KR102084535B1 - 결함 검사 장치, 결함 검사 방법 - Google Patents

결함 검사 장치, 결함 검사 방법 Download PDF

Info

Publication number
KR102084535B1
KR102084535B1 KR1020187022692A KR20187022692A KR102084535B1 KR 102084535 B1 KR102084535 B1 KR 102084535B1 KR 1020187022692 A KR1020187022692 A KR 1020187022692A KR 20187022692 A KR20187022692 A KR 20187022692A KR 102084535 B1 KR102084535 B1 KR 102084535B1
Authority
KR
South Korea
Prior art keywords
defect
value
image
unit
information
Prior art date
Application number
KR1020187022692A
Other languages
English (en)
Other versions
KR20180102117A (ko
Inventor
도시후미 혼다
다카히로 우라노
마모루 고바야시
히사시 하타노
히로노리 사쿠라이
Original Assignee
가부시키가이샤 히다치 하이테크놀로지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크놀로지즈 filed Critical 가부시키가이샤 히다치 하이테크놀로지즈
Publication of KR20180102117A publication Critical patent/KR20180102117A/ko
Application granted granted Critical
Publication of KR102084535B1 publication Critical patent/KR102084535B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

본 발명은, 결함을 검출하기 위하여 이용하는 파라미터를, 유저에 있어서 적은 부담으로 세트할 수 있는 결함 검사 기술을 제공하는 것을 목적으로 한다. 본 발명에 따른 결함 검사 장치는, 유저가 입력하는 복수의 기준값을 수취함과 함께, 그 기준값/실제 정보수/허위 정보수를 이용해서 산출하는 평가값이 최적으로 되도록, 결함 추출 조건을 산출한다.

