分類、サポートベクターマシンによる分類、最近傍則に基づく分類などである。このとき、グループ毎に異なる分類境界を設定することもでき、各グループ均一の分類境界とすることもできる。また、分類境界はユーザにより教示入力部408へ直接指定、変更する事もできる。ユーザは、マトリクス結果表示部407と教示入力部408により、この欠陥分類評価値更新507の一連の作業を複数回繰り返すことにより、ユーザ毎に異なる判定基準により、柔軟なDOI・Nuisance分類を実現することができる。
分類性能算出部509では、教示済みの欠陥と分類境界決定部508により決定された分類境界406に基づき、教示済みの欠陥における分類正解率と、教示欠陥の追加による推定性能向上量を算出する。ここで算出された性能向上量と分類正解率は結果表示部407を介しユーザへ表示される。
図18は、教示欠陥数と分類性能との関係を表わすグラフである。教示欠陥数と分類性能の関係は一般的に、図18に示す通り教示点数の増加に伴い分類性能は向上するが、ある一定の教示数で向上は収束する。推定性能向上量は分類正解率の変動幅や推定性能の微分値などにより求められる。また、分類正解率に対し任意の多項式によるフィッティングを実施し、分類推定値を外挿する事により求めても良い。
図17の繰り返し判定部510は、教示欠陥追加判定部510-1と特徴再選択判定部510-2からなる。教示画像追加判定部510-1では、分類性能算出部509から前記の分類正解率と性能推定向上量を受け取り、教示欠陥の追加を実施するかどうかを判定し、教示欠陥の追加により分類性能が向上する場合、教示欠陥選択部505以降の処理を繰り返す。教示欠陥の追加により分類性能が向上しない場合、特徴量再選択判定部510-2の処理を実施する。特徴量再選択判定部510-2では、分類性能算出部509から分類正解率を受け取り、分類正解率が終了判定入力部410により入力されたユーザ既定値より低ければ、特徴量選択部503以降の処理を繰り返す。分類正解率が規定値より高ければ以上の繰り返しを終了する。また、ユーザは結果表示部407に表示された分類性能を確認し、希望するDOI・Nuisance分類が実現できていると判断すれば、終了判定入力部410へ繰り返しの終了判定を入力し、前記の繰り返しを終了することもできる。繰り返し終了時点の分類境界406、各欠陥候補の特徴量、選択した特徴量、選択欠陥候補への教示結果、グルーピング基準などを記憶部(記憶装置)109-2へ出力する。
図6は、本発明に係る欠陥検査装置における、欠陥候補教示用のGUIの一例を示す図である。ここで、欠陥マトリクス作成部504にて作成した欠陥マトリクスの表示例と、ユ-ザ教示の例を図6に示す。欠陥マトリクス作成部504は、結果表示部407において、欠陥マトリクス表示画面(欠陥候補表示画面)601に示す欠陥マトリクスを表示する。表示欠陥マトリクスは、横軸にグル-プ、縦軸に欠陥判定評価値をとり、欠陥候補を並べて表示したものである。さらに、欠陥マトリクスには、DOIとNuisanceの分類境界406が表示される。ユ-ザはマウスなどの入力装置により、欠陥候補を選択する。図6の一例では、欠陥候補606が選択されている。欠陥候補情報表示画面602には、選択した欠陥候補606の参照画像307-3、検出画像307-2、数値特徴量307-1などが表示される。さらに、選択した欠陥候補のウェハ内の発生位置や、セル内の発生位置が表示される。ユ-ザは欠陥候補教示画面602を参考にし、DOIかNuisanceかの判断を行い、欠陥候補教示画面603の教示メニュー604に対して、DOIかNuisanceかを選択する。このとき、欠陥候補情報表示画面602では、欠陥候補606のSEM画像や、光学顕微鏡画像などを表示しても良く、ユーザはそれらを参考にDOIとNuisanceの判断をすることもできる。欠陥候補教示画面603が教示入力部408にあたる。
ここで、欠陥マトリクス作成部504は、欠陥マトリクスに表示する欠陥候補を限定するため、サンプリングを実施する。サンプリングは、欠陥候補が多数ある場合など、全ての欠陥候補を欠陥マトリクスへ表示できない場合に実施する。サンプリング方法の一例として、全欠陥候補からランダムにサンプリングする方法や、一定間隔でサンプリングする方法などがあり、分類境界406の周辺にある欠陥候補のみをサンプリングする方法もある。サンプリングにより、ユ-ザが教示のために比較する欠陥候補数を減らすことができ、ユ-ザの負担減と、教示時間の短縮、教示の正確性向上などを実現でき、それにより、ユーザフレンドリーなDOI・Nuisanceの分類を実現することができる。
図6の本発明に係る欠陥検査装置における、欠陥候補教示用のGUIの変形例を図19に示す。
図5、図17の欠陥マトリクス作成部504、506は、結果表示部407、407’において、欠陥マトリクス表示画面(欠陥候補表示画面)601に示す欠陥マトリクスを表示する。欠陥マトリクスは、横軸にグループ、縦軸に欠陥判定評価値をとり、欠陥候補画像を並べて表示したもので、DOIとNuisanceの分類境界406’も表示される。さらに、全欠陥候補によるグループ毎の欠陥判定評価値の分布表示画面605も表示される。欠陥マトリクス表示画面には検査データとして、ウェハ情報や検査レシピ、総欠陥数なども表示される。ユーザはマウスなどの入力装置により、教示を行う欠陥候補を選択することができ、図19では、欠陥候補606’を選択している。欠陥候補情報表示画面602’には、選択した欠陥候補606’の参照画像606-3’、検出画像606-2’、数値特徴量606-1’などが表示される。さらに、選択した欠陥候補のウェハ内の発生位置や、チップ内の発生位置などが表示される。ユーザは欠陥候補教示画面602’を参考にし、DOIかNuisanceかの判断を行い、欠陥候補教示部607’にてDOIかNuisanceかを選択する。このとき、欠陥候補情報表示画面602’では、欠陥候補606’のSEM画像606-5’や、光学顕微鏡画像606-4’などを表示しても良く、ユーザはそれらを参考にDOIとNuisanceの判断をすることもできる。以上のユーザ教示により、欠陥分類が実施されると、現在の分類状況を表す欠陥分類状況表示画面603’が表示される。欠陥分類状況表示画面603’内の特徴空間表示画面608’では、選択特徴量からなる特徴空間における欠陥候補の分布や、未教示・教示済みに分けられた欠陥候補の分布、分類境界406’、選択されている特徴量とその重みなども表示されている。一方、推定性能表示画面609’では、教示済欠陥数や、教示済み欠陥に基づく分類正解率、推定性能向上量が表示される。ユーザは欠陥マトリクス表示画面601’と、欠陥分類状況表示画面603’を確認し、教示欠陥の追加や特徴量再選択の判定を、繰り返し判定画面604’へ入力する。また、自動的に繰り返し判定をさせることもでき、自動判定を選択することもできる。
図5、図17の欠陥マトリクス作成部504、506は、結果表示部407、407’において、欠陥マトリクス表示画面(欠陥候補表示画面)601に示す欠陥マトリクスを表示する。欠陥マトリクスは、横軸にグループ、縦軸に欠陥判定評価値をとり、欠陥候補画像を並べて表示したもので、DOIとNuisanceの分類境界406’も表示される。さらに、全欠陥候補によるグループ毎の欠陥判定評価値の分布表示画面605も表示される。欠陥マトリクス表示画面には検査データとして、ウェハ情報や検査レシピ、総欠陥数なども表示される。ユーザはマウスなどの入力装置により、教示を行う欠陥候補を選択することができ、図19では、欠陥候補606’を選択している。欠陥候補情報表示画面602’には、選択した欠陥候補606’の参照画像606-3’、検出画像606-2’、数値特徴量606-1’などが表示される。さらに、選択した欠陥候補のウェハ内の発生位置や、チップ内の発生位置などが表示される。ユーザは欠陥候補教示画面602’を参考にし、DOIかNuisanceかの判断を行い、欠陥候補教示部607’にてDOIかNuisanceかを選択する。このとき、欠陥候補情報表示画面602’では、欠陥候補606’のSEM画像606-5’や、光学顕微鏡画像606-4’などを表示しても良く、ユーザはそれらを参考にDOIとNuisanceの判断をすることもできる。以上のユーザ教示により、欠陥分類が実施されると、現在の分類状況を表す欠陥分類状況表示画面603’が表示される。欠陥分類状況表示画面603’内の特徴空間表示画面608’では、選択特徴量からなる特徴空間における欠陥候補の分布や、未教示・教示済みに分けられた欠陥候補の分布、分類境界406’、選択されている特徴量とその重みなども表示されている。一方、推定性能表示画面609’では、教示済欠陥数や、教示済み欠陥に基づく分類正解率、推定性能向上量が表示される。ユーザは欠陥マトリクス表示画面601’と、欠陥分類状況表示画面603’を確認し、教示欠陥の追加や特徴量再選択の判定を、繰り返し判定画面604’へ入力する。また、自動的に繰り返し判定をさせることもでき、自動判定を選択することもできる。
図20は、本発明に係る欠陥検査装置における、欠陥候補教示用のGUIの追加表示の一例を示す図である。
追加表示画面609’は前記欠陥候補情報表示画面602’の追加表示である。ユーザは欠陥候補画像606-2’、606-3’を目視で確認することにより、その欠陥候補がDOIかNuisanceかを判断し、欠陥候補教示部607’にて教示を行う。このとき、欠陥候補画像606-2’、606-3’のみで判断でき無かった場合、ユーザは光学顕微鏡画像(OM画像)611や電子線顕微鏡画像(SEM画像)612’を判断のための情報として追加することができる。欠陥候補以外の画像を追加する場合、ユーザは、チェックボックス613’へチェックを行う。
