WO2011033740A1 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
WO2011033740A1
WO2011033740A1 PCT/JP2010/005495 JP2010005495W WO2011033740A1 WO 2011033740 A1 WO2011033740 A1 WO 2011033740A1 JP 2010005495 W JP2010005495 W JP 2010005495W WO 2011033740 A1 WO2011033740 A1 WO 2011033740A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
radiating
phase
unit
points
Prior art date
Application number
PCT/JP2010/005495
Other languages
English (en)
French (fr)
Inventor
信江 等隆
大森 義治
安井 健治
三原 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011531778A priority Critical patent/JP5588989B2/ja
Priority to CN201080040058.9A priority patent/CN102484910B/zh
Priority to US13/392,683 priority patent/US9648670B2/en
Priority to EP10816855.0A priority patent/EP2480047B1/en
Publication of WO2011033740A1 publication Critical patent/WO2011033740A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a microwave heating apparatus including a plurality of radiating portions that radiate microwaves from microwave generation means.
  • Conventional microwave heating apparatuses of this type are generally configured to have a rectangular parallelepiped heating chamber, and the heating chamber includes one or a plurality of radiating portions.
  • the radiating units are provided on the upper wall surface and the bottom wall surface of the heating chamber, and the microwaves from the dedicated microwave generating means are supplied to each radiating unit, and the radiating units are heated.
  • the microwave received by the radiating unit in association with the microwave interference in the heating chamber space is obtained by operating the selected microwave generating means in a time-sharing manner. Therefore, the microwave generating means connected to the radiation portion is prevented from being destroyed, and a plurality of microwave generating means can be operated substantially simultaneously.
  • the radiation part arranged on the orthogonal wall surface in the heating chamber suppresses the interference of microwaves radiated from each other radiation part by appropriately selecting the coupling between the heating chamber and the microwave generating means. And simultaneous generation of the microwave generating means becomes possible.
  • the conventional microwave heating apparatus a plurality of radiating units are provided, and the amount of microwave power supplied to each radiating unit can be changed by controlling a phase shifter provided in the microwave generating means (for example, Patent Document 3).
  • the phase shifter is configured to switch the length of the microwave pass line depending on the on / off characteristics of the diode.
  • the synthesizing unit is configured using 90-degree and 180-degree hybrids, and controls the phase shifter to change the power ratio of the two outputs from the synthesizing unit, or to change the phase between the two outputs in phase or It has changed to the reverse phase.
  • the conventional microwave heating apparatus has a configuration in which one or a plurality of radiating portions are arranged, and the radiating portion has a configuration specialized for the radiating function. Further, the conventional microwave heating apparatus described above has a configuration in which the microwave to be emitted radiates either a linearly polarized wave or a circularly polarized wave.
  • the present invention solves the above-described problems in the conventional microwave heating apparatus, and the radiation unit that radiates microwaves has a function that can radiate both linearly polarized waves and circularly polarized waves, and a power combining function.
  • An object of the present invention is to provide a microwave heating apparatus that has an added new radiation function and can optimally control a microwave signal supplied to the radiation section.
  • a microwave heating apparatus includes a microwave oscillating unit having a plurality of outputs configured to include a plurality of phase-locked loops connected to one reference signal oscillator, A plurality of amplifying units for amplifying respective outputs of the microwave oscillating unit; A plurality of radiating units that are supplied with output from the amplification unit and radiate microwaves into the heating chamber; A control unit for controlling the microwave oscillation unit, Each of the radiation units has a plurality of microwave feed points, and each output from the amplification unit is supplied to each of the microwave feed points.
  • the microwaves of the same frequency supplied to each microwave feeding point can be combined with each other and radiated into the heating chamber.
  • the microwave heating apparatus of the first aspect can supply a large amount of power into the heating chamber using a plurality of amplifying units that generate a relatively small amount of power without increasing the number of radiating units.
  • the microwave oscillating unit according to the first aspect is configured to change the phase of the oscillation signal output from the reference signal oscillator. 12d), and may be configured such that the phases of the microwaves supplied to the plurality of microwave feeding points in the respective radiation units are set to a predetermined phase difference and supplied.
  • the microwave heating apparatus according to the second aspect of the present invention configured as described above changes the radiation form of the microwave generated by the synthesis of the microwave signal having the phase difference of the microwave feeding point in each radiation unit. Thus, heating can be promoted so that the object to be heated is in a desired state.
  • the second microwave feeding point 20b of the first radiating unit 20 and the feeding phase of the first microwave feeding point 20a of the first radiating unit 20 and The feeding phase of the second microwave feeding point 21b of the second radiating unit 21 is fed with a delay of 90 degrees, and the feeding phase of the first microwave feeding point 21a of the second radiating unit 21 is 180 degrees. Power is supplied with a delay.
  • the arrangement configuration of the microwave feeding points 20a, 20b, 21a and 21b and the phase difference of the microwaves supplied to the respective microwave feeding points 20a, 20b, 21a and 21b are 90 degrees.
  • the radiating units 20 and 21 perform circularly polarized radiation.
  • the microwave electric fields in the same direction are generated by the microwaves at the first microwave feeding points 20a and 21a.
  • the phase of the microwaves fed to the second microwave feeding points 20b and 21b is 0 degrees, no microwave electric field is generated.
  • the phases of the microwaves fed to the first microwave feed points 20a and 21a are 270 degrees and 90 degrees, respectively, and are fed to the second microwave feed points 20b and 21b.
  • FIG. 6 is a diagram for explaining a third radiation pattern by the radiation sections 20 and 21 in the microwave heating apparatus according to the first embodiment of the present invention.
  • the amount of microwave power supplied to the first microwave feed points 20a and 21a of the radiating units 20 and 21 is supplied to the second microwave feed points 20b and 21b. More than microwave power.
  • the feed phases for the microwave feed points 20a, 20b, 21a, and 21b are the same as those in the first radiation form shown in FIG. That is, in each of the radiating units 20 and 21, the power supply phase of the second microwave power supply points 20b and 21b is supplied with a delay of 90 degrees with respect to the power supply phase of the first microwave power supply points 20a and 21a.
  • phase (absolute phase) of the microwaves fed to the first microwave feed points 20a and 21a is 90 degrees, the power is fed to the second microwave feed points 20b and 21b at this time.
  • the phase of the microwave (absolute phase) is 0 degrees because it is delayed by 90 degrees from the feeding phase of the first microwave feeding points 20a and 21a.
  • the microwave electric field generated by the microwaves from the first microwave power supply points 20a and 21a is proportional to the amount of microwave power supplied, in the third radiation mode. This is larger than the microwave electric field generated by the microwaves from the second microwave feed points 20b and 21b. Therefore, in FIG. 6, the arrow indicating the microwave electric field excited by the first microwave feeding points 20a and 21a is changed from the arrow indicating the microwave electric field excited by the second microwave feeding points 20b and 21b. Show long.
  • a microwave electric field (a microwave electric field indicated by arrows 20A and 21A in FIG. 6) is generated by the microwaves from the first microwave feeding points 20a and 21a.
  • the two microwave feed points 20a and 20b in the first radiating unit 20 are supplied to the respective microwave feed points 20a and 20b in a configuration in which they are orthogonally arranged. Microwaves are combined in power and radiated into the heating chamber.
  • the microwaves supplied to the microwave feeding points 21a and 21b are combined and radiated into the heating chamber. ing.
  • a plurality of microwave generating means for generating a relatively small amount of power is provided, and a plurality of microwave feeding points are provided in each radiating portion.
  • the other microwave By changing the phase of the microwave supplied to the wave feed point to 90 degrees or -90 degrees (or -90 degrees or -270 degrees), the turning direction of the circularly polarized wave can be changed.
  • the first radiating unit 20 has a second microwave with respect to the feeding phase of the first microwave feeding point 20a.
  • the feeding phase of the wave feeding point 20b is delayed by 90 degrees, and in the second radiating unit 21, the feeding phase of the second microwave feeding point 21b is delayed by 90 degrees with respect to the feeding phase of the first microwave feeding point 21a.
  • the phase difference between the first microwave feeding point 20a of the first radiating unit 20 and the first microwave feeding point 21a of the second radiating unit 21 may be arbitrarily changed.
  • Heating operation The heating operation for the object to be heated in the microwave heating apparatus of the first embodiment configured as described above will be described.
  • the phase variable units 12a to 12d When the microwave generation unit 10 starts operating, the phase variable units 12a to 12d have initial conditions such that the first microwave feeding point 20a of the first radiating unit 20 and the first radiating unit 21 of the first radiating unit 21 are the first conditions.
  • the phase delay amount (relative phase) of the phase variable unit 12a and the phase variable unit 12c corresponding to the microwave feed point 21a is set to 0 degree.
  • the phase delay amount (relative phase) of the phase variable units 12b and 12d corresponding to the second microwave feeding point 20b of the first radiating unit 20 and the second microwave feeding point 21b of the second radiating unit 21. Is 90 degrees.
  • the control unit 22 operates the drive power supply to supply power and control signals to the crystal oscillator 11, the phase variable units 12a to 12b, and the phase synchronization circuits 13a to 13d that constitute the microwave oscillation unit 10a.
  • the crystal oscillator 11 oscillates at a reference frequency of, for example, 10 MHz, and a signal for setting the output frequency of the phase synchronization circuits 13a to 13d to, for example, 2400 MHz is supplied, and the oscillation of the microwave oscillating unit 10a starts. To do.
  • each main amplification section 16a to 16d has a microwave power equivalent to 1/10 of the rated output, for example, less than 50 W. Specifically, it is configured to output microwave power of 20 W.
  • This calculation is executed for all frequencies (pitch is 1 MHz, for example) within the frequency band used in the microwave heating apparatus. Based on the result of this calculation, the frequency at which the sum of the signals corresponding to the reflected power is a minimum value with respect to the frequency is extracted, and the frequency indicating the minimum value is selected from the minimum value group having a plurality of minimum values. It selects (frequency selection operation
  • the two radiating portions 20 and 21 are arranged in a line-symmetrical position with respect to the center line in the front-rear direction of the apparatus on the bottom wall surface (line indicated by Y in FIG. 3).
  • the apparatus it is also possible to arrange the apparatus at positions symmetrical with respect to the center line in the left-right direction of the apparatus (a line indicated by a symbol X in FIG. 3).
  • FIG. 7 is a perspective view showing the inside of the heating chamber 100 in the microwave oven as the microwave heating apparatus of the second embodiment.
  • a part (mounting plate 25) inside the heating chamber 100 is cut away, and an opening / closing door for opening and closing the heating chamber 100 is omitted.
  • FIG. 8 is a block diagram illustrating a configuration of the microwave heating apparatus according to the second embodiment.
  • FIG. 9 is a plan view showing radiating portions 61 and 62 arranged on the bottom wall surface in the microwave heating apparatus of the second embodiment.
  • the microwave heating apparatus stores a left wall surface 101, a right wall surface 102, a bottom wall surface 103, an upper wall surface 104, a back wall surface 105, and an object to be heated that are made of a metal material.
  • the heating chamber 100 constituted by an open / close door (not shown) that opens and closes at the bottom, two radiating portions 61 and 62 are provided on the bottom wall surface 103.
  • the microwave generation unit 50 which is a microwave generation unit, includes a microwave oscillation unit 50a, and six outputs from the microwave oscillation unit 50a are microwave transmission paths 54a, 54b, 54c, 54d, 54a and 54f (in the following description, they are indicated as 54a to 54f and omitted in the same manner in the other plural constituent elements) and are connected to the first stage amplifiers 55a to 55f and the first stage amplifiers 55a to 55f.
  • Main amplification units 56a to 56f for further amplifying the respective outputs, and power detection units 58a to 58f inserted in microwave transmission paths 57a to 57f for guiding the outputs of the main amplification units 56a to 56f to the output units 59a to 59f. ing.
  • the first stage amplification units 55a to 55f and the main amplification units 56a to 56f in the microwave generation unit 50 are each configured using a semiconductor element.
  • a plurality of (two in the second embodiment) radiating portions 61 and 62 for radiating microwaves into the heating chamber 100 are arranged on the bottom wall surface 103 constituting the heating chamber 100. ing.
  • the two radiating portions (first radiating portion 61 and second radiating portion 62) in the second embodiment pass through the substantially center point (C0) of the bottom wall surface 103, and the center line in the front-rear direction of the apparatus (FIG. 9).
  • FIG. 5 is a line symmetric position with respect to a line indicated by a symbol Y).
  • the first radiating unit 61 has three microwave feeding points 61a, 61b, and 61c, and outputs from the microwave generating unit 50 are guided to the respective microwave feeding points 61a, 61b, and 61c. .
  • the second radiating unit 62 has three microwave feed points 62a, 62b, and 62c, and outputs from the microwave generation unit 50 are guided to the respective microwave feed points 62a, 62b, and 62c. It is.
  • These microwave feed points 61 a, 61 b, 61 c and 62 a, 62 b, 62 c are symmetrical with respect to a center line in the front-rear direction of the apparatus (a line indicated by a symbol Y in FIG. 9) that passes through a substantially center point of the bottom wall surface 103. It is arranged at the position.
  • the first radiating section 61 and the second radiating section 62 are antennas having a substantially circular shape, and each of the first micro part is formed on a line (a line indicated by a symbol X in FIG. 9) connecting the center points C1 and C2.
  • Wave feed points 61a and 62a and third microwave feed points 61c and 62c are arranged.
  • the microwave feed points 61a, 61b, 61c and 62a, 62b, 62c are arranged at a predetermined distance from the center points C1, C2 of the radiating portions 61, 62 in order to achieve impedance matching.
  • the microwave transmission paths 54a to 54f from the output of the microwave oscillating unit 50a to the first stage amplifying units 55a to 55f are composed of coaxial cables. Further, the microwave transmission paths 57a to 57f from the main amplification sections 56a to 56f to the output sections 59a to 59f are formed by a transmission circuit having a characteristic impedance of about 50 ⁇ by a conductor pattern provided on one side of the dielectric substrate. Yes.
  • the phase variable sections 52a to 52f have a circuit configuration in which a variable capacitance diode is incorporated between the signal line and the ground plane. By changing the voltage applied to the variable capacitance diode, the phase of the reference frequency is delayed. For this reason, the phase-delayed reference frequency is input to each of the phase synchronization circuits 53a to 53f.
  • phase variable units 52a to 52f By incorporating the phase variable units 52a to 52f in the transmission path of the reference frequency, it is possible to use a variable capacitance diode that can be used under a low power level and low frequency environment, and to change the phase of the microwave output signal of the microwave oscillating unit 50a. It becomes possible to set large.
  • the phase synchronization circuits 53a to 53f of the microwave generation unit 50 use a frequency divider to compare frequency having a frequency division performance of 0.5 MHz with respect to the crystal oscillator 11 that is a reference signal oscillator that generates a reference frequency of 10 MHz, for example. Forming.
  • the frequency of the microwave signal input to the subsequent amplifying unit is 2400.0 MHz to 2500.0 MHz.
  • the phase variable amount in the phase variable units 52a to 52f is controlled so as to change the phase of the microwave by 360 degrees.