Description

결함 검사 장치, 결함 검사 방법
본 발명은 검사 대상이 갖는 결함을 검사하는 기술에 관한 것이다.
하기 특허문헌 1은, 『검사편의 특성을 검지하고, 분석해서 레벨 정보를 갖는 결함을 식별한다』는 것을 과제로 하는 기술로서, 『검사 시스템은, 시스템·파라미터의 1세트의 초기 문턱값을 이용해서 레벨 정보를 분석하고, 이상(異常) 초기 부분을 결함으로서 인식한다. 인식한 결함의 개요를 표시하고, 문턱값 파라미터에 대한 잠재적으로 인식되는 결함의 동작 곡선도 표시한다. 파라미터를 선택적으로 변화시켜서 수정 문턱값을 형성하고, 이 수정 문턱값을 이용해서, 이상의 레벨 정보를 분석한다. 레벨 정보의 직전의 분석에 의거해서, 이상 갱신 부분을 결함으로서 인식하고, 인식한 이상 개요를, 재계산한 동작 곡선과 함께 표시한다. 문턱값을 선택적으로 변화시키고, 결함을 다시 인식하는 스텝은, 소망에 따라서 반복하고, 검사 시스템의 처방에 이용하기 위하여, 수정한 1세트의 문턱값 파라미터를 기억한다』는 것을 기재하고 있다(요약 참조).
일본 특개2010-286501호 공보
상기 특허문헌 1 기재의 기술에 있어서는, 복수의 문턱값 파라미터를 개별적으로 변화시켜서 결함을 식별함과 함께 동작 곡선을 표시함에 의해, 문턱값 파라미터를 개별적으로 최적화하고 있다. 그러나 일반적으로 결함 검사 장치에 있어서 세트해야 하는 문턱값 파라미터는 다수에 달하여, 각 문턱값 파라미터를 개별적으로 세트하는 것은 유저에 있어서 부담이 크다고 생각할 수 있다.
본 발명은, 상기와 같은 과제를 감안해서 이루어진 것이며, 결함을 검출하기 위하여 이용하는 파라미터를, 유저에 있어서 적은 부담으로 세트할 수 있는 결함 검사 기술을 제공하는 것을 목적으로 한다.
본 발명에 따른 결함 검사 장치는, 유저가 입력하는 복수의 기준값을 수취함과 함께, 그 기준값/실제 정보수/허위 정보수를 이용해서 산출하는 평가값이 최적으로 되도록, 결함 추출 조건을 산출한다.
본 발명에 따른 결함 검사 장치에 의하면, 유저는 기준값을 입력하는 것만으로 효과적인 결함 추출 조건을 얻을 수 있다. 이것에 의해, 유저에 있어서 결함 추출 파라미터를 세트하는 부담을 억제할 수 있다.
도 1은 실시형태 1에 따른 결함 검사 장치(100)의 구성도.
도 2는 시료(110)의 예를 나타내는 상면도.
도 3은 화상 처리부(210)가 구비하는 내부 연산 블록의 구성도.
도 4는 결함 판정부(220)의 내부 구성을 나타내는 블록도.
도 5는 공간 분류기(222)의 내부 구성을 나타내는 블록도.
도 6은 표시부(260)가 표시하는 결함 후보 화면(261)의 예.
도 7은 유저가 결함 추출 파라미터를 조정하기 위하여 이용하는 종래의 설정 화면(262)의 예.
도 8은 실시형태 1에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(262)의 예.
도 9는 연산 장치(200)가 결함 추출 파라미터를 조정하는 수순을 나타내는 PAD도.
도 10은 실시형태 2에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(263)의 예.
도 11은 실시형태 2에 있어서 연산 장치(200)가 결함 추출 파라미터를 조정하는 수순을 나타내는 PAD도.
도 12a는 실시형태 3에 있어서의 공간 분류기(222)의 내부 구성을 나타내는 블록도.
도 12b는 내부 연산 블록(222_9∼222_13)의 상세를 설명하는 블록도.
도 13은 실시형태 3에 있어서의 공간 분류기(222)가 결함과 노이즈를 분리하는 모습을 나타내는 개념도.
도 14는 실시형태 4에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(264)의 예.
<실시형태 1>
도 1은, 본 발명의 실시형태 1에 따른 결함 검사 장치(100)의 구성도이다. 결함 검사 장치(100)는, 시료(110)의 외관 화상을 촬상하고, 그 외관 화상을 이용해서 시료(110)가 갖는 결함을 검사하는 장치이다. 이하에서는 기재의 편의상, 결함 검사 장치(100)와 연산 장치(200)를 개별적으로 기재하고 있지만, 이들은 일체적으로 구성할 수도 있고, 적당한 통신선을 통해서 상호 접속할 수도 있다.
시료(110)는, 예를 들면 반도체 웨이퍼 등의 피검사물이다. 스테이지(121)는, 시료(110)를 탑재해서 XYZ 방향으로 이동시키고, 회전시킬 수 있다. 메커니컬 컨트롤러(122)는, 스테이지(121)를 구동하는 컨트롤러이다. 조명 광학계(131 또는 132) 중 어느 하나는, 시료(110)에 대해서 사방(斜方)으로부터 조명광을 조사한다. 상방(上方) 검출계(141)와 사방 검출계(142)는, 시료(110)로부터의 산란광을 결상(結像)한다. 이미지 센서(161와 162)는, 각 검출계가 결상한 광학상을 수광해서 화상 신호로 변환한다. 이미지 센서(161)의 전단에는 검광자(152)가 배치되어 있다. 스테이지(121)를 수평 방향으로 이동시키면서 산란광을 검출함에 의해, 시료(110)의 2차원 화상을 얻을 수 있다.
조명 광학계(131과 132)의 광원으로서는, 레이저를 이용해도 되고 램프를 이용해도 된다. 각 광원의 파장은, 단파장이어도 되고, 광대역 파장광(백색광)이어도 된다. 단파장광을 이용할 경우, 검출하는 화상의 분해능을 높이기(미세한 결함을 검출하기) 위해서 자외 영역광(Ultra Violet Light)을 이용할 수도 있다. 광원으로서 레이저를 이용할 경우, 단파장 레이저이면, 조명 광학계(131과 132)는 간섭성을 저감하는 수단을 구비할 수도 있다.
조명 광학계(133)는, 상방 검출계(141)의 대물 렌즈를 개재해서 시료(110)를 조사한다. 공간 필터(151)의 위치에 있어서의 반사 거울(도시하지 않음)을 이용해서 광로를 변경하여, 조명 광학계(133)로부터의 조명광을 시료(110)의 위쪽으로부터 조사할 수 있다. 또한 도시하고 있지 않은 파장판을 각 조명 광학계(131∼133)와 시료(110) 사이에 각각 배치함에 의해, 시료(110)에 대해서 입사하는 조명광의 편광 상태를 바꿀 수 있다.
제어부(170)는, 메커니컬 컨트롤러(122), 각 조명 광학계, 각 이미지 센서 등 결함 검사 장치(100)의 전체 동작을 제어한다. 연산 장치(200)는, 제어부(170)를 통해서 결함 검사 장치(100)와 접속할 수 있다. 연산 장치(200)는, 제어부(170)를 통해서 결함 검사 장치(100)를 제어할 수 있다.
연산 장치(200)는, 화상 처리부(210), 결함 판정부(220), 화상 기억부(230), 추출 조건 산출부(240), 추출 조건 기억부(250), 표시부(260)를 구비한다. DR-SEM(270)은 연산 장치(200)의 기능으로서 구성해도 되고, 연산 장치(200)와는 별개의 기능부로서 구성해도 된다.
화상 처리부(210)는, 제어부(170)를 통해서 시료(110)의 외관 화상을 취득하고, 후술의 도 3에서 설명하는 처리를 실시한다. 결함 판정부(220)는, 추출 조건 기억부(250)가 저장하고 있는 추출 조건 데이터가 기술하고 있는 추출 조건에 따라서, 외관 화상의 특징량에 의거하여 시료(110)의 결함을 추출한다. 화상 기억부(230)는, 시료(110)의 특징량을 나타내는 특징량 화상, 결함 판정부(220)에 의한 판정 결과 등을 기억한다. 추출 조건 산출부(240)는, 후술하는 수순에 따라서 새로운 결함 추출 조건을 산출하고, 결함 판정부(220)는 그 조건을 이용해서 결함을 추출한다. 표시부(260)는, 결함 판정부(220)에 의한 판정 결과 등, 연산 장치(200)에 의한 처리 결과를 화면 표시한다. DR-SEM(Defect Review SEM(Scanning Electron Microscope))은, SEM 화상을 이용해서 시료(110)의 결함을 검사하는 장치이며, 결함 검사 장치(100)와는 별개의 결함 검사 수단으로서 구성되어 있다.
도 2는, 시료(110)의 예를 나타내는 상면도이다. 시료(110)가 예를 들면 반도체 웨이퍼일 경우, 시료(110) 상에 같은 반도체칩(다이)(111∼115)이 형성되어 있다. 반도체칩(115) 상에는, 메모리 에어리어(1151)와 주변 회로 에어리어(1152)가 형성되어 있다. 결함 검사 장치(100)는, 스테이지(121)를 조명선(주사선)(1153)에 대해서 직교하는 방향으로 이동시키면서 외관 화상을 취득한다. 연산 장치(200)는, 반도체칩(111∼115)을 상호 비교함에 의해, 결함을 추출한다. 상세는 후술한다.