装置側では、チェックされた欠陥候補について顕微鏡画像611’やSEM画像612’の取得を行い、欠陥候補情報表示画面609’へ取得画像を表示する。また、ユーザは欠陥候補以外の画像による教示結果を、後段の分類へ、どの程度反映させるかを決定し、分類影響度入力部614’へ数値として入力することができる。このとき、欠陥候補の情報のみでは判断できなかった曖昧な欠陥として、分類影響度入力部へ低い値を入力しても良いし、複数の情報から判断した信頼性の高い欠陥として、高い値を入力しても良い。
このようにして教示された欠陥候補に基づき分類が実施されると、教示状況表示画面610’に欠陥候補の特徴量分布とそれに基づき算出された分類境界が示される。教示状況表示画面610’内の画面615’には、DF、OM、SEMのいずれかの画像に基づき教示した欠陥候補と、それに基づき算出した分類境界が表示され、画面616’には、DF画像またはOM画像に基づき教示した欠陥候補と、それに基づき算出された分類境界が示されている。画面617’には、DF画像のみで教示することができた欠陥候補と、それに基づき算出された分類境界が示されている。 図7は、本発明に係る欠陥検査装置の第一の実施の形態における、欠陥分類評価値の更新によるDOI・Nuisance分類の一例を示す図であり、図5や図17の欠陥分類評価値更新部505、507における欠陥分類評価値の更新処理の内容を示す。図6や図18で示した欠陥マトリクスでは縦軸に欠陥判定評価値を取っているが、ここでは説明のため横軸にしてある。欠陥候補A、B、C、D、Eが欠陥分類評価値g1=i1(x1,x2,・・・)に基づき並べられていたとする。このとき、ユ-ザは、教示入力部408、408’により欠陥候補BとEをDOI、欠陥候補DをNuisanceと教示したとする。図5の欠陥分類しきい値決定部506、図17の欠陥分類境界決定部508では、欠陥候補をDOIとNuisanceに分類する分類しきい値を、欠陥分類評価値gのある値に設定するのだが、どこに設定したとしても正しく分類することは不可能である。
追加表示画面609’は前記欠陥候補情報表示画面602’の追加表示である。ユーザは欠陥候補画像606-2’、606-3’を目視で確認することにより、その欠陥候補がDOIかNuisanceかを判断し、欠陥候補教示部607’にて教示を行う。このとき、欠陥候補画像606-2’、606-3’のみで判断でき無かった場合、ユーザは光学顕微鏡画像(OM画像)611や電子線顕微鏡画像(SEM画像)612’を判断のための情報として追加することができる。欠陥候補以外の画像を追加する場合、ユーザは、チェックボックス613’へチェックを行う。
装置側では、チェックされた欠陥候補について顕微鏡画像611’やSEM画像612’の取得を行い、欠陥候補情報表示画面609’へ取得画像を表示する。また、ユーザは欠陥候補以外の画像による教示結果を、後段の分類へ、どの程度反映させるかを決定し、分類影響度入力部614’へ数値として入力することができる。このとき、欠陥候補の情報のみでは判断できなかった曖昧な欠陥として、分類影響度入力部へ低い値を入力しても良いし、複数の情報から判断した信頼性の高い欠陥として、高い値を入力しても良い。
このようにして教示された欠陥候補に基づき分類が実施されると、教示状況表示画面610’に欠陥候補の特徴量分布とそれに基づき算出された分類境界が示される。教示状況表示画面610’内の画面615’には、DF、OM、SEMのいずれかの画像に基づき教示した欠陥候補と、それに基づき算出した分類境界が表示され、画面616’には、DF画像またはOM画像に基づき教示した欠陥候補と、それに基づき算出された分類境界が示されている。画面617’には、DF画像のみで教示することができた欠陥候補と、それに基づき算出された分類境界が示されている。 図7は、本発明に係る欠陥検査装置の第一の実施の形態における、欠陥分類評価値の更新によるDOI・Nuisance分類の一例を示す図であり、図5や図17の欠陥分類評価値更新部505、507における欠陥分類評価値の更新処理の内容を示す。図6や図18で示した欠陥マトリクスでは縦軸に欠陥判定評価値を取っているが、ここでは説明のため横軸にしてある。欠陥候補A、B、C、D、Eが欠陥分類評価値g1=i1(x1,x2,・・・)に基づき並べられていたとする。このとき、ユ-ザは、教示入力部408、408’により欠陥候補BとEをDOI、欠陥候補DをNuisanceと教示したとする。図5の欠陥分類しきい値決定部506、図17の欠陥分類境界決定部508では、欠陥候補をDOIとNuisanceに分類する分類しきい値を、欠陥分類評価値gのある値に設定するのだが、どこに設定したとしても正しく分類することは不可能である。
そこで、図5や図17の欠陥分類評価値更新部505、507は、特徴量統合関数i1をi2に変更し、欠陥分類評価値をg2=i2(x1,x2,・・・)と更新する。更新の方法は、例えば、特徴量統合関数i1を重み付きの線形和
i1(x1,x2,x3)=w1・x1+w2・x2+w3・x3
としたとき、重みw1,w2,w3の重みパラメータ値を変更することもできるし、関数i自体を変更し、例えば2乗和(^はべき乗を表す)
i2(x1,x2,x3)=w1・x1^2+w2・x2^2+w3・x3^2
とすることもできる。
i1(x1,x2,x3)=w1・x1+w2・x2+w3・x3
としたとき、重みw1,w2,w3の重みパラメータ値を変更することもできるし、関数i自体を変更し、例えば2乗和(^はべき乗を表す)
i2(x1,x2,x3)=w1・x1^2+w2・x2^2+w3・x3^2
とすることもできる。
欠陥分類評価値更新部505における評価値の更新により、欠陥欠陥候補の並びをA、B、C、D、Eから、D、A、E、C、Bと変更することができ、DOIとしたB、Eと、NuisanceとしたDとを分類するしきい値を決定することができる。欠陥分類評価値更新部505では、各グループに異なる欠陥分類評価値の更新を実施することもできるし、全てのグループに同様の更新を実施することもできる。つまり、グループ毎に異なる欠陥分類評価値としても良いし、全てのグループが同じ欠陥分類評価値としても良い。
欠陥分類しきい値決定部506では、各グループの評価値順並べられた欠陥候補に対し、DOIとNuisanceの分類のためのしきい値を決定する。しきい値は、ユーザが教示したDOIとNuisanceを弁別するように決定され、一般的な分類法を適用することができる。例えば、決定木による分類、サポ-トベクタ-マシンによる分類、最近傍則に基づく分類などである。
グループ毎に異なるしきい値を設定することもでき、各グループ均一のしきい値とすることもできる。また、欠陥分類しきい値決定部506で自動的に決定することもできる。ユーザは、マトリクス結果表示部407と教示入力部408により、この欠陥分類評価値更新(505)の一連の作業を複数回繰り返すことにより、ユーザ毎に異なる判定基準により、柔軟なDOI・Nuisance分類を実現することができる。
図21は、本発明に係る欠陥検査装置の第一の実施形態における、教示画像の追加と、特徴量の再選択による、分類境界の変化を示す図であり、ユーザ教示欠陥の追加による分類境界の変化と、特徴量の再選択による特徴空間内でのDOI・Nuisance分布の変化を表している。図21上段では、未教示の欠陥候補から数点についてユーザ教示され、教示欠陥に基づき分類境界が決定される様子が示されている。図21中段では、上段での分類境界がユーザ教示欠陥の追加により、更新される様子が示されている。しかし、図21中段の状態において、さらに教示欠陥の追加を行っても分類性能は向上しない。そこで、特徴量を再選択を実施することにより、特徴空間内での欠陥分布の変化と、それに伴う分類境界の変化を図21下段に示している。教示欠陥の追加と特徴量の再選択を行うことで、分類性能を向上させることができる。
図8は、本発明に係る欠陥検査装置の第一の実施の形態における欠陥検査の処理フロ-の一例を示す図であり、欠陥候補検出部100と検査後処理部108の処理を含めた、処理の流れを示す。欠陥候補検出部100では、ユ-ザはためし検査チップを指定(801)し、パラメ-タを設定(802)した後、試し検査を実施(803)する。試し検査(820)とは、ウェハの一部領域に対して検査を実施し、そこで検出された実欠陥と虚報の割合が適当となるように、検査パラメ-タを設定するための検査方法である。
検査後処理部108では試し検査により検出された欠陥候補(数値特徴)(307-1)に対して欠陥分類(807)を実施し、分類結果を確認(808)した後、欠陥マトリクス601として分類結果をユ-ザへ表示(812)する。結果表示に基づきユ-ザは各欠陥候補に対し、DOIとNuisanceの教示(810)を実施する。分類が最適であるか否かを判断し(809)、ユ-ザ希望の欠陥分類が実現するまで、結果表示(812)とユ-ザ教示(810)を繰り返す(811)。
検査後処理部108では試し検査により検出された欠陥候補(数値特徴)(307-1)に対して欠陥分類(807)を実施し、分類結果を確認(808)した後、欠陥マトリクス601として分類結果をユ-ザへ表示(812)する。結果表示に基づきユ-ザは各欠陥候補に対し、DOIとNuisanceの教示(810)を実施する。分類が最適であるか否かを判断し(809)、ユ-ザ希望の欠陥分類が実現するまで、結果表示(812)とユ-ザ教示(810)を繰り返す(811)。
次に、試し検査により設定した検査パラメ-タ813を用い、ウェハ全面に対して検査を実施(814)する。全面検査の結果、検出された欠陥候補に対して、欠陥候補分類(821)で決定した分類境界816を使用し欠陥候補をDOIとNuisanceに分類(817)し、分類結果をユ-ザに表示(818)する。
上記実施例では、欠陥分類評価値更新のためにユ-ザ教示を行ったが、欠陥候補のグル-プ分けに対してユ-ザ教示を行ってもよい。