  • the phases of the output sections 59a to 59f of the microwave generating section 50 can be controlled. That is, the phase delay of the microwave feed points 61a, 61b, 61c of the first radiating unit 61 and the microwave feed points 62a, 62b, 62c of the second radiating unit 62 can be delayed by 360 degrees at the maximum. .
  • the microwave signal is output by applying a voltage, and the output of the microwave signal is stopped by cutting off the voltage. Can be made.
  • the power detection units 58a to 58f are microwave power (amount of microwave supply) transmitted from the microwave generation unit 50 to the heating chamber 100 side, and so-called reflected wave power transmitted from the heating chamber 100 to the microwave generation unit 50 side ( Microwave reflection amount) is detected.
  • the power detectors 58a to 58f may be configured to detect at least the microwave reflection amount.
  • the power coupling degree is set to, for example, about 40 dB, and the amount of microwaves supplied through the microwave transmission paths 57a to 57f and / or the amount of power about 1/10000 of the amount of reflected microwaves is set. Extract.
  • the thus extracted power signal is rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and the smoothed signal is input to the control unit 63.
  • the control unit 63 includes heating conditions (an arrow Q in FIG. 8) of an object to be heated that are directly input by the user, detection information from the respective power detection units 58a to 58f (an arrow P in FIG. 8), and an object to be heated during heating. Based on heating information (arrow R in FIG. 8) obtained from various sensors that detect the heating state of the heated object, the phase synchronization circuits 53a to 53f that are components of the microwave generation unit 50 are controlled to generate microwave oscillation. The oscillation frequency and oscillation output of the unit 10a are controlled, and the phase variable units 52a to 52f are controlled to control the phase delay amount of the oscillation signal.
  • the object to be heated accommodated in the heating chamber 100 is heated by the heating condition (Q) set by the user, the heating information (R) indicating the heating state of the object to be heated, or the power detectors 58a ⁇ It is heated optimally based on the detection information (P) from 58f.
  • the microwave generation unit 50 is provided with heat radiating means for radiating heat generated in the semiconductor element, for example, a cooling fin (not shown).
  • a mounting plate 25 made of a low dielectric loss material is provided in the heating chamber 100 so as to cover the radiating portions 61 and 62 provided on the bottom wall surface 103 and store and mount the object to be heated. Yes.
  • the microwave feeding points are arranged so as to have the same arrangement configuration as in the first embodiment, and the microwave feeding points are arranged at the microwave feeding points. If it is controlled to supply power, circularly polarized radiation can be generated.
  • the microwave feeding is cut off by the control of the corresponding phase synchronization circuits 53c and 53f in the third microwave feeding points 61c and 62c, the above-described embodiment. 1 and the microwave radiation of the 3rd radiation form from the above-mentioned 1st radiation form is attained.
  • FIG. 10 is a diagram illustrating a fourth radiation form by the radiation units 61 and 62 in the microwave heating apparatus of the second embodiment.
  • the feeding phases of the third microwave feeding points 61c and 62c are different from the feeding phases of the first microwave feeding points 61a and 62a of the radiation units 61 and 62, respectively.
  • the power is set to be delayed by 180 degrees.
  • the power supply to the second microwave power supply points 61b and 62b is cut off.
  • the microwave feeding points (61a, 61c, 62a, 62c) that are fed are indicated by black circles, and the microwave feeding points (61b, 61b) that are not fed are indicated by white circles.
  • the 180-degree phase delay is expressed as a characteristic value at the center frequency (for example, 2450 MHz) of the frequency band used by the microwave heating apparatus.
  • the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c are arranged in the radiating portions 61 and 62, and supply microwaves to the specific microwave feeding points 61a, 61c, 62a, and 62c.
  • each of the microwave feeding points 61a and 61c, and the phase difference of the microwaves supplied to 62a and 62c is 180 degrees, and that the radiation is supplied at each of the radiating units 61 and 62 by adopting a fourth radiation form to be described later.
  • the two microwave powers thus generated are combined and a linearly polarized microwave is emitted.
  • phase (absolute phase) of the microwaves fed to the first microwave feed points 61a and 62a is 90 degrees
  • the power is fed to the third microwave feed points 61c and 62c at this time.
  • the phase of the microwave (absolute phase) is -90 degrees (270 degrees) because it is delayed 180 degrees from the power feeding phase of the first microwave feeding points 61a and 62a.
  • a microwave electric field indicated by arrows 61A and 62A is generated.
  • the phase of the microwaves fed to the first microwave feed points 61a and 62a is 360 degrees (0 degrees), and the power is fed to the third microwave feed points 61c and 62c.
  • FIG. 11 is a diagram for explaining a fifth radiation mode by the radiation units 61 and 62 in the microwave heating apparatus of the second embodiment.
  • the third microwave feeding point 61 c of the first radiating unit 61 and the feeding phase of the first microwave feeding point 61 a of the first radiating unit 61 and The feeding phase of the first microwave feeding point 62a of the second radiating unit 62 is fed with a delay of 180 degrees, and the feeding phase of the third microwave feeding point 62c of the second radiating unit 62 is the same phase. Is set.
  • the power supply to the second microwave power supply points 61b and 62b is cut off.
  • the microwave feeding points (61a, 61c, 62a, 62c) that are fed are indicated by black circles, and the microwave feeding points (61b, 62b) that are not fed are indicated by white circles.
  • the 180-degree phase delay is expressed as a characteristic value at the center frequency (for example, 2450 MHz) of the frequency band used by the microwave heating apparatus.
  • the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c are arranged in the radiating portions 61 and 62, and supply microwaves to the specific microwave feeding points 61a, 61c, 62a, and 62c.
  • a fifth radiation mode in which the phase difference of the microwaves supplied to the respective microwave feed points 61a and 61c and 62a and 62c is 180 degrees, the 2 supplied in the respective radiation units 61 and 62 Two microwave powers are combined, and linearly polarized microwaves are radiated.
  • the mechanism of power synthesis and generation of linearly polarized waves in the fifth radiation mode will be described with reference to FIG.
  • the phase (absolute phase) of the microwaves fed to the first microwave feeding point 61a of the first radiating unit 61 is 90 degrees
  • the third micro wave of the first radiating unit 61 is The phase (absolute phase) of the microwaves fed to the wave feeding point 61c and the first microwave feeding point 62a of the second radiating unit 62 is delayed by 180 degrees from the feeding phase of the first microwave feeding point 61a. Therefore, it is -90 degrees (270 degrees).
  • the phase of the microwave feeding point 62c of the second radiating unit 62 is 90 degrees.
  • the phase of the microwaves fed to the first microwave feeding point 61a of the first radiating unit 61 and the third microwave feeding point 62c of the second radiating unit 62 is 270.
  • the phase of the microwaves fed to the first microwave feed point 61a of the first radiating unit 61 and the third microwave feed point 62c of the second radiating unit 62 is 360.
  • the phase of the microwaves fed to the third microwave feeding point 61c of the first radiating unit 61 and the first microwave feeding point 62a of the second radiating unit 62 is 180 degrees. Become. For this reason, the magnitude
  • size of a microwave electric field is zero like time t t0 + T / 4.
  • a microwave electric field (a synthesized microwave electric field indicated by 61 (A + C) and 62 (A + C) in FIG. 11) is generated.
  • linearly polarized waves generated in the first radiating unit 61 and the second radiating unit 62 have the same direction of the microwave electric field at the same time.
  • the microwave heating apparatus has at least one microwave feeding point at each of the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c of the radiating units 61 and 62. Therefore, it can be controlled not to feed microwaves.