도 3은, 화상 처리부(210)가 구비하는 내부 연산 블록의 구성도이다. 화상 처리부(210)는, 후술의 도 4에서 설명하는 바와 같이, 결함 검사 장치(100)가 구비하는 검출계마다 내부 연산 블록을 구비하고, 각 검출계에 의해서 검출한 외관 화상을 개별적으로 처리한다. 여기에서는 첫번째의 검출계(예를 들면 상방 검출계(151))에 의해서 검출한 외관 화상을 처리하는 내부 연산 블록(210a)을 예시했다. 그 외 내부 연산 블록도 마찬가지의 구성을 구비하므로, 이들을 구별할 필요가 있는 경우는 알파벳의 첨자를 이용한다. 후술하는 도면에 있어서도 마찬가지이다.
내부 연산 블록(210a)은, 시료(110)의 외관 화상의 화소값(301a)을 수취하고, 이것을 화상 메모리(211) 내에 축적함에 의해, 검사 대상 화상(예를 들면 반도체칩(111))(302)을 생성한다. 마찬가지로 비교 대상으로서, 인접 화상(예를 들면 반도체칩(112∼115))(303)을 생성한다.
위치 어긋남 산출부(212)는, 예를 들면 검사 대상 화상(302)과 인접 화상(303) 사이의 정규화 상관을 산출하는 등에 의해서 양 화상 간의 위치 어긋남량을 산출한다. 위치 맞춤부(213)는, 그 위치 어긋남량에 따라서 검사 대상 화상(302) 또는 인접 화상(303)을 이동시킴에 의해 양 화상의 위치를 맞춘다. 참조 화상 합성기(214)는, 예를 들면 복수의 인접 화상(303)의 화소값(휘도값)의 메디안값에 의해서 구성된 참조 화상(306)을 생성한다. 참조 화상(306)은, 결함 검사의 기준이 되는 화상이다. 차분 산출부(215)는, 검사 대상 화상(302)과 참조 화상(306) 사이의 차분을 산출함에 의해, 차분 화상(304)을 작성한다.
클러스터링부(216)는, 참조 화상(306)의 화소값과 화소값의 기울기(dI(x,y)/dx, dI(x,y)/dy)에 의거해, 참조 화상(306) 내의 부분 영역을 1 이상의 그룹에 클러스터링한다. 이것에 의해 참조 화상(306) 내의 부분 영역은, 예를 들면 (a) 화소값이 큰(밝은) 그룹, (b) 화소값이 중간 정도인 그룹, (c) 화소값이 작은(어두운) 그룹 등과 같이 분류된다. 차분 산출부(215)는, 검사 대상 화상(302)과 참조 화상(306) 사이의 차분을 산출하는 과정에 있어서, 차분값과 그 빈도를 집계한 히스토그램을, 상기 그룹마다 작성한다. 예를 들면 그룹 (a)에 속하는 화소값이, 참조 화상(306)의 화소값으로부터 어느 정도 떨어져 있는지를 집계하고, 그 차분값과 빈도 사이의 대응 관계를 히스토그램으로서 기록한다.
배경 노이즈 추정부(217)는, 차분 산출부(215)가 산출하는 차분 화상(304)의 화소값이 어느 정도 불균일한지를 나타내는 값을 산출한다. 이 값을 배경 노이즈라 한다. 참조 화상(306)과 검사 대상 화상(302)이 동일하면, 차분은 발생하지 않으므로 불균일은 0이다. 양 화상 간의 차분값이 다양할 경우(다양한 값을 갖는 차분값이 존재하고 있을 경우), 검사 대상 화상(302)과 참조 화상(306) 사이의 차분은 크다고 생각할 수 있다. 배경 노이즈 추정부(217)는, 차분 산출부(215)가 산출한 상기 히스토그램의 표준 편차를 구하여, 이것을 제1 배경 노이즈로 한다. 제1 배경 노이즈는, 상기 그룹마다의 불균일을 나타내는 의의가 있다.
배경 노이즈 추정부(217)는 또한, 복수의 인접 화상(303)의 동일 개소에 있어서의 화소값의 불균일(예를 들면 표준 편차)에 의거해, 제2 배경 노이즈를 산출한다. 제2 배경 노이즈는, 화소마다의 불균일을 나타내는 의의가 있다.
내부 연산 블록(210a)은, 검사 대상 화상(302a), 참조 화상(306a)을 출력한다. 차분 산출부(215)는, 산출한 차분을 각 화소 위치에 대응시켜서 배치함에 의해 차분 화상(304)을 생성해서 출력한다. 배경 노이즈 추정부(217)는, 산출한 제1 배경 노이즈와 제2 배경 노이즈의 두 성분을 각 화소 위치에 대응시켜서 배치한 배경 노이즈 화상(305)을 생성해서 출력한다.
도 4는, 결함 판정부(220)의 내부 구성을 나타내는 블록도이다. 화상 처리부(210)는 검출계마다 내부 연산 블록(도 4에 있어서는 세 검출계가 존재한다고 가정해서 210a∼210c를 나타내고 있음)을 구비하고, 각 내부 연산 블록은 각각 도 3에서 설명한 처리를 실시하고, 대응하는 정규화부(221a∼221c)에 대해서 각각의 출력을 절달한다.
정규화부(221)는, 배경 노이즈 화상의 각 화소를 구성하는 성분, 제1 배경 노이즈와 제2 배경 노이즈를 합성해서 화소 위치에 있어서의 합성 배경 노이즈를 산출한다. 산출식을 나타내는 파라미터는 추출 조건 기억부(250) 내에 저장해 두고, 이 데이터를 이용하도록 한다. 혹은 예를 들면 평균값 등의 규정 연산식을 이용해도 된다. 차분 화상(304)의 각 화소를 이 산출한 합성 배경 노이즈 화상에 의해서 나눔에 의해, 차분 화상(304)의 각 화소값을 정규화한 정규화 차분 화상을 산출한다.
공간 분류기(222)는, 정규화한 차분 화상(304)의 화소를, 각 검출계를 공간축으로 하는 화소값 공간에 배치하고, 각 화소와 원점 사이의 거리에 의거하여 결함 후보를 추출한다. 원점과의 사이의 거리가 문턱값을 초과하여 있는 화소는 결함 후보로 간주한다. 문턱값은 예를 들면 추출 조건 기억부(250) 내에 미리 저장해 둘 수 있다. 이 문턱값은 결함 검사 장치(100)의 파라미터로서 조정할 수도 있다. 공간 분류기(222)의 구성예는 후술의 도 5에서 다시 설명한다.
특징 추출부(223)는, 공간 분류기(222)가 추출한 결함 후보에 대하여, 검사 대상 화상(302a∼302c)과 참조 화상(306a∼306c)을 해석함에 의해, 결함 특징량을 산출한다. 결함 특징량으로서는 예를 들면, (a) 결함 후보 영역의 형상 특징(타원 근사에 의한 장지름/단지름의 비율), (b) 결함 후보 영역 내에 있어서의 정규화 차분의 총합, (c) 검사 대상 화상(302)과 참조 화상(306) 각각에 라플라시안 필터를 거친 결과의 차분을 이용할 수 있다. 결함 후보 영역이란, 결함이라고 판정된 화소의 집합에 의해서 형성되는 부분 영역이다. 이들 이외의 특징량을 이용할 수도 있다.
판정부(224)는, 정규화부(221)가 산출한 검출계마다의 정규화 차분과, 특징 추출부(223)가 산출한 각 특징량을 각각 공간축으로서 갖는 다차원 공간에 있어서, 추출 조건 기억부(250)가 저장하고 있는 추출 조건 데이터의 기술에 따라서 결함과 허위 정보를 분리한다. 판정부(224)는, 결함이라고 판정한 결함 후보의 화상과 그 결함 후보의 특징량을 화상 기억부(230)에 저장한다.
도 5는, 공간 분류기(222)의 내부 구성을 나타내는 블록도이다. 공간 분류기(222)는, 정규화부(221)가 출력하는 정규화한 배경 노이즈 화상(305)의 각 화소값을, 검출계마다 수취한다(정규화 차분 화소값(307a∼307c)).
선형합 산출기(222_1∼222_3)는, 각각 정규화 차분 화소값(307a∼307c)을 수취하고, 소정의 게인(계수)을 곱한다. 산출 결과가 소정 문턱값을 초과하여 있는 경우는, 그 취지를 나타내는 출력을 논리합 유닛(222_8)에 대해서 출력한다. 문턱값 및 계수는 추출 조건 기억부(250) 내에 미리 저장해 둘 수 있고, 또한 결함 추출 파라미터로서 조정할 수 있다. 그 밖의 선형합 산출기에 대해서도 마찬가지이다.
선형합 산출기(222_4∼222_6)는, 각각 정규화 차분 화소값(307a와 307b, 307a와 307c, 307b와 307c)의 페어를 수취하고, 각 정규화 차분 화소값에 대해서 소정의 계수를 곱한 후에 가산함에 의해, 선형합을 구한다. 산출 결과가 소정 문턱값을 초과하여 있는 경우는, 그 취지를 나타내는 출력을 논리합 유닛(222_8)에 대해서 출력한다.
선형합 산출기(222_7)는, 정규화 차분 화소값(307a∼307c)을 수취하고, 각 정규화 차분 화소값에 대해서 소정의 계수를 곱한 후에 가산함에 의해, 선형합을 구한다. 산출 결과가 소정 문턱값을 초과하여 있는 경우는, 그 취지를 나타내는 출력을 논리합 유닛(222_8)에 대해서 출력한다.
논리합 유닛(222_8)은, 선형합 산출기(222_1∼222_7) 중 어느 하나로부터 문턱값을 초과하여 있는 취지의 출력을 수취한 경우는, 당해 화소가 결함인 취지의 출력을 판정 결과(222_out)로서 출력한다. 모든 논리합 유닛에 있어서 문턱값 이하인 경우는 당해 화소가 결함이 아닌 취지를 출력한다. 이 처리를 모든 화소에 대하여 실시함에 의해, 각 화소가 결함인지의 여부를 나타내는 비트맵 데이터가 얻어진다.