上記実施例では、欠陥分類評価値更新のためにユ-ザ教示を行ったが、欠陥候補のグル-プ分けに対してユ-ザ教示を行ってもよい。
図9に、本発明に係る欠陥検査装置の第一の実施の形態におけるユ-ザの教示による欠陥候補グル-ピングの一例を示す。欠陥候補グル-ピング部502に対して、グル-ピング結果表示部901、グル-ピング条件変更部902、繰り返し終了判定部903を追加する。
欠陥分類演算部404へ欠陥候補を入力し、欠陥候補の特徴量を欠陥特徴量算出部501において出力する。欠陥特徴量算出部501により、特徴量を算出し、欠陥候補グル-ピング部502において、算出した特徴量を基に、類似グル-プへグル-ピングする。グル-プ分けの基準として、(1)参照画像(背景)の類似性、(2)欠陥候補同士の近接性、(3)欠陥候補の欠陥形状類似性、などがある。
ここで、欠陥候補グル-ピングのために利用される特徴量として、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などがある。グル-ピングの結果をユ-ザへ表示し、グル-ピングの結果が正しくなければ、ユ-ザは正しいグル-プを教示する。
ここで、欠陥候補グル-ピングのために利用される特徴量として、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などがある。グル-ピングの結果をユ-ザへ表示し、グル-ピングの結果が正しくなければ、ユ-ザは正しいグル-プを教示する。
図9の本発明に係る欠陥検査装置の第一の実施の形態における、ユーザの教示による欠陥候補グルーピングの変形例を図22に示す。
欠陥候補グルーピング部502’に対して、グルーピング条件変更部901’、繰り返し終了判定部902’を追加する。
欠陥候補グルーピング部502’に対して、グルーピング条件変更部901’、繰り返し終了判定部902’を追加する。
第一の実施の形態と同様に、データ受信部402’から欠陥特徴量算出部501’へ欠陥候補307’を入力し、欠陥特徴量算出部501’において欠陥候補307’の特徴量を算出する。欠陥候補グルーピング部502’において、算出した特徴量に基づき、類似グループへグルーピングする。グルーピングの結果を結果表示部903’を介しユーザへ表示し、グルーピングの結果が正しくなければ、ユーザは正しいグループを教示入力部904’を介し、グルーピング条件変更部901’へ入力する。
図10は、本発明に係る欠陥検査装置の第一の実施の形態の欠陥候補のグル-ピングにおける、欠陥候補教示用のGUIの一例を示す図である。欠陥候補グル-ピング部502にて分けられたグル-プから、誤ったグル-ピングが実施された欠陥候補を選択する。ユ-ザは欠陥候補教示画面1002において、参照画像307-3を参考にし、正しいグル-プを選択する。この操作が教示入力部904での動作となる。欠陥候補グル-ピング部502でのグル-ピングの方法は、一般的に利用されているパタ-ン識別手法を用いる。例えば、決定木による分類、サポ-トベクタ-マシンによる分類、最近傍則に基づく分類などを適用することができ、これらの手法は、事前にグル-ピング条件を学習する必要がある。ここで、グル-ピング条件変更部902では、正しいグル-プの教示に基づき、パタ-ン識別手法に対して、新しいグル-ピング条件を設定する。その後、新しいグル-ピング条件に基づき、再度欠陥候補をグル-ピングし、ユ-ザに表示する。この操作を繰り返し、ユ-ザが満足するグル-ピングとなった時点で、ユ-ザは終了判定入力部906に対して、繰り返しを終了する判定を行い、繰り返し終了判定部903において繰り返しを終了する。
欠陥候補のグル-ピングに対して教示を行うことで、より正確なグル-プ分けが実現でき、その後、グル-プ毎の欠陥分類しきい値や欠陥分類境界を決定する際に、より正確なDOI・Nuisance分類が実現できる。
上記実施例では、欠陥候補グルーピング部502によるグループ分けと欠陥分類評価値算出部503による欠陥分類評価値の算出により、欠陥マトリクス作成部504は欠陥マトリクスを作成し、ユ-ザに表示する。それに対して、ユーザはユーザインターフェース部109-1より教示を行うことで、欠陥候補の分類を実現した。
欠陥候補のグルーピングとユーザ教示により、欠陥分類を実現したが、ここでは、ユ-ザの教示は行わず、過去のデ-タなど、事前に定義したDOIの特徴量と欠陥候補から算出した特徴量に基づき、欠陥候補をDOIとNuisanceに分類する実施例を示す。
欠陥候補のグルーピングとユーザ教示により、欠陥分類を実現したが、ここでは、ユ-ザの教示は行わず、過去のデ-タなど、事前に定義したDOIの特徴量と欠陥候補から算出した特徴量に基づき、欠陥候補をDOIとNuisanceに分類する実施例を示す。
図11は、本発明に係る欠陥検査装置の第一の実施の形態におけるDOI定義辞書を用いた検査後処理部の構成の一例を示す図であり、教示を行わない検査後処理部の実施形態について以下で説明する。上記実施の形態1と同様に、欠陥候補307(欠陥数値特徴404-1、検出画像の切り出し画像404-2、参照画像の切り出し画像404-3)をデ-タ受信部402に入力し、記憶装置403に格納する。記憶装置403に格納された欠陥候補の特徴と、全体制御部の記憶部(記憶装置)109-2に格納されているDOI定義辞書1103に含まれるDOIの特徴との比較を行い、欠陥候補をDOIとNuisanceとに分類する。DOI定義辞書1103は、ユーザが事前に入力した、DOIまたはNuisanceが定義済みの欠陥候補と、欠陥候補から抽出された特徴量が格納されている。また、DOI定義辞書1103は、事前に算出したDOI・Nuisanceの分類境界としても良い。また、図16に対応させて、欠陥候補307として試料101の設計情報307-4を含ませてもよい。
図12は、本発明に係る欠陥検査装置の第一の実施の形態におけるDOI定義辞書を用いた欠陥分類演算部の構成の一例を示す図である。欠陥特徴量算出部501は、入力された欠陥候補307から特徴量を算出する。欠陥分類のために利用する特徴量として、(1)明るさ、(2)コントラスト、(3)濃淡差、(4)近傍画素の明るさ分散値、(5)相関係数、(6)近傍画素との明るさの増減、(7)2次微分値などがある。欠陥特徴量照合部1201はDOI定義辞書1103に格納されているDOIの特徴量と、欠陥候補307の特徴量との比較を行う。特徴量の比較には、一般的に用いられている最近傍則やサポートベクターマシンなどを利用できる。欠陥分類しきい値算出部(欠陥分類境界算出部)1202では、欠陥候補307がDOIかNuisanceかを判定し、分類境界406を算出する。
ユ-ザ教示を行わず、DOI定義辞書1103による欠陥判定を行うことで、半導体ウェハ量産時点での欠陥検査において、ユ-ザ毎に異なる判定基準による検査感度のばらつきを抑えるとともに、教示の時間や欠陥分類のための演算時間を短縮させることができるため、高速性化を実現できる。
次に、上記説明したシステム構成の画像処理系をもつ本欠陥検査装置の別の例を、蓄積された過去の分類情報を利用して分類する場合で説明する。欠陥分類データベースには、過去の欠陥分類結果の出力である、(1)分類境界、(2)各欠陥候補の特徴量、(3)選択した特徴量、(4)選択欠陥候補への教示結果、(5)グルーピング基準などが格納されており、分類にそれらの情報を利用する。
図23に、欠陥分類データベースを利用する場合の検査後処理システムの構成を示す。上記実施の形態1と同様に、記憶部109-2に格納された欠陥候補307(欠陥数値特徴307-1、検出画像の切り出し画像307-2、参照画像の切り出し画像307-3、設計情報307-4)をデータ受信部402に入力する。検索部1501は、データ受信部402から分類対象の欠陥候補307を受け取り、欠陥分類データベース1502に格納されている、分類済みの欠陥候補群から欠陥候補307と類似した欠陥候補を検索する。前記欠陥候補の検索は、(1)試料101の品種・工程の情報、(2)検出画像の類似性、(3)特徴量分布の類似性などに基づき評価しても良いし、ユーザが類似する欠陥候補を指定しても良い。欠陥分類演算部1503では、類似欠陥候補の、前記(1)分類境界、(2)各欠陥候補の特徴量、(3)選択した特徴量、(4)選択欠陥候補への教示結果、(5)グルーピング基準などと、インターフェース109-1からのユーザ入力を利用して欠陥分類を実施し、分類境界406を記憶部109-2へ出力する。
図24は特徴量分布の比較による検索の例を示す図である。分類対象の特徴量分布1601と類似した欠陥候補を、過去の分類結果である欠陥候補群1602から検索する。検索は、分類対象の欠陥候補1601の特徴量分布と、分類結果A、分類結果B、分類結果Cの特徴量分布との類似度評価により行われる。類似度の評価は、(1)比較すべき欠陥候補を重ね合わせた時の最近傍の欠陥候補同士の距離の総和、(2)特徴空間内での局所的な欠陥密度の比較、などによって行われる。図17の場合、類似度の評価によって、分類結果Cが検索欠陥候補として選択され、後述の欠陥分類演算部にて、グルーピング基準や、選択特徴量、分類境界などが、DOI・Nuisance分類に利用される。
図25は、本発明に係る欠陥検査装置の第一の実施の形態における欠陥分類演算部について、欠陥分類データベースを利用する場合の構成の一例を示す図である。DOI・Nuisance分類の流れは前記実施例と同様の部分は割愛する。欠陥分類データベースは、欠陥候補グルーピング部502’へグルーピング基準を入力することができ、特徴量選択部503’へは、分類に有効な特徴量の組合せを入力することができ、欠陥分類評価値算出部504’へは、欠陥分類評価値算出のための特徴量統合関数を入力でき、欠陥分類評価値更新部507’へはユーザ教示の代わりに、分類済みの欠陥や教示済みの欠陥などを入力することができ、欠陥分類境界決定部508’へは、分類境界を入力することができる。