  • circular radiation and vertical polarization radiation can be selected in one radiation section (61 or 62), and the object to be heated is heated as a heating condition. And can be heated in a desired state according to the heating state and the like.
  • the two microwave feeding points (61a, 61c or 62a, 62c) in each radiating section (61 or 62) are such that the straight line connecting the respective microwave feeding points is the center point (C1) of the radiating section (61 or 62).
  • the phase difference between the microwaves fed to the respective microwave feed points is set to 180 degrees at the center frequency of the microwave frequency band to be used. In this way, by placing microwave feed points at predetermined positions in the respective radiation units and supplying microwaves having a predetermined phase difference, the two microwave powers supplied to the microwave feed points are synthesized. Thus, vertically polarized waves can be radiated from each radiating section.
  • Heating operation The heating operation for the object to be heated in the microwave heating apparatus of the second embodiment configured as described above will be described.
  • the configuration of the microwave heating apparatus of the second embodiment is different from the microwave heating apparatus of the first embodiment described above in that the microwave feeding points 61a, 61b, 61c, 62a in the radiating portions 61, 62 are different. , 62b, 62c can be controlled to supply or stop microwaves.
  • the microwave heating apparatus of the second embodiment in the stage before the heating of the object to be heated, corresponding to the heating conditions set by the user, the radiation unit 61 that supplies microwaves before the heating starts,
  • the microwave feed point at 62 can be selected.
  • a frequency selection operation is performed to select an optimum oscillation frequency for the object to be heated under the heating conditions of the selected microwave feed point, and the oscillation frequency during heating is selected. decide. Since the control content in the frequency selection operation at this time conforms to the procedure described in the first embodiment, the description thereof is omitted in the second embodiment.
  • control unit 63 operates a driving power source (not shown) provided in the microwave heating apparatus to supply power to the microwave oscillation unit 50a, the first stage amplification units 55a to 55f, the main amplification units 56a to 56f, and the like. Supply.
  • the left and right side wall surfaces 101 and 102 face each other.
  • the microwaves radiated from the two radiation portions 61 and 62 are aligned in the direction of the right wall surface 102.
  • the selection of the microwave feeding point that does not supply microwaves in each radiating unit is zero at the minimum, This is the microwave feed point.
  • the number of microwave feeding points provided in one radiating section 80 or 81 may be three or more. Further, the number of microwave feed points arranged in each radiation portion may be different.
  • the phases of the microwave signals supplied to the microwave feed points 90a, 90c and 91a, 91c are 360 degrees (0 degrees), and the microwave feed points 90b, 90d and 91b, 91d
  • the magnitude (scalar amount) of this circularly polarized electric field vector is approximately twice that of the first radiation form in the first embodiment shown in FIG. 4 described above by combining two microwave feed points.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

 本発明のマイクロ波加熱装置は、水晶発振器の基準信号発振器(11)と位相可変部(12a~12b)と位相同期回路(13a~13d)とを有して構成されたマイクロ波発振部(10a)、マイクロ波発振部(10a)を制御する制御部(22)、および被加熱物を収納する加熱室(100)の壁面に配置した複数の放射部(20,21)を備えており、放射部(20,21)に設けた複数のマイクロ波給電点(20a,20bおよび21a,21b)のそれぞれに供給するマイクロ波の位相と電力を制御して、放射部(20,21)から放射されるマイクロ波の放射形態が制御されるよう構成されている。

Description

マイクロ波加熱装置
 本発明は、マイクロ波発生手段からのマイクロ波を放射する複数の放射部を備えたマイクロ波加熱装置に関するものである。
 従来のこの種のマイクロ波加熱装置は、一般には直方体形状の加熱室を有して構成され、加熱室が一つあるいは複数の放射部を備えている。複数の放射部の構成としては、放射部を加熱室の上壁面と底壁面とに設け、専用のマイクロ波発生手段からのマイクロ波がそれぞれの放射部に供給される構成、および放射部を加熱室の側壁面に2つ設け、ひとつのマイクロ波発生手段からのマイクロ波が導波管を介して2つの放射部に供給される構成がある(例えば、特許文献1参照)。
 また、複数の放射部を加熱室の壁面に分散して配置し、それぞれの放射部にマイクロ波を供給するマイクロ波発生手段のうち少なくとも二つの壁面に配したマイクロ波発生手段を時分割動作させる構成がある(例えば、特許文献2)。
 このように、特許文献2に開示されたマイクロ波加熱装置においては、選択したマイクロ波発生手段を時分割動作させることにより、加熱室内空間でのマイクロ波干渉に伴って放射部が受信するマイクロ波によってその放射部に連結しているマイクロ波発生手段が破壊されることを防止しており、複数のマイクロ波発生手段を実質的に同時動作させることができる構成である。
 また、加熱室において直交関係にある壁面に配置した放射部は、加熱室とマイクロ波発生手段との結合を適当に選ぶことにより、互いの放射部から放射されるマイクロ波の干渉を抑制することができ、マイクロ波発生手段の同時発振が可能となる。
 従来のマイクロ波加熱装置においては、複数の放射部を備え、それぞれの放射部に供給するマイクロ波電力量をマイクロ波発生手段内に設けた位相器の制御により変更可能な構成である(例えば、特許文献3)。
 従来のマイクロ波加熱装置におけるマイクロ波発生手段は、半導体で構成された発振部と、発振部の出力を複数に分割する分配部と、分配された出力をそれぞれ増幅する複数の増幅部と、増幅部の出力を合成する合成部と、分配部と増幅部との間に位相器とを備えた構成である。従来のマイクロ波加熱装置において、合成部からの2つの出力に加熱室内にマイクロ波を放射する放射部がそれぞれ接続されている。
 位相器はダイオードのオンオフ特性によりマイクロ波の通過線路長を切り替える構成である。また、合成部は、90度および180度ハイブリッドを用いて構成され、位相器を制御することにより、合成部からの2つの出力の電力比を変化させ、または2つの出力間の位相を同相あるいは逆相に変更している。
 また、従来のマイクロ波加熱装置においては、加熱室内の被加熱物に対する加熱の均一化を促進することを狙いとして、放射部から円偏波を放射させる構成がある(例えば、特許文献4参照)。特許文献4に開示されたマイクロ波加熱装置は、円偏波放射をさせるために、加熱室の壁面に直交して穿孔を形成して、一対の開口部が形成されている。
特開平04-233188号公報 特開昭53-5445号公報 特開昭56-132793号公報 特開2002-061847号公報
 前記の従来のマイクロ波加熱装置においては、放射部が1つあるいは複数配置された構成であり、放射部が放射機能に特化した構成であった。また、前記の従来のマイクロ波加熱装置においては、放射されるマイクロ波の偏波が直線偏波か円偏波のいずれかのマイクロ波を放射する構成であった。
 本発明は、前記の従来のマイクロ波加熱装置における課題を解決するものであり、マイクロ波を放射する放射部が直線偏波と円偏波の両方のマイクロ波を放射できる機能および電力合成機能が付加された新規な放射機能を有するとともに、放射部に供給するマイクロ波信号を最適制御することができるマイクロ波加熱装置を提供することを目的とする。
 本発明に係る第1の態様のマイクロ波加熱装置は、1つの基準信号発振器に接続された複数の位相同期回路を有して構成された複数出力を持つマイクロ波発振部と、
 前記マイクロ波発振部のそれぞれの出力を増幅する複数の増幅部と、
 前記増幅部からの出力が供給され、加熱室にマイクロ波を放射する複数の放射部と、
 前記マイクロ波発振部を制御する制御部と、を備え、
 前記放射部のそれぞれが複数のマイクロ波給電点を有し、前記増幅部からのそれぞれの出力が前記マイクロ波給電点のそれぞれに供給されるよう構成されている。このように構成された本発明に係る第1の態様のマイクロ波加熱装置においては、各マイクロ波給電点に供給された同一周波数のマイクロ波を電力合成して加熱室内に放射させることができる。また、第1の態様のマイクロ波加熱装置は、比較的小さい電力量を発生させる増幅部を複数用いて、放射部の数を増やすことなく加熱室内に大電力を供給することができる。
 本発明に係る第2の態様のマイクロ波加熱装置においては、特に第1の態様における前記マイクロ波発振部が、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部(12a~12d)を備え、それぞれの放射部における複数のマイクロ波給電点に供給するマイクロ波の位相を所定の位相差に設定して供給するよう構成してもよい。このように構成された本発明に係る第2の態様のマイクロ波加熱装置は、各放射部において、マイクロ波給電点の位相差を持つマイクロ波信号の合成により生じるマイクロ波の放射形態を変化させることにより、被加熱物を所望の状態になるように加熱を促進させることができる。
 本発明に係る第3の態様のマイクロ波加熱装置において、特に第1の態様における前記マイクロ波発振部は、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部を備え、それぞれの放射部における少なくとも2つの放射部から放射されるマイクロ波の位相差を可変するよう構成してもよい。このように構成された本発明に係る第3の態様のマイクロ波加熱装置においては、それぞれの放射部から放射されるマイクロ波が加熱室内の空間で衝突する位置を変化させ、加熱室内のマイクロ波分布の分散化を図ることができ、被加熱物の加熱の均一化を促進させることができる。
 本発明に係る第4の態様のマイクロ波加熱装置においては、特に第1または第2の態様における前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度となり、それぞれのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において90度となるよう構成してもよい。このように構成された本発明に係る第4の態様のマイクロ波加熱装置においては、各放射部におけるマイクロ波給電点に供給されたマイクロ波が電力合成されるとともに、放射部から円偏波を放射することができる。また、第4の態様のマイクロ波加熱装置は、マイクロ波を加熱室内全体に分散することができ、効果的に被加熱物を加熱することができる。
 本発明に係る第5の態様のマイクロ波加熱装置において、特に第1または第2の態様における前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度であるとともに、使用するマイクロ波周波数帯域の中央周波数において、一方のマイクロ波給電点に給電するマイクロ波の位相を基準とした時に、他方のマイクロ波給電点に給電するマイクロ波の位相を90度と-90度とに切り替るよう構成してもよい。このように構成された本発明に係る第5の態様のマイクロ波加熱装置においては、円偏波の放射における旋回方向を切替え選択することができる。また、第5の態様のマイクロ波加熱装置は、旋回方向を被加熱物の種類、量、加熱進行状態に応じて変化させることにより、被加熱物の加熱の均一化を促進させることができる。
 本発明に係る第6の態様のマイクロ波加熱装置において、特に第1または第2の態様における前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部におけるそれぞれのマイクロ波給電点を結ぶ直線が当該放射部の中央点を通るように配設するとともに、前記少なくとも2つのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において180度となるよう構成してもよい。このように構成された本発明に係る第6の態様のマイクロ波加熱装置においては、放射部から垂直偏波を放射することができる。また、第6の態様のマイクロ波加熱装置は、各放射部においてマイクロ波給電点に供給された2つのマイクロ波電力を合成して放射することができる。
 本発明に係る第7の態様のマイクロ波加熱装置において、特に第1の態様における前記制御部は、前記マイクロ波発振部の出力を制御する機能を有し、前記それぞれの放射部における複数のマイクロ波給電点における少なくとも1つのマイクロ波給電点に対してマイクロ波の給電を停止する制御を行うよう構成してもよい。このように構成された本発明に係る第7の態様のマイクロ波加熱装置においては、円偏波放射および垂直偏波放射のいずれかを発生させることが可能となり、被加熱物の加熱を所望の状態に加熱することができる。例えば、ひとつの放射部において、放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度となるよう配置し、各マイクロ波給電点に位相差が90度となるマイクロ波電力を供給することにより、円偏波放射を発生させることができる。また、いずれか一方のマイクロ波給電点に対してマイクロ波の供給を停止した場合には、垂直偏波放射を発生させることができる。
 本発明に係る第8の態様のマイクロ波加熱装置において、特に第1の態様における前記複数の放射部は前記加熱室の同一壁面に配設され、前記放射部および前記放射部のマイクロ波給電点は壁面の略中央を通る直線を線対称として配設してもよい。このように構成された本発明に係る第8の態様のマイクロ波加熱装置においては、放射部をひとつの壁面に集約することにより、放射部を保護するために放射部を覆う部材の配設が容易になるとともに、各放射部のマイクロ波給電点に供給するマイクロ波の信号およびその位相の制御を相互に関連づけて制御することができる。
 本発明に係る第9の態様のマイクロ波加熱装置において、特に第1の態様における前記複数の放射部を前記加熱室の対向壁面に配設し、前記放射部および前記放射部のマイクロ波給電点を対向配置してもよい。このように構成された本発明に係る第9の態様のマイクロ波加熱装置においては、各放射部から放射されるマイクロ波を確実に空間衝突させることができ、放射部間の位相差を変化させてマイクロ波分布を確実に変化させることができる。
 本発明に係る第10の態様のマイクロ波加熱装置において、特に第8または第9の態様における前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設してもよい。このように構成された本発明に係る第10の態様のマイクロ波加熱装置は、放射部の励振方向を加熱室の壁面方向に規定し、加熱室内でのマイクロ波伝搬方向を明確することができる。この結果、第10の態様のマイクロ波加熱装置においては、被加熱物の良好な加熱促進に対応した各マイクロ波給電点間あるいは各放射部間の位相制御を行うことができる。
 本発明に係る第11の態様のマイクロ波加熱装置において、特に第8または第9の態様における前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設するとともに、前記それぞれの放射部における前記複数のマイクロ波給電点へのそれぞれのマイクロ波給電レベルを前記加熱室の幅方向寸法と奥行き寸法の比率に応じて変化させるよう構成してもよい。このように構成された本発明に係る第11の態様のマイクロ波加熱装置は、加熱室の形状に合わせて加熱室内でのマイクロ波の分散を促進させることができる。例えば、幅広い加熱室においては幅方向励振に対応するマイクロ波給電点に大きいマイクロ波電力を供給することにより、円偏波放射時に加熱室の幅方向が大きい楕円旋回とし、加熱室内の電波の分散を促進させることができる。