도 6은, 표시부(260)가 표시하는 결함 후보 화면(261)의 예이다. 결함맵(2611)은, 판정부(224)가 결함이라고 판정한 결함 후보의 위치를, 시료(110)의 상면도 상에 표시한다. 결함 후보 화상(2612)은, 유저가 결함맵(2611) 상에서 지정(예를 들면 화살표 포인터에 의해서 클릭)한 결함 후보에 대하여, 검출 대상 화상(302)/참조 화상(306)/차분 화상(304)을 각각 표시한다. 복수의 검출계를 이용해서 시료(110)의 외관 화상을 취득한 경우는, 각 검출계에 대하여 이들 화상을 각각 표시한다. 결함 후보 리스트(2613)는, 결함맵(2611)이 표시하고 있는 각 결함 후보의 상세를 표시한다.
결함 후보 리스트(2613)는, 결함 후보의 식별자(ID), 결함 분류(Class), 영역 라벨, 결함 특징량을 표시한다. ID는, 각 결함 후보를 구별하기 위하여 편의상 부여한 것이다. 결함 분류는, 초기 상태에 있어서는 공란으로 되어 있다. 유저가 결함 후보 화상(2612)을 확인함에 의해, 당해 결함 후보가 실제 정보/허위 정보 중 어느 것인지를 판단하여, 그 결과를 나타내는 분류 번호를 본란에 대해서 입력한다(예를 들면 허위 정보인 경우는 분류=1 등으로 입력한다). 결함맵(2611) 밑의 건수란은, 유저에 의해서 분류 완료된 결함 후보의 개수와 미분류의 결함 후보의 개수를 각각 표시한다. 영역 라벨은, 시료(110)의 부분 영역을 나타내는 식별자이며, 예를 들면 도 2에서 설명한 메모리 에어리어(1151) 등이 이것에 상당한다. 결함 특징량은, 각 검출계에 의해서 추출한 당해 결함 후보의 특징량이다. 유저는, 예를 들면 실제 정보수와 허위 정보수가 모두 어느 정도의 건수에 달할 때까지, 결함맵(2611) 상에서 랜덤으로 결함 후보를 선택해서 분류를 입력하는 것을 반복한다.
유저는, 특정의 ID나 분류를 지정해서 화면 표시하고 싶은 경우는, 검색 조건란(2614)에 대해서 그 수치를 입력한다. 연산 장치(200)는, 각 결함 후보 중에서 그 수치에 합치하는 것을 추출해서 결함 후보 리스트(2613) 내에 표시한다. 유저가 각 결함 후보의 분류를 입력하는 것 대신에, 또는 이것과 병용해서, DR-SEM(270)에 의한 판정 결과를 분류로서 반영할 수도 있다.
도 7은, 유저가 결함 추출 파라미터를 조정하기 위하여 이용하는 종래의 설정 화면(262)의 예이다. 설정 화면(262)은, 표시부(260) 상에서 표시된다. 연산 장치(200)는, 유저가 결함 후보 화면(261)에 있어서 입력한 실제 정보수/허위 정보수를 영역 라벨마다 집계해서 화상 기억부(230) 내에 저장한다. 유저가 영역 라벨란(2621)에 대해서 영역 라벨을 입력하면, 그래프(2622)는 당해 영역 라벨에 대하여 집계한 실제 정보수/허위 정보수/미분류수를 표시한다.
파라미터 테이블(2623)은, 정규화부(221) 및 판정부(224)가 당해 영역 라벨에 대하여 결함을 추출할 때에 이용한 문턱값의 리스트이다. 예를 들면 어느 결함 후보의 특징량 Param1이 문턱값 3을 초과했을 경우, 판정부(224)는 당해 결함 후보를 추출한다. 파라미터 테이블(2624)은, 공간 분류기(222)가 이용하는 계수 및 문턱값의 리스트이다. 예를 들면 Ch1은 선형합 산출기(222_1)가 이용하는 계수 및 문턱값이다. 이들 파라미터는, 결함 추출 파라미터로서 추출 조건 기억부(250)가 저장하고 있다.
유저는, 파라미터 테이블(2623) 내 또는 파라미터 테이블(2624) 내 중 어느 하나의 파라미터를 포인터(2625)에 의해서 선택한다. 연산 장치(200)는, 선택한 파라미터를 어느 범위 내에서(그 범위에 대해서도 유저가 지정해도 된다) 변화시켰다고 가정할 경우, 실제 정보수/허위 정보수/미분류수가 어떻게 변화할지를, 도 3∼도 5에서 설명한 수순에 따라서 재산출한다. 그래프(2622)는, 파라미터 변화와 각 검출수 변화의 관계를 표시한다. 유저는, 슬라이더(2626)를 이동시켜서 원하는 검출수가 얻어지는 파라미터값을 지정하고, 적용 버튼(2627)을 누른다. 유저는 전형적으로는, 실제 정보수가 많고 허위 정보수가 적은 파라미터값을 지정하지만, 미분류수도 가미하는 경우도 있다. 적용 버튼(2627)을 누른 시점에 있어서의 슬라이더(2626)에 대응하는 파라미터값이 포인터(2625)에 대응하는 파라미터에 대해서 반영되고, 추출 조건 기억부(250)는 그 파라미터값을 저장한다.
이상과 같은 수순에 따라서 결함 추출 파라미터를 조정할 경우, 단일의 파라미터를 조정하는 것만으로는 최적한 결함 추출 조건을 얻는 것이 곤란하므로, 복수의 파라미터를 병렬적으로 변화시키면서 시행 착오하게 된다. 따라서, 파라미터 조정을 위하여 다대한 시간이 걸리는 경향이 있어, 유저에 있어서 부담이 되고 있다.
도 8은, 본 실시형태 1에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(262)의 예이다. 유저는, 도 7에서 설명한 결함 추출 파라미터를 개별적으로 추출하는 것 대신에, 후술하는 감도 지표값의 범위를 지표값란(2628)에 대해서 입력한다. 유저가 계산 버튼(2629)을 누르면, 연산 장치(200)(추출 조건 산출부(240))는 후술하는 평가값을 최대화하면서 도 3∼도 5에서 설명한 수순에 따라서 실제 정보수/허위 정보수/미분류수를 재산출한다. 연산 장치(200)는, 각 감도 지표값에 대응해서 산출한 결함 추출 파라미터를 추출 조건 기억부(250) 내에 일시적으로 보존한다. 그래프(2622)는, 각 감도 지표값과 그 감도 지표값에 대응하는 실제 정보수/허위 정보수/미분류수를 표시한다.
유저가 슬라이더(2626)를 이동시키면, 연산 장치(200)는 슬라이더(2626)가 포인팅하는 감도 지표값에 대응하는 결함 추출 파라미터를 판독하고, 파라미터 테이블(2623과 2624)에 표시한다. 유저는, 슬라이더(2626)를 이동시켜서 원하는 검출수가 얻어지는 감도 지표값을 지정하고, 적용 버튼(2627)을 누른다.
연산 장치(200)는, 예를 들면 하기 식 1에 따라서, 평가값 Popt(S)를 최대화할 수 있는 결함 추출 파라미터를 탐색한다. 예를 들면 평가값 Popt(S)의 최대값이 수속될 때까지 P의 요소를 변화시키는 것을 반복함에 의해, 탐색을 실시할 수 있다. P는, 결함 추출 파라미터의 벡터(각 계수, 문턱값 등을 요소로 하는 벡터)이다. CountD는, 결함 추출 파라미터의 초기값을 이용해서 얻어진 실제 정보수이다. CountF는, 결함 추출 파라미터의 초기값을 이용해서 얻어진 허위 정보수이다. Cd(P)는, 결함 추출 파라미터 벡터 P를 이용해서 추출한 실제 정보수이다. Cf(P)는, 결함 추출 파라미터 벡터 P를 이용해서 추출한 허위 정보수이다. S는, 지표값란(2628)에 대해서 입력하는 감도 지표값이다. 0은, 작은 값(네거티브 오프셋)이다.
[식 1]
Figure 112018077785737-pct00001
식 1에 따라서 평가값 Popt(s)를 최대화함에 의해, 전체로서는 Cd(P)를 최대화하는 방향을 향해서 연산 프로세스가 진행된다. 단, 실제 정보율(실제 정보수/(실제 정보수+허위 정보수))이 작으면 연산자 min의 우측의 항이 선택되어, 결과로서 연산 프로세스는 아직 최대값이 얻어지지 않았다고 판단할 가능성이 증가한다. 이들 연산자의 작용에 의해, 실제 정보율을 어느 정도 큰 값으로 유지하면서 Cd(P)를 최대화하는 연산 프로세스를 실시할 수 있다. 네거티브 오프셋 0은, 연산자 min 내의 좌우항이 우연히 같아졌을 때 우측의 항을 강제적으로 선택하기 위한 것이다.
유저로서는, 식 1에 있어서 연산자 min의 우측의 항을 어느 정도 중시할지를, 감도 지표값 S로서 지정하는 것만으로, Cd(P)와 실제 정보율을 모두 고려한 최적한 결함 추출 파라미터 벡터 P를 얻을 수 있다.
연산 장치(200)는, 결함 후보의 분류(Class)마다 가중을 세트할 수도 있다. 예를 들면 실제 정보 분류의 가중으로서 양(正)값을 이용하고, 허위 정보 분류의 가중으로서 음(負)값을 이용함에 의해, 실제 정보수가 많을수록 평가값이 높아지고 허위 정보수가 많을수록 평가값이 낮아지도록 할 수 있다. 이 경우는 식 1 대신에 하기 식 2를 이용한다. Wdi는, 실제 정보 분류 i의 가중이다. Wfi는, 허위 정보 분류 i의 가중이다. Cdi(P)는, 결함 추출 파라미터 벡터 P를 이용해서 추출한 실제 정보 분류 i에 속하는 실제 정보수이다. Cfi(P)는, 결함 추출 파라미터 벡터 P를 이용해서 추출한 허위 정보 분류 i에 속하는 허위 정보수이다.