図26は、分類済みの欠陥を教示として利用する方法について示す説明図である。未教示である分類対象の欠陥候補1702について、特徴空間内での距離が近い分類結果の欠陥候補1703の欠陥種を参照(1701)し、ユーザ教示の代わりにDOI・Nuisanceを欠陥候補1702に与える。一方、分類結果の欠陥候補から、分類に有効な欠陥候補1705を抽出してきて、分類対象の特徴空間へ挿入(1704)し、それに基づき分類境界406を決定することもできる。欠陥分類データベースに格納されている分類境界と、欠陥分類データベースを利用して、新たに分類した分類境界は比較的類似した出力となるため、同一装置または異装置間で発生する、分類結果のばらつきを抑制することができるようになる。さらに、欠陥分類データベースを利用することで、教示欠陥数を低減、または教示を実施しなくても分類可能となるため、ユーザ負担を軽減することができるようになる。また、教示と分類の繰り返しを実施しなくとも分類境界を算出できるようになるため、処理時間の削減も実現できるようになる。
次に、上記説明したシステム構成の画像処理系をもつ本欠陥検査装置の別の例を、照明光学系と画像を検出する検出光学系が複数ある場合で説明する。
図13は、本発明に係る欠陥検査装置の第二の実施の形態の構成の一例を示す図であり、図1に示した暗視野照明による欠陥検査装置において、照明光学系と検出光学系が2つになった例である。照明光学系104-1、104-2、上方検出系(検出光学系)105-1、斜方検出系(検出光学系)105-2、イメ-ジセンサ106-1、106-2を持つ。画像比較処理部107(前処理部107-1、画像メモリ107-2、欠陥候補検出部107-3、パラメ-タ設定部107-4、切り出し画像作成部107-5)などから構成される。複数の照明部104-1、104-2は互いに異なる照明条件(例えば照射角度、照明方位、照明波長、偏光状態等が異なる)の光を試料101に照射し、試料101からの散乱光を上方検出系(検出光学系)105-1または、斜方検出系(検出光学系)105-2で結像させ、結像された光学像を各々のイメ-ジセンサ106-1、106-2で受光して、画像信号に変換する。各々の照明条件と、各々の検出条件の、異なる2つ以上の組み合せ条件により撮像された画像に対して欠陥候補の検出を行い、検出した欠陥候補に対して、検査後処理部によるDOI・Nuisanceの分類を実施することもできる。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
一方、上記説明したシステム構成の画像処理系を持つ本欠陥装置の別の例を、複数の波長の光を照射する光学系と、それぞれの波長の光を別々に受光可能な検出光学系を適用した場合で説明する。
図14は、本発明に係る欠陥検査装置の第三の実施の形態の構成の一例を示す図であり、図1に示した暗視野照明による欠陥検査装置において、異なる波長の光を照明できる照明光学系と、それぞれの波長の光を受光できる検出光学系を持つ例である。照明部104-3にて、異なる波長(例えばλ1、λ2)を持つ光を試料101へ照射し、試料101からの散乱光をダイクロイックミラ-110などにより分光し、検出系(検出光学系)105-3と105-4により結像させ、結像された光学像を各々のイメ-ジセンサ106-3、106-4で受光して画像信号に変換する。各々の波長の光とそれを受光する検出系による、異なる2つ以上の条件により撮像された画像に対して、欠陥候補の検出を行い、検出した欠陥候補に対して、後処理によるDOI・Nuisanceの分類を実施することもできる。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
さらに、上記説明したシステム構成の画像処理系を持つ本欠陥装置の別の例を、複数の照明系による異なる領域への照明と、複数の検出系による、同時に異なる領域の画像取得が可能な光学系を持つ場合で説明する。
図15は、本発明に係る欠陥検査装置の実施の形態4の構成の一例を示す図であり、2つの照明光学系104-5、104-6により、複数の領域へ同時に照明し、光を試料101に照射し、試料101からの散乱光を検出光学系(上方検出系)105にて結像させ、結像された各々の領域の光学像に対して、イメ-ジセンサ106-5、106-6で受光して画像信号に変換する。欠陥候補の検出を行う。各々の領域から検出された画像に対し、アライメントやマ-ジを実施し、その画像により欠陥候補の検出を行い、検出した欠陥候補に対して、後処理によるDOI・Nuisanceの分類を実施することもできる。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
このとき、異なる2つ以上の組合せ条件により撮像された画像から抽出された特徴量から、前記特徴量選択部により、分類に有効な特徴量を自動的に選択することは、分類に有効な光学条件を自動的に決定することに相当する。
上記実施例1乃至4では、欠陥候補をDOIとNuisanceの2つに分類する例を示したが、2またはそれ以上の欠陥種(スクラッチ・異物・ブリッジなど)への分類や、致命と非致命の分類、実欠陥と虚報の分類など、いずれの分類対象に対しても適用することが可能である。
また、上記実施例1乃至4では、本発明の対象として、半導体デバイスの検査をする場合について説明したが、本発明はこれに限定されるものではなく、例えばTFTパネルの製造工程およびその評価、ハ-ドディスクのGMRヘッド製造工程における欠陥の検査およびその評価、プリント基板における欠陥の検査およびその評価などいずれの対象に対しても適用することができる。
さらに、暗視野検査装置による実施例を示したが、明視野検査装置、SEM式検査装置など、全ての方式の検査装置に適用することができる。
さらに、暗視野検査装置による実施例を示したが、明視野検査装置、SEM式検査装置など、全ての方式の検査装置に適用することができる。
100・・・欠陥候補検出部、101・・・試料、102・・・ステ-ジ、103・・・メカニカルコントロ-ラ、104・・・照明光学系、105・・・上方検出系(検出光学系)、111・・・空間周波数フィルタ、112・・・検光子、106・・・イメ-ジセンサ、107・・・画像比較処理部、107-1・・・前処理部、107-2・・・画像メモリ、107-3・・・欠陥候補検出部、107-4・・・パラメ-タ設定部、107-5・・・切り出し画像作成部、109・・・全体制御部、109-1・・・ユ-ザインタ-フェ-ス部、109-2・・・記憶装置、115・・・欠陥検出部、307・・・欠陥候補、307-1・・・数値特徴、307-2・・・検出画像、307-3・・・参照画像、404・・・欠陥分類演算部、406・・・分類境界、407・・・結果表示部、408・・・教示入力部、409・・・終了判定入力部、501・・・欠陥特徴量算出部、502・・・欠陥候補グル-ピング部、503・・・欠陥分類評価値算出部、504・・・欠陥マトリクス作成部、505・・・欠陥分類評価値更新部、506・・・欠陥分類しきい値決定部、601・・・欠陥候補表示画面
Claims (16)
- 試料に対して照明光を照射する照明光学系と、
前記照明光学系からの照明により散乱する該試料からの散乱光を検出する検出光学系と、
前記検出光学系にて検出した散乱光に基づき欠陥を検出する処理部と、を備えた欠陥検査装置であって、
前記処理部は、前記検出光学系により検出された散乱光に基づき抽出された欠陥候補の各々について特徴量を算出する欠陥特徴量算出部と、
前記欠陥特徴量算出部により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング部と、
前記欠陥特徴量算出部により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出部と、
前記欠陥分類評価値算出部により算出された評価値を、教示に基づいて更新する欠陥分類評価値更新部と、
前記欠陥分類評価値更新部により更新された評価値に基づいて、前記欠陥候補の欠陥種を分類するためのしきい値である分類境界を決定する欠陥分類しきい値決定部と、
前記欠陥分類しきい値決定部により決定されたしきい値を用いて欠陥を検出する欠陥検出部と、を有することを特徴とする欠陥検査装置。 - 請求項1記載の欠陥検査装置であって、
前記欠陥分類評価値更新部では、前記欠陥分類評価値算出部により算出された評価値を教示に基づき逐次更新することを特徴とする欠陥検査装置。 - 請求項1または2に記載の欠陥検査装置であって、
前記欠陥候補グルーピング部では、前記欠陥候補の背景類似性または欠陥候補同士の近接性または欠陥候補の形状類似性の少なくとも1つを用いて、前記欠陥候補をグルーピングすることを特徴とする欠陥検査装置。 - 請求項1乃至3のいずれかに記載の欠陥検査装置であって、
前記欠陥特徴量算出部では、前記欠陥候補および前記散乱光に基づく信号の画像または数値的特徴に基づき特徴量を算出することを特徴とする欠陥検査装置。 - 請求項1乃至4のいずれかに記載の欠陥検査装置であって、
前記欠陥検出部では、切り出された画像を用いて欠陥を検出することを特徴とする欠陥検査装置。 - 請求項1乃至5のいずれかに記載の欠陥検査装置であって、
前記欠陥分類評価値算出部では、前記欠陥特徴量算出部により算出された特徴量の少なくとも1つを統合し、前記欠陥候補グルーピング部によりグルーピングされたグループ毎に異なる欠陥分類評価値を算出することを特徴とする欠陥検査装置。 - 試料に対して照明光を照射する工程と、
前記照明する工程により散乱する該試料からの散乱光を検出する工程と、を備えた欠陥検査方法であって、
前記検出する工程にて検出された散乱光に基づき抽出された欠陥候補の各々について特徴量を算出する欠陥特徴量算出工程と、
前記欠陥特徴量算出工程により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング工程と、