 本発明のマイクロ波加熱装置においては、放射部における各マイクロ波給電点に供給するマイクロ波の位相と電力を制御して、直線偏波と円偏波の両方のマイクロ波を放射する機能を有し、さらに電力合成機能を付加して、被加熱物の加熱促進を図ることができるマイクロ波加熱装置を提供することができる。
本発明に係る実施の形態1のマイクロ波加熱装置としての電子レンジにおける加熱室内部を示す斜視図 実施の形態1のマイクロ波加熱装置の構成を示すブロック図 実施の形態1のマイクロ波加熱装置における底壁面に配置された放射部を示す平面図 実施の形態1のマイクロ波加熱装置における放射部による第1の放射形態を説明する図 本発明に係る実施の形態1のマイクロ波加熱装置における放射部による第2の放射形態を説明する図 本発明に係る実施の形態1のマイクロ波加熱装置における放射部による第3の放射形態を説明する図 本発明に係る実施の形態2のマイクロ波加熱装置としての電子レンジにおける加熱室内部を示す斜視図 実施の形態2のマイクロ波加熱装置の構成を示すブロック図 実施の形態2のマイクロ波加熱装置における底壁面に配置された放射部を示す平面図 実施の形態2のマイクロ波加熱装置における放射部による第4の放射形態を説明する図 実施の形態2のマイクロ波加熱装置における放射部による第5の放射形態を説明する図 本発明に係る実施の形態3のマイクロ波加熱装置としての電子レンジにおける加熱室内部を示す斜視図 本発明に係る実施の形態4のマイクロ波加熱装置における底壁面に配置された放射部を示す平面図 実施の形態4のマイクロ波加熱装置における放射部による第6の放射形態を説明する図
 以下、本発明のマイクロ波加熱装置に係る実施の形態として電子レンジについて、添付の図面を参照しながら説明する。なお、本発明のマイクロ波加熱装置は、以下の実施の形態に記載した電子レンジの構成に限定されるものではなく、以下の実施の形態において説明する技術的思想と同等の技術的思想及び当技術分野における技術常識に基づいて構成されるマイクロ波加熱装置を含むものである。
 《実施の形態1》
 図1は、本発明に係る実施の形態1のマイクロ波加熱装置としての電子レンジにおける加熱室100内部を示す斜視図である。図1においては、加熱室100内部の一部を切り欠いており、加熱室100を開閉するための開閉扉は省略されている。図2は、実施の形態1のマイクロ波加熱装置の構成を示すブロック図である。図3は、実施の形態1のマイクロ波加熱装置における底壁面に配置された放射部20,21を示す平面図である。
 図1に示すように、本発明に係る実施の形態1のマイクロ波加熱装置は、被加熱物を収納する略直方体構造からなる加熱室100を有しており、加熱室100内部に収納された被加熱物を複数の放射部20,21からのマイクロ波により加熱処理するよう構成されている。加熱室100は金属材料からなる左壁面101、右壁面102、底壁面103、上壁面104、奥壁面105、および被加熱物を収納するために開閉する開閉扉(図示なし)から構成されている。開閉扉が閉じられた加熱室100においては、底壁面103に設けられた放射部20,21から放射されたマイクロ波が加熱室100内部に閉じ込められるよう構成されている。
 図2に示すように、マイクロ波発生手段であるマイクロ波発生部10は、マイクロ波発振部10a、このマイクロ波発振部10aからの4つの出力がマイクロ波伝送路14a,14b,14c,14d(以下の説明においては、14a~14dと記し、他の複数有する構成要素においても同様に省略して記す)を介して導かれる初段増幅部15a~15d、初段増幅部15a~15dのそれぞれの出力をさらに増幅する主増幅部16a~16d、および主増幅部16a~16dの出力を出力部19a~19dに導くマイクロ波伝送路17a~17dに挿入した電力検出部18a~18dで構成されている。マイクロ波発生部10における初段増幅部15a~15d、および主増幅部16a~16dは、それぞれが半導体素子を用いて構成されている。
 マイクロ波発生部10のマイクロ波発振部10aは、基準信号発振器である水晶発振器11、水晶発振器11からの4つの出力のそれぞれに配設した位相可変部12a~12b、および位相可変部12a~12bの出力が入力される位相同期回路13a~13dを備えている。実施の形態1において用いられている基準信号発振器である水晶発振器11は、例えば10MHzの基準周波数を発生する。
 水晶発振器11および位相同期回路13a~13dは、周波数負帰還回路により構成されており、PLL(Phase Locked Loop)としての回路技術を適用したPLL周波数シンセサイザで構成されている。このPLL周波数シンセサイザは、電圧制御発振器(VCO:Voltage Controlled Oscillator)、分周値が外部からの制御信号によって可変制御される分周器、位相比較器、ループフィルタ及び入力基準信号を発生する水晶発振器11で構成されている。分周器の分周値を制御することにより、基準信号を出力する水晶発振器11の周波数値を逓倍した周波数を発生させて、マイクロ波発振部10aは、所定の発振周波数を出力することができる。
 位相比較器は、電圧制御発振器(VCO)の出力周波数を分周器で分周した周波数の値と水晶発振器11から得られる入力基準信号である周波数とを比較する。この両者の値が異なる場合、位相比較器は誤差信号パルスを出力する。ループフィルタは、ローパスフィルタで構成されており、位相比較器が発生した誤差信号パルスを直流電圧に変換し、この直流電圧が電圧制御発振器(VCO)に印加されて、電圧制御発振器(VCO)の発振周波数が可変制御される。このように、外部からの制御信号によって決定された周波数が形成されるように、基準信号発振器である水晶発振器11および位相同期回路13a~13dで構成された周波数負帰還回路が動作する。
 本発明に係る実施の形態1のマイクロ波加熱装置におけるマイクロ波発振部10aは、前記の周波数負帰還回路に位相可変部12a~12bが付加された構成である。マイクロ波発振部10aの複数の出力は、周波数に関しては外部からの制御信号に基づき同一の周波数に制御されており、各出力端子における他の出力端子に対する相対的な位相差は、位相可変部12a~12bの動作条件によって決定される。
 位相可変部12a~12dは、水晶発振器11の出力をそれぞれの位相同期回路13a~13dに伝送する信号線に可変容量ダイオードを並列配設した構成としている。
 図3に示すように、加熱室100を構成する底壁面103には、マイクロ波を加熱室100内に放射供給する複数(実施の形態1においては2個)の放射部(20,21)が配置されている。実施の形態1における2個の放射部(第1の放射部20,第2の放射部21)は、底壁面103の略中心点(C0)を通る、装置の前後方向の中心線(図3において符号Yで示す線)に対して線対称となる位置に配置されている。
 第1の放射部20は、2つのマイクロ波給電点20a,20bを有しており、マイクロ波発生部10からの各出力がそれぞれのマイクロ波給電点20a,20b,に導かれている。同様に、第2の放射部21は、2つのマイクロ波給電点21a,21bを有しており、マイクロ波発生部10の各出力がそれぞれのマイクロ波給電点21a,21bに導かれている。第1の放射部20のマイクロ波給電点20a,20b、および第2の放射部21のマイクロ波給電点21a,21bは、底壁面103の前述の中心軸Yに対して線対称となる位置に配置されている。
 第1の放射部20および第2の放射部21は略円板形状を有するアンテナであり、それぞれの中央点C1,C2を結ぶ線(図3において符号Xで示す線)上にそれぞれ第1のマイクロ波給電点20a,21aが配置されている。各中央点C1,C2を結ぶ線Xに直交し、各中央点C1,C2を通る線(図3において、それぞれを符号Z1,Z2で示す線)上に第2のマイクロ波給電点20b,21bがそれぞれ配置されている。それぞれのマイクロ波給電点20a,20bおよび21a,21bは、インピーダンス整合を図るために、それぞれの放射部20,21の中央点C1,C2から所定距離を離して配置されている。
 上記のように、第1の放射部20において、第1のマイクロ波給電点20aと中央点C1とを結ぶ線Xと、第2のマイクロ波給電点20bと中央点C1とを結ぶ線Z1の交差角度θは90度になるように配置されている。同様に、第2の放射部21において、第1のマイクロ波給電点21aと中央点C2とを結ぶ線Xと、第2のマイクロ波給電点21bと中央点C2とを結ぶ線Z2の交差角度θは90度になるように配置されている。
 実施の形態1のマイクロ波加熱装置においては、初段増幅部15a~15dおよび主増幅部16a~16dは、低誘電損失材料により構成された誘電体基板の片面に形成した導電体パターンにて構成された回路を有し、その回路に設けた各増幅部の増幅素子である半導体素子を良好に動作させるべく各半導体素子の入力側と出力側のそれぞれに整合回路が設けられている。
 マイクロ波発振部10aの出力から初段増幅部15a~15dまでのマイクロ波伝送路14a~14dは、同軸ケーブルで構成されている。また、主増幅部16a~16dから出力部19a~19dまでのマイクロ波伝送路17a~17dは、誘電体基板の片面に設けた導電体パターンによって特性インピーダンスが略50Ωの伝送回路にて形成されている。
 マイクロ波伝送路14a~14dが同軸ケーブルにより構成されているため、マイクロ波発振部10aと増幅部(15a~15d,16a~16d)とを別々の位置に配置することが可能となる利便性を有する。位相可変部12a~12dは、信号線と接地面との間に可変容量ダイオードを組込んだ回路構成としている。可変容量ダイオードに印加する電圧を変えることにより、基準周波数の位相が遅延される。このため、位相遅延された基準周波数がそれぞれの位相同期回路13a~13dに入力されている。
 基準周波数の伝送経路に位相可変部12a~12dを組み込むことにより、小さい電力レベルと低い周波数環境下で使用できる可変容量ダイオードを使用できるとともに、マイクロ波発振部10aのマイクロ波出力信号の位相変化を大きく設定することが可能となる。
 マイクロ波発生部10の位相同期回路13a~13dは、例えば10MHzの基準周波数を発生する基準信号発振器である水晶発振器11に対して、0.5MHzの分周性能を有する比較周波数を分周器で形成している。そして、後続の増幅部に入力させるマイクロ波信号の周波数は、2400.0MHz~2500.0MHzとしている。
 マイクロ波信号の周波数が2450.0MHzの場合、そのマイクロ波の位相を360度変化させるように位相可変部12a~12dにおける位相可変量を制御している。この位相可変部12a~12dを制御することにより、マイクロ波発生部10の出力部19a~19dの位相を制御することができる。即ち、第1の放射部20のマイクロ波給電点20a,20b、および第2の放射部21のマイクロ波給電点21a,21bの位相遅れを、最大で360度遅延させることができる。
 電力検出部18a~18dは、マイクロ波発生部10から加熱室100側に伝送するマイクロ波電力(以下、マイクロ波供給量)および加熱室100からマイクロ波発生部10側に伝送するいわゆる反射波の電力(以下、マイクロ波反射量)を検出する。なお、電力検出部18a~18dとしては、少なくともマイクロ波反射量を検出する構成でもよい。電力検出部18a~18dにおいては、電力結合度を、例えば約40dBとし、マイクロ波伝送路17a~17dを伝送するマイクロ波供給量、および/またはマイクロ波反射量の約1/10000の電力量を抽出する。
 このように抽出された電力信号は、検波ダイオード(図示なし)によりそれぞれ整流化され、コンデンサ(図示なし)で平滑処理されて、その平滑処理された信号が制御部22に入力されている。
 制御部22は、使用者が直接入力する被加熱物の加熱条件(図2における矢印Q)、それぞれの電力検出部18a~18dからの検出情報(図2における矢印P)、および加熱中に被加熱物の加熱状態を検知する各種センサーから得られる加熱情報(図2における矢印R)に基づいて、マイクロ波発生部10の構成要素である位相同期回路13a~13dを制御して、マイクロ波発振部10aの発振周波数および発振出力が制御され、位相可変部12a~12dを制御して、発振信号の位相遅延量が制御される。この結果、加熱室100内に収納された被加熱物は、使用者が設定した加熱条件(Q)、加熱中の被加熱物の加熱状態を示す加熱情報(R)、或いは電力検出部18a~18dからの検出情報(P)に基づいて最適に加熱される。
 なお、実施の形態1のマイクロ波加熱装置において、マイクロ波発生部10には半導体素子において発生した熱を放熱させるための放熱手段、例えば冷却フィン(図示なし)が設けられている。また、加熱室100内には、底壁面103に設けた放射部20,21を覆うとともに被加熱物を収納載置するための、低誘電損失材料で形成された載置板25が設けられている。
 [放射形態]
 次に、上記のように構成された実施の形態1のマイクロ波加熱装置における放射部20,21の放射形態とその動作について説明する。
 [第1の放射形態の説明]
 図4は、実施の形態1のマイクロ波加熱装置における放射部20,21による一放射形態を説明する図であり、第1の放射形態を示している。
 図4に示す第1の放射形態においては、第1の放射部20の第1のマイクロ波給電点20aの給電位相に対して、第2のマイクロ波給電点20bの給電位相が90度遅れて給電されている。同様に、第2の放射部21の第1のマイクロ波給電点21aの給電位相に対して、第2のマイクロ波給電点21bの給電位相が90度遅れて給電されている。なお、第1の放射部20の第1のマイクロ波給電点20aの給電位相と、第2の放射部21の第1のマイクロ波給電点21aの給電位相は同相である。
 ここで、位相の90度遅れとは、マイクロ波加熱装置が利用する周波数帯域の中央の周波数(例えば2450MHz)における特性値として表現する。
 上記のように、マイクロ波給電点20a,20b,21a,21bを各放射部20,21における所定位置に配設して、それぞれのマイクロ波給電点20aと20b、および21aと21bへ供給するマイクロ波の位相差を90度とする第1の放射形態を採ることにより、それぞれの放射部20,21は、円偏波のマイクロ波を放射する。
 第1の放射形態における円偏波発生のメカニズムについて、図4を用いて説明する。
 時間t=t0において、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20a,21aの給電位相から90度遅れているため、0度である。
 したがって、時間t=t0において、第1のマイクロ波給電点20a,21aからのマイクロ波により反対向きのマイクロ波電界(図4において矢印20A,21Aで示すマイクロ波電界)が生じる。このとき、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)が0度であるため、マイクロ波電界の大きさはゼロである。
 時間t=t0+T/4(Tは一周期を示す)になると、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相は180度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は90度となる。このため、時間t=t0+T/4においては、第2のマイクロ波給電点20b,21bのマイクロ波により同じ向きのマイクロ波電界(図4において矢印20B,21Bで示すマイクロ波電界)が生じる。このとき、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相が180度であるため、マイクロ波電界の大きさはゼロである。
 時間t=t0+T/2においては、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相は270度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は180度となる。このため、時間t=t0+T/2においては、時間t=t0におけるマイクロ波電界と反対向きのマイクロ波電界(図4において矢印20A,21Aで示すマイクロ波電界)が生じる。
 時間t=t0+3T/4においては、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相は360度(0度)となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は270度となる。このため、時間t=t0+3T/4においては、時間t=t0+T/4におけるマイクロ波電界と反対向きのマイクロ波電界(図4において矢印20B,21Bで示すマイクロ波電界)が生じる。
 時間t=t0+4T/4においては、時間t=t0と同じように、第1のマイクロ波給電点20a,21aのマイクロ波により反対向きのマイクロ波電界(図4において矢印20A,21Aで示すマイクロ波電界)が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図4における最下部分に示すように、第1の放射部20においてはマイクロ波電界が右旋回となる円偏波を発生し、第2の放射部21においてはマイクロ波電界が左旋回となる円偏波を発生する。
 [第2の放射形態の説明]
 図5は、本発明に係る実施の形態1のマイクロ波加熱装置における放射部20,21による第2の放射形態を説明する図である。
 図5に示す第2の放射形態においては、第1の放射部20の第1のマイクロ波給電点20aの給電位相に対して、第1の放射部20の第2のマイクロ波給電点20bおよび第2の放射部21の第2のマイクロ波給電点21bの給電位相が90度遅れて給電されており、且つ第2の放射部21の第1のマイクロ波給電点21aの給電位相が180度遅れて給電されている。
 ここで、位相の90度遅れ、および180度遅れとは、マイクロ波加熱装置が利用する周波数帯域の中央の周波数(例えば2450MHz)における特性値として表現する。
 第2の放射形態の場合においても、マイクロ波給電点20a,20b,21a,21bの配置構成と、それぞれのマイクロ波給電点20a,20b,21a,21bへ供給するマイクロ波の位相差を90度とすることにより、放射部20,21は円偏波放射を行う。
 第2の放射形態における円偏波発生のメカニズムについて、図5を用いて説明する。
 時間t=t0において、第1の放射部20の第1のマイクロ波給電点20aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20aの給電位相から90度遅れているため0度であり、第2の放射部21の第1のマイクロ波給電点21aに給電されるマイクロ波の位相(絶対位相)は-90度(270度)である。
 したがって、時間t=t0において、第1のマイクロ波給電点20a,21aのマイクロ波により同じ向きのマイクロ波電界(図5において矢印20A,21Aで示すマイクロ波電界)が生じる。このとき、第2のマイクロ波給電点20b、21bに給電されるマイクロ波の位相が0度であるため、マイクロ波電界は生じない。
 時間t=t0+T/4(Tは一周期を示す)になると、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相はそれぞれ180度,360度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相はそれぞれ90度となる。このため、時間t=t0+T/4において、マイクロ波電界(図5において矢印20B,21Bで示すマイクロ波電界)が生じる。このとき、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相が180度,360度であるため、マイクロ波電界は生じない。
 時間t=t0+T/2においては、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相はそれぞれ270度、90度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相はそれぞれ180度となる。このため、時間t=t0+T/2においては、時間t=t0に示すマイクロ波電界と反対向きのマイクロ波電界(図5において矢印20A,21Aで示すマイクロ波電界)が生じる。