[식 2]
Figure 112018077785737-pct00002
도 9는, 연산 장치(200)가 결함 추출 파라미터를 조정하는 수순을 나타내는 PAD도이다. 이하 도 9의 각 스텝에 대하여 설명한다.
(도 9 : 스텝 S900∼S902)
결함 검사 장치(100)는, 시료(110)의 외관 화상을 촬상한다(S901). 연산 장치(200)는, 도 3∼도 5에서 설명한 수순에 따라서, 결함 후보를 추출한다(S902). 이것을 시료(110) 전면(全面)의 화상이 촬상되어 결함 후보가 추출될 때까지 행한다(S900). 이들 스텝에 있어서는, 중요 결함이 검출되도록, 허위 정보수가 비교적 많은 고감도 검사를 실시하는 것이 바람직하다.
(도 9 : 스텝 S903)
유저는, 결함 후보 화면(261) 상에서 결함 후보를 선택하고, 각 결함 후보에 대해서 분류를 입력한다. 원칙으로서는 각 결함 후보를 실제 정보와 허위 정보로 분류하지만, 보다 상세한 결함 분류를 부여해도 된다. 유저가 입력하는 것 대신에 또는 병용해서, DR-SEM(270)에 의한 판정 결과를 이용해도 된다. 연산 장치(200)는, 유저 입력(예를 들면 키보드나 마우스) 또는 DR-SEM(270) 사이에서 판정 결과를 송수신(예를 들면 통신 네트워크)하기 위한 인터페이스(280)를 적절히 구비할 수 있다.
(도 9 : 스텝 S904∼S905)
유저는, 설정 화면(262) 상에서 복수의 감도 지표값(또는 감도 지표값의 범위)을 입력한다(S904). 연산 장치(200)는, 스텝 S906∼S907을, 입력된 감도 지표값마다(범위를 지정한 경우는 등간격으로) 실시한다(S905).
(도 9 : 스텝 S906∼S907)
연산 장치(200)는, 감도 지표값 S를 입력 파라미터로 하여, 식 1(분류를 가중치 부여하는 경우는 식 2)에 따라서 결함 검출 파라미터를 최적화하고, 이것을 추출 조건 기억부(250) 내에 저장한다(S906). 연산 장치(200)는, 스텝 S906에 있어서 최적화한 결함 추출 파라미터와 각 결함 후보의 특징량을 이용해서, 실제 정보수/허위 정보수/미분류수를 산출한다(S907).
(도 9 : 스텝 S908∼S910)
설정 화면(262)은, 그래프(2622) 내에 실제 정보수/허위 정보수/미분류수를 표시한다(S908). 유저는 슬라이더(2626)를 이용해서 감도 지표값을 선택하고, 연산 장치(200)는 그 감도 지표값을 이용해서 산출한 결함 추출 파라미터를 파라미터 테이블(2623과 2624)에 표시한다(S909). 유저가 적용 버튼(2627)을 누르면, 추출 조건 기억부(250)는 그 결함 추출 파라미터를 저장하고, 연산 장치(200)는 이후 그 결함 추출 파라미터를 이용해서 시료(110)의 결함을 검사한다(S910).
<실시형태 2>
실시형태 1에서는, 감도 지표값의 범위를 지정함에 의해 각 감도 지표값에 대응하는 결함 추출 파라미터를 최적화하고, 유저가 그 중으로부터 원하는 요건을 충족시키는 것을 선택하는 구성예를 설명했다. 본 발명의 실시형태 2에서는, 감도 지표값 이외의 파라미터를 이용해서 마찬가지의 처리를 실시하는 구성예를 설명한다. 그 외 구성은 실시형태 1과 마찬가지이기 때문에, 이하에서는 주로 감도 지표값 대신에 이용하는 파라미터에 대하여 설명한다.
도 10은, 본 실시형태 2에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(263)의 예이다. 유저는, 설정 화면(262) 대신에 또는 병용해서, 설정 화면(263)을 이용할 수 있다. 영역 라벨(2631), 파라미터 테이블(2633), 파라미터 테이블(2634)은 도 8에서 설명한 것과 마찬가지이다.
유저는, 결함 포착률/허위 정보율/허위 정보 잔존율 중 어느 것을 기준으로 해서 결함 추출 파라미터를 최적화할지를 선택한다. 결함 포착률은, (현재의 결함 추출 파라미터를 이용해서 추출한 실제 정보수)/(결함 추출 파라미터의 초기값을 이용해서 추출한 실제 정보수)에 의해서 구해진다. 허위 정보율은, (허위 정보수)/(실제 정보수+허위 정보수)에 의해서 구해진다. 허위 정보 잔존율은, (현재의 결함 추출 파라미터를 이용해서 추출한 허위 정보수)/(결함 추출 파라미터의 초기값을 이용해서 추출한 허위 정보수)에 의해서 구해진다. 또, 여기에서의 현재의 결함 추출 파라미터란, S902에서 이용된 결함 추출 파라미터를 가리키고 있다. 유저는 이들 중 어느 것을 이용할지를 선택하고, 또한 지표값란(2628)에 대해서 원하는 범위를 입력한다. 도 10의 예에 있어서는, 결함 포착률이 60∼90의 범위인 결함 추출 파라미터의 조합을 모두 구하도록 지시하고 있는 것으로 된다. 유저가 계산 버튼(2639)을 누르면, 연산 장치(200)는 지정에 따라서 결함 추출 파라미터의 조합을 모두 구한다. 지정 조건을 충족시키는 결함 추출 파라미터는, 예를 들면 망라적으로 탐색함에 의해서 얻을 수도 있고, 공지의 탐색 방법에 의해서 얻을 수도 있다.
결함 포착률은, 예를 들면 80% 이상 등과 같이 지정할 수도 있다. 허위 정보율은, 예를 들면 40% 이하 등과 같이 지정할 수도 있다. 허위 정보 잔존율은, 예를 들면 10% 이하 등과 같이 지정할 수도 있다.
파라미터 테이블(2632)은, 유저의 지정에 따라서 구한 결함 추출 파라미터 및 그 결함 추출 파라미터를 이용한 경우에 있어서의 결함 포착률/허위 정보율/허위 정보 잔존율을 표시한다. 유저가 어느 하나의 행을 선택하면, 파라미터 테이블(2633과 2634)은 그 행에 대응하는 결함 추출 파라미터의 상세를 표시한다.
도 11은, 본 실시형태 2에 있어서 연산 장치(200)가 결함 추출 파라미터를 조정하는 수순을 나타내는 PAD도이다. 스텝 S900∼S903, S906∼S908, S910은 도 9와 마찬가지이다.
(도 11 : 스텝 S1101)
유저는, 설정 화면(263) 상에서 어떠한 파라미터를 기준으로 해서 결함 추출 파라미터를 최적화할지를 선택함과 함께, 그 값 범위(또는 복수의 값)를 입력한다(S1101). 연산 장치(200)는, 스텝 S906∼S907을, 입력된 기준 파라미터마다(범위를 지정한 경우는 등간격으로) 실시한다(S1102).
(도 11 : 스텝 S1103)
연산 장치(200)는, 유저가 파라미터 테이블(2632) 상에서 선택한 결함 추출 파라미터의 상세를, 파라미터 테이블(2633과 2634)에 표시한다.
<실시형태 3>
도 12a는, 본 발명의 실시형태 3에 있어서의 공간 분류기(222)의 내부 구성을 나타내는 블록도이다. 본 실시형태 3에 있어서 공간 분류기(222)는, 실시형태 1에서 설명한 구성에 더하여 새롭게 내부 연산 블록(222_9∼222_13)을 구비한다. 이하 이들을 추가한 것에 수반하는 차이점에 대하여 설명한다.
도 12b는, 내부 연산 블록(222_9∼222_13)의 상세를 설명하는 블록도이다. 내부 연산 블록(222_9)은, 정규화 차분 화소값(307a∼307c)을 수취하고, 이들이 각각 문턱값을 초과하여 있는지 222_9 내에 설치한 2치화 판정 유닛(222-9a, 222-9b, 222-9c)에 있어서 개별적으로 판정한다. 각 문턱값은 검출계마다 서로 다른 값으로 할 수 있다. 이 문턱값은 결함 추출 파라미터로서 추출 조건 기억부(250)가 저장하고 있다. 2치화 판정 결과는 논리합 유닛(222-9d)으로 보내지고, 정규화 차분 화소값(307a∼307c) 중 어느 하나가 문턱값 이상인 경우는, 당해 화소가 결함인 취지의 출력을 내부 연산 블록(222_13)에 대해서 절달한다.
내부 연산 블록(222_10과 222_11)은, 내부 연산 블록(222_12)과 마찬가지의 처리를 실시한다. 우선, 내부 연산 블록(222_12)에 대하여 설명한다. 222-12a, 222-12b, 222-12c는 222-12 내에 설치한 2치화 판정 유닛이고, 222-9a, 222-9b, 222-9c와 마찬가지의 기능을 갖는다. 222-12a, 222-12b, 222-12c의 출력은 논리곱 유닛(222-12d)으로 보내지고, 정규화 차분 화소값(307a∼307c) 모두가 문턱값 이상인 경우는 결함 후보인 취지 판정을 행하고, 이것을 내부 연산 블록(222_13)에 대해서 절달한다. 222-12a, 222-12b, 222-12c에서 이용하는 문턱값은 추출 조건 기억부(250) 내에 미리 저장해 두고, 또한 결함 추출 파라미터로서 조정할 수 있다.