前記欠陥特徴量算出工程により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出工程と、
前記欠陥分類評価値算出工程により算出された評価値を、教示に基づいて更新する欠陥分類評価値更新工程と、
前記欠陥分類評価値更新工程により更新された評価値に基づいて、前記欠陥候補の欠陥種を分類するためのしきい値である分類境界を決定する欠陥分類しきい値決定工程と、
前記欠陥分類しきい値決定部により決定されたしきい値を用いて欠陥を検出する欠陥検出工程と、を有することを特徴とする欠陥検査方法。 - 請求項7記載の欠陥検査方法であって、
前記欠陥分類評価値更新工程では、前記欠陥分類評価値算出工程にて算出された評価値を教示に基づき逐次更新することを特徴とする欠陥検査方法。 - 請求項7または8に記載の欠陥検査方法であって、
前記欠陥候補グルーピング工程では、前記欠陥候補の背景類似性または欠陥候補同士の近接性または欠陥候補の形状類似性の少なくとも1つを用いて、前記欠陥候補をグルーピングすることを特徴とする欠陥検査方法。 - 請求項7乃至9のいずれかに記載の欠陥検査方法であって、
前記欠陥特徴量算出工程では、前記欠陥候補および前記散乱光に基づく信号の画像または数値的特徴に基づき特徴量を算出することを特徴とする欠陥検査方法。 - 請求項7乃至10のいずれかに記載の欠陥検査方法であって、
前記欠陥検出工程では、切り出された画像を用いて欠陥を検出することを特徴とする欠陥検査方法。 - 請求項7乃至11のいずれかに記載の欠陥検査方法であって、
前記欠陥分類評価値算出工程では、前記欠陥特徴量算出工程により算出された特徴量の少なくとも1つを統合し、前記欠陥候補グルーピング工程によりグルーピングされたグループ毎に異なる欠陥分類評価値を算出することを特徴とする欠陥検査方法。 - 試料に対して照明光を照射する照明光学系と、
前記照明光学系からの照明による該試料からの散乱光を検出する検出光学系と、
前記検出光学系により検出された前記散乱光に基づき欠陥を検出する処理部とを備えた欠陥検査装置であって、
前記処理部は、前記検出光学系にて検出した散乱光に基づき欠陥候補を抽出する欠陥候補検出部と、
前記欠陥候補検出部より抽出された欠陥候補の各々について少なくとも一つ以上の特徴量を算出する欠陥特徴量算出部と、
前記欠陥特徴量算出部により算出された特徴量に基づき前記欠陥候補をグルーピングする欠陥候補グルーピング部と、
前記欠陥特徴量算出部により算出された特徴量に基づき、前記欠陥候補の欠陥分類評価値を算出する欠陥分類評価値算出部と、
前記欠陥分類評価値算出部により算出された評価値を、前記グルーピングされた欠陥候補毎に、教示に基づいて更新する欠陥分類評価値更新部と、
前記欠陥分類評価値更新部により更新された評価値に基づいて、前記欠陥候補を分類するための分類境界を、前記グルーピングされた欠陥候補毎に決定する欠陥分類境界決定部と、
前記欠陥分類境界決定部により決定された分類境界を用いて欠陥を検出する欠陥検出部と、を有することを特徴とする欠陥検査装置。 - 請求項13記載の欠陥検査装置であって、
前記欠陥分類評価値更新部では、前記教示した欠陥の追加もしくは前記特徴量の再選択の少なくとも一方を実施し、
さらに、前記処理部は、前記欠陥分類評価値更新部において更新された分類評価値により、分類性能が向上するかどうかを推定する分類性能算出部と、
前記分類性能算出部により出力された推定性能に基づき、前記教示した欠陥の追加と前記特徴量の再選択を実施するかどうかを判定する判定部とを備えることを特徴とする欠陥検査装置。 - 請求項14記載の欠陥検査装置であって、
前記判定部では、前記教示した欠陥の追加と前記特徴量の再選択を実施するかどうかを自動的に判断することを特徴とする欠陥検査装置。 - 請求項13記載の欠陥検査装置であって、
さらに、前記処理部は、前記欠陥候補検出部により検出された欠陥候補と該試料の品種、工程または特徴量の分布のうちの少なくとも一つについて格納されている格納済みの欠陥候補群とを比較して、類似性を評価することを特徴とする欠陥検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/387,369 US9075026B2 (en) | 2009-09-28 | 2010-08-30 | Defect inspection device and defect inspection method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009221903 | 2009-09-28 | ||
JP2009-221903 | 2009-09-28 | ||
JP2010-142177 | 2010-06-23 | ||
JP2010142177A JP5537282B2 (ja) | 2009-09-28 | 2010-06-23 | 欠陥検査装置および欠陥検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036846A1 true WO2011036846A1 (ja) | 2011-03-31 |
Family
ID=43795616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/005312 WO2011036846A1 (ja) | 2009-09-28 | 2010-08-30 | 欠陥検査装置および欠陥検査方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9075026B2 (ja) |
JP (1) | JP5537282B2 (ja) |
WO (1) | WO2011036846A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013026826A1 (de) * | 2011-08-24 | 2013-02-28 | Hseb Dresden Gmbh | Inspektionsverfahren |
WO2013035421A1 (ja) * | 2011-09-07 | 2013-03-14 | 株式会社 日立ハイテクノロジーズ | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 |
CN103207183A (zh) * | 2011-12-28 | 2013-07-17 | 株式会社其恩斯 | 外观检查装置和外观检查方法 |
WO2016076104A1 (ja) * | 2014-11-13 | 2016-05-19 | コニカミノルタ株式会社 | 画像処理方法、画像処理装置、及びプログラム |
WO2018061067A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日立ハイテクノロジーズ | 欠陥検査装置及び欠陥検査方法 |
JP2019120527A (ja) * | 2017-12-28 | 2019-07-22 | 大日本印刷株式会社 | 情報処理装置、情報処理方法及びプログラム |
CN112129768A (zh) * | 2019-06-25 | 2020-12-25 | 欧姆龙株式会社 | 外观检查管理系统、装置、方法以及存储介质 |
US20210280445A1 (en) * | 2018-07-05 | 2021-09-09 | Tokyo Electron Limited | Substrate processing apparatus and substrate processing method |
CN117173385A (zh) * | 2023-10-24 | 2023-12-05 | 四川思极科技有限公司 | 一种变电站的检测方法、装置、介质及设备 |
US11875547B2 (en) | 2018-11-07 | 2024-01-16 | Kabushiki Kaisha Toshiba | Image processing apparatus, image processing method, and storage medium |
WO2024069701A1 (ja) * | 2022-09-26 | 2024-04-04 | 株式会社日立ハイテク | モデル生成方法及び欠陥検査システム |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7570796B2 (en) | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
JP4928862B2 (ja) * | 2006-08-04 | 2012-05-09 | 株式会社日立ハイテクノロジーズ | 欠陥検査方法及びその装置 |
KR101729669B1 (ko) | 2008-07-28 | 2017-04-24 | 케이엘에이-텐코어 코오포레이션 | 웨이퍼 상의 메모리 디바이스 영역에서 검출된 결함들을 분류하기 위한 컴퓨터-구현 방법들, 컴퓨터-판독 가능 매체, 및 시스템들 |
JP2013123812A (ja) * | 2011-12-13 | 2013-06-24 | Canon Inc | 検査装置、検査方法、コンピュータプログラム |
JP5953117B2 (ja) * | 2012-05-21 | 2016-07-20 | 株式会社日立ハイテクノロジーズ | パターン評価装置、及びコンピュータープログラム |
US9916653B2 (en) * | 2012-06-27 | 2018-03-13 | Kla-Tenor Corporation | Detection of defects embedded in noise for inspection in semiconductor manufacturing |
JP6128910B2 (ja) * | 2013-03-21 | 2017-05-17 | キヤノン株式会社 | 学習装置、学習方法及びプログラム |
CN104063270B (zh) * | 2013-03-22 | 2017-06-23 | 斯克林集团公司 | 加标签方法、加标签装置以及缺陷检查装置 |
JP6152034B2 (ja) * | 2013-03-22 | 2017-06-21 | 株式会社Screenホールディングス | ラベリング方法、ラベリング装置および欠陥検査装置 |
US9865512B2 (en) | 2013-04-08 | 2018-01-09 | Kla-Tencor Corp. | Dynamic design attributes for wafer inspection |
US9310320B2 (en) * | 2013-04-15 | 2016-04-12 | Kla-Tencor Corp. | Based sampling and binning for yield critical defects |
JP6261218B2 (ja) * | 2013-07-17 | 2018-01-17 | キヤノン株式会社 | 表示処理装置、表示処理方法及びプログラム、並びに、画像分類装置 |
US9704234B2 (en) * | 2013-08-08 | 2017-07-11 | Kla-Tencor Corp. | Adaptive local threshold and color filtering |
KR102136671B1 (ko) * | 2013-09-06 | 2020-07-22 | 삼성전자주식회사 | 기판의 결함 검출 방법 및 이를 수행하기 위한 장치 |
JP6295561B2 (ja) * | 2013-09-17 | 2018-03-20 | 株式会社リコー | 画像検査結果判断装置、画像検査システム及び画像検査結果の判断方法 |
JP6264132B2 (ja) * | 2014-03-25 | 2018-01-24 | 日産自動車株式会社 | 車体塗装面の検査装置および検査方法 |
JP6470506B2 (ja) * | 2014-06-09 | 2019-02-13 | 株式会社キーエンス | 検査装置 |
CN104201130B (zh) * | 2014-09-01 | 2017-10-03 | 上海华力微电子有限公司 | 一种用于缺陷分类的光学检测方法 |
JP2016058465A (ja) * | 2014-09-08 | 2016-04-21 | 株式会社日立ハイテクノロジーズ | 欠陥定量化方法、欠陥定量化装置、および欠陥評価値表示装置 |
US9286675B1 (en) | 2014-10-23 | 2016-03-15 | Applied Materials Israel Ltd. | Iterative defect filtering process |
US9518934B2 (en) * | 2014-11-04 | 2016-12-13 | Kla-Tencor Corp. | Wafer defect discovery |
DE102016204506A1 (de) * | 2015-04-20 | 2016-10-20 | Heidelberger Druckmaschinen Ag | Fortdruckinspektion mit lokaler Optimierung |
US9767548B2 (en) * | 2015-04-24 | 2017-09-19 | Kla-Tencor Corp. | Outlier detection on pattern of interest image populations |
JP6530688B2 (ja) * | 2015-09-25 | 2019-06-12 | 株式会社Screenホールディングス | 分類器構築方法、画像分類方法、分類器構築装置および画像分類装置 |
GB201519801D0 (en) * | 2015-11-10 | 2015-12-23 | Rolls Royce Plc | Pass fail sentencing of hollow components |
JP6761201B2 (ja) * | 2016-02-22 | 2020-09-23 | 株式会社サタケ | 粒状物外観品位判別装置 |
CN108885178B (zh) * | 2016-02-22 | 2021-12-10 | 株式会社佐竹 | 粒状物外观品相判别装置 |
WO2017168630A1 (ja) * | 2016-03-30 | 2017-10-05 | 株式会社日立ハイテクノロジーズ | 欠陥検査装置、欠陥検査方法 |
WO2017192763A1 (en) * | 2016-05-03 | 2017-11-09 | Niagara Bottling, Llc | Systems and methods for optical measurement of container wall thickness |
US10153215B2 (en) * | 2016-08-04 | 2018-12-11 | Kla-Tencor Corporation | Oven enclosure for optical components with integrated purge gas pre-heater |
US10365617B2 (en) * | 2016-12-12 | 2019-07-30 | Dmo Systems Limited | Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow |
WO2018132321A1 (en) * | 2017-01-10 | 2018-07-19 | Kla-Tencor Corporation | Diagnostic methods for the classifiers and the defects captured by optical tools |
US11237119B2 (en) * | 2017-01-10 | 2022-02-01 | Kla-Tencor Corporation | Diagnostic methods for the classifiers and the defects captured by optical tools |
JP6819316B2 (ja) * | 2017-01-25 | 2021-01-27 | 富士通株式会社 | 閾値設定支援プログラム、閾値設定支援装置および閾値設定支援方法 |
US10475178B1 (en) * | 2017-01-30 | 2019-11-12 | Kla-Tencor Corporation | System, method and computer program product for inspecting a wafer using a film thickness map generated for the wafer |
US10600175B2 (en) * | 2017-03-24 | 2020-03-24 | Kla-Tencor Corporation | Dynamic care areas for defect detection |
JP6999150B2 (ja) * | 2017-03-28 | 2022-01-18 | 株式会社 東京ウエルズ | ワークの検査結果判定方法 |
TWI778078B (zh) * | 2017-06-14 | 2022-09-21 | 以色列商肯提克有限公司 | 用於自動缺陷分類之方法及系統以及相關非暫時性電腦程式產品 |
WO2019079750A1 (en) | 2017-10-19 | 2019-04-25 | Gerard Dirk Smits | METHODS AND SYSTEMS FOR NAVIGATING A VEHICLE EQUIPPED WITH A NEW MILITARY MARKER SYSTEM |
US10732128B2 (en) * | 2017-10-26 | 2020-08-04 | Camtek Ltd. | Hierarchical wafer inspection |
US10634619B2 (en) * | 2017-11-03 | 2020-04-28 | Wuhan China Star Optoelectronics Technology Co., Ltd | Device and method for inspecting display |
KR102058427B1 (ko) * | 2017-12-21 | 2019-12-23 | 동우 화인켐 주식회사 | 검사 장치 및 방법 |
US11087452B2 (en) * | 2018-02-05 | 2021-08-10 | Nec Corporation | False alarm reduction system for automatic manufacturing quality control |
US10679333B2 (en) * | 2018-03-14 | 2020-06-09 | Kla-Tencor Corporation | Defect detection, classification, and process window control using scanning electron microscope metrology |
US10861726B2 (en) * | 2018-09-21 | 2020-12-08 | Advanced Semiconductor Engineering, Inc. | Apparatus and method for measuring warpage |
CN109115868B (zh) * | 2018-09-29 | 2022-03-25 | 东北大学 | 一种基于脉冲涡流的缺陷深度检测装置及方法 |
CN110969175B (zh) * | 2018-09-29 | 2022-04-12 | 长鑫存储技术有限公司 | 晶圆处理方法及装置、存储介质和电子设备 |
CN109545700B (zh) * | 2018-11-30 | 2020-07-31 | 上海华力微电子有限公司 | 晶圆缺陷扫描方法 |
US10902582B2 (en) * | 2019-01-17 | 2021-01-26 | Applied Materials Israel, Ltd. | Computerized system and method for obtaining information about a region of an object |
US11815470B2 (en) | 2019-01-17 | 2023-11-14 | Applied Materials Israel, Ltd. | Multi-perspective wafer analysis |
JP7273556B2 (ja) | 2019-03-15 | 2023-05-15 | 株式会社東芝 | 分析システム、分析方法、プログラム、及び記憶媒体 |
JP7293907B2 (ja) * | 2019-06-25 | 2023-06-20 | オムロン株式会社 | 外観検査管理システム、外観検査管理装置、外観検査管理方法及びプログラム |
US11360030B2 (en) | 2020-02-04 | 2022-06-14 | Applied Materials Isreal Ltd | Selecting a coreset of potential defects for estimating expected defects of interest |
US11443095B2 (en) * | 2020-07-10 | 2022-09-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hotspot avoidance method for manufacturing integrated circuits |
CN114638773A (zh) * | 2020-11-30 | 2022-06-17 | 纬创资通(中山)有限公司 | 用于影像标记标准化的方法、电子装置及计算机程序产品 |
KR20240089449A (ko) * | 2021-12-17 | 2024-06-20 | 주식회사 히타치하이테크 | 교사 데이터 작성 지원 장치, 교사 데이터 작성 지원 방법 |
CN118154899B (zh) * | 2024-05-09 | 2024-09-06 | 成都数之联科技股份有限公司 | 面板边缘识别方法和装置、电子设备及存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05223751A (ja) * | 1992-02-13 | 1993-08-31 | Sumitomo Metal Ind Ltd | 表面疵検査方法 |
JPH07201946A (ja) * | 1993-12-28 | 1995-08-04 | Hitachi Ltd | 半導体装置等の製造方法及びその装置並びに検査方法及びその装置 |
JP2001188906A (ja) * | 1999-12-28 | 2001-07-10 | Hitachi Ltd | 画像自動分類方法及び画像自動分類装置 |
JP2004077164A (ja) * | 2002-08-12 | 2004-03-11 | Hitachi High-Technologies Corp | 欠陥検査方法 |
JP2004117130A (ja) * | 2002-09-26 | 2004-04-15 | Hitachi High-Technologies Corp | 電子線を用いた検査方法および検査装置 |
JP2004295879A (ja) * | 2003-03-12 | 2004-10-21 | Hitachi High-Technologies Corp | 欠陥分類方法 |
JP2006220644A (ja) * | 2005-01-14 | 2006-08-24 | Hitachi High-Technologies Corp | パターン検査方法及びその装置 |
JP2008516259A (ja) * | 2004-10-12 | 2008-05-15 | ケイエルエイ−テンコー・テクノロジーズ・コーポレーション | 試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム |
WO2009054102A1 (ja) * | 2007-10-22 | 2009-04-30 | Hitachi, Ltd. | 欠陥分類方法及びその装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3614232A (en) * | 1968-11-25 | 1971-10-19 | Ibm | Pattern defect sensing using error free blocking spacial filter |
US6411377B1 (en) | 1991-04-02 | 2002-06-25 | Hitachi, Ltd. | Optical apparatus for defect and particle size inspection |
JP4132229B2 (ja) * | 1998-06-03 | 2008-08-13 | 株式会社ルネサステクノロジ | 欠陥分類方法 |
JP3566589B2 (ja) | 1998-07-28 | 2004-09-15 | 株式会社日立製作所 | 欠陥検査装置およびその方法 |
JP2001156135A (ja) * | 1999-11-29 | 2001-06-08 | Hitachi Ltd | 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法 |
JP2002090312A (ja) * | 2000-09-21 | 2002-03-27 | Hitachi Ltd | 欠陥分析システム |
JP4118703B2 (ja) * | 2002-05-23 | 2008-07-16 | 株式会社日立ハイテクノロジーズ | 欠陥分類装置及び欠陥自動分類方法並びに欠陥検査方法及び処理装置 |
JP4504612B2 (ja) | 2002-08-12 | 2010-07-14 | 株式会社日立ハイテクノロジーズ | 異物検査方法及び異物検査装置 |
US7602962B2 (en) | 2003-02-25 | 2009-10-13 | Hitachi High-Technologies Corporation | Method of classifying defects using multiple inspection machines |
US7756320B2 (en) | 2003-03-12 | 2010-07-13 | Hitachi High-Technologies Corporation | Defect classification using a logical equation for high stage classification |
JP4374303B2 (ja) * | 2004-09-29 | 2009-12-02 | 株式会社日立ハイテクノロジーズ | 検査方法及びその装置 |
JP4908995B2 (ja) * | 2006-09-27 | 2012-04-04 | 株式会社日立ハイテクノロジーズ | 欠陥分類方法及びその装置並びに欠陥検査装置 |
JP4664327B2 (ja) * | 2007-05-16 | 2011-04-06 | 株式会社日立ハイテクノロジーズ | パターン検査方法 |
JP4616864B2 (ja) | 2007-06-20 | 2011-01-19 | 株式会社日立ハイテクノロジーズ | 外観検査方法及びその装置および画像処理評価システム |
-
2010
- 2010-06-23 JP JP2010142177A patent/JP5537282B2/ja not_active Expired - Fee Related
- 2010-08-30 WO PCT/JP2010/005312 patent/WO2011036846A1/ja active Application Filing
- 2010-08-30 US US13/387,369 patent/US9075026B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05223751A (ja) * | 1992-02-13 | 1993-08-31 | Sumitomo Metal Ind Ltd | 表面疵検査方法 |
JPH07201946A (ja) * | 1993-12-28 | 1995-08-04 | Hitachi Ltd | 半導体装置等の製造方法及びその装置並びに検査方法及びその装置 |
JP2001188906A (ja) * | 1999-12-28 | 2001-07-10 | Hitachi Ltd | 画像自動分類方法及び画像自動分類装置 |
JP2004077164A (ja) * | 2002-08-12 | 2004-03-11 | Hitachi High-Technologies Corp | 欠陥検査方法 |
JP2004117130A (ja) * | 2002-09-26 | 2004-04-15 | Hitachi High-Technologies Corp | 電子線を用いた検査方法および検査装置 |
JP2004295879A (ja) * | 2003-03-12 | 2004-10-21 | Hitachi High-Technologies Corp | 欠陥分類方法 |
JP2008516259A (ja) * | 2004-10-12 | 2008-05-15 | ケイエルエイ−テンコー・テクノロジーズ・コーポレーション | 試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム |
JP2006220644A (ja) * | 2005-01-14 | 2006-08-24 | Hitachi High-Technologies Corp | パターン検査方法及びその装置 |
WO2009054102A1 (ja) * | 2007-10-22 | 2009-04-30 | Hitachi, Ltd. | 欠陥分類方法及びその装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013026826A1 (de) * | 2011-08-24 | 2013-02-28 | Hseb Dresden Gmbh | Inspektionsverfahren |
WO2013035421A1 (ja) * | 2011-09-07 | 2013-03-14 | 株式会社 日立ハイテクノロジーズ | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 |
JP2013058508A (ja) * | 2011-09-07 | 2013-03-28 | Hitachi High-Technologies Corp | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 |
CN103748670A (zh) * | 2011-09-07 | 2014-04-23 | 株式会社日立高新技术 | 区域决定装置、观察装置或检查装置、区域决定方法以及使用了区域决定方法的观察方法或检查方法 |
US9335277B2 (en) | 2011-09-07 | 2016-05-10 | Hitachi High-Technologies Corporation | Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method |
CN103207183A (zh) * | 2011-12-28 | 2013-07-17 | 株式会社其恩斯 | 外观检查装置和外观检查方法 |
WO2016076104A1 (ja) * | 2014-11-13 | 2016-05-19 | コニカミノルタ株式会社 | 画像処理方法、画像処理装置、及びプログラム |
JPWO2016076104A1 (ja) * | 2014-11-13 | 2017-08-17 | コニカミノルタ株式会社 | 画像処理方法、画像処理装置、及びプログラム |
WO2018061067A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社日立ハイテクノロジーズ | 欠陥検査装置及び欠陥検査方法 |
US10861145B2 (en) | 2016-09-27 | 2020-12-08 | Hitachi High-Tech Corporation | Defect inspection device and defect inspection method |
JP2019120527A (ja) * | 2017-12-28 | 2019-07-22 | 大日本印刷株式会社 | 情報処理装置、情報処理方法及びプログラム |
US20210280445A1 (en) * | 2018-07-05 | 2021-09-09 | Tokyo Electron Limited | Substrate processing apparatus and substrate processing method |
US11875547B2 (en) | 2018-11-07 | 2024-01-16 | Kabushiki Kaisha Toshiba | Image processing apparatus, image processing method, and storage medium |
CN112129768A (zh) * | 2019-06-25 | 2020-12-25 | 欧姆龙株式会社 | 外观检查管理系统、装置、方法以及存储介质 |
CN112129768B (zh) * | 2019-06-25 | 2024-06-04 | 欧姆龙株式会社 | 外观检查管理系统、装置、方法以及存储介质 |
WO2024069701A1 (ja) * | 2022-09-26 | 2024-04-04 | 株式会社日立ハイテク | モデル生成方法及び欠陥検査システム |
CN117173385A (zh) * | 2023-10-24 | 2023-12-05 | 四川思极科技有限公司 | 一种变电站的检测方法、装置、介质及设备 |
CN117173385B (zh) * | 2023-10-24 | 2024-01-26 | 四川思极科技有限公司 | 一种变电站的检测方法、装置、介质及设备 |
Also Published As
Publication number | Publication date |
---|---|
US9075026B2 (en) | 2015-07-07 |
JP5537282B2 (ja) | 2014-07-02 |
JP2011089976A (ja) | 2011-05-06 |
US20120229618A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5537282B2 (ja) | 欠陥検査装置および欠陥検査方法 | |
US10445875B2 (en) | Pattern-measuring apparatus and semiconductor-measuring system | |
US9811897B2 (en) | Defect observation method and defect observation device | |
US9865046B2 (en) | Defect inspection method and defect inspection device | |
US8139841B2 (en) | Visual inspection method and apparatus and image analysis system | |
US7330248B2 (en) | Method and apparatus for inspecting defects | |
JP4664327B2 (ja) | パターン検査方法 | |
US9311697B2 (en) | Inspection method and device therefor | |
JP5260183B2 (ja) | 欠陥検査方法及びその装置 | |
US8045789B2 (en) | Method and apparatus for inspecting defect of pattern formed on semiconductor device | |
KR101479889B1 (ko) | 하전 입자선 장치 | |
JP5543872B2 (ja) | パターン検査方法およびパターン検査装置 | |
JP2013160629A (ja) | 欠陥検査方法、欠陥検査装置、プログラムおよび出力部 | |
JP2008145226A (ja) | 欠陥検査装置及び欠陥検査方法 | |
JP2007067130A (ja) | 回路パターン検査方法及びその装置 | |
KR20180081820A (ko) | 다이 내부 검사에 있어서의 등록 및 설계 주변부에서 야기된 노이즈의 저감 | |
US8244042B2 (en) | Pattern matching method and computer program for executing pattern matching | |
JP2010034138A (ja) | パターン検査装置、パターン検査方法およびプログラム | |
JP2006113073A (ja) | パターン欠陥検査装置及びパターン欠陥検査方法 | |
JP2007033126A (ja) | 基板検査装置並びにそのパラメータ調整方法およびパラメータ調整装置 | |
JPH1187446A (ja) | パターン欠陥検査装置及びパターン欠陥検査方法 | |
JP2012154895A (ja) | 欠陥検査方法および欠陥検査装置 | |
JP2011185715A (ja) | 検査装置及び検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818527 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13387369 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10818527 Country of ref document: EP Kind code of ref document: A1 |