 時間t=t0+3T/4においては、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相はそれぞれ360度,180度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相はそれぞれ270度となる。このため、時間t=t0+3T/4においては、時間t=t0+T/4に示すマイクロ波電界と反対向きのマイクロ波電界(図5において矢印20B,21Bで示すマイクロ波電界)が生じる。
 時間t=t0+4T/4においては、時間t=t0と同じように、第1のマイクロ波給電点20a,21aのマイクロ波により同じ向きのマイクロ波電界(図5において矢印20A,21Aで示すマイクロ波電界)が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図5における最下部分に示すように、第1の放射部20および第2の放射部21において、マイクロ波電界が右旋回となる同じ円偏波を発生する。
 [第3の放射形態の説明]
 図6は、本発明に係る実施の形態1のマイクロ波加熱装置における放射部20,21による第3の放射形態を説明する図である。
 図6に示す第3の放射形態においては、各放射部20,21の第1のマイクロ波給電点20a,21aに供給するマイクロ波電力量を第2のマイクロ波給電点20b,21bに供給するマイクロ波電力量よりも多くしている。
 各マイクロ波給電点20a,20b,21a,21bに対する給電位相に関しては、図4に示した第1の放射形態と同じである。即ち、各放射部20,21において、第1のマイクロ波給電点20a,21aの給電位相に対して、第2のマイクロ波給電点20b,21bの給電位相が90度遅れて給電されている。
 第3の放射形態の場合においても、マイクロ波給電点20a,20b,21a,21bの配置構成と、それぞれのマイクロ波給電点20a,20b,21a,21bへ供給するマイクロ波の位相差を90度とすることにより、放射部20,21は、旋回形状が楕円形状である円偏波放射を行う。
 第3の放射形態における楕円形状の円偏波発生のメカニズムについて、図6を用いて説明する。
 時間t=t0において、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20a,21aの給電位相から90度遅れているため0度である。
 給電に伴って生じるマイクロ波電界の大きさは、供給するマイクロ波電力量に比例するため、第3の放射形態においては第1のマイクロ波給電点20a,21aからのマイクロ波によるマイクロ波電界の方が、第2のマイクロ波給電点20b,21bからのマイクロ波によるマイクロ波電界より大きい。したがって、図6においては、第1のマイクロ波給電点20a,21aにより励振されたマイクロ波電界を示す矢印を、第2のマイクロ波給電点20b,21bにより励振されたマイクロ波電界を示す矢印より長く示す。
 時間t=t0において、第1のマイクロ波給電点20a,21aからのマイクロ波により反対向きのマイクロ波電界(図6において矢印20A,21Aで示すマイクロ波電界)が生じる。
 時間t=t0+T/4(Tは一周期を示す)になると、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相は180度となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は90度となる。このため、時間t=t0+T/4においては、第2のマイクロ波給電点20b,21bのマイクロ波により同じ向きのマイクロ波電界(図6において矢印20B,21Bで示すマイクロ波電界)が生じる。
 時間t=t0+T/2においては、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相は270度になり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は180度となる。このため、時間t=t0+T/2においては、時間t=t0に示すマイクロ波電界と反対向きのマイクロ波電界(図6において矢印20A,21Aで示すマイクロ波電界)が生じる。
 時間t=t0+3T/4においては、第1のマイクロ波給電点20a.21aに給電されるマイクロ波の位相は360度(0度)となり、第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相は270度となる。このため、時間t=t0+3T/4においては、時間t=t0+T/4に示すマイクロ波電界と反対向きのマイクロ波電界(図6において矢印20B,21Bで示すマイクロ波電界)が生じる。
 時間t=t0+4T/4においては、時間t=t0と同じように、第1のマイクロ波給電点20a,21aのマイクロ波により反対向きのマイクロ波電界(図6において矢印20A,21Aで示すマイクロ波電界)が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図6における最下部分に示すように、第1の放射部20においてマイクロ波電界が右旋回となる楕円形状の円偏波を発生し、第2の放射部21においてはマイクロ波電界が左旋回となる楕円形状の円偏波を発生する。
 以上に説明した実施の形態1のマイクロ波加熱装置において、第1の放射部20における2つのマイクロ波給電点20a,20bが直交配置された構成により、各マイクロ波給電点20a,20bに供給されたマイクロ波が電力合成されて加熱室内に放射されている。また、第2の放射部21における2つのマイクロ波給電点21a,21bが直交配置された構成により、各マイクロ波給電点21a,21bに供給されたマイクロ波が電力合成されて加熱室内に放射されている。
 したがって、本発明に係る実施の形態1のマイクロ波加熱装置に示す構成によれば、比較的小さい電力量を発生させるマイクロ波発生手段を複数設けて、それぞれの放射部に複数のマイクロ波給電点を設けることにより、放射部の数を増やすことなく、加熱室内に大電力を供給することが可能な構成となる。
 また、放射部に設けた直交配置の2つのマイクロ波給電点に給電するマイクロ波の位相差を90度に制御することにより、放射部から円偏波のマイクロ波放射パターンを発生させることができる。
 放射部に設けた直交配置の2つのマイクロ波給電点に給電するマイクロ波の位相差において、一方のマイクロ波給電点に供給するマイクロ波の位相を基準(0度)としたとき、他方のマイクロ波給電点に供給するマイクロ波の位相を90度または-90度(若しくは-90度または-270度)に変化させることにより、円偏波の旋回方向を変えることができる。
 本発明に係る実施の形態1のマイクロ波加熱装置に示す構成によれば、放射部から放射するマイクロ波を加熱室全体に分散させるとともに、様々なマイクロ波放射パターン形成する放射形態を切替ることにより、加熱室内でのマイクロ波分布を所望の状態に変化させて被加熱物の加熱促進を図ることができる。
 上記のように、本発明に係る実施の形態1のマイクロ波加熱装置は、複数の放射部が加熱室の同一壁面(例えば、底壁面)に配設されており、その壁面において複数の放射部およびそのマイクロ波給電点が、当該壁面の略中央を通る中心線(図3の中心軸Y)に対して線対称となるよう配設したものである。このように構成された実施の形態1のマイクロ波加熱装置においては、放射部がひとつの壁面に集約されているため、放射部を保護するために放射部を覆う部材の配設が容易になるとともに、各放射部のマイクロ波給電点に供給するマイクロ波の信号およびその位相の制御を相互に関連づけて容易に制御することができる。
 なお、実施の形態1のマイクロ波加熱装置における第1の放射形態(図4参照)において、第1の放射部20においては第1のマイクロ波給電点20aの給電位相に対して第2のマイクロ波給電点20bの給電位相を90度遅らせ、第2の放射部21においては第1のマイクロ波給電点21aの給電位相に対して第2のマイクロ波給電点21bの給電位相を90度遅らせるとともに、第1の放射部20の第1のマイクロ波給電点20aと第2の放射部21の第1のマイクロ波給電点21aとの間の位相差を任意に変化させてもよい。
 このように、2つの放射部20,21から放射されるマイクロ波の位相差を可変させることにより、それぞれの放射部20,21から放射されるマイクロ波が加熱室内の空間で衝突する位置を変化させることができる。この結果、加熱室内のマイクロ波分布の分散化を図ることが可能となり、被加熱物の加熱の均一化を促進させることができる。
[加熱動作]
 以上のように構成された実施の形態1のマイクロ波加熱装置における被加熱物に対する加熱動作について説明する。
 まず、開閉扉を開き加熱室100内の載置板25上に被加熱物を配置して、開閉扉を閉じて加熱室100を密閉する。使用者は当該被加熱物の加熱条件をマイクロ波加熱装置に設けられている操作部(図示なし)により入力し、加熱開始キーを押す。加熱開始キーが押されることにより加熱開始信号が形成され、制御部22に入力される。加熱開始信号が入力された制御部22は制御信号をマイクロ波発生部10に出力し、マイクロ波発生部10は動作を開始する。このとき、制御部22は、被加熱物の加熱条件Qなどの各種情報に基づきマイクロ波発生部10を駆動制御する。また、制御部22は、マイクロ波加熱装置に設けられている駆動電源(図示なし)を動作させて、発振部11、初段増幅部15a~15dおよび主増幅部16a~16dなどに電力を供給する。
 マイクロ波発生部10が動作を開始する時、位相可変部12a~12dは、初期条件として、第1の放射部20の第1のマイクロ波給電点20aおよび第2の放射部21の第1のマイクロ波給電点21aに対応する位相可変部12aおよび位相可変部12cの位相遅延量(相対位相)を0度とする。また、第1の放射部20の第2のマイクロ波給電点20bおよび第2の放射部21の第2のマイクロ波給電点21bに対応する位相可変部12bおよび12dの位相遅延量(相対位相)を90度とする。
 制御部22は、駆動電源を動作させてマイクロ波発振部10aを構成する水晶発振器11、位相可変部12a~12bおよび位相同期回路13a~13dに電力および制御信号を供給する。この時、水晶発振器11が、例えば10MHzの基準周波数で発振し、位相同期回路13a~13dの出力周波数が、例えば2400MHzとなるよう設定する信号が供給されて、マイクロ波発振部10aの発振が開始する。
 また、マイクロ波発振部10aが発振を開始するとき、制御部22は駆動電源を制御して、初段増幅部15a~15dを動作させ、次に主増幅部16a~16dを動作させる。その結果、それぞれのマイクロ波伝送路において所定のマイクロ波電力信号が形成される。
 それぞれのマイクロ波電力信号は並列動作する初段増幅部15a~15d、主増幅部16a~16d、および電力検知部18a~18dを経てそれぞれの出力部19a~19dから出力される。出力部19a~19dから出力されたマイクロ波電力信号は、放射部20,21のそれぞれのマイクロ波給電点20a,20b,21aおよび21bに伝送され、加熱室100内にマイクロ波が放射される。
 実施の形態1のマイクロ波加熱装置は、被加熱物の本格加熱動作の開始の前段階において、各主増幅部16a~16dが定格出力の1/10相当のマイクロ波電力、例えば50W未満、具体的には20Wのマイクロ波電力を出力するよう構成されている。
 加熱室100内に供給されたマイクロ波電力が被加熱物において100%吸収されると、加熱室100からマイクロ波発生部10側に伝送する反射電力は発生しない。しかし、被加熱物の種類、形状、量により被加熱物を含む加熱室100の電気的特性が決定されるため、供給されたマイクロ波電力の全てが被加熱物に吸収されることはなく、マイクロ波発生部10の出力インピーダンスと加熱室100のインピーダンスとに基づいて、加熱室100からマイクロ波発生部10側に伝送される反射電力が生じる。
 電力検出部18a~18dは、マイクロ波伝送路17a~17dにおいて加熱室100から少なくともマイクロ波発生部10側に伝送する反射電力と結合し、その反射電力量(マイクロ波反射量)に比例した検出信号を出力する。その検出信号が入力された制御部22は、各電力検出部18a~18dから出力された検出信号の総和を演算する。
 この演算は、マイクロ波加熱装置において使用する周波数帯域内のすべての周波数(ピッチは、例えば1MHz)に対して実行する。この演算の結果に基づき、反射電力に相当する信号の総和が周波数に対して極小値となる周波数を抽出し、さらに複数の極小値を有する極小値群の中から最小値を示した周波数を被加熱物の加熱を実行する際の発振周波数として選択(周波数選択動作)する。
 被加熱物に対する本格加熱動作開始前の段階において前記の周波数選択動作が行われており、この周波数選択動作において、制御部22は、マイクロ波発振部10aの発振周波数を初期の2400MHzから1MHzピッチ(例えば、10ミリ秒で1MHzの可変速度)で周波数可変範囲の上限である2500MHzまで増分させる。この周波数可変の中で得られた、反射電力に相当する信号の総和が極小を示した周波数と、その周波数における反射電力に相当する信号が記憶される。
 制御部22は、反射電力に相当する信号の総和が極小値を示した周波数群において、反射電力に相当する信号が最も小さい値のときの周波数を最適発振周波数として選定する。また、制御部22は、マイクロ波発振部10aを選定された最適発振周波数で発振するよう制御するとともに、マイクロ波発生部10が設定された加熱条件Qに対応した出力となるよう制御する。
 入力された加熱条件Qが定格出力にて被加熱物を加熱動作するという条件であれば、マイクロ波発生部10は、被加熱物に対する本格加熱動作時において、例えば各主増幅部16a~16dのそれぞれが200W~300Wのマイクロ波電力を出力する。各主増幅部16a~16dの出力は、放射部20,21の各マイクロ波給電点20a,20b,21a,21bに伝送され加熱室100内に放射される。
 実施の形態1のマイクロ波加熱装置において、被加熱物の加熱の進捗状態を監視するために設けた被加熱物の表面温度を検出する赤外線検知部の検知信号、あるいは電力検知部18a~18dがそれぞれ検知する反射電力量の検知信号に基づいて、位相可変部12a~12dの位相遅延量を可変制御して被加熱物を所望の加熱状態に仕上げていく。位相可変部12a~12dの位相遅延量の組合せは、例えば実施の形態1において説明した第1の放射形態から第3の放射形態を組合せて、被加熱物の加熱条件Q、検出情報Pおよび加熱情報Rに応じて適宜選択して用いることができる。
 また、実施の形態1のマイクロ波加熱装置においては2つの放射部20,21を底壁面における装置の前後方向の中心線(図3において符号Yで示す線)に対して線対称の位置に配置した構成について説明したが、装置の左右方向の中心線(図3において符号Xで示す線)に対して線対称の位置に配置することも可能である。
 さらに、2つの放射部20,21間の相対位相を可変するよう構成して、前述の第1の放射形態から第3の放射形態を適宜組合せて、被加熱物に対する加熱動作を行うことも可能である。
 また、実施の形態1のマイクロ波加熱装置においては2つの放射部20,21を用いた例について説明したが、マイクロ波加熱装置の仕様などに応じて2つ以上の放射部を設けた構成でも適用可能である。
 《実施の形態2》
 次に、本発明に係る実施の形態2のマイクロ波加熱装置について添付の図7から図11を参照して説明する。実施の形態2のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、各放射部が3つのマイクロ波給電点を有する点であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態2の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
 図7は、実施の形態2のマイクロ波加熱装置としての電子レンジにおける加熱室100内部を示す斜視図である。図7においては、加熱室100内部の一部(載置板25)を切り欠いており、加熱室100を開閉するための開閉扉は省略されている。図8は、実施の形態2のマイクロ波加熱装置の構成を示すブロック図である。図9は、実施の形態2のマイクロ波加熱装置における底壁面に配置された放射部61,62を示す平面図である。
 図7に示すように、実施の形態2のマイクロ波加熱装置は、金属材料からなる左壁面101、右壁面102、底壁面103、上壁面104、奥壁面105、および被加熱物を収納するために開閉する開閉扉(図示なし)から構成された加熱室100において、底壁面103に2つの放射部61,62が設けられている。
 図8に示すように、マイクロ波発生手段であるマイクロ波発生部50は、マイクロ波発振部50a、このマイクロ波発振部50aからの6つの出力がマイクロ波伝送路54a,54b,54c,54d,54e,54f(以下の説明においては、54a~54fと記し、他の複数有する構成要素においても同様に省略して記す)を介して導かれる初段増幅部55a~55f、初段増幅部55a~55fのそれぞれの出力をさらに増幅する主増幅部56a~56f、および主増幅部56a~56fの出力を出力部59a~59fに導くマイクロ波伝送路57a~57fに挿入した電力検出部58a~58fで構成されている。マイクロ波発生部50における初段増幅部55a~55f、および主増幅部56a~56fは、それぞれが半導体素子を用いて構成されている。
 マイクロ波発生部50のマイクロ波発振部50aは、基準信号発振器である水晶発振器51、水晶発振器51からの6つの出力のそれぞれに配設した位相可変部52a~52f、および位相可変部52a~52fの出力が入力される位相同期回路53a~53fを備えている。実施の形態2において用いられている基準信号発振器である水晶発振器11は、例えば10MHzの基準周波数を発生する。
 なお、実施の形態2における位相同期回路53a~53f、およびその周辺に係る構成および動作については、前述の実施の形態1において説明した構成および動作と同じであるため、実施の形態2においては省略する。
 図9に示すように、加熱室100を構成する底壁面103には、マイクロ波を加熱室100内に放射供給する複数(実施の形態2においては2個)の放射部61,62が配置されている。実施の形態2における2個の放射部(第1の放射部61,第2の放射部62)は、底壁面103の略中心点(C0)を通る、装置の前後方向の中心線(図9において符号Yで示す線)に対して線対称となる位置に配置されている。
 第1の放射部61は3つのマイクロ波給電点61a,61b,61cを有しており、マイクロ波発生部50からの各出力がそれぞれのマイクロ波給電点61a,61b,61cに導かれている。同様に、第2の放射部62は3つのマイクロ波給電点62a,62b,62cを有しており、マイクロ波発生部50からの各出力がそれぞれのマイクロ波給電点62a,62b,62cに導かれている。これらのマイクロ波給電点61a,61b,61cおよび62a,62b,62cは底壁面103の略中心点を通る、装置の前後方向の中心線(図9において符号Yで示す線)に対して線対称となる位置に配置されている。
 第1の放射部61および第2の放射部62は略円形形状を有するアンテナであり、それぞれの中央点C1,C2を結ぶ線(図9において符号Xで示す線)上にそれぞれ第1のマイクロ波給電点61a,62aおよび第3のマイクロ波給電点61c,62cが配置されている。各中央点C1,C2を結ぶ線Xに直交し、それぞれの中央点C1,C2を通る線(図9において、それぞれを符号Z1,Z2で示す線)上に第2のマイクロ波給電点61b,62bがそれぞれ配置されている。
 それぞれのマイクロ波給電点61a,61b,61cおよび62a,62b,62cは、インピーダンス整合を図るために、それぞれの放射部61,62の中央点C1,C2から所定距離を離して配置されている。
 上記のように、第1の放射部61において、第1のマイクロ波給電点61aと第3のマイクロ波給電点61cと中央点C1とを結ぶ線Xと、第2のマイクロ波給電点61bと中央点C1とを結ぶ線Z1の交差角度θが90度になるように配置されている。同様に、第2の放射部62において、第1のマイクロ波給電点62aと第3のマイクロ波給電点62cと中央点C2とを結ぶ線Xと、第2のマイクロ波給電点62bと中央点C2とを結ぶ線Z2の交差角度θが90度になるように配置されている。
 実施の形態2のマイクロ波加熱装置においては、初段増幅部55a~55fおよび主増幅部56a~56fは、低誘電損失材料により構成された誘電体基板の片面に形成した導電体パターンにて構成された回路を有し、その回路に設けた各増幅部の増幅素子である半導体素子を良好に動作させるべく各半導体素子の入力側と出力側にそれぞれ整合回路が設けられている。