내부 연산 블록(222_10과 222_11)은, 내부 연산 블록(222_12)과 마찬가지의 기능을 갖지만, 내부에 설치한 2치화 판정 유닛에 부여하는 문턱값은 222-12a, 222-12b, 222-12c에서 이용하는 것과 다른 값을 설정한다. 문턱값은 추출 조건 기억부(250) 내에 미리 저장해 두고, 또한 결함 추출 파라미터로서 조정할 수 있다.
일반적으로는 222_9 내에 설치한 2치화 판정 유닛(222-9a, 222-9b, 222-9c)에서 적용되는 문턱값은, 222_10, 222_11, 222_12에서 이용하는 문턱값에 비해서 큰 값을 설정한다.
내부 연산 블록(222_13)은, 내부 연산 블록(222_10∼222_12) 중 어느 하나가 결함이라고 판정한 화소는 결함 후보로 간주한다. 222_10∼222_12는 222_13에 설치된 논리합 유닛(222_13a)에 절달되어, 논리합을 취한다. 또한 이 출력은 논리곱 유닛(222_13b)에 절달된다.
내부 연산 블록(222_13)은, 논리합 유닛(222_8)으로부터의 출력을 수취한다. 223_13b는, 논리합 유닛(222_8)이 결함 후보라고 판정한 화소이며 또한 222_13a가 결함이라고 간주한 것을, 결함 후보로서 출력한다. 이것에 의해, 내부 연산 블록(222_1∼222_8)과 내부 연산 블록(222_9∼222_12) 쌍방에 의해서 현재화(顯在化)한 결함만을 추출할 수 있으므로, 허위 정보를 억제할 수 있다. 이 결과는 222_13c에 출력된다.
또한 다면적으로 검증하기 위하여 각각 서로 다른 문턱값을 이용하고 있다. 내부 연산 블록(222_12)은, 어느 하나의 검출계에 있어서 문턱값을 대폭으로 초과하여 있는 경우는 그 화소는 결함이라는 상정에 의거한다. 222_12의 출력은 222_13에 설치된 논리합 유닛, 222_13c에 절달되고, 222_13b의 출력과의 논리합을 산출해서 최종적인 결함 판정 출력(222_out)을 출력한다. 이들을 병용함에 의해, 결함 후보를 보다 정확하게 추출할 수 있다.
도 13은, 본 실시형태 3에 있어서의 공간 분류기(222)가 결함과 노이즈를 분리하는 모습을 나타내는 개념도이다. 설명의 편의상, 두 특징량을 각각 공간축으로 하는 2차원 특징량 공간에 있어서의 예를 나타냈다. ○ 표시는 실제 정보, × 표시는 허위 정보, △ 표시는 미검출의 허위 정보이다.
판별면(1301)은, 내부 연산 블록(222_1∼222_8)이 결함 추출 파라미터의 초기값을 이용해서 결함을 추출하는 기준으로 되는 경계면이다. 경계면보다도 위에 배치된 결함 후보는 공간 분류기(222)에 의해서 결함으로서 판정된다. 따라서, ○ 표시와 × 표시가 결함으로서 판정된다.
판별면(1302)은, 결함 추출 파라미터를 조정한 후에 있어서의 경계면이다. 이 경우는 × 표시의 일부와 ○ 표시가 결함으로서 판정된다. 결함 추출 파라미터를 더 조정함에 의해 판별면이 1303으로 되었을 경우, 판별면(1301)에 있어서 검출한 결함을 모두 검출함과 함께 허위 정보를 모두 배제할 수 있다. 그러나 다른 쪽에서 판별면(1301)에 있어서 미검출이었던 결함 후보도 결함으로서 검출하게 되므로, 오검출의 우려가 있다.
이것을 피하기 위해서는, 예를 들면 판별면(1301)의 절편(切片)(1304와 1305)에 가상적인 허위 정보를 작성하고, 이들 가상 허위 정보가 속하는 분류에 대해서 큰 가중을 부여하여, 당해 분류에 속하는 결함 후보가 실제 정보로서 검출되기 어렵게 하면 된다. 이것에 의해, 판별면(1303)과 같은 경계면이 세트되는 것을 회피할 수 있다.
그 외 수단으로서는, 내부 연산 블록(222_9∼222_12)에 의해서 새로운 판별면(1306이나 1307)을 세트하는 것을 생각할 수 있다. 이것에 의해, 판별면(1303, 1306, 1307)의 우측 상단 영역에 있어서의 결함 후보만이 결함으로서 검출되므로, 실제 정보만을 정확하게 추출할 수 있다.
<실시형태 4>
도 14는, 본 발명의 실시형태 4에 있어서 유저가 결함 검출 파라미터를 조정하기 위하여 이용하는 설정 화면(264)의 예이다. 화면의 상반 부분은 설정 화면(262)과 마찬가지이다. 단 유저는 영역 라벨란(2621)에 대해서 전영역을 일괄적으로 선택하는 취지를 입력한다. 연산 장치(200)는, 전영역 라벨에 대하여 일괄적으로 실시형태 1과 마찬가지의 수순에 의해 실제 정보수/허위 정보수 등을 산출하고, 집계란(2641)은 그 결과를 표시한다. 구체적으로는, 전영역 라벨에 대하여 검출한 실제 정보수/허위 정보수/미분류수, 실제 정보율/허위 정보율/결함 포착률/결함 잔존율 등의 집계 결과를 표시한다. 이들 중 어느 하나를 선택적으로 표시해도 된다.
본 실시형태 4에 있어서는, 식 1이나 식 2에 있어서 전영역에 대하여 포괄적으로 최적화를 실시한다. 이것에 의해, 결함이 발생하기 쉬운 영역에 있어서의 검출 감도가 높아짐과 함께, 허위 정보가 많은 영역에 있어서의 검출 감도가 낮아지는 것과 같은 자동 조정이 행해진다. 전영역에 대하여 일괄적으로 감도 지표값을 조정할 수 있으므로, 결함 추출 파라미터를 조정하는 부담을 더 억제할 수 있다.
<실시형태 5>
본 발명의 실시형태 5에서는, 연산 장치(200)가 결함을 검출하기 위하여 이용하는 구체적인 연산식에 대하여 설명한다. 결함 검사 장치(100) 및 연산 장치(200)의 구성은 실시형태 1∼4와 마찬가지이다.
연산 장치(200)가 결함 후보를 추출하는 조건은, 하기 식 3에 의해서 나타난다. Gi는 공간 분류기(222)가 내부적으로 이용하는 계수이고, 각 내부 연산 블록(도 5에 있어서는 7개)이 각각 이용하는 계수의 배열이다. X는 특징량의 배열이고, 특징량 공간의 차원수와 같은 개수의 요소를 갖는다. Thi는 검출 문턱값이다.
[식 3]
Figure 112018077785737-pct00003
상기 식 3은, 하기 식 4와 같이 치환할 수 있다. j는, 결함 후보의 index이다. t(j)는, 실제 정보이면 1, 허위 정보이면 -1로 한다. class(j)는, 결함 후보 j가 속하는 분류이다. C()는 코스트이고, 결함이 검출되지 않는 경우에 실제 정보 클래스에 대해서 부여하고, 또는 허위 정보가 검출되는 경우에 허위 정보 클래스에 대해서 부여한다. ξi는 슬랙스 변수이다.
[식 4]
Figure 112018077785737-pct00004
식 4에 있어서, KGi=wi, KThi=bi로 치환하면, 연산 장치(200)는 하기 식 5로 표시되는 최적화 문제를 해결함에 의해 결함을 검출할 수 있다. J(j)는, I가 현재값 이외일 때 이미 결함이 검출되어 있는 경우는 1 이하의 값을 세트하고, 그렇지 않으면 1을 세트한다.
[식 5]
Figure 112018077785737-pct00005
<본 발명의 변형예에 대하여>
본 발명은 상기한 실시예로 한정되는 것은 아니며, 다양한 변형예가 포함된다. 예를 들면, 상기한 실시예는 본 발명을 알기 쉽게 설명하기 위하여 상세히 설명한 것이고, 반드시 설명한 모든 구성을 구비하는 것으로 한정되는 것은 아니다. 또한, 어느 실시예의 구성의 일부를 다른 실시예의 구성으로 치환하는 것이 가능하고, 또한, 어느 실시예의 구성에 다른 실시예의 구성을 더하는 것도 가능하다. 또한, 각 실시예의 구성의 일부에 대하여, 다른 구성의 추가·삭제·치환을 하는 것이 가능하다.
상기 각 구성, 기능, 처리부, 처리 수단 등은, 그들의 일부나 전부를, 예를 들면 집적 회로로 설계하는 등에 의해 하드웨어로 실현해도 된다. 또한, 상기한 각 구성, 기능 등은, 프로세서가 각각의 기능을 실현하는 프로그램을 해석하고, 실행함에 의해 소프트웨어로 실현해도 된다. 각 기능을 실현하는 프로그램, 테이블, 파일 등의 정보는, 메모리, 하드디스크, SSD(Solid State Drive) 등의 기록 장치, IC 카드, SD 카드, DVD 등의 기록 매체에 저장할 수 있다.
100 : 결함 검사 장치 110 : 시료
200 : 연산 장치 210 : 화상 처리부
220 : 결함 판정부 230 : 화상 기억부
240 : 추출 조건 산출부 250 : 추출 조건 기억부
260 : 표시부 270 : DR-SEM

Claims (15)

  1. 검사 대상이 갖는 결함을 검사하는 결함 검사 장치로서,
    상기 검사 대상의 외관 화상을 생성하는 화상 생성부,
    상기 외관 화상의 특징량을 산출하는 특징량 산출부,
    상기 검사 대상의 결함을 추출하는 조건의 초기값을 기술한 추출 조건 데이터를 저장하는 기억부,
    상기 특징량과 상기 조건을 비교함에 의해 상기 검사 대상이 갖는 결함을 추출하는 결함 판정부,
    상기 결함 판정부가 추출한 결함을 나타내는 정보를 출력하는 출력부,
    상기 결함 판정부가 추출한 결함이 실제 정보와 허위 정보 중 어느 것인지를 지정하는 지정 입력을 수취하는 인터페이스
    를 구비하고,
    상기 결함 판정부는, 상기 인터페이스를 통해서 복수의 기준값을 수취함과 함께, 실제 정보수와 허위 정보수와 상기 기준값을 이용해서 산출되는 평가값이 최적으로 되는 상기 조건을, 상기 기준값마다 산출하고,
    상기 결함 판정부는, 상기 기준값마다 산출한 상기 조건을 이용해서 상기 검사 대상이 갖는 결함을 추출하고,
    상기 출력부는, 상기 결함 판정부가 상기 기준값마다 산출한 상기 조건을 상기 기준값마다 각각 출력함과 함께, 상기 결함 판정부가 상기 기준값마다 산출한 상기 조건을 이용해서 추출한 결함을 나타내는 정보를 출력하는
    것을 특징으로 하는 결함 검사 장치.
  2. 제1항에 있어서,
    상기 결함 판정부는, 상기 실제 정보수와 상기 허위 정보수의 합계에 대한 상기 실제 정보수의 비율을 나타내는 실제 정보율을 산출하고, 상기 실제 정보율을 이용해서 상기 평가값을 산출함에 의해, 상기 조건으로서 상기 실제 정보율을 이용해서 결함을 추출하는
    것을 특징으로 하는 결함 검사 장치.
  3. 제2항에 있어서,
    상기 결함 판정부는, 상기 기준값으로서, 상기 평가값에 있어서의 상기 실제 정보율의 가중을 지정하는 수치를 수취하고, 그 가중을 이용해서 상기 평가값을 산출하는
    것을 특징으로 하는 결함 검사 장치.
  4. 제1항에 있어서,
    상기 결함 판정부는, 상기 검사 대상이 갖는 결함을 상기 특징량에 따라서 분류함과 함께, 상기 결함의 분류마다 가중 계수를 세트하고,
    상기 결함 판정부는, 상기 분류 중 상기 실제 정보에 속하는 것에 대해서는, 상기 가중 계수가 클수록 상기 평가값이 높게 되도록 상기 가중 계수를 설정함과 함께, 상기 분류 중 상기 허위 정보에 속하는 것에 대해서는, 상기 가중 계수가 클수록 상기 평가값이 낮아지도록 상기 가중 계수를 설정하는
    것을 특징으로 하는 결함 검사 장치.
  5. 제1항에 있어서,
    상기 결함 판정부는, 상기 기준값으로서, 상기 조건의 초기값을 이용해서 검출한 상기 실제 정보수에 대한 상기 실제 정보수의 비율을 나타내는 결함 포착률의 수치를 수취하고,
    상기 결함 판정부는, 상기 결함 포착률을 이용해서 상기 평가값을 산출함에 의해, 상기 조건으로서 상기 결함 포착률을 이용해서 결함을 추출하는
    것을 특징으로 하는 결함 검사 장치.
  6. 제1항에 있어서,
    상기 결함 판정부는, 상기 기준값으로서, 상기 실제 정보수와 상기 허위 정보수의 합계에 대한 상기 허위 정보수의 비율을 나타내는 허위 정보율의 수치를 수취하고,
    상기 결함 판정부는, 상기 허위 정보율을 이용해서 상기 평가값을 산출함에 의해, 상기 조건으로서 상기 허위 정보율을 이용해서 결함을 추출하는
    것을 특징으로 하는 결함 검사 장치.
  7. 제1항에 있어서,
    상기 결함 판정부는, 상기 기준값으로서, 상기 조건의 초기값을 이용해서 검출한 상기 허위 정보수에 대한 상기 허위 정보수의 비율을 나타내는 결함 잔존율의 수치를 수취하고,
    상기 결함 판정부는, 상기 결함 잔존율을 이용해서 상기 평가값을 산출함에 의해, 상기 조건으로서 상기 결함 잔존율을 이용해서 결함을 추출하는
    것을 특징으로 하는 결함 검사 장치.
  8. 제1항에 있어서,
    상기 결함 검사 장치는, 상기 검사 대상을 촬상함에 의해 상기 외관 화상의 화소값을 취득해서 상기 화상 생성부에 대해서 절달하는 검출계를 복수 구비하고,
    상기 결함 검사 장치는, 상기 검출계가 취득한 상기 외관 화상의 화소값과 참조 화상의 화소값 사이의 차분을 상기 검출계마다 산출하는 차분 산출기를 더 구비하고,
    상기 결함 판정부는, 1 이상의 상기 검출계에 대하여 상기 차분 산출기가 각각 산출한 상기 차분의 선형합을 구하고, 상기 선형합이 제1 판정 문턱값을 초과하여 있는 경우는, 상기 차분에 대응하는 화소가 결함이라고 판정하는
    것을 특징으로 하는 결함 검사 장치.
  9. 제1항에 있어서,
    상기 결함 검사 장치는, 상기 검사 대상을 촬상함에 의해 상기 외관 화상의 화소값을 취득해서 상기 화상 생성부에 대해서 절달하는 검출계를 복수 구비하고,
    상기 결함 검사 장치는, 상기 검출계가 취득한 상기 외관 화상의 화소값과 참조 화상의 화소값 사이의 차분을 상기 검출계마다 산출하는 차분 산출기를 더 구비하고,
    상기 결함 판정부는, 상기 검출계마다 동일 또는 서로 다른 제2 판정 문턱값을 미리 세트하고, 상기 차분이 모든 상기 검출계에 대하여 상기 제2 판정 문턱값을 초과하여 있는 경우는, 상기 차분에 대응하는 화소가 결함이라고 판정하는
    것을 특징으로 하는 결함 검사 장치.
  10. 제8항에 있어서,
    상기 결함 판정부는, 상기 검출계마다 동일 또는 서로 다른 제2 판정 문턱값을 미리 세트하고,
    상기 결함 판정부는, 상기 선형합이 상기 제1 판정 문턱값을 초과하여 있고, 또한 상기 차분이 모든 상기 검출계에 대하여 상기 제2 판정 문턱값을 초과하여 있는 경우는, 상기 차분에 대응하는 화소가 결함이라고 판정하는
    것을 특징으로 하는 결함 검사 장치.
  11. 제1항에 있어서,
    상기 화상 생성부는, 상기 검사 대상의 부분 영역에 대하여 상기 외관 화상을 생성함과 함께 상기 부분 영역의 식별자를 상기 외관 화상에 대해서 부여하고,
    상기 결함 판정부는, 상기 검사 대상이 갖는 결함을 상기 부분 영역마다 추출하는
    것을 특징으로 하는 결함 검사 장치.
  12. 제1항에 있어서,
    상기 화상 생성부는, 상기 검사 대상의 부분 영역에 대하여 상기 외관 화상을 생성함과 함께 상기 부분 영역의 식별자를 상기 외관 화상에 대해서 부여하고,
    상기 결함 판정부는, 상기 검사 대상이 갖는 결함을 모든 상기 부분 영역에 대하여 일괄적으로 추출함과 함께, 모든 상기 부분 영역에 대한 상기 실제 정보수와 상기 허위 정보수를 이용해서 상기 평가값을 산출함에 의해, 모든 상기 부분 영역의 총합에 대해서 상기 평가값을 최적화하는
    것을 특징으로 하는 결함 검사 장치.
  13. 제1항에 있어서,
    상기 결함 검사 장치는,
    복수의 상기 검사 대상의 외관 화상을 합성함에 의해 참조 화상을 생성하는 참조 화상 생성부,
    상기 외관 화상의 화소값과 상기 참조 화상의 화소값 사이의 차분을 산출하는 차분 산출부,
    상기 검사 대상이 갖는 결함을 상기 특징량에 따라서 분류하는 클러스터링부,
    상기 차분 산출부가 산출한 차분과 상기 클러스터링부에 의한 분류 결과를 이용해서 상기 외관 화상의 화소값의 불균일을 산출하는 노이즈 추정부,
    상기 노이즈 추정부가 산출한 불균일을 상기 차분 산출부가 산출한 차분에 의해서 정규화함과 함께 상기 정규화에 의해서 얻어진 화소값과 제1 문턱값을 비교함에 의해 결함 후보를 추출하는 정규화기,
    상기 결함 후보의 특징량을 산출하는 정규화 특징량 산출기,
    상기 정규화 특징량 산출기가 산출한 특징량과 제2 문턱값을 비교함에 의해 상기 정규화기가 추출한 결함 후보로부터 최종적인 결함 후보를 더 추출하는 판정기
    를 구비하는 것을 특징으로 하는 결함 검사 장치.
  14. 제1항에 있어서,
    상기 결함 판정부는, 상기 기준값마다 산출한 상기 조건 중 어느 것을 이용할지를 지정하는 지시를 수취하고, 그 조건을 이용해서 상기 검사 대상이 갖는 결함을 추출하는
    것을 특징으로 하는 결함 검사 장치.
  15. 검사 대상이 갖는 결함을 검사하는 결함 검사 방법으로서,
    상기 검사 대상의 외관 화상을 생성하는 화상 생성 스텝,
    상기 외관 화상의 특징량을 산출하는 특징량 산출 스텝,
    상기 검사 대상의 결함을 추출하는 조건의 초기값을 기술한 검출 조건 데이터를 기억부로부터 판독하는 스텝,
    상기 특징량과 상기 조건을 비교함에 의해 상기 검사 대상이 갖는 결함을 추출하는 결함 판정 스텝,
    상기 결함 판정 스텝에 있어서 추출한 결함을 나타내는 정보를 출력하는 출력 스텝,
    상기 결함 판정 스텝에 있어서 추출한 결함이 실제 정보와 허위 정보 중 어느 것인지를 지정하는 지정 입력을 수취하는 스텝
    을 갖고,
    상기 결함 판정 스텝에 있어서는 또한, 복수의 기준값을 수취함과 함께, 실제 정보수와 허위 정보수와 상기 기준값을 이용해서 산출되는 평가값이 최적으로 되는 상기 조건을, 상기 기준값마다 산출하고,
    상기 결함 판정 스텝에 있어서는 또한, 상기 기준값마다 산출한 상기 조건을 이용해서 상기 검사 대상이 갖는 결함을 추출하고,
    상기 출력 스텝에 있어서는 또한, 상기 결함 판정 스텝에 있어서 상기 기준값마다 산출한 상기 조건을 출력함과 함께, 상기 결함 판정 스텝에 있어서 상기 기준값마다 산출한 상기 조건을 이용해서 추출한 결함을 나타내는 정보를 출력하는
    것을 특징으로 하는 결함 검사 방법.
KR1020187022692A 2016-03-30 2016-03-30 결함 검사 장치, 결함 검사 방법 KR102084535B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060375 WO2017168630A1 (ja) 2016-03-30 2016-03-30 欠陥検査装置、欠陥検査方法

Publications (2)

Publication Number Publication Date
KR20180102117A KR20180102117A (ko) 2018-09-14
KR102084535B1 true KR102084535B1 (ko) 2020-03-05

Family

ID=59962761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187022692A KR102084535B1 (ko) 2016-03-30 2016-03-30 결함 검사 장치, 결함 검사 방법

Country Status (3)

Country Link
US (2) US10466181B2 (ko)
KR (1) KR102084535B1 (ko)
WO (1) WO2017168630A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366068B2 (en) 2016-11-14 2022-06-21 Koh Young Technology Inc. Inspection apparatus and operating method thereof
KR20180054063A (ko) * 2016-11-14 2018-05-24 주식회사 고영테크놀러지 검사체에 대한 양부 판정 조건을 조정하는 방법 및 장치
US11047806B2 (en) * 2016-11-30 2021-06-29 Kla-Tencor Corporation Defect discovery and recipe optimization for inspection of three-dimensional semiconductor structures
US11237119B2 (en) * 2017-01-10 2022-02-01 Kla-Tencor Corporation Diagnostic methods for the classifiers and the defects captured by optical tools
WO2018216629A1 (ja) * 2017-05-22 2018-11-29 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
US10460434B2 (en) * 2017-08-22 2019-10-29 Applied Materials Israel Ltd. Method of defect detection and system thereof
US10902582B2 (en) 2019-01-17 2021-01-26 Applied Materials Israel, Ltd. Computerized system and method for obtaining information about a region of an object
JP7416071B2 (ja) * 2019-08-23 2024-01-17 コニカミノルタ株式会社 判定装置、および判定プログラム
CN113888772B (zh) * 2021-09-30 2024-04-26 江苏欧软信息科技有限公司 一种基于mes的信息录入应急系统及其处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177139A (ja) 2002-11-25 2004-06-24 Renesas Technology Corp 検査条件データ作成支援プログラム及び検査装置及び検査条件データ作成方法
JP2004239728A (ja) 2003-02-05 2004-08-26 Hitachi High-Technologies Corp パターン検査方法及び装置
JP2005017159A (ja) 2003-06-27 2005-01-20 Hitachi High-Technologies Corp 欠陥検査装置における検査レシピ設定方法および欠陥検査方法
JP2013224942A (ja) 2012-04-19 2013-10-31 Applied Materials Israel Ltd 自動欠陥分類のための未知欠陥除去の最適化

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417090A (en) * 2003-04-28 2006-02-15 Stephen James Crampton CMM arm with exoskeleton
US6985220B1 (en) 2003-08-20 2006-01-10 Kla-Tencor Technologies Corporation Interactive threshold tuning
GB0508395D0 (en) * 2005-04-26 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
EP2183546B1 (en) * 2007-08-17 2015-10-21 Renishaw PLC Non-contact probe
GB0716218D0 (en) * 2007-08-20 2007-09-26 Renishaw Plc Measurement path generation
GB0909635D0 (en) * 2009-06-04 2009-07-22 Renishaw Plc Vision measurement probe
JP5537282B2 (ja) * 2009-09-28 2014-07-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
JP5433631B2 (ja) * 2011-05-20 2014-03-05 株式会社日立ハイテクノロジーズ 半導体デバイスの欠陥検査方法およびそのシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177139A (ja) 2002-11-25 2004-06-24 Renesas Technology Corp 検査条件データ作成支援プログラム及び検査装置及び検査条件データ作成方法
JP2004239728A (ja) 2003-02-05 2004-08-26 Hitachi High-Technologies Corp パターン検査方法及び装置
JP2005017159A (ja) 2003-06-27 2005-01-20 Hitachi High-Technologies Corp 欠陥検査装置における検査レシピ設定方法および欠陥検査方法
JP2013224942A (ja) 2012-04-19 2013-10-31 Applied Materials Israel Ltd 自動欠陥分類のための未知欠陥除去の最適化

Also Published As

Publication number Publication date
US20200057003A1 (en) 2020-02-20
US10816484B2 (en) 2020-10-27
US20190094155A1 (en) 2019-03-28
US10466181B2 (en) 2019-11-05
KR20180102117A (ko) 2018-09-14
WO2017168630A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
KR102084535B1 (ko) 결함 검사 장치, 결함 검사 방법
KR102103853B1 (ko) 결함 검사 장치 및 결함 검사 방법
CN111539908B (zh) 对样本的缺陷检测的方法及其系统
JP7200113B2 (ja) 深くスタック化された層を有するウェハにおいて欠陥分類器を訓練して適用するためのシステムと方法
US9778206B2 (en) Defect inspection device and defect inspection method
US20130202188A1 (en) Defect inspection method, defect inspection apparatus, program product and output unit
US9075026B2 (en) Defect inspection device and defect inspection method
TWI590194B (zh) 使用缺陷特定及多通道資訊檢測晶圓上之缺陷
KR102276921B1 (ko) 구조적 정보를 사용한 결함 검출
CN112106107A (zh) 显微镜切片图像的聚焦加权的机器学习分类器误差预测
US20220375215A1 (en) Image analysis and processing pipeline with real-time feedback and autocapture capabilities, and visualization and configuration system
KR20200014438A (ko) 대상체의 외부의 검사를 최적화하기 위한 장치 및 그 방법
JPWO2020189189A1 (ja) 検査装置及び方法
TWI785270B (zh) 在一晶圓上偵測一邏輯區域中之缺陷
JP2006292615A (ja) 外観検査装置、外観検査方法、コンピュータを外観検査装置として機能させるためのプログラムおよび記録媒体
KR20230048253A (ko) 광학 타겟 검색을 위한 광학 이미지 콘트라스트 메트릭
EP1947441B1 (en) Apparatus for determining positions of objects contained in a sample
KR20220066168A (ko) 측정 대상 물질의 스펙트럼 정보를 추출하는 방법
US20230206416A1 (en) Computer-implemented method for quality control of a digital image of a sample
JP2023145412A (ja) 欠陥検出方法及びシステム
JP2019164450A (ja) 画像処理方法、コンピュータプログラムおよび記録媒体
JP7475901B2 (ja) 試験片上の欠陥検出の方法およびそのシステム
CN110441315B (zh) 电子部件测试设备和方法
CN107977974B (zh) 一种束光器边界检测方法和系统
KR101276792B1 (ko) 눈 검출 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right