 マイクロ波発振部50aの出力から初段増幅部55a~55fまでのマイクロ波伝送路54a~54fは、同軸ケーブルで構成されている。また、主増幅部56a~56fから出力部59a~59fまでのマイクロ波伝送路57a~57fは、誘電体基板の片面に設けた導電体パターンによって特性インピーダンスが略50Ωの伝送回路にて形成されている。
 位相可変部52a~52fは、信号線と接地面との間に可変容量ダイオードを組込んだ回路構成としている。可変容量ダイオードに印加する電圧を変えることにより、基準周波数の位相が遅延される。このため、位相遅延された基準周波数がそれぞれの位相同期回路53a~53fに入力されている。
 基準周波数の伝送経路に位相可変部52a~52fを組み込むことにより、小さい電力レベルと低い周波数環境下で使用できる可変容量ダイオードを使用できるとともに、マイクロ波発振部50aのマイクロ波出力信号の位相変化を大きく設定することが可能となる。
 マイクロ波発生部50の位相同期回路53a~53fは、例えば10MHzの基準周波数を発生する基準信号発振器である水晶発振器11に対して、0.5MHzの分周性能を有する比較周波数を分周器で形成している。そして、後続の増幅部に入力させるマイクロ波信号の周波数は、2400.0MHz~2500.0MHzとしている。
 マイクロ波信号の周波数が2450.0MHzの場合、そのマイクロ波の位相を360度変化させるように位相可変部52a~52fにおける位相可変量を制御している。この位相可変部52a~52fを制御することにより、マイクロ波発生部50の出力部59a~59fの位相を制御することができる。即ち、第1の放射部61のマイクロ波給電点61a,61b,61c、および第2の放射部62のマイクロ波給電点62a,62b,62cの位相遅れを、最大で360度遅延させることができる。
 マイクロ波発生部10の位相同期回路53a~53fは、前述のようにPLL周波数センセサイザで構成されているため、電圧の印加によりマイクロ波信号を出力し、電圧の遮断によりマイクロ波信号の出力を停止させることができる。
 電力検出部58a~58fは、マイクロ波発生部50から加熱室100側に伝送するマイクロ波電力(マイクロ波供給量)および加熱室100からマイクロ波発生部50側に伝送するいわゆる反射波の電力(マイクロ波反射量)を検出する。なお、電力検出部58a~58fとしては、少なくともマイクロ波反射量を検出する構成でもよい。電力検出部58a~58fにおいては、電力結合度を、例えば約40dBとし、マイクロ波伝送路57a~57fを伝送するマイクロ波供給量、および/またはマイクロ波反射量の約1/10000の電力量を抽出する。
 このように抽出された電力信号は、検波ダイオード(図示なし)でそれぞれ整流化され、コンデンサ(図示なし)で平滑処理されて、その平滑処理された信号が制御部63に入力されている。
 制御部63は、使用者が直接入力する被加熱物の加熱条件(図8における矢印Q)、それぞれの電力検出部58a~58fからの検出情報(図8における矢印P)、および加熱中に被加熱物の加熱状態を検知する各種センサーから得られる加熱情報(図8における矢印R)に基づいて、マイクロ波発生部50の構成要素である位相同期回路53a~53fを制御して、マイクロ波発振部10aの発振周波数および発振出力が制御され、位相可変部52a~52fを制御して、発振信号の位相遅延量が制御される。この結果、加熱室100内に収納された被加熱物は、使用者が設定した加熱条件(Q)、加熱中の被加熱物の加熱状態を示す加熱情報(R)、或いは電力検出部58a~58fからの検出情報(P)に基づいて最適に加熱される。
 なお、実施の形態2のマイクロ波加熱装置において、マイクロ波発生部50には半導体素子において発生した熱を放熱させるための放熱手段、例えば冷却フィン(図示なし)が設けられている。また、加熱室100内には、底壁面103に設けた放射部61,62を覆うとともに被加熱物を収納載置するための、低誘電損失材料で形成された載置板25が設けられている。
 [放射形態]
 次に、上記のように構成された実施の形態2のマイクロ波加熱装置における放射部61,62の放射形態とその動作について説明する。なお、実施の形態2における放射部61,62の放射形態においても、前述の実施の形態1と同様の配置構成となるようにマイクロ波給電点を配置し、それらのマイクロ波給電点にマイクロ波電力を給電するよう制御すれば、円偏波放射ができる。即ち、実施の形態2における放射部61,62においては、第3のマイクロ波給電点61c,62cを対応する位相同期回路53c,53fの制御によりマイクロ波給電を遮断すれば、前述の実施の形態1と同様の配置構成となり、前述の第1の放射形態から第3の放射形態のマイクロ波放射が可能となる。
 したがって、以下の説明においては、実施の形態2において新たに付加したマイクロ波給電点61c,62cを用いた他の放射形態について説明する。
 [第4の放射形態の説明]
 図10は、実施の形態2のマイクロ波加熱装置における放射部61,62による第4の放射形態を説明する図である。
 図10に示す第4の放射形態においては、各放射部61,62の第1のマイクロ波給電点61a,62aの給電位相に対して、第3のマイクロ波給電点61c,62cの給電位相が180度遅れて給電されるよう設定されている。そして、第2のマイクロ波給電点61b,62bへの給電は遮断されている。図10においては、給電されているマイクロ波給電点(61a,61c,62a,62c)を黒丸で示し、給電されていないマイクロ波給電点(61b,61b)を白丸で示す。
 ここで、位相の180度遅れとは、マイクロ波加熱装置が利用する周波数帯域の中央の周波数(例えば2450MHz)における特性値として表現する。
 上記のように、マイクロ波給電点61a,61b,61c,62a,62b,62cが各放射部61,62において配置され、特定のマイクロ波給電点61a,61c,62a,62cにマイクロ波を供給し、それぞれのマイクロ波給電点61aと61c、および62aと62cに供給するマイクロ波の位相差を180度とする、後述する第4の放射形態を採ることにより、それぞれの放射部61,62において供給された2つのマイクロ波電力が電力合成されて、直線偏波のマイクロ波が放射される。
 第4の放射形態における電力合成と直線偏波発生のメカニズムについて、図10を用いて説明する。
 時間t=t0において、第1のマイクロ波給電点61a,62aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第3のマイクロ波給電点61c,62cに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点61a,62aの給電位相から180度遅れているため、-90度(270度)である。
 したがって、第1の放射部61のマイクロ波給電点61a、および第2の放射部62の第1のマイクロ波給電点62aのマイクロ波により時間t=t0において反対向きのマイクロ波電界(図10において矢印61A,62Aで示すマイクロ波電界)が生じる。
 一方、第3のマイクロ波給電点61c,62cに給電されたマイクロ波による時間t=t0におけるマイクロ波電界は、第1のマイクロ波給電点61a,62aのマイクロ波よりも位相が180度遅れているので、図10において矢印61C,62Cで示すように、第1のマイクロ波給電点61a,62aに給電されたマイクロ波によって生じるマイクロ波電界61A,62Aと同一方向に生じる。この結果、第1のマイクロ波給電点61a,62aおよび第3のマイクロ波給電点61c,62cに給電されたマイクロ波によって生じる二つのマイクロ波電界は合成される(61(A+C),62(A+C))。
 図10において、マイクロ波電界61(A+C)は2つのマイクロ波電界が合成されていることを示しており、即ちマイクロ波電界61(A+C)=(61A+61C)である。同様に、マイクロ波電界62(A+C)は2つのマイクロ波電界が合成されていることを示しており、即ちマイクロ波電界62(A+C)=(62A+62C)である。
 時間t=t0+T/4(Tは一周期を示す)になると、第1のマイクロ波給電点61a,62aに給電されるマイクロ波の位相は180度となり、第3のマイクロ波給電点61c,62cに給電されるマイクロ波の位相は0度となる。このため、時間t=t0+T/4においては、マイクロ波電界は大きさがゼロである。
 時間t=t0+T/2においては、第1のマイクロ波給電点61a,62aに給電されるマイクロ波の位相は270度となり、第3のマイクロ波給電点61c,62cに給電されるマイクロ波の位相は90度となる。このため、時間t=t0+T/2においては、時間t=t0におけるマイクロ波電界と反対向きのマイクロ波電界(図10において太い矢印61(A+C),62(A+C)で示すマイクロ波電界)が生じて、電力合成される。
 時間t=t0+3T/4においては、第1のマイクロ波給電点61a,62aに給電されるマイクロ波の位相は360度(0度)となり、第3のマイクロ波給電点61c,62cに給電されるマイクロ波の位相は180度となる。このため、時間t=t0+3T/4においては、時間t=t0+T/4と同様にマイクロ波電界は大きさがゼロである。
 時間t=t0+4T/4においては、時間t=t0と同じように、第1のマイクロ波給電点61a,62aおよび第3のマイクロ波給電点61c,62cに給電されたマイクロ波によって二つの合成されたマイクロ波電界(図10において61(A+C),62(A+C)で示す合成されたマイクロ波電界)が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図10において最下部分に示すように、第1の放射部61および第2の放射部62のそれぞれにおいて、給電された2つのマイクロ波電力が電力合成された状態で直線偏波を発生する。
 なお、第1の放射部61および第2の放射部62において生じるそれぞれの直線偏波は、同時刻においてはマイクロ波電界の向きが反対となる。
 [第5の放射形態の説明]
 図11は、実施の形態2のマイクロ波加熱装置における放射部61,62による第5の放射形態を説明する図である。
 図11に示す第5の放射形態においては、第1の放射部61の第1のマイクロ波給電点61aの給電位相に対して、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aの給電位相が180度遅れて給電されており、第2の放射部62の第3のマイクロ波給電点62cの給電位相が同じ位相に設定されている。そして、第2のマイクロ波給電点61b,62bへの給電は遮断されている。図11においては、給電されているマイクロ波給電点(61a,61c,62a,62c)を黒丸で示し、給電されていないマイクロ波給電点(61b,62b)を白丸で示す。
 ここで、位相の180度遅れとは、マイクロ波加熱装置が利用する周波数帯域の中央の周波数(例えば2450MHz)における特性値として表現する。
 上記のように、マイクロ波給電点61a,61b,61c,62a,62b,62cが各放射部61,62において配置され、特定のマイクロ波給電点61a,61c,62a,62cにマイクロ波を供給し、それぞれのマイクロ波給電点61aと61c、および62aと62cに供給するマイクロ波の位相差を180度とする第5の放射形態を採ることにより、それぞれの放射部61,62において供給された2つのマイクロ波電力が電力合成されて、直線偏波のマイクロ波が放射される。
 第5の放射形態における電力合成と直線偏波発生のメカニズムについて、図11を用いて説明する。
 時間t=t0において、第1の放射部61の第1のマイクロ波給電点61aに給電されるマイクロ波の位相(絶対位相)を90度とすると、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点61aの給電位相から180度遅れているため、-90度(270度)である。また、第2の放射部62のマイクロ波給電点62cの位相は90度である。
 したがって、第1の放射部61のマイクロ波給電点61a、および第2の放射部62の第1のマイクロ波給電点62aのマイクロ波により時間t=t0において同じ向きのマイクロ波電界(図11において矢印61A,62Aで示すマイクロ波電界)が生じる。
 一方、第3のマイクロ波給電点61c,62cに給電されたマイクロ波による時間t=t0におけるマイクロ波電界は、第1のマイクロ波給電点61a,62aのマイクロ波よりも位相が180度遅れているので、図11において矢印61C,62Cで示すように、第1のマイクロ波給電点61a,62aに給電されたマイクロ波によって生じるマイクロ波電界61A,62Aと同一方向に生じる。この結果、第1のマイクロ波給電点61a,62aおよび第3のマイクロ波給電点61c,62cに給電されたマイクロ波によって生じる二つのマイクロ波電界は合成される(61(A+C),62(A+C))。
 図11において、マイクロ波電界61(A+C)は2つのマイクロ波電界が合成されていることを示しており、即ちマイクロ波電界61(A+C)=(61A+61C)である。同様に、マイクロ波電界62(A+C)は2つのマイクロ波電界が合成されていることを示しており、即ちマイクロ波電界62(A+C)=(62A+62C)である。
 時間t=t0+T/4(Tは一周期を示す)になると、第1の放射部61の第1のマイクロ波給電点61aおよび第2の放射部62の第3のマイクロ波給電点62cに給電されるマイクロ波の位相は180度となり、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aに給電されるマイクロ波の位相は0度となる。このため、時間t=t0+T/4においては、マイクロ波電界は大きさがゼロである。
 時間t=t0+T/2においては、第1の放射部61の第1のマイクロ波給電点61aおよび第2の放射部62の第3のマイクロ波給電点62cに給電されるマイクロ波の位相は270度となり、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aに給電されるマイクロ波の位相は90度となる。このため、時間t=t0+T/2においては、時間t=t0におけるマイクロ波電界と反対向きのマイクロ波電界(図11において矢印61(A+C),62(A+C)で示すマイクロ波電界)が生じて、電力合成される。
 時間t=t0+3T/4においては、第1の放射部61の第1のマイクロ波給電点61aおよび第2の放射部62の第3のマイクロ波給電点62cに給電されるマイクロ波の位相は360度(0度)となり、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aに給電されるマイクロ波の位相は180度となる。このため、時間t=t0+T/4と同様にマイクロ波電界は大きさがゼロである。
 時間t=t0+4T/4は、時間t=t0と同じように、第1のマイクロ波給電点61a,62aおよび第3のマイクロ波給電点61c,62cに給電されたマイクロ波によって二つの合成されたマイクロ波電界(図11において61(A+C),62(A+C)で示す合成されたマイクロ波電界)が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図11における最下部分に示すように、第1の放射部61および第2の放射部62のそれぞれにおいて、給電された2つのマイクロ波電力が電力合成された状態で直線偏波を発生する。
 なお、第1の放射部61および第2の放射部62において生じるそれぞれの直線偏波は、同時刻においてはマイクロ波電界の向きが同じとなる。
 以上に説明した実施の形態2のマイクロ波加熱装置は、それぞれの放射部61,62の各マイクロ波給電点61a,61b,61c,62a,62b,62cにおいて、少なくとも1つのマイクロ波給電点に対してマイクロ波を給電しないよう制御することができるよう構成されている。このように構成された実施の形態2のマイクロ波加熱装置においては、ひとつの放射部(61または62)において、円偏波放射と垂直偏波放射の選択が可能となり、被加熱物を加熱条件、および加熱状態などに応じて所望の状態で加熱することができる。
 また、各放射部(61または62)における2つのマイクロ波給電点(61a,61cまたは62a,62c)は、それぞれのマイクロ波給電点を結ぶ直線が放射部(61または62)の中央点(C1またはC2)を通るように配設するとともに、それぞれのマイクロ波給電点に給電するマイクロ波の位相差を、使用するマイクロ波周波数帯域の中央周波数において180度に設定している。このように、マイクロ波給電点を各放射部に所定の位置に配置して所定の位相差を有するマイクロ波を供給することにより、マイクロ波給電点に供給された2つのマイクロ波電力が合成されて、各放射部から垂直偏波を放射することができる。
[加熱動作]
 以上のように構成された実施の形態2のマイクロ波加熱装置における被加熱物に対する加熱動作について説明する。
 実施の形態2のマイクロ波加熱装置の構成において、前述の実施の形態1のマイクロ波加熱装置と相違する点は、それぞれの放射部61,62における各マイクロ波給電点61a,61b,61c,62a,62b,62cに対してマイクロ波の供給または停止の制御を行えるよう構成した点である。
 したがって、実施の形態2のマイクロ波加熱装置においては、被加熱物の加熱開始前の段階において、使用者が設定した加熱条件に対応して、加熱開始前にマイクロ波を供給させる放射部61,62におけるマイクロ波給電点を選択することができる。マイクロ波給電点が選択された場合、その選択されたマイクロ波給電点による加熱条件の下で、被加熱物に対して最適な発振周波数を選択する周波数選択動作を行い、加熱時の発振周波数を決定する。このときの周波数選択動作における制御内容は前述の実施の形態1において説明した要領に準じるので、実施の形態2においてその説明は省略する。
 また、加熱進行中にマイクロ波発振部50aにおけるマイクロ波給電点の切替え制御を実行した場合には、最適な発振周波数が変動するため、切替え制御を行う都度、その条件の下で、最適な発振周波数の選択を行う周波数選択動作を行い、加熱時の最適な発振周波数を決定する。
 次に、加熱室100内の被加熱物に対する加熱処理における一連の動作について説明する。
 まず、開閉扉の開閉を行って、被加熱物を加熱室100内に収納し、加熱室100を密閉状態とする、使用者は当該被加熱物の加熱条件を操作部(図示なし)により入力し、加熱開始キーを押す。加熱開始キーが押されることにより加熱開始信号が形成され、制御部63に入力される。加熱開始信号が入力された制御部63は、制御信号をマイクロ波発生部50に出力し、マイクロ波発生部50は動作を開始する。このとき、制御部63は、被加熱物の加熱条件Qなどの各種情報に基づいてマイクロ波発生部50を駆動制御する。また、制御部63は、マイクロ波加熱装置に設けられている駆動電源(図示なし)を動作させて、マイクロ波発振部50a、初段増幅部55a~55fおよび主増幅部56a~56fなどに電力を供給する。
 制御部63は、入力された加熱条件に基づいて、マイクロ波発振部50aの構成要素である位相可変部52a~52fおよび位相同期回路53a~53fを制御し、加熱開始時にマイクロ波を供給すべき放射部61,62のマイクロ波給電点61a,61b,61c,62a,62b,62cを選択して、選択されたマイクロ波給電点間の位相差を決定する。
 その後、加熱動作開始前の処理として、加熱時に用いる発振周波数を選択する周波数選択動作を行う。この周波数選択動作における制御内容は前述の実施の形態1において説明した要領に準じるので実施の形態2においてはその説明は省略する。
 実施の形態2のマイクロ波加熱装置において、制御部63は、加熱時の発振周波数を決定した後、発振部50aの位相同期回路53a~53fを制御して、決定した発振周波数で発振させる。以降、制御部63が初段増幅部55a~55fおよび主増幅部56a~56fを動作させることにより、マイクロ波発生部50は所望のマイクロ波給電点に所望の位相のマイクロ波を供給するとともに、それぞれの放射部61,62が所望の放射形態(円偏波あるいは直線偏波)のマイクロ波を加熱室100内に放射するように制御される。
 このとき、マイクロ波給電点のそれぞれに供給されるマイクロ波電力は、200Wから300Wの電力値である。
 放射部61,62から放射されるマイクロ波の放射形態が、例えば実施の形態2における第4の放射形態(図10参照)の場合、マイクロ波は左右の側壁面101,102が対向する方向に強く伝播し、ある時刻(図10におけるt=t0+T/2)において、互いの放射部61,62から放射するマイクロ波が加熱室100の中央において衝突する。この結果、加熱室100の略中央に配置された被加熱物はその略中央部分が強く加熱される。
 また、放射部61,62から放射されるマイクロ波の放射形態が、例えば実施の形態2の第5の放射形態(図11参照)の場合、マイクロ波は左右の側壁面101,102が対向する方向に強く伝播し、ある時刻(図11におけるt=t0)においては2つの放射部61,62から放射されるマイクロ波が左側壁面101の方向に揃い、また別の時刻(図11におけるt=t0+T/2)においては2つの放射部61,62から放射されるマイクロ波が右側壁面102の方向に揃う。この結果、加熱室100の略中央を挟んで左右にそれぞれ配置された被加熱物は効果的に加熱される。
 被加熱物の表面温度を検出する検出手段からの検知信号、および/または設定された加熱条件における加熱時間情報などの条件が予め設定されている条件を満たして、放射部61,62の放射形態の再選択、あるいはマイクロ波給電点および位相差の再選択が必要と判断された場合には、その再選択に対して周波数の再選択を実行し、再選択された周波数にて被加熱物の加熱動作を継続してもよい。加熱動作においては、仕上がり温度或いは総加熱時間などの加熱条件を満たしたと判定されたときに加熱動作を終了する。
 なお、実施の形態2のマイクロ波加熱装置においては2つの放射部61,62を用いた例について説明したが、マイクロ波加熱装置の仕様などに応じて2つ以上の放射部を設けた構成でも適用可能である。
 また、実施の形態2のマイクロ波加熱装置においては、複数の放射部を加熱室の同一壁面に配設して、放射部をひとつの壁面に集約することにより、放射部を保護するために放射部を覆う部材の配設が容易になる。
 また、複数の放射部は、励振方向を加熱室の幅方向および奥行き方向に一致するように加熱室内に配設することにより、放射部の励振方向を加熱室の壁面方向に規定し、加熱室内でのマイクロ波伝搬方向を明確することができ、被加熱物の良好な加熱促進に対応した各マイクロ波給電点間あるいは各放射部間の位相制御を図ることができる。
 さらに、放射部におけるマイクロ波給電点への給電レベルを加熱室の幅方向寸法と奥行き寸法の比率に応じて変化させることにより、加熱室の形状に合わせて加熱室内でのマイクロ波の分散を促進させることが可能となる。
 例えば、幅広い加熱室においては幅方向励振に対応する給電点に大きいマイクロ波電力を供給することにより、円偏波放射時に加熱室の幅方向が大きい楕円旋回とし、加熱室内の電波の分散を促進させることができる。
 以上に説明した実施の形態2によれば、マイクロ波発振部50の出力制御によるマイクロ波給電点の選択、および位相可変部制御による各マイクロ波給電点の間の位相差条件選択により、被加熱物の特定部分の加熱を促進させたり、被加熱物全体を所望の状態に加熱させたり、複数の被加熱物を同時加熱したりすることができる。
 なお、マイクロ波を遮断するマイクロ波給電点は、実施の形態2においては、1つの放射部に対して1つの場合について例示したが、特定の放射部におけるすべてのマイクロ波給電点に対してマイクロ波を遮断する選択も可能である。このように選択することにより、例えば一つの放射部からのみマイクロ波を放射させることにより、加熱室内に複数配置した被加熱物に対して選択的に加熱することが可能となる。
 また、放射部が2つ以上の複数のマイクロ波給電点を備えた構成の場合、各放射部において、マイクロ波を供給しないマイクロ波給電点の選択は、最小でゼロであり、最大ですべてのマイクロ波給電点である。
 上記のように、実施の形態2のマイクロ波加熱装置においては、マイクロ波給電点に供給するマイクロ波は、半導体素子を用いて構成したマイクロ波発生部において形成されている。このため、実施の形態2のマイクロ波加熱装置は、複数の放射部を備える装置をコンパクトに形成できるとともに、各放射部内での給電点間の位相差あるいは各放射部間の位相差を可変させることにより、放射部からの放射形態をさまざまな形態にすることが可能となる。このため、実施の形態2のマイクロ波加熱装置は、被加熱物の種類、量、形状に応じた適切な加熱動作を促進させることができ、利便性の高い加熱装置となる。
 《実施の形態3》
 次に、本発明に係る実施の形態3のマイクロ波加熱装置について添付の図12を参照して説明する。実施の形態3のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、加熱室内における放射部の配置位置であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態3の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
 図12は、実施の形態3のマイクロ波加熱装置としての電子レンジにおける加熱室100内部を示す斜視図である。図12においては、加熱室100内部の一部(載置板25)を切り欠いており、加熱室100を開閉するための開閉扉は省略されている。
 図12に示すように、実施の形態3のマイクロ波加熱装置においては、被加熱物を収納する略直方体構造を有する加熱室100の構成壁面における対向する左壁面101と右壁面102のそれぞれの略中央に放射部80,81が配置されている。
 放射部80,81はそれぞれ複数(実施の形態3においては2つ)のマイクロ波給電点を有し、前述の実施の形態1において図2にて説明したマイクロ波発生部10と同様の構成を有し、マイクロ波発生部10の複数の出力がそれぞれのマイクロ波給電点に導かれている。
 放射部80,81の形状、および各放射部80,81におけるマイクロ波給電点の配置構成は、実施の形態1と同じである。実施の形態3のマイクロ波加熱装置において、各放射部80,81における2つのマイクロ波給電点は、加熱室100の左右中央面に対して面対称に配置されている。
 実施の形態3のマイクロ波加熱装置において、放射部を加熱室の対向壁面に対向して配設する構成とすることにより、各放射部から放射されるマイクロ波を確実に空間衝突させることができる。実施の形態3のマイクロ波加熱装置においては、対向配置の放射部間の位相差を変化させることにより、マイクロ波分布をより確実に変化させることが可能となる。
 また、実施の形態3のマイクロ波加熱装置においては、放射部80,81を保護するために、低誘電損失材料で構成されたカバー82,83がそれぞれに設けられている。
 なお、実施の形態3のマイクロ波加熱装置においては、一つの放射部80または81に設けるマイクロ波給電点の個数は3つ以上としてもよい。また、それぞれの放射部に配置するマイクロ波給電点の個数は、異なる数としてもよい。
 《実施の形態4》
 次に、本発明に係る実施の形態4のマイクロ波加熱装置について添付の図13および図14を参照して説明する。実施の形態4のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、放射部が4つのマイクロ波給電点を有する点であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態4の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
 図13は、実施の形態4のマイクロ波加熱装置における底壁面に配置された放射部を示す平面図である。実施の形態4のマイクロ波加熱装置においては、一つのマイクロ波放射部に対して4つのマイクロ波給電点が設けられている。
 実施の形態4のマイクロ波加熱装置における2個の放射部(第1の放射部90,第2の放射部91)は、底壁面103の略中心点(C0)を通る、装置の前後方向の中心線(図13において符号Yで示す線)に対して線対称の位置に配置されている。
 第1の放射部90は4つのマイクロ波給電点90a,90b,90c,90dを有しており、マイクロ波発生部からの各出力がそれぞれのマイクロ波給電点90a,90b,90c,90dに導かれている。同様に、第2の放射部91は4つのマイクロ波給電点91a,91b,91c,91dを有しており、マイクロ波発生部からの各出力がそれぞれのマイクロ波給電点91a,91b,91c,91dに導かれている。
 実施の形態4のマイクロ波加熱装置におけるマイクロ波発生部は、実施の形態1のマイクロ波発生部10と基本的には同様の構成を有し、マイクロ波発振部の基準信号発振器からの8つの基準信号が出力されて、それぞれの基準信号が位相可変部に入力される。マイクロ波発振部においては位相可変部および位相同期回路で条件を満たすマイクロ波信号が形成されて出力される。マイクロ波発振部からのマイクロ波信号は、増幅部において増幅されて最適なマイクロ波電力となり、各マイクロ波給電点に供給される。このように、マイクロ波発生部においては、8つのマイクロ波増幅経路が形成されており、8つのマイクロ波給電点に最適なマイクロ波電力を供給すべく8つの出力部が設けられている。
 図13に示すように、第1の放射部90には、その中心C1に対して等距離で、かつ角度ピッチが90度にて配置された4つのマイクロ波給電点90a,90b,90c,90dが設けられている。同様に、第2の放射部91には、その中心C2に対して等距離で、かつ角度ピッチが90度にて配置された4つのマイクロ波給電点91a,91b,91c,91dが設けられている。
 第1の放射部90の中心C1を通る、装置の左右方向の中心線(図13において符号Xで示す線)上に配置した第1のマイクロ波給電点90aおよび第3のマイクロ波給電点90cの給電位相を同等としている。また、第1のマイクロ波給電点90aおよび第3のマイクロ波給電点90cに対して直交配置した第2のマイクロ波給電点90bおよび第4のマイクロ波給電点90dの給電位相は、第1のマイクロ波給電点90aおよび第3のマイクロ波給電点90cの給電位相に対して90度位相が遅れて給電されるよう設定されている。
 ここで、位相の90度遅れとは、マイクロ波加熱装置が利用する周波数帯域の中央の周波数(例えば2450MHz)における特性値として表現する。
 上記のように、実施の形態4のマイクロ波加熱装置は、各放射部90,91においてマイクロ波給電点90a,90b,90c,90d,91a,91b,91c,91dが配置され、それぞれのマイクロ波給電点90a,90b,90c,90d,91a,91b,91c,91dへ供給されるマイクロ波の位相制御を行うことにより、それぞれの放射部90,91において中心C1,C2を挟んで直線上に配置された第1のマイクロ波給電点90a,91aおよび第3のマイクロ波給電点90c,91c、並びに、第2のマイクロ波給電点90b,91bおよび第4のマイクロ波給電点90d,91dから供給された2つのマイクロ波電力がそれぞれ電力合成される。
 また、実施の形態4のマイクロ波加熱装置においては、第1のマイクロ波給電点90a,91aおよび第3のマイクロ波給電点90c,91cに対して、第2のマイクロ波給電点90b,91bおよび第4のマイクロ波給電点90d,91dへ供給するマイクロ波の位相差を90度遅らせる、後述する第6の放射形態を採ることにより、それぞれの放射部90,91は、二つのマイクロ波電力を電力合成した大きなマイクロ波電力を有する円偏波のマイクロ波を放射する構成となる。
 [第6の放射形態の説明]
 第6の放射形態における電力合成と円偏波発生のメカニズムについて、図14を用いて説明する。図14は、実施の形態4のマイクロ波加熱装置における放射部90,91による第6の放射形態を説明する図である。
 時間t=t0において、マイクロ波給電点90a,90cおよび91a、91cに給電される位相(絶対位相)を90度とすると、マイクロ波給電点90b,90dおよび91b,91dに供給されるマイクロ波信号の位相(絶対位相)は、マイクロ波給電点90a,90cおよび91a,91cの給電位相から90度遅れているため、0度である。
 したがって、マイクロ波給電点90a,90c及び91a,91cのマイクロ波により時間t=t0において反対向きのマイクロ波電界(図14において太い矢印90(A+C),91(A+C)で示すマイクロ波電界)が生じる。
 なお、図14において、マイクロ波電界を示す矢印90(A+C)は、マイクロ波給電点90aにおけるマイクロ波電界を示す矢印90A、およびマイクロ波給電点90cにおけるマイクロ波電界を示す矢印90Cを加算した値であることを示す。また、図14における他のマイクロ波電界を示す矢印91(A+C),矢印90(B+D),91(B+D)においても、前記の矢印90(A+C)と同様にそれぞれのマイクロ波電界を加算した値であることを示す。
 時間t=t0+T/4(Tは一周期を示す)になると、マイクロ波給電点90a,90cおよび91a,91cに供給されるマイクロ波信号の位相は180度となり、マイクロ波給電点90b,90dおよび91b,91dに供給されるマイクロ波信号の位相は90度となる。このため、時間t=t0+T/4においては、マイクロ波電界(図14において太い矢印90(B+D),91(B+D)で示すマイクロ波電界)が生じる。
 時間t=t0+T/2においては、マイクロ波給電点90a,90cおよび91a,91cに供給されるマイクロ波信号の位相は270度となり、マイクロ波給電点90b,90dおよび91b,91dに供給されるマイクロ波信号の位相は180度となる。このため、時間t=t0+T/2においては、時間t=t0におけるマイクロ波電界と反対向きのマイクロ波電界(図14において太い矢印90(A+C),91(A+C)で示すマイクロ波電界)が生じる。
 時間t=t0+3T/4においては、マイクロ波給電点90a,90cおよび91a,91cに供給されるマイクロ波信号の位相は360度(0度)となり、マイクロ波給電点90b,90dおよび91b,91dに供給されるマイクロ波信号の位相は270度となる。このため、時間t=t0+3T/4においては、時間t=t0+T/4に示すマイクロ波電界と反対向きのマイクロ波電界(図14において太い矢印90(B+D),91(B+D)で示すマイクロ波電界)が生じる。
 時間t=t0+4T/4は、前述の時間t=t0と同じであり、図14において太い矢印90(A+C),91(A+C)で示すマイクロ波電界が生じる。
 上記のように時間変化するマイクロ波電界の動きを放射部面に重ねると、図14における最下部分に示すように、第1の放射部90においては右旋回、第2の放射部91においては左旋回となった円偏波を発生する。
 この円偏波の電界ベクトルの大きさ(スカラー量)は、2つのマイクロ波給電点の合成により、前述の図4に示した実施の形態1における第1の放射形態と比べて、略2倍の大きさを有する円偏波を発生する。
 以上の各実施の形態において説明したように、単一の放射部において、複数のマイクロ波給電点を配設し、マイクロ波給電点間の位相差を制御することにより、放射部の放射分布の形態を円形あるいは楕円形、さらにはそれらの半径の大きさを異ならしめることが可能となる。本発明のマイクロ波加熱装置においては、これらの放射形態の変化を利用することにより、加熱室内のマイクロ波分布をさまざまな形態に可変制御することが可能となり、加熱室内に収納された被加熱物の均一加熱、或いは部分的に集中して加熱する集中加熱を容易、かつ確実に実現することができ、被加熱物を所望の状態に加熱することができる。
 本発明のマイクロ波加熱装置は、放射部による放射形態が直線偏波と円偏波の両用であり、放射部において電力合成機能を有しているため、さまざまな形状、種類、量を有する被加熱物を所望の状態に確実に加熱することができる。
 本発明のマイクロ波加熱装置は、電子レンジで代表されるような誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。
 10 マイクロ波発生部
 10a マイクロ波発振部
 11 基準信号発振器(水晶発振器)
 12a~12d 位相可変部
 13a~13d 位相同期回路
 14a~14d,17a~17d マイクロ波伝送路
 15a~15d 初段増幅部
 16a~16d 主増幅部
 18a~18d 電力検出部
 19a~19d 出力部
 20,21 放射部
 20a,20b,21a,21b マイクロ波給電点
 22 制御部
 100 加熱室
 101 左壁面
 102 右壁面
 103 底壁面
 104 上壁面
 105 奥壁面

Claims (11)

  1.  1つの基準信号発振器に接続された複数の位相同期回路を有して構成された複数出力を持つマイクロ波発振部と、
     前記マイクロ波発振部のそれぞれの出力を増幅する複数の増幅部と、
     前記増幅部からの出力が供給され、加熱室にマイクロ波を放射する複数の放射部と、
     前記マイクロ波発振部を制御する制御部と、を備え、
     前記放射部のそれぞれが複数のマイクロ波給電点を有し、前記増幅部からのそれぞれの出力が前記マイクロ波給電点のそれぞれに供給されるよう構成されたマイクロ波加熱装置。
  2.  前記マイクロ波発振部は、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部を備え、それぞれの放射部における複数のマイクロ波給電点に供給するマイクロ波の位相を所定の位相差に設定して供給するよう構成された請求項1に記載のマイクロ波加熱装置。
  3.  前記マイクロ波発振部は、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部を備え、それぞれの放射部における少なくとも2つの放射部から放射されるマイクロ波の位相差を可変するよう構成された請求項1に記載のマイクロ波加熱装置。
  4.  前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度となり、それぞれのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において90度となるよう構成されている請求項1または2に記載のマイクロ波加熱装置。
  5.  前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度であるとともに、使用するマイクロ波周波数帯域の中央周波数において、一方のマイクロ波給電点に給電するマイクロ波の位相を基準とした時に、他方のマイクロ波給電点に給電するマイクロ波の位相を90度と-90度とに切り替るよう構成した請求項1または2に記載のマイクロ波加熱装置。
  6.  前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部におけるそれぞれのマイクロ波給電点を結ぶ直線が当該放射部の中央点を通るように配設するとともに、前記少なくとも2つのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において180度となるよう構成した請求項1または2に記載のマイクロ波加熱装置。
  7.  前記制御部は、前記マイクロ波発振部の出力を制御する機能を有し、前記それぞれの放射部における複数のマイクロ波給電点における少なくとも1つのマイクロ波給電点に対してマイクロ波の給電を停止する制御を行うよう構成した請求項1に記載のマイクロ波加熱装置。
  8.  前記複数の放射部は前記加熱室の同一壁面に配設され、前記放射部および前記放射部のマイクロ波給電点は壁面の略中央を通る直線を線対称として配設された請求項1に記載のマイクロ波加熱装置。
  9.  前記複数の放射部は前記加熱室の対向壁面に配設され、前記放射部および前記放射部のマイクロ波給電点は対向配置された請求項1に記載のマイクロ波加熱装置。
  10.  前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設された請求項8または9に記載のマイクロ波加熱装置。
  11.  前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設するとともに、前記それぞれの放射部における前記複数のマイクロ波給電点へのそれぞれのマイクロ波給電レベルを前記加熱室の幅方向寸法と奥行き寸法の比率に応じて変化させるよう構成した請求項8または9に記載のマイクロ波加熱装置。
PCT/JP2010/005495 2009-09-16 2010-09-08 マイクロ波加熱装置 WO2011033740A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011531778A JP5588989B2 (ja) 2009-09-16 2010-09-08 マイクロ波加熱装置
CN201080040058.9A CN102484910B (zh) 2009-09-16 2010-09-08 微波加热装置
US13/392,683 US9648670B2 (en) 2009-09-16 2010-09-08 Microwave heating device
EP10816855.0A EP2480047B1 (en) 2009-09-16 2010-09-08 Microwave heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-213955 2009-09-16
JP2009213955 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011033740A1 true WO2011033740A1 (ja) 2011-03-24

Family

ID=43758355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005495 WO2011033740A1 (ja) 2009-09-16 2010-09-08 マイクロ波加熱装置

Country Status (5)

Country Link
US (1) US9648670B2 (ja)
EP (1) EP2480047B1 (ja)
JP (1) JP5588989B2 (ja)
CN (1) CN102484910B (ja)
WO (1) WO2011033740A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142253A (zh) * 2015-07-24 2015-12-09 石铁峰 一种微波发生装置、微波加热装置以及加热方法
JP2017525121A (ja) * 2014-05-28 2017-08-31 グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド 半導体電子レンジ及びその半導体マイクロ波源
US10911051B2 (en) 2016-12-21 2021-02-02 Whirlpool Corporation Method, system and device for radio frequency electromagnetic energy delivery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024177A1 (en) 2013-08-20 2015-02-26 Whirlpool Corporation Method for detecting the status of popcorn in a microwave
US10993293B2 (en) 2013-12-23 2021-04-27 Whirlpool Corporation Interrupting circuit for a radio frequency generator
US10368404B2 (en) 2014-03-21 2019-07-30 Whirlpool Corporation Solid-state microwave device
EP2953425B1 (en) * 2014-06-03 2019-08-21 Ampleon Netherlands B.V. Radio frequency heating apparatus
JP2017528884A (ja) * 2014-09-17 2017-09-28 ワールプール コーポレイション パッチアンテナを介した直接加熱
DE102015103246A1 (de) * 2015-03-05 2016-09-08 Topinox Sarl Gargerät sowie Verfahren zum Betreiben eines Gargeräts
JP6740237B2 (ja) * 2015-03-06 2020-08-12 ワールプール コーポレイション 高周波電力測定システム用の高出力増幅器の較正方法
JP7027891B2 (ja) 2015-06-03 2022-03-02 ワールプール コーポレイション 電磁調理のための方法および装置
US10674571B2 (en) * 2015-09-09 2020-06-02 Illinois Tool Works, Inc. Apparatus for providing RF stirring with solid state components
KR102402039B1 (ko) 2015-11-16 2022-05-26 삼성전자주식회사 조리 장치 및 이의 제어 방법
CN209046906U (zh) 2016-01-08 2019-06-28 惠而浦有限公司 射频加热设备
WO2017119909A1 (en) 2016-01-08 2017-07-13 Whirlpool Corporation Method and apparatus for determining heating strategies
WO2017131698A1 (en) 2016-01-28 2017-08-03 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
JP6775027B2 (ja) 2016-02-15 2020-10-28 パナソニック株式会社 食品を調理するために高周波電磁エネルギーを伝達する方法および装置
US10327289B2 (en) 2016-04-01 2019-06-18 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
US20170333258A1 (en) * 2016-05-19 2017-11-23 The Procter & Gamble Company Method and apparatus for circularly polarized microwave product treatment
US10728962B2 (en) 2016-11-30 2020-07-28 Illinois Tool Works, Inc. RF oven energy application control
EP3451794A1 (en) 2017-09-01 2019-03-06 Whirlpool Corporation Crispness and browning in full flat microwave oven
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance
CN109587861B (zh) * 2018-12-29 2021-11-12 京信网络系统股份有限公司 一种多频固态微波炉及使用多频固态微波炉的加热方法
CN111417227A (zh) * 2019-01-04 2020-07-14 海尔智家股份有限公司 加热装置
US20230087176A1 (en) 2019-10-18 2023-03-23 Philip Morris Products S.A. Shisha system with a heating unit comprising two electrodes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535445A (en) 1976-07-05 1978-01-19 Hitachi Ltd High frequency heating equipment
JPS56132793A (en) 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPH04233188A (ja) 1990-09-21 1992-08-21 Whirlpool Internatl Bv マイクロ波オーブン、マイクロ波オーブンのキャビティの励起方法、及びこの方法を実施するウェーブガイド装置
JPH08337887A (ja) * 1995-06-12 1996-12-24 Hitachi Ltd プラズマ処理装置
JP2002061847A (ja) 2000-08-23 2002-02-28 Lg Electronics Inc 電子レンジの均一加熱構造
WO2003077299A1 (fr) * 2002-03-08 2003-09-18 Tokyo Electron Limited Dispositif a plasma
JP2008269794A (ja) * 2007-04-16 2008-11-06 Matsushita Electric Ind Co Ltd マイクロ波処理装置
JP2009170335A (ja) * 2008-01-18 2009-07-30 Mitsubishi Electric Corp 高周波加熱装置
JP2009187856A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 加熱調理器
JP2009230881A (ja) * 2008-03-19 2009-10-08 Mitsubishi Electric Corp 高周波加熱装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193292A (ja) 1984-03-15 1985-10-01 富士通株式会社 電子レンジ
US4720688A (en) * 1985-05-15 1988-01-19 Matsushita Electric Industrial Co., Ltd. Frequency synthesizer
DE68921050T2 (de) 1988-12-14 1995-09-21 Mitsubishi Electric Corp Mikrowellenheizgerät.
JP3106273B2 (ja) 1993-10-22 2000-11-06 松下電器産業株式会社 高周波加熱装置
JP3102235B2 (ja) 1993-11-15 2000-10-23 松下電器産業株式会社 高周波加熱装置
JPH08171986A (ja) 1994-12-19 1996-07-02 Hitachi Ltd マイクロ波加熱装置
US5558800A (en) 1995-06-19 1996-09-24 Northrop Grumman Microwave power radiator for microwave heating applications
KR19990026281A (ko) * 1997-09-23 1999-04-15 윤종용 전자렌지의 마이크로파 분산장치
AU3066400A (en) 1999-01-22 2000-08-07 Multigig Limited Electronic circuitry
JP2000357583A (ja) 1999-06-15 2000-12-26 Mitsubishi Electric Corp 電子レンジ
SE521313C2 (sv) 2000-09-15 2003-10-21 Whirlpool Co Mikrovågsugn samt förfarande vid sådan
JP2003257614A (ja) 2001-12-27 2003-09-12 Sanyo Electric Co Ltd 高周波加熱装置
JP2003249345A (ja) 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP3925281B2 (ja) 2002-04-16 2007-06-06 松下電器産業株式会社 高周波加熱装置
US7445690B2 (en) 2002-10-07 2008-11-04 Tokyo Electron Limited Plasma processing apparatus
WO2004098241A1 (ja) 2003-04-25 2004-11-11 Matsushita Electric Industrial Co., Ltd. 高周波加熱装置及びその制御方法
JP2005315487A (ja) 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd マイクロ波加熱方法及びその装置
US20060021980A1 (en) 2004-07-30 2006-02-02 Lee Sang H System and method for controlling a power distribution within a microwave cavity
JP5064924B2 (ja) 2006-08-08 2012-10-31 パナソニック株式会社 マイクロ波処理装置
JP2008146966A (ja) 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd マイクロ波発生装置およびマイクロ波加熱装置
JP4940922B2 (ja) 2006-12-08 2012-05-30 パナソニック株式会社 マイクロ波処理装置
US7435931B1 (en) 2007-05-15 2008-10-14 Appliance Scientific, Inc. High-speed cooking oven with optimized cooking efficiency
CN101743778B (zh) * 2007-07-13 2012-11-28 松下电器产业株式会社 微波加热装置
US20090038369A1 (en) * 2007-08-06 2009-02-12 Petroleum Analyzer Company, Lp Microwave system generator and controller for gas and liquid chromatography and methods for making and using same
JP5280372B2 (ja) 2007-10-18 2013-09-04 パナソニック株式会社 マイクロ波加熱装置
CN102160458B (zh) 2008-09-17 2014-03-12 松下电器产业株式会社 微波加热装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535445A (en) 1976-07-05 1978-01-19 Hitachi Ltd High frequency heating equipment
JPS56132793A (en) 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPH04233188A (ja) 1990-09-21 1992-08-21 Whirlpool Internatl Bv マイクロ波オーブン、マイクロ波オーブンのキャビティの励起方法、及びこの方法を実施するウェーブガイド装置
JPH08337887A (ja) * 1995-06-12 1996-12-24 Hitachi Ltd プラズマ処理装置
JP2002061847A (ja) 2000-08-23 2002-02-28 Lg Electronics Inc 電子レンジの均一加熱構造
WO2003077299A1 (fr) * 2002-03-08 2003-09-18 Tokyo Electron Limited Dispositif a plasma
JP2008269794A (ja) * 2007-04-16 2008-11-06 Matsushita Electric Ind Co Ltd マイクロ波処理装置
JP2009170335A (ja) * 2008-01-18 2009-07-30 Mitsubishi Electric Corp 高周波加熱装置
JP2009187856A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 加熱調理器
JP2009230881A (ja) * 2008-03-19 2009-10-08 Mitsubishi Electric Corp 高周波加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2480047A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525121A (ja) * 2014-05-28 2017-08-31 グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド 半導体電子レンジ及びその半導体マイクロ波源
US10588182B2 (en) 2014-05-28 2020-03-10 Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. Semiconductor microwave oven and semiconductor microwave source thereof
CN105142253A (zh) * 2015-07-24 2015-12-09 石铁峰 一种微波发生装置、微波加热装置以及加热方法
US10911051B2 (en) 2016-12-21 2021-02-02 Whirlpool Corporation Method, system and device for radio frequency electromagnetic energy delivery

Also Published As

Publication number Publication date
EP2480047A4 (en) 2012-08-22
EP2480047A1 (en) 2012-07-25
EP2480047B1 (en) 2014-04-16
US20120152939A1 (en) 2012-06-21
JPWO2011033740A1 (ja) 2013-02-07
JP5588989B2 (ja) 2014-09-10
US9648670B2 (en) 2017-05-09
CN102484910A (zh) 2012-05-30
CN102484910B (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5588989B2 (ja) マイクロ波加熱装置
JP5645168B2 (ja) マイクロ波加熱装置
US8901470B2 (en) Microwave heating apparatus
JP5280372B2 (ja) マイクロ波加熱装置
JP4992525B2 (ja) マイクロ波処理装置
WO2016006249A1 (ja) マイクロ波加熱装置
JP5217882B2 (ja) マイクロ波処理装置
JP5127038B2 (ja) 高周波処理装置
JP2009181728A (ja) マイクロ波処理装置
JP5217993B2 (ja) マイクロ波処理装置
WO2018037801A1 (ja) 高周波加熱装置
JP5169254B2 (ja) マイクロ波処理装置
JP5217881B2 (ja) マイクロ波処理装置
JP2010073383A (ja) マイクロ波加熱装置
JP5142368B2 (ja) 高周波処理装置
JP7329736B2 (ja) 高周波加熱装置
WO2024004429A1 (ja) マイクロ波加熱装置
RU2060598C1 (ru) Свч-печь

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040058.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816855

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011531778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010816855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13392683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE