WO2004098241A1 - 高周波加熱装置及びその制御方法 - Google Patents

高周波加熱装置及びその制御方法 Download PDF

Info

Publication number
WO2004098241A1
WO2004098241A1 PCT/JP2004/005889 JP2004005889W WO2004098241A1 WO 2004098241 A1 WO2004098241 A1 WO 2004098241A1 JP 2004005889 W JP2004005889 W JP 2004005889W WO 2004098241 A1 WO2004098241 A1 WO 2004098241A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
heating
heating chamber
heating device
ghz
Prior art date
Application number
PCT/JP2004/005889
Other languages
English (en)
French (fr)
Inventor
Takeshi Takizaki
Tomotaka Nobue
Kazuho Sakamoto
Makoto Mihara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003121876A external-priority patent/JP2004327293A/ja
Priority claimed from JP2003130370A external-priority patent/JP2004335304A/ja
Priority claimed from JP2003131804A external-priority patent/JP2004335361A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/553,511 priority Critical patent/US20060289526A1/en
Priority to EP04729215A priority patent/EP1619933A1/en
Publication of WO2004098241A1 publication Critical patent/WO2004098241A1/ja
Priority to US11/951,513 priority patent/US20080087662A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers
    • H05B6/745Rotatable stirrers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • H05B6/763Microwave radiation seals for doors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Definitions

  • the present invention relates to a high-frequency heating device that supplies a high-frequency wave to a heating chamber that accommodates a heated object and heats the heated object, and a control method thereof.
  • High-frequency generator that outputs microwaves into the heating chamber that houses the object to be heated
  • a high-frequency heating device equipped with a tron can quickly and efficiently heat an object to be heated in a heating chamber, and has therefore rapidly become popular as a microwave oven, which is a cooking device for food and the like.
  • Conventional microwave ovens for home use are equipped with a magnetron that emits microwaves at a frequency of 2.45 GHz.
  • the wavelength of the standing wave generated is about 12 cm
  • Heating spots are generated at intervals of about 1/2 centimeter, approximately 0.6 cm
  • the distance between the heating spots is larger than the size of the food to be heated in ordinary households, causing uneven heating.
  • electromagnetic waves such as a turntable that rotates food in the heating chamber and a stellar mixer that stirs electromagnetic waves in the heating chamber are used. It was equipped with stirring means.
  • the wavelength of the standing wave is about 5 cm
  • the heating spot is about 2.5 cm for one or two wavelengths, and the distribution density of the heating spot on the surface of the object to be heated increases compared to that using microwaves of 2.45 GHz. Since the distance between the spots is no longer too large compared to the size of general foods, it is possible to suppress the occurrence of heating unevenness without using the conventional electromagnetic wave stirring means, and to eliminate the electromagnetic wave stirring means.
  • the simplification of the structure, the miniaturization of the device accompanying this simplification, or the reduction of the manufacturing cost / operating cost can be achieved.
  • the 5.8 GHz microwave has a shallower depth of burning inside the object, and as shown in Fig. 8, the surface of the object
  • the heating distribution characteristic at 2.45 GHz is better than the microwave at 2.45 GHz
  • the heating characteristic to the inside of the object to be heated is lower than that at 2.45 GHz microwave.
  • the present invention can irradiate a microwave to a wider surface of an object to be heated, and can realize good heating without heating unevenness even for a thick object to be heated. It is an object of the present invention to provide a high-frequency heating device capable of simplifying the structure, reducing the size of the device accompanying the simplification, or reducing the manufacturing cost and the operating cost.
  • conventional high-frequency heating equipment has a magnetron high-frequency generator located outside the heating chamber, and guides it from there to one large power supply port provided on the ceiling, side wall, or floor of the heating chamber. High frequency is guided through the pipe, and high frequency is fed into the heating chamber from the power supply port.
  • Patent Document 2 See, for example, Patent Document 2.
  • FIG. 14 is a longitudinal sectional view showing an internal structure of a conventional high-frequency heating device described in Patent Document 2 described above.
  • 150 is a conventional high-frequency heating device
  • 151 is a heating chamber
  • 152 is a microwave provided at a frequency of 2.45 GHz provided outside the heating chamber 151.
  • a high-frequency generator including a magneto port 153 is a waveguide
  • 154 is a feed port.
  • 15 5 is a turntable
  • 15 6 is a motor that rotates the turn table 15 5
  • 15 7 is a door
  • 15 8 is a 1/4 wavelength of the microwave applied to the four sides of the door 15 7 It is a means of preventing radio wave leakage with a corresponding choke structure.
  • G is an object to be heated placed on the turntable 155.
  • the frequency of 2.45 GHz microwaves emitted from the magnetron 15 2 passes through the waveguide 15 3 and the heating port 15 15 from the power supply port 15 4.
  • the standing wave is generated in the heating chamber 151, and is reflected by the metal wall of the heating chamber 151.
  • the wavelength is about 12 cm
  • the standing waves generated in the heating chamber 151 which are reflected by the metal walls of the heating chamber 151, The microwave is absorbed by the object G at the antinode of the strong electric field, and the object G is heated.
  • the electric field on the heated material G is obtained by slowly rotating the turn table 15 5 with the motor 56. To prevent standing waves from being generated on the heated object G.
  • FIGS. 15A and 15B are views showing the internal structure of the high-frequency heating apparatus according to the embodiment described in Patent Document 2, in which (a) is a longitudinal sectional view, and (b) is a cross-section passing through the waveguide 53 in (a).
  • FIG. 15A is a longitudinal sectional view, and (b) is a cross-section passing through the waveguide 53 in (a).
  • reference numeral 160 denotes the high-frequency heating device of the embodiment
  • reference numeral 161 denotes a heating chamber
  • reference numeral 162 denotes a microwave provided at a frequency of 5.8 GHz provided outside the heating chamber 161.
  • 163 is a waveguide
  • 164 is a power supply port.
  • 165 is a table for placing the object to be heated
  • 167 is a door
  • 168 is a means for preventing radio wave leakage of a choke structure corresponding to one to four wavelengths of microwaves applied to the four sides of the door 167.
  • G is an object to be heated placed on the table 165.
  • one power supply port 164 is provided at the tip of a narrow waveguide 163 having a width substantially equal to the width of the high-frequency generator 162.
  • the microwave oscillated from is radiated into the heating chamber 161 only from the power supply port 164.
  • the microwave of 5.8 GHz frequency oscillated from the magnetron 162 passes through the waveguide 163 and radiates from the power supply port 164 into the heating chamber 161. Then, a standing wave is generated in the heating chamber 16 1 by being reflected by the metal wall of the heating chamber 16 1.
  • the wavelength is about 5.17 cm, so that the standing wave generated in the heating chamber 161, which is reflected by the metal wall of the heating chamber 161,
  • the distance is about 2.6 cm of 1Z2, and the microwave is absorbed by the object G to be heated at the antinode of the strong electric field, and the object G is heated. The distance of about 2.6 cm is small for the object G to be heated, so that it does not cause noticeable unevenness.
  • the high-frequency heating device 160 shown in FIG. 15 uses a magnetron that oscillates a microwave having a frequency of 5.8 GHz, so that the standing waves generated in the heating chamber 16 1 Since it is approximately 2.6 cm, which is 2, the unevenness in heating is not noticeable, but the unevenness still slightly occurred.
  • the power supply port 16 4 is located only at the center of the ceiling of the heating chamber 16 1, a difference in the microwave electric field intensity occurs between the center and the corner of the heating chamber 16 1. There was a heating difference between the center and the edge of G.
  • An object of the present invention is to solve these drawbacks, and makes it possible to make heating unevenness less noticeable, so that there is no difference in the microwave electric field strength between the center and the corner of the heating chamber, and the back side of the floor of the heating chamber.
  • An object of the present invention is to provide a high-frequency heating device capable of effectively utilizing a space near a central portion of the heating device.
  • a standing wave is formed by the supply of a high frequency, and the wavelength of the generated standing wave is about 12 cm. Will happen.
  • the distance between the heating spots is longer than the size of the food to be cooked, the distribution density of the heating spots that can be present in the food is low, and the food is partially heated, which tends to cause uneven heating. There was a tendency.
  • the frequency of the high-frequency wave used is changed from 2.45 GHz to 5.8 GHz to narrow the interval between the heating spots, thereby increasing the distribution density of the heating spots and reducing the uneven heating of the object to be heated.
  • Patent Document 3 Patent Document 3
  • the high frequency of 5.8 GHz has a higher distribution density of the heated spots, but the absorption depth to the heated object is small.
  • the surface of the object to be heated is mainly heated, and heating unevenness such as insufficient heating of the inside of the object to be heated is likely to occur.
  • the present invention has been made in view of the above-described circumstances, and has an object to provide a high-frequency heating apparatus capable of suppressing the occurrence of heating unevenness and quickly performing a uniform heating process even on a thick object to be heated, and a control method therefor. It is intended to provide.
  • a high-frequency heating apparatus for achieving the above object is a high-frequency heating apparatus that irradiates an object to be heated in a heating chamber with 5.8 GHz microwaves to heat the object to be heated.
  • a plurality of waveguides having a power supply port for emitting the microwave are provided in a cavity defining the heating chamber.
  • the plurality of power supply ports formed by the plurality of waveguides expand the distribution of the heating spot by the microwave, and spread the microwave to a wider area on the surface of the object to be heated. You can hit it.
  • the substantial grill depth can be doubled by heating the object to be heated, for example, from opposite directions.
  • the power supply port for emitting microwaves must be It is preferable to disperse and equip the plurality of wall surfaces.
  • the wall surface of the cavity in which the power supply port is arranged is provided on the upper and lower surfaces of the heating chamber, or It is preferable to have a configuration with the top and side surfaces or the side and bottom surfaces.
  • the microwave irradiation from the upper surface to the object to be heated in the heating chamber over a wide range, at least two microwaves arranged on the upper wall of the cavity are provided as described in claim 3. It is preferable that the power supply port is provided on the upper surface of the heating chamber by the waveguide.
  • the high-frequency heating device according to claim 4 is the high-frequency heating device according to claim 3, wherein at least two waveguides on the upper wall of the cavity are long sides of a cross section of the waveguide. Are arranged vertically in a vertical direction.
  • the cross-sectional area of a waveguide that guides 5.8 GHz microwaves is reduced to about 1/4 of the cross-sectional area of a waveguide that guides 2.45 GHz microwaves. Therefore, 5.
  • Long side dimension of the waveguide for 8 GH Z is 2.4 to 5 approximately the same as the short side dimension of the waveguide for GH z.
  • the installation space of the waveguide secured on the upper surface side of the cavity is the same as that of the conventional high-frequency heating device where the waveguide for 2.45 GHz is installed on the upper surface of the cavity with its long side oriented horizontally.
  • the waveguide for 5.8 GHz can be equipped in a vertical configuration with the long side oriented vertically.
  • the surface heater is arranged in an area of the upper surface of the cavity except for the equipment area of the vertically arranged waveguide.
  • the area for installing the surface heater can be expanded, the temperature distribution during oven heating processing for operating the surface heater can be made uniform over a wider area, and open heating with no uneven heating can be realized.
  • the high-frequency heating device of the present invention includes a high-frequency generation unit, and a heating chamber including a ceiling, a side wall, and a floor for supplying a high frequency from the high-frequency generation unit to heat the object to be heated.
  • a rectangular parallelepiped wide-area waveguide including a plurality of power supply ports is provided on the back side of the heating chamber, and the high-frequency generating unit is provided in close proximity to the rectangular parallelepiped wide-area waveguide. I do.
  • the waveguide structure since the waveguide structure has a wide structure, it is possible to provide a large number of power supply ports, and it is possible to approach uniform heating.
  • the high-frequency heating device of the present invention is characterized in that the rectangular parallelepiped wide-area waveguide has a size that spreads over substantially the entire surface of the floor, and the plurality of power supply ports face the floor. Characterized in that it is provided on the back side.
  • the rectangular parallelepiped wide-area waveguide has a size that spreads over substantially the entire surface of the floor, and the plurality of power supply ports face the floor. Characterized in that it is provided on the back side.
  • the high-frequency heating device of the present invention may be arranged such that the rectangular parallelepiped wide-area waveguide has a size that spreads over substantially the entire surface of the ceiling, and the plurality of power supply ports are directed toward the ceiling, and the backside of the ceiling is provided. It is characterized by being provided in.
  • the high frequency heating device of the present invention is characterized in that the frequency of the high frequency supplied from the high frequency generator is 5.8 GHz.
  • the spacing between the standing waves becomes narrower than in the case where the microwave wavelength is 2.45 GHz, which has been the mainstream in the past, so that uniform heating can be achieved.
  • the high-frequency heating device of the present invention is characterized in that the size of the plurality of power supply ports is relatively small in the vicinity of the high-frequency generation section, and increases as the distance from the high-frequency generation section increases.
  • the object of the present invention is achieved by the following constitutions.
  • a high-frequency heating device that supplies a high frequency from a high-frequency generator to a heating chamber that accommodates an object to be heated, and heat-treats the object to be heated, wherein the high-frequency generator has a frequency of 2.45 GHz.
  • a high-frequency heating device including a first high-frequency generator for generating a high frequency and a second high-frequency generator for generating a high frequency of 5.8 GHz.
  • the frequency with a high heating effect is a high frequency of 2.45 GHz. It is possible to supply two types of high-frequency waves to the heating chamber, a high-frequency wave with a uniform heating distribution and a frequency of 5.8 GHz. Even in this case, uniform heat treatment can be performed quickly.
  • the high-frequency heating device further comprising: a drive control unit that drives the second high-frequency generator and the second high-frequency generator simultaneously or alternately.
  • the high-frequency generators can output the high-frequency simultaneously or alternately. And the output intensity can be varied, so that even complex heating patterns can be easily controlled.
  • a single inverter circuit for supplying drive power to the first high-frequency generator and the second high-frequency generator, and driving by switching between power supply to the first high-frequency generator and the second high-frequency generator
  • the high-frequency heating device according to (1) further comprising: According to this high-frequency heating device, the power supply to the first high-frequency generator and the second high-frequency generator can be controlled by a single inverter circuit, so that the circuit configuration of the drive control unit is simplified, and the space required for installation is reduced. Can be reduced, which can contribute to a reduction in the size and weight of the device.
  • high-frequency waves from the first high-frequency generator or the second high-frequency generator are individually introduced into the heating chamber from each of the upper power supply port and the lower power supply port. Each high frequency can be irradiated from the optimal position.
  • the space in the heating chamber is divided into upper and lower parts, One high frequency can be supplied to the side space and the other high frequency can be supplied to the lower space, and each high frequency can be supplied to an individual space for heating.
  • the high-frequency heating element of the partition plate since the high-frequency heating element of the partition plate generates heat by irradiation with high frequency, the object to be heated placed on the partition plate is heated by radiant heat or conduction heat to burn the object to be heated. Can be attached.
  • the heating chamber can be warmed to have a preheating effect.
  • the high-frequency power of 5.8 GHz from the second high-frequency generator is supplied from the upper power supply port, so that the object to be heated in the heating chamber can be uniformly heated.
  • the heating chamber has a heating chamber main body having an opening, and an opening / closing door that covers the opening so as to be openable and closable, and at least one of a portion where the heating chamber main body faces the opening / closing door.
  • a choke for preventing radio wave leakage is formed, and the choke shields each high frequency from the first high-frequency generation section and the second high-frequency generation section (1) to (7). High frequency heating equipment.
  • a method for controlling a high-frequency heating device for supplying a high frequency from a high-frequency generator to a heating chamber containing an object to be heated and heating the object to be heated, wherein the high-frequency generator has a frequency of 2.45.
  • a method for controlling a high-frequency heating device for simultaneously or alternately supplying a high frequency of GHz and a high frequency of 5.8 GHz to the heating chamber.
  • a high-frequency heating effect of 2.45 GHz and a high-frequency frequency of 5.8 GHz are simultaneously or alternately supplied to the heating chamber.
  • GHz high-frequency and 5.8 GHz high-frequency with high uniform heating effect can be selectively supplied.
  • An appropriate high frequency can be supplied to perform efficient heat treatment.
  • a high-frequency high-heating effect of 2.45 GHz is supplied in the initial stage of heating, the temperature of the object to be heated is increased at a stretch, and after a predetermined time has elapsed or a predetermined temperature has been reached.
  • the heating temperature can be made uniform and the object to be heated can be placed in a uniform heating state with a small temperature distribution.
  • 5.8 GHz high frequency is supplied first and 2.45 GHz high frequency is supplied later, a heating pattern suitable for cooking, etc., in which heating is performed strongly in the latter half of heating It becomes.
  • the output of each of the high-frequency waves should be at least one of the outputs so that the sum of the driving power for the high-frequency outputs does not exceed the rated power of the high-frequency heating device.
  • FIG. 1 is a cross-sectional view of a high-frequency heating device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a high-frequency heating device according to a second embodiment of the present invention.
  • FIG. 4 is a perspective view of a third embodiment of the high-frequency heating device according to the present invention.
  • FIG. 4 (a) is a cross-sectional view of a waveguide for guiding a microwave of 2.45 GHz
  • FIG. Is a cross-sectional view of a waveguide guiding 5.8 GHz microwaves
  • FIG. 5 is a perspective view of a high-frequency heating device according to a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line A--A of FIG.
  • FIG. 7 is a cross-sectional view of a high-frequency heating device according to a fifth embodiment of the present invention.
  • FIG. 8 is a plan view of a high-frequency heating device according to a sixth embodiment of the present invention.
  • Figure 9 is a comparison diagram of microwave heating distribution characteristics at 2.45 GHz and 5.8 GHz.
  • FIGS. 10A and 10B are diagrams illustrating a high-frequency heating device according to the present invention.
  • FIG. 10A is a longitudinal sectional view showing the internal structure of the high-frequency heating device
  • FIG. 10B is an example of an arrangement state of a power supply port provided on a floor.
  • FIGS. 11 (a) to 11 (c) are perspective views showing a steaming plate of a steam generating section used in the high-frequency heating device of FIG.
  • FIG. 12 is a configuration diagram of a power supply for driving a 5.8 GHz magnetron used by the present invention.
  • FIGS. 13 and 14 show examples in which the rectangular parallelepiped wide-area waveguide according to the present invention is applied to a high-frequency heating device.
  • FIG. FIG. 13 shows examples in which the rectangular parallelepiped wide-area waveguide according to the present invention is applied to a high-frequency heating device.
  • FIG. 14 is a longitudinal sectional view showing the internal structure of the high frequency heating device of the first conventional example.
  • FIG. 15 is a diagram showing the internal structure of the high frequency heating device of the second conventional example.
  • (B) is a cross-sectional view through the waveguide 53 of (a),
  • FIG. 16 is a conceptual configuration diagram of the high-frequency heating device according to the present invention.
  • FIG. 17 is a configuration diagram of a high-frequency driving unit of the high-frequency heating device.
  • Fig. 18 is an external perspective view of a high-frequency heating device for explaining a choke for preventing radio wave leakage.
  • FIG. 19 is a cross-sectional view showing the A-A cross section (a) and the BB cross section (b) of FIG. 3, and FIG. 20 is a perspective view of the chalk.
  • FIG. 21 is a partial schematic cross section of a high-frequency heating device for explaining the stirrer blade
  • FIG. 22 is a schematic cross-sectional view of a high-frequency heating device, (a) is an explanatory diagram showing a high-frequency power supply of 2.45 GHz, and (b) is an explanatory diagram showing a lateral power supply.
  • Figure 23 shows the standing wave state at a certain moment that appears in the heating chamber.
  • (A) is a high frequency of 2.45 GHz
  • (b) is a high frequency of 5.8 GHz
  • (c) is 2.45 GHz and 5.45 GHz. It is an explanatory diagram showing multiplexing of high frequencies of GHz,
  • Fig. 24 shows a conceptual cross section of a frequency heating device in which the heating chamber is divided into upper and lower parts by a partition plate.
  • FIG. 25 is a sectional view of the partition plate.
  • FIG. 26 is a configuration diagram illustrating another configuration example of the high-frequency driving unit.
  • FIG. 27 is an explanatory diagram showing a power supply pattern to the first high-frequency generation unit and the second high-frequency generation unit, in which a high-frequency output of 5.8 GHz and 2.45 GHz is output alternately.
  • FIG. 28 is an explanatory diagram showing a power supply pattern to the first high-frequency generation unit and the second high-frequency generation unit, which simultaneously outputs 5.8 GHz and 2.45 GHz high frequencies.
  • Fig. 29 shows the power supply pattern to the first high-frequency generator and the second high-frequency generator, in which the high frequency of 2.45 GHz is output first and the high frequency of 5.8 GHz is output later.
  • FIG. 30 is an explanatory diagram showing a power supply pattern to the first high-frequency generation unit and the second high-frequency generation unit, which is a pattern for outputting only a 5.8 GHz high frequency.
  • 1 is a high frequency heating device
  • 2 is a heating room
  • 3 is a cavity
  • 3a is a top wall
  • 3b is a back wall (side wall)
  • 3c is a bottom wall
  • 5 is a magnetron
  • 7a, 7b, 7c is a power supply port
  • 1 1 is a waveguide
  • 1 1a, lib is a waveguide
  • 13 is an outer casing
  • 15 is a front opening Door, 21, 31, 41, high-frequency heating device, 43, surface heater, 51, 61 high-frequency heating device, 110 high-frequency heating device according to the present invention
  • 1 1 1 heating room 1 1 1 a is the ceiling of the heating room
  • 1 1 1 b is the side wall of the heating room
  • 1 1 lc is the floor
  • 1 1 2 is the high frequency generator
  • 1 3 is the waveguide
  • 1 1 3 b is the power supply port
  • 1 1 7 is a door
  • 1 18 is
  • 1 33 is a rectifier circuit
  • 1 34 is a choke coil
  • 1 3 5 is a smoothing capacitor
  • 1 3 6 is an inverter
  • 1 3 6 1 is an inverter control circuit
  • 1 2 3 is a thermistor
  • 1 2 3 is a step-up transformer
  • 1 3 1 is a primary Winding
  • 1382 is a secondary winding
  • 1383 is a filament heating winding
  • 1339 is a half-wave rectifier circuit
  • 140 is a cooking device
  • 141 is a heating room
  • 141a is a ceiling
  • 141b Is the side wall
  • 14 1 c is the floor
  • 143 is the high frequency generator
  • 144 is a rectangular parallelepiped wide area waveguide arranged on the floor side, 145 is a power supply port, 146 is a wide rectangular parallelepiped waveguide on the ceiling side, 147 is a power supply port, 211 is a heating room, 213 is a first high frequency generator, 215 is a second high-frequency generator, 217 is a high-frequency driver, 219 is a controller, 225 is a magnetron (for 2.45 GHz), 227 is a lower feed port, 229 is a lower waveguide, and 231 is a magnetron (5.8 GHz), 233 is the upper feed port, 235 is the upper waveguide, 237 is the first inverter circuit, 267 is the second inverter circuit, 273 is the drive control section, 275 is the open / close door, and 277 is the open / close door Heating chamber body, 279 is a choke, 281 is a conductor piece, 283 is a metal plate, 285 is a groove, 297 is
  • FIG. 1 is a cross-sectional view of a high-frequency heating device according to a first embodiment of the present invention.
  • a high-frequency heating device 1 according to the first embodiment can be used as a microwave oven for home use.
  • the cavity 3 that defines the chamber 2, the magnetron 5 that is a high-frequency generator that outputs 5.8 GHz microwaves from the antenna 5a, and the microwaves output from the antenna 5a are guided to the heating chamber 2 and emitted to the heating chamber 2.
  • FIG. 1 is a cross-sectional view of the apparatus viewed from the right side. The left end of the figure is the front of the apparatus, and the lower end of the figure is the bottom of the apparatus.
  • the magnetron 5 is provided on the outer surface of the rear wall 3 b of the cavity 3, and the first waveguide 11 a extends upward from the magnetron 5 to extend the heating chamber 2. It is installed along the upper wall 3a of the cavity 3, which is the upper surface of the cavity 3, and its power supply port 7 is opened substantially at the center of the upper wall 3a.
  • the second waveguide 11 b extends downward from the magnetron 5, and has a power supply port 9 provided with a cavity to be a rear surface of the heating chamber 2. 3 Open at a position near the lower end of the rear wall 3b.
  • the microwaves are emitted from the power supply ports 7 and 9 of the respective waveguides 11a and lib, the distribution of the heating spot by the microwaves can be expanded. This allows microwaves to hit a wider area of the surface of the object to be heated.
  • the material to be heated can be heated from two directions, which are orthogonal to each other, to increase the substantial baking depth.
  • the arrangement of the power supply port for emitting the microwave is as follows. What is necessary is just to disperse
  • the installation position of the power supply port can be the upper and lower surfaces of the heating chamber 2, the upper surface and the side surface (including the rear surface), or the side surface (including the rear surface) and the lower surface.
  • FIG. 2 is a sectional view of a high-frequency heating device according to a second embodiment of the present invention.
  • the high-frequency heating apparatus 21 according to the second embodiment, two power supply ports 7 and 9 are opened so as to face the upper and lower surfaces of the heating chamber 2, that is, the upper wall 3a and the bottom wall 3c of the cavity 3.
  • the waveguides 11a and 11b are arranged, and the first waveguide 11a is the same as that of the first embodiment, but the second waveguide lib Is installed along the bottom wall 3 c of the cavity 3 extending downward from the magnetron 5 and serving as the lower surface of the heating chamber 2, and the power supply port 9 is opened substantially at the center of the bottom wall 3 c.
  • the objects to be heated can be heated from the opposite direction, respectively.
  • an electromagnetic wave stirring means such as a turntable or a stellar fan, it can cover the entire surface layer and deep portion of the material to be heated.
  • it is possible to suppress the occurrence of uneven heating and as in the first embodiment, it is possible to realize good heating without uneven heating even for a thick-walled object, and to stir electromagnetic waves.
  • FIG. 3 is a perspective view of a high-frequency heating device according to a third embodiment of the present invention as viewed from the rear side.
  • the high-frequency heating device 31 of the third embodiment has a power supply port 7 on the upper surface of the heating chamber 2 by two waveguides 1 la and 11 b disposed on the upper wall 3 a of the cavity 3. a, 7b are provided in two ports.
  • the two waveguides 11 a and l i b are formed by branching one common tube 11 extending upward from the magnetron 5.
  • Fig. 4 (&) is a cross-sectional view of a waveguide that guides 2.450112 microphone mouth waves
  • (b) is a cross-sectional view of a waveguide that guides 5.8GHz microwaves. . Each cross-sectional view is drawn to the same scale.
  • the cross-sectional area of the waveguide that guides the 5.8 GHz microwave is reduced to about 1 to 4 of the cross-sectional area of the waveguide that guides the 2.45 GHz microphone mouth wave. . Therefore, the long side dimension b2 of the waveguide for 5.8 GHz is almost the same as the short side dimension a1 of the waveguide for 2.45 GHz.
  • FIG. 5 is a perspective view of a high-frequency heating device according to a fourth embodiment of the present invention as viewed from the rear side.
  • FIG. 5 is a perspective view of a high-frequency heating device according to a fourth embodiment of the present invention as viewed from the rear side.
  • the high-frequency heating device 41 of the fourth embodiment is a further improvement of the high-frequency heating device 31 shown in FIG. 3 in consideration of the dimensional difference of the waveguide shown in FIG.
  • the two waveguides 1 la and 1 1 b arranged on the upper wall 3 a are equipped with a vertical arrangement in which the long side b 2 of the waveguide cross section is oriented in the vertical direction.
  • the surface heater 43 is arranged in an area of the upper wall 3a excluding the equipment area of the vertically arranged waveguide.
  • the microwave frequency used is 5.8 GHz
  • the waveguides 11 a and 11 b disposed on the upper wall 3 a of the cavity 3 can be arranged vertically as described above. As shown in Fig.
  • the installation space L of the waveguide secured on the upper surface side of the cavity 3 is set at the upper surface of the cavity 3 with the long side of the waveguide for 2.45 GHz oriented horizontally. It can be set to the same level as the conventional high-frequency heating device that was installed. Then, by arranging the waveguides in a vertical configuration, the occupation of the upper wall 3a of the cavity 3 in the width direction of the waveguide can be reduced, and the occupied area can be reduced.
  • the vacant area of the upper wall 3a of the cavity 3 increases, and as shown in FIG. 5, a large area of the upper wall 3a of the cavity 3 except for the equipment area of the waveguides 11a and 11b is provided. It is possible to adopt a configuration in which the surface heaters 43 are arranged in the entire empty region.
  • the position where the waveguides are vertically arranged as described above is not limited to the upper wall 3a of the cavity 3.
  • FIGS. 7A and 7B are sectional views of a high-frequency heating device according to a fifth embodiment of the present invention.
  • (A) and (b) show examples of different heating distributions in the heating chamber by electric flux lines.
  • two waveguides 11 a and 11 b are arranged opposite to the upper and lower surfaces of the heating chamber 2 as shown in FIG.
  • these waveguides 11a and 1lb are set in a vertical arrangement, respectively.
  • the microwaves radiated from the power supply ports 7 and 9 facing up and down form standing waves whose phases are shifted by 180 °, so that the heating distribution to the object to be heated is Can be expected to be further uniform.
  • the phases of the microwaves radiated from the upper and lower feed ports 7 and 9 are shifted by 180 °, so that the directions of the electric field E of both microwaves can be aligned in one direction.
  • the heating of the object to be heated can be promoted by the electric field strength obtained by adding both electric fields.
  • more microwave energy can be transmitted to a part of the food.
  • the number of such waveguides is not limited to the two shown in the above embodiment, but can be arbitrarily improved.
  • FIG. 8 is a plan view of the upper surface of the cavity of the sixth embodiment of the high-frequency heating device according to the present invention.
  • This high-frequency heating device 61 is equipped with three power supply ports 7a, 7b, 7c by three waveguides 1 1a, lib, 1 1c on the upper wall 3a of the cavity 3.
  • the three power supply ports 7a, 7b, and 7c are arranged such that the position of the central power supply port 7b is shifted from the other power supply ports 7a and 7c.
  • the center waveguide l ib is drawn at the branch base 12 so that the cross-sectional area is reduced as compared with the other waveguides 11 a and 11 c. Note that all three waveguides are arranged vertically.
  • the center waveguide 11b is drawn is that, compared to the other waveguides 11a and 11c, the waveguide is extended linearly from the magnetron 5 and the microwave induction efficiency is high. Therefore, this is restricted to balance with the other waveguides 11a and 11c.
  • the seventh embodiment of the present invention will be described in detail.
  • FIGS. 10A and 10B are views for explaining the high-frequency heating device according to the present invention.
  • FIG. 10A is a longitudinal sectional view showing the internal structure of the high-frequency heating device
  • FIG. 10B is an example of an arrangement state of power supply ports provided on the floor.
  • 110 is a high-frequency heating apparatus according to the present invention
  • 111 is a heating room
  • 111a is a ceiling of the heating room
  • 111b is a side wall of the heating room
  • 111 is c is the floor.
  • the floor 1 1 1 c is made of a non-metallic material, for example ceramic.
  • 1 1 2 is a high-frequency generator including a magnetron that oscillates a microwave of 5.8 GHz, which is provided on the outside of the floor 1 1 1 c of the heating chamber 1 1 1 1 1 c, and 1 1 3 is a heating chamber 1
  • This is a waveguide provided on the back side of the floor section 1 1 1 c, which is a rectangular parallelepiped (for example, a rectangular parallelepiped (for example, 30 cm long x 30 c wide; mX 5 cm high)). It is a tube. Of the six surfaces, the width of the wide surface is approximately the same as the floor 1 1 1 c.
  • 11a is the waveguide ceiling (the surface facing the floor 11c), and 11b is the large number of waveguides formed over the entire surface of the waveguide 11a.
  • Power supply port Reference numeral 117 denotes a door, and reference numeral 118 denotes a radio wave leakage preventing means having a chalk structure corresponding to the 1Z4 wavelength of the microwave applied to the four sides of the door 117.
  • FIG. 10 (b) shows an example of the arrangement of one of the power supply ports formed over substantially the entire surface of the waveguide ceiling 113a.
  • each power supply port 1 13 b is a rectangle whose long side is longer than 1Z 4 ⁇ (approximately 1.3 cm), with 7 rows near the high-frequency generator 1 12 and then 8 rows, There are nine rows far from the high frequency generators 1 1 and 2.
  • the conventional waveguide 113 is an elongated tube and has only one power supply port 154. It was difficult to obtain strength, and it was difficult to uniformly heat the object to be heated G.
  • the size of the holes of the power supply ports 1 1 3 b 1 near the high-frequency generation section 1 12 is made smaller, so that they become larger as the distance from the high-frequency generation section 1 12 increases.
  • the microwaves with a strong electric field near the high-frequency generator 1 1 2 enter the heating chamber 1 1 1 and less, and the microphones with a weak electric field far from the high-frequency generator 1 1 2 often enter the heating chamber. In this case, the electric field intensity becomes relatively uniform, which contributes to uniform heating of the object G to be heated.
  • the operation of the high-frequency heating device 110 is as follows.
  • a magnet mouth wave having a frequency of 5.8 GHz is oscillated from the magnetron 1 12.
  • the oscillated frequency of the 5.8 GHz microphone mouth wave passes through the waveguide 1 1 3 provided on the entire back side of the floor 1 1 1 c of the heating chamber 1 1 1 c and the floor 1 1 1 c
  • a large number of power supply ports 1 1 3 b scattered around the waveguide 1 13 enter the heating chamber 1 1 1 1, and are in inverse proportion to the electric field strength. Since the number of b and the size of the holes are determined, a uniform electric field distribution is generated in the heating chamber 111, so that the object to be heated G is uniformly heated. It becomes.
  • the rectangular parallelepiped and the structure of the waveguide are simple and robust, improving reliability and reducing costs.
  • FIG. 11 shows another example of the arrangement of the power supply ports provided on the waveguide ceiling of the rectangular parallelepiped wide area waveguide.
  • Fig. 11 (a) shows a rectangular parallelepiped wide-area waveguide with radially arranged feed ports.
  • 1 1 2 is a high-frequency generator
  • 1 1 3 is a rectangular parallelepiped wide-area waveguide
  • 1 1 3 a is a ceiling
  • 1 1 3 b is a power supply port opened in the ceiling 1 1 3 a
  • bl ⁇ b 3 Are holes of different sizes.
  • the long hole-shaped power supply ports b1 to b3 are arranged in a radiating manner from the center of the waveguide ceiling 113a of the heating chamber 111. Then, as can be seen by comparing the power supply ports b 1 and b 3, the long hole becomes longer as the distance from the center increases.
  • Fig. 11 (b) shows a rectangular parallelepiped wide-area waveguide with grid-like feed ports.
  • 1 1 2 is a high-frequency generator
  • 1 1 3 is a rectangular parallelepiped wide area waveguide
  • 1 1 3 a Is a ceiling
  • 1 13b is a power supply opening formed in the ceiling 1 13a
  • bl to b 4 are holes of different sizes.
  • Rectangular power supply port b 1! D4 is arranged in a grid pattern on the waveguide ceiling 1113a of the heating chamber 111. Then, as can be seen by comparing the power supply ports b 1 a and b 4, one side of the power supply port becomes longer as the distance from the high frequency generator 112 side increases.
  • Figure 11 (c) is a rectangular parallelepiped wide-area waveguide with radially arranged feed ports.
  • 1 1 2 is a high-frequency generator
  • 1 1 3 is a rectangular parallelepiped wide-area waveguide
  • 1 1 3 a is a ceiling
  • 1 1 3 b is a feed port opened in the ceiling 1 1 3 a
  • Reference numeral 3 denotes holes of different sizes.
  • the rectangular power supply ports b 1 to b 3 are arranged radially from the high-frequency generator 1 12 on the waveguide ceiling 1 13 a of the heating chamber 111. Then, as can be seen by comparing the power supply ports b 1 and b 3, the elongated hole becomes longer as the distance from the center increases.
  • FIG. 12 is a configuration diagram of a power supply for driving a 5.8 GHz magnetron used by the present invention.
  • the alternating current from the commercial power supply 1311 is rectified directly by the rectifier circuit 133, smoothed by the choke coil 134 on the output side of the rectifier circuit 133 and the smoothing capacitor 135, and then input to the inverter 136.
  • the direct current is converted to a desired high frequency (20 to 40 kHz) by turning on and off the semiconductor switching element in the inverter 136.
  • the inverter 136 is controlled by an IGBT (Insulated Gate Transistor) that switches DC at high speed and an inverter control circuit 136 1 that drives and controls the IGBT.
  • IGBT Insulated Gate Transistor
  • the current flowing through the primary side is switched on and off at high speed.
  • the input signal of the control circuit 136 1 detects the primary current of the rectifier circuit 133 with the CT 13 7, and the detected current is input to the inverter control circuit 136 1, which is used to control the impeller 1 36 .
  • a temperature sensor (thermistor) 1362 is attached to the radiating fin that cools the IGBT, and information about the temperature detected by this temperature sensor is input to the inverter control circuit 136 1, which is used to control the impeller 136.
  • a high-frequency voltage which is the output of the impeller 1336 is applied to the primary winding 1381, and a high-voltage corresponding to the winding ratio is obtained in the secondary winding 1382.
  • a winding 1383 with a small number of turns is provided on the secondary side of the step-up transformer 138, and is used for heating the filament 1321 of the magnetron 132 for 5.8GHz oscillation.
  • the secondary winding 1382 of the step-up transformer 138 includes a voltage doubler half-wave rectifier circuit 139 for rectifying its output.
  • the voltage doubler half-wave rectifier circuit 139 is composed of a high-voltage capacitor 1391 and two high-voltage diodes 1392 and 1393.
  • the alternating current is rectified and smoothed, converted into high frequency by an inverter, transformed into high frequency and high voltage by a high voltage transformer, then rectified at high voltage, and the magnetron is driven.
  • the magnetron is driven, 5.8 GHz microwaves are oscillated from the antenna, and the 5.8 GHz microwaves propagate through a wide waveguide formed almost entirely on the back side of the heating room floor. While repeating the reflection on the pipe wall, the light enters the heating chamber from the optimal power supply port.
  • substantially the entire back side of the floor has a waveguide structure, and a large number of power supply ports for passing high-frequency waves into the heating chamber are provided on substantially the entire surface of the floor, so that the center and the corner of the heating chamber are provided. No difference in microwave electric field intensity is generated between the two, and uniform heating can be achieved.
  • the waveguide is provided on the near side, eliminating wasteful space and the space above the ceiling where the conventional waveguide was installed. The space volume in the heating chamber can be increased by that amount.
  • the wavelength becomes about 5 cm, so that the wavelength is smaller than that of the rectangular parallelepiped wide-area waveguide according to the present invention.
  • the microphone mouth wave is easy to fly through the wide-area waveguide, and the microphone mouth wave is randomly distributed, making it possible to achieve uniform heating.
  • the magnetron used is a magnetron having a frequency of 5.8 GHz, but the present invention is not limited to this, and a general-purpose 2.45 GHz magnetron may be used.
  • the wavelength is about 12 cm, which is larger than the size of the rectangular parallelepiped wide-area waveguide according to the present invention. It is necessary to devise ways to distribute the randomness.
  • FIG. 13 is a front perspective view showing an example in which the rectangular parallelepiped wide-area waveguide according to the present invention is applied to a high-frequency heating device, (a) is on a floor portion of the high-frequency heating device, and (b) is a diagram of the high-frequency heating device. It is a front perspective view which shows the example which applied the rectangular parallelepiped wide area waveguide to the ceiling, respectively. In the figure, the door is omitted, and the rectangular parallelepiped wide area waveguide is shown detached from the heating device body.
  • reference numeral 140 denotes a heating cooker that supplies microwaves to the heating chamber to heat and heat the object to be heated.
  • Reference numeral 141 denotes a heating room, which includes a ceiling 141a, side walls 141b, and a floor 141c.
  • 142 is a circulation fan for circulating the air in the heating chamber 141
  • 143 is a high-frequency generator including a magnetron
  • 144 is a rectangular parallelepiped wide area waveguide according to the present invention
  • 145 is a power supply port.
  • the heating chamber 141 is formed inside a box-shaped main body case having an open front, and an opening / closing door (not shown) for opening and closing a heated object outlet of the heating chamber 141 is provided on the front of the main body case. I have.
  • the opening and closing door can be opened and closed in the up and down direction by having its lower end hinged to the lower edge of the main body case.
  • the size of the rectangular parallelepiped wide area waveguide 144 is equal to substantially the entire surface of the floor portion 141c according to the present invention.
  • Conventional waveguides have a rectangular cross-section, a narrow tube with a width equal to the width of the high-frequency generator, and a single power supply port.Therefore, it is difficult to obtain a uniform electric field intensity in the heating chamber, and therefore the object to be heated Although it was difficult to uniformly heat G, according to the rectangular parallelepiped wide-area waveguide 144, the power supply ports 145 are innumerably scattered on the floor side, and the size thereof is close to the high-frequency generation section 143.
  • the object to be heated placed on the floor can be heated efficiently and can be heated uniformly.
  • the rectangular parallelepiped wide-area waveguide 113 particularly on the floor it is possible to increase the space volume in the heating chamber, and since the power supply port is close to the food to be heated, Absorption becomes better.
  • the arrangement of the upper heater is greatly simplified.
  • 140 is a heating cooker, 141 is a heating chamber, 144 is a circulation fan, 144 is a high-frequency generator, 144 is a rectangular parallelepiped wide area waveguide, 1 4 7 is a power supply port.
  • the size of the rectangular parallelepiped wide-area waveguide 146 is equal to substantially the entire surface of the ceiling 141a, and power supply ports 147 are innumerably scattered on the ceiling side.
  • the size is small near the high-frequency generating section 144 and becomes larger as the distance from the high-frequency generating section 144 increases, a uniform radio wave can be seen from one surface of the ceiling like a shower. As it falls down, more uniform heating is possible.
  • FIG. 16 is a conceptual configuration diagram of a high-frequency heating device according to the present invention
  • FIG. 17 is a configuration diagram of a high-frequency driving unit of the high-frequency heating device.
  • the high-frequency heating apparatus 2100 supplies high-frequency power to a heating chamber 211 for accommodating the object to be heated M and heats the object to be heated M.
  • a first high frequency generator 213 generating a high frequency of 2.45 GHz and a second high frequency generator 215 generating a high frequency of 5.8 GHz are provided.
  • the high frequency heating device 210 A drive section 2 17 and a control section 2 19 are provided.
  • the control section 2 19 includes an input operation section 2 2 1 such as a start switch for instructing the start of heating and a menu switch for setting heating contents.
  • a display unit 223 for displaying various information are connected.
  • the control unit 219 drives and controls the high-frequency generation unit based on the input content from the input operation unit 221 to heat the object to be heated M on the mounting table 220 under desired conditions.
  • the first high-frequency generator 2 13 is a heating chamber that radiates a high frequency output from a magnetron 2 25 that oscillates a high frequency of 2.45 GHz and an antenna 2 25 a of the magnetron 2 25. And a lower waveguide 229 for guiding to a lower power supply port 227 provided on the bottom surface side of 211.
  • the second high frequency generator 215 heats the high frequency output from the magnetron 231, which emits a high frequency of 5.8 GHz, and the antenna 231a of the magnetron 231, An upper waveguide 235 for guiding to an upper power supply port 233 provided on the upper surface side of the chamber 211 is provided.
  • the high-frequency driver 2 17 includes an inverter circuit for individually driving the magnetrons 2 25 and 2 31.
  • the power from the commercial power supply 249 is supplied to the first inverter circuit 237 that drives the magnetron 225 after being full-wave rectified by the rectifier circuit 251 such as a diode bridge.
  • the voltage is applied to the primary winding 255 of the step-up transformer 255.
  • a high-frequency high voltage of several kV is generated in the secondary winding 257 of the step-up transformer 253.
  • the high-frequency high voltage is rectified by a voltage doubler rectifier circuit 261 including a capacitor 258 and a diode 259, and a high voltage is applied to the magnetron 225.
  • the heater winding 263 of the step-up transformer 253 is connected to the filament 265 of the magnetron 225 to heat the filament 265.
  • the magnetron 225 oscillates a high frequency by heating the filament 265 and applying a high voltage.
  • Each of the above-described first inverter circuit 2 37 driving the magnetron 2 25, the step-up transformer 25 3, and the voltage doubler rectifier circuit 26 1 comprises the second inverter circuit 2 driving the magnetron 2 3 1 67, the step-up transformer 269, and the multiplying voltage rectifier circuit 271, the parts having the same functions are given the same reference numerals, and the description thereof will be omitted. .
  • a drive control unit 273 is connected to the first inverter circuit 237 and the second inverter circuit 267, and the drive control unit 273 controls the drive timing of both circuits, power supply distribution, and the like. Control is performed by receiving a control signal from the unit 219.
  • FIG. 18 shows an external perspective view of the high-frequency heating apparatus 2100.
  • the box-shaped heating chamber 2 1 1 is opened by an opening / closing door 2 7 5 attached to the front side, which is one side of the high-frequency heating apparatus 2 1 0 0, and the heating chamber 2 1 1 is opened from this opening. It is configured so that the object to be heated can be taken in and out of the room.
  • the heating chamber 2 1 1 has a heating chamber main body 2 7 7 having an opening, which can be opened and closed by the opening and closing door 2 7 5, so that a choke 2 to prevent radio wave leakage from the opening and closing door 2 7 5
  • Reference numeral 79 denotes an opening / closing door 275 facing the heating chamber main body 277.
  • the choke 279 may be formed at a portion of the heating chamber main body 277 facing the opening and closing door 275.
  • FIG. 19 shows an AA section (a) and a BB section (b) of FIG. 18, and FIG. 20 shows a perspective view of the choke.
  • the shape of the choke 279 is substantially the same as that of the choke described in Japanese Patent No. 1504201, although the frequency is different. That is, as shown in FIG. 19 (a), the groove 285 is formed by bending at the end of the metal plate 283 forming the opening / closing door 275, thereby forming the base side wall surface 287. Then, the tip of the metal plate 283- is bent into a U-shape, and the short-side groove 285b with the groove width bl of the opening side groove 2a and the groove width of b2 Is formed. As shown in Fig. 20, the conductor width is a1, a3 on the opening side groove 285a side, and the conductor width is a2, a4 on the short circuit side groove 285b side. A plurality of conductor pieces 281 a are formed.
  • the groove width is b3 on the opening side groove 285a side, and b4 is on the short circuit side groove 285b side, and the conductor piece 2 A plurality of conductor pieces 2 81 b having the same shape as 81 a are formed.
  • the ratio K2 of the characteristic impedance in the groove indicated by the cross section BB is expressed by
  • each value of ⁇ 2 are respectively set as the depth of the grooves (L1 + L2) and is (L3 + L4) become the same.
  • e effl and £ eff2 are the effective dielectric constants of the respective grooves.
  • the value of the ratio ⁇ of the characteristic impedance in Expression (3) is K ⁇ l.
  • the value of the characteristic impedance ratio K is determined so that the groove depth (L3 + L4) for the high frequency of 5.8 GHz and the groove depth (L1 + L2) of 2.45 GHz are the same. .
  • the groove depth (L3 + L4) for the high frequency of 5.8 GHz and the groove depth (L1 + L2) of 2.45 GHz are the same. .
  • the 45 GH Z characteristic impedance ratio K1 for to determine the depth of the groove (L1 + L2), to match it to determine the value of the characteristic impedance ratio K2 for 5. 8 GHz.
  • the combination of Kl> 1 and ⁇ 2 ⁇ 1 effectively works for two types of high frequency, 2.45 GH ⁇ and 5.8 GHz.
  • a groove for preventing radio wave leakage can be configured.
  • At least one of the portions where the heating chamber main body 277 and the opening / closing door 275 face each other is provided with at least one groove, and at least one wall surface of this groove is provided. Consists of a group of conductor pieces that are continuously arranged at intervals in the longitudinal direction of the groove, and that are parallel to the wall surface of the groove.
  • the characteristic impedance of the opening of the groove and the characteristic impedance of the short-circuit end of the groove are periodically changed by changing at least one of the permittivity, the line width, and the groove width in the groove.
  • FIG. As shown in the schematic cross section, a stirrer blade 293 for radio wave stirring is provided in the vicinity of the lower power supply port 227 of the waveguide 229 as necessary, and a radio wave supplied to the heating chamber 211 by rotating the stirrer blade 293 is provided.
  • Forcible stirring may be used to achieve more uniform heating.
  • a turntable 295 rotatably supported on the bottom of the heating chamber 211 may be provided to achieve uniform heating.
  • the first high-frequency generator 213 and the second high-frequency generator 215 are arranged above the heating chamber 211, and the upper power supply port 2 of the second high-frequency generator 215 is provided.
  • a configuration may be adopted in which high frequency is supplied into the heating chamber 211 from the vicinity of 33 (see FIG. 22 (a)). Also, the first high frequency generator 2 13 is provided on the side of the heating chamber 11 and A configuration may be adopted in which high frequency is supplied into the heating chamber 211 from the side (see Fig. 22 (b)). Next, the operation of the high-frequency heating device 2100 according to the present invention will be described.
  • the heating chamber 2 1 1 includes a first high-frequency generator 213, a high frequency of 2.45 GHz, and the like. At least one of the 5.8 GHz high frequencies from the second high frequency generator 215 is supplied individually or simultaneously.
  • FIG. 23 shows an example of the state of a standing wave at a certain moment that appears in the heating chamber 2 11.
  • (a) is a high frequency of 2.45 GHz
  • (b) is a high frequency of 5.8 GHz
  • (c) is 2.
  • the distance between the antinodes of the electric field where the amount of heating increases is approximately 6 cm, for example, a 30 cm long heated object.
  • the distance between the heating spots is approximately 6 cm, for example, a 30 cm long heated object.
  • the object M there can be only about 5 antinodes of the standing wave on the straight line. Therefore, in the object to be heated M, a large difference occurs in the temperature rise characteristics between the heating spot position and other positions, and heating unevenness is likely to occur.
  • the distance between the heated spots is approximately 2.6 cm, and at the above length, more than 10 heated spots on the straight line May be included. Therefore, the object to be heated M is evenly heated, and uneven heating due to the location of the object to be heated M is less likely to occur.
  • the absorption depth for the heated object M becomes shallower.
  • the high frequency of 2.45 GHz is about 5 to 7 cm from the surface of the object to be heated M
  • the high frequency of 5.8 GHz becomes shallow, about 2 to 3 cm from the surface. Therefore, when heating the object to be heated M using only the 5.8 GHz high frequency, the object to be heated M may be thin, but if the object to be heated M is thick, The temperature difference between the inside and the surface increases, and heating unevenness tends to occur.
  • the high frequency of 5.8 GHz can be suitably used for heating pizza and meat sliced products with a large surface area, and while it is possible to suppress uneven heating, 2.45
  • the high frequency of GHz tends to cause uneven heating due to the small number of heating points described above.
  • uniform heating can be realized even for thin-walled products. For thick objects to be heated, 2.
  • various forms of standing wave distribution can be formed by using high-frequency waves of different frequencies and adjusting the power distribution of each of them, so that heating with less unevenness and local heating can be performed. realizable.
  • FIG. 24 shows a conceptual cross-sectional configuration diagram of the high-frequency heating device of the present embodiment.
  • the same reference numerals are given to members having the same functions as those in the configuration of the above-described eighth embodiment, and description thereof will be omitted.
  • the high-frequency heating device 2200 of the present embodiment supplies a high-frequency of 2.45 GHz from the first high-frequency generator 2 13 from the lower side of the heating chamber 2 11.
  • 5.8 GHz high-frequency is supplied from the second high-frequency generator 215 from the upper side of the heating chamber 211, and the heating chamber 211 is heated to the total height H.
  • a partition plate 297 for dividing the space of the heating chamber 211 up and down is provided at a distance h from the upper surface of the chamber 211.
  • the partition plate 297 is easily detachable at a plurality of height positions with respect to the heating chamber 211, and is supported by a locking portion 299 formed on the wall surface of the heating chamber 211. Attach it.
  • the partition plate 297 faces the metal plate 2101, which is a mounting surface for the object to be heated, and the metal plate 2101, or
  • the high-frequency heating element 2103 which is disposed in contact with the metal plate, fixes the high-frequency heating element 2103 to the metal plate 2101 and engages with the locking section 2999 on the heating chamber 211 side.
  • a fixing member 2105 to be combined.
  • the metal plate 2101 is made of an aluminum-plated steel plate, and the surface of the metal plate 2101 is formed by forming a corrugation on the metal plate 2101 itself and forming a projection on the metal plate 2101. There are wavy irregularities on the surface.
  • the front side of the aluminum plating steel sheet is coated with fluorine, which has a high antifouling effect, and the back side is coated with black heat-resistant coating, which has a high heat absorption effect.
  • the high-frequency heating element 2 103 absorbs high frequency on the surface opposite to the metal plate 2 101 side
  • the high-frequency heating film 2103a made of nitride and boride, which generates heat by heating, is formed in close contact with the substrate 2103b.
  • the base 2103b is made of a ceramic material or a heat-resistant resin material, and a material having a high heat storage effect is suitably used.
  • the fixing member 2105 is made of an insulator provided on both sides along the direction in which the partition plate 297 is inserted into the heating chamber 211, and forms a gap between the heating member 211 and the The generation of sparks during heating is prevented.
  • the metal plate 210 1 by making the metal plate 210 1 into a waveform, the distance between the high-frequency absorption film 2103a and the metal plate 2101 becomes longer, thereby reducing the electric field strength on the high-frequency absorption film 2103a. As a result, the effect of increasing the amount of heat generated on the high-frequency absorption film 2103a can be obtained.
  • the high-frequency heating element 2103 In addition to the configuration in which the high-frequency heating element 2103 is provided with the high-frequency heating film 2103a on the back surface, the high-frequency heating element itself may be formed of a ceramic that generates heat at a high frequency.
  • a metal aluminum plated steel plate was used as the metal plate 2101.If the surface reflects high frequencies, a ceramic base material with a high-frequency reflective layer provided by metal plating or metal deposition is used. Further, various plated steel sheets such as stainless steel, aluminum and aluminum alloys, zinc plated steel sheets, aluminum zinc alloy plated steel sheets / copper plated steel sheets, cold rolled steel sheets, clad materials and the like can also be used. Further, although nitride / boride is used as the high-frequency absorption film 281, metal oxides such as tin oxide and indium oxide, and composite oxides can also be used.
  • the heating chamber 211 is divided into an upper space and a lower space, and two spaces can be used to perform desired heat treatment. That is, in the high-frequency heating device 2200, the high frequency of 5.8 GHz from the second high-frequency generator 2 15 is supplied to the upper space 21 1 a of the heating chamber 211, and the lower side of the heating chamber 21 1 A high frequency of 2.45 GHz from the first high frequency generator 213 is supplied to the space 2 1 1b.
  • the object to be heated M placed on the partition plate 297 of the upper space 2 11 a is heated by the high frequency of 5.8 GHz supplied from the upper side and supplied from the lower side 2.45 It is also heated by the heat generated by the high-frequency heating element 210 3 by the high frequency of GHz. In this case, so-called grill cooking is performed in the upper space 211a.
  • the object M to be heated must be placed on the bottom of the heating chamber 211. Then, high-frequency heating of 2.45 GHz is performed.
  • the partition plate 297 may not be provided with the high-frequency heating element 2103. In that case, in the upper space, the object to be heated M can be heat-treated mainly by high-frequency heating from the upper side by restricting heating by the high frequency from the lower side.
  • the high frequency supplied from the upper side may be 5.8 GHz, and the high frequency supplied from the lower side may be 2.45 GHz.
  • a fixed partition structure may be used in place of the detachable partition plate 297 to form individual heating spaces by high frequencies of each frequency. In this case, the detaching operation of the partition plate 297 becomes unnecessary, and the heating operation can be simplified.
  • the high-frequency drive unit 217 was equipped with inverter circuits for individually driving the magnetrons 225 and 231.
  • inverter circuits for individually driving the magnetrons 225 and 231.
  • FIG. 26 another configuration example of the high-frequency drive unit shown in Fig. 26 is shown. As described above, a configuration driven by a single inverter circuit may be used.
  • a drive control unit 211 which is connected to the inverter circuit 2107 and switches and controls a switching switch 2109 for switching the magnetron to be driven is provided, and a switching switch 2109 is controlled by a control unit 2109 (see FIG. 16).
  • a high-frequency of 2.8 GHz and a high-frequency of 2.45 GHz can be output alternately.
  • the high-frequency driving section 218 having the above configuration, two different types of magnetrons 225 and 231 can be driven by a single inverter circuit, so that the circuit configuration of the high-frequency driving section 218 can be greatly simplified. , Requires less installation space, This can contribute to a reduction in the size and weight of the device.
  • the control unit 219 transfers the power from the power supply to the first high-frequency generator 213, the magnetron 225 for 2.45 GHz, and the second high-frequency generator 215, to the 5.8-GHz magnetron 231.
  • the signal to be distributed is output to the drive control unit 273 (see FIG. 17), and the drive control unit 273 receives the distributed signal and distributes power to the first inverter circuit 237 and the second inverter circuit 267.
  • Figure 27 shows a pattern in which 5.8 GHz and 2.45 GHz high frequencies are output alternately. According to this power supply pattern, the output is performed alternately, and both high frequencies are not output at the same time, so that the output of each high frequency can be applied up to the rated power of the high frequency heating device and output. Therefore, the object to be heated can be efficiently heated by setting each of the high frequency generators to the maximum output.
  • Figure 13 shows a pattern that simultaneously outputs 5.8 GHz and 2.45 GHz high frequencies. At this time, the output is controlled so that the total power of both high frequencies does not exceed the rated power of the high frequency heating device.
  • the rated power is P
  • both high-frequency powers are set to PZ 2 respectively.
  • the power distribution ratio can be set to an arbitrary ratio other than the above. For example, the power distribution ratio can be changed after a predetermined time has elapsed.
  • Figure 29 shows a pattern in which a high frequency of 2.45 GHz is output first and a high frequency of 5.8 GHz is output later.
  • the heating effect is relatively high in the initial stage of heating when the temperature of the object to be heated is low.
  • the temperature of the object to be heated is raised at once, and a predetermined time has elapsed.
  • the heating temperature can be made uniform and a uniform heating state with a small temperature distribution can be achieved.
  • a pattern may be used in which 5.8 GHz high frequency is output first and 2.45 GHz high frequency is output later.
  • each high frequency in the latter half of heating When outputting at the same time, a pattern in which each high frequency is alternately output as shown in FIG. 27 may be used. In that case, each output can be applied up to the maximum output.
  • FIG. 30 shows a pattern that outputs only a high frequency of 5.8 GHz.
  • This pattern is particularly suitable for heating a thin-walled object, and can be finished in a state with a small temperature distribution.
  • a pattern that outputs only a high frequency of 2.45 GHz may be used. In this case, the same high-frequency heating as before can be performed.
  • the distribution of the heating spot by a microwave can be expanded more widely than the heating chamber defined by the cavity, and the microwave can be spread over a wider area of the surface of an object to be heated. Will be hit.
  • a rectangular parallelepiped wide-area waveguide having a large number of power supply ports is provided on the back side of the heating chamber, and a high-frequency generating unit is provided in close proximity to the rectangular parallelepiped wide-area waveguide. Because of the wide structure of the waveguide, it is necessary to provide many feed ports. It is possible to approach uniform heating.
  • the rectangular parallelepiped wide-area waveguide has a size that spreads over substantially the entire surface of the floor, and a number of power supply ports are provided on the back side of the floor so as to face the floor. No difference in microwave electric field intensity is generated between the center and the corner of the heating chamber, and uniform heating can be achieved. In addition, because the microwave is radiated from the floor, it is close to the heated part and the heating efficiency is improved.
  • the rectangular parallelepiped wide-area waveguide has a size that spreads over substantially the entire surface of the ceiling, and a large number of power supply ports are provided on the back side of the ceiling so as to face the ceiling side, a uniform electric wave is obtained. As the shower falls from the entire ceiling like a shower, more uniform heating is possible.
  • the frequency of the high frequency supplied from the high frequency generator is 5.8 GHz
  • the standing wave is compared with the case where the wavelength of the microwave is 2.45 GHz, which is the conventional mainstream.
  • the distance between the two becomes narrower, and uniform heating can be achieved.
  • the size of the power supply port is small near the high-frequency generation unit, and increases as the distance from the high-frequency generation unit increases. There is no difference in electric field strength, so that uniform heating can be achieved.
  • the high-frequency heating device supplies the high-frequency from the high-frequency generator to the heating chamber that accommodates the object to be heated, and heat-treats the object to be heated.
  • Two types of high frequency can be supplied to the heating chamber: a high frequency and a high frequency of 5.8 GHz, which has a uniform heating distribution. Even with this, uniform heat treatment can be performed quickly.
  • a high-frequency having a frequency of 2.45 GHz and a high-frequency having a frequency of 5.8 GHz are supplied to the heating chamber simultaneously or alternately.
  • a high heating effect of 2.45 GHz high frequency and a uniform heating effect of 5.8 GHz high frequency can be selectively supplied, depending on the shape of the object to be heated and the purpose of heating.
  • efficient heat treatment can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

本発明の課題は、厚みのある被加熱物に対しても、加熱ムラの無い良好な加熱を実現できる高周波加熱装置を得ることである。 上記課題を解決するために、本発明の高周波加熱装置は、被加熱物に周波数が5.8GHzのマイクロ波を照射して、被加熱物の加熱を行う高周波加熱装置1は、キャビティ3内にマイクロ波を出射する給電口7,9を備えた導波管11a,11bを、加熱室2を画成するキャビティ3に複数本装備して構成される。

Description

高周波加熱装置及びその制御方法 く技術分野 >
本発明は、 被加熱物を収容する加熱室に高周波を供給して被加熱物を加熱する 高周波加熱装置及びその制御方法に関する。 明
<背景技術〉
被加熱物を収容する加熱室内にマイクロ波を出力する高周波発生手段 (マグネ 書
トロン) を備えた高周波加熱装置は、 加熱室内の被加熱物に対して、 短時間で効 率のよい加熱ができるため、 食材等の加熱調理機器である電子レンジとして急速 に普及した。
ところで、 加熱室内に発振されるマイクロ波は、 加熱室内に電磁波攪拌手段が 無い場合、 加熱室を画成しているキヤビティの内壁面での反射によって定在波が 形成され、 この定在波の波長の約 1 2の間隔で加熱スポットが発生する。
従来の家庭用の電子レンジの場合、 周波数が 2 . 4 5 G H zのマイクロ波を発 振するマグネトロンが搭載されており、 この場合、 発生する定在波の波長は約 1 2 c mとなり、 その 1 / 2の約 6 .センチの間隔で加熱スポットが発生することに なり、 一般家庭等で加熱する食材の大きさに比べると、 加熱スポットの間隔が大 きく、 加熱ムラの原因となる。
そこで、 従来の電子レンジでは、 加熱ムラの原因となる定在波の影響を低減さ せるために、 加熱室内の食材を回転させるターンテーブルや、 加熱室内の電磁波 を攪拌するステラフ了ン等の電磁波攪拌手段を装備していた。
しかし、 これらの装備は、 加熱室を画成するキヤビティの壁部を貫通する可動 部品を不可欠とし、 可動部品によるキヤビティ貫通部での電磁波漏洩を防止する ための、 キヤビティ上への可動部品の取付構造の複雑化を招き、 構成部品の増加 による製作コストのコストアップや装置の大型化を招いた。
そこで、 最近では、 使用するマイクロ波の周波数を変更することで、 定在波の 波長の 1/2となる加熱スポット間隔を縮めて、 ターンテーブルゃステラファン 等の電磁波攪拌手段を装備せずとも、 被加熱物上での加熱ムラの発生を防止する ことが研究され、 5. 8 GHzのマイクロ波を使用することが提案された (例え ば、 特許文献 1参照) 。
(特許文献 1 )
特開平 3— 203 1 91号公報
5. 8 GHzのマイクロ波を使用した電子レンジでは、 キヤビティの内壁面で のマイクロ波の反射によって定在波が形成された場合、 その定在波の波長は約 5 cmとなり、 加熱室内での加熱スポットはその 1ノ 2波長分の約 2. 5 cmとな り、 2. 45 GHzのマイクロ波を使用するものと比較すると、 被加熱体表面で の加熱スポットの分布密度が増大し、 加熱スポットの間隔が一般食材の大きさに 比べて大きすぎることがなくなるため、 従前の電磁波攪拌手段を装備せずとも、 加熱ムラの発生を抑止することができ、 また電磁波攪拌手段の削除によつて構造 の簡略化やこの簡略化に伴う装置の小型化、 或いは、 製作コストゃ運転コストの 低減を図ることが可能になる。
ところが、 5. 8 GHzのマイクロ波は、 2. 45 GH zのマイクロ波と比較 すると、 被加熱物の内部への焼き深度が浅くなるため、 図 8に示すように、 被加 熱物の表面での加熱分布特性は 2. 45 GHzのマイクロ波より優れるものの、 被加熱物の内部への加熱特性は 2. 45 GHzのマイクロ波よりも低下する。 その結果、 上記特許文献 1に開示した従来の電子レンジのように、 加熱室内へ のマイクロ波の発振を単一の給電口から行う構成では、 加熱対象となる被加熱物 の厚みが厚い場合、 マイク口波が当たり易い側の表面層は十分に加熱できるが、 被加熱物の他側の表面層や内部については、 加熱ムラや加熱不足が発生する虞が あった。
本発明は、 被加熱物のより広範囲な表面に対してマイクロ波を照射することが でき、 厚肉の被加熱物に対しても加熱ムラの無い良好な加熱を実現でき、 且つ、 電磁波攪拌手段を省略できて構造の簡略化やこれに伴う装置の小型化、 或いは、 製作コストや運転コストの低減を図ることができる高周波加熱装置を提供するこ とを目的とする。 また、 従来の高周波加熱装置は、 マグネトロンの高周波発生部を加熱室の外側 に設けて、 そこから加熱室の天井、 側壁、 床部のいずれかに設けられた大きな 1 個の給電口まで導波管の中を通して高周波を導き、 その給電口から加熱室内に高 周波を
導いていた (例えば特許文献 2参照) 。
(特許文献 2 )
特開平 3— 2 0 3 1 9 1号公報
図 1 4は上記特許文献 2記載の従来例の高周波加熱装置の内部構造を示す縦断 面図である。 図において、 1 5 0は従来例の高周波加熱装置、 1 5 1は加熱室、 1 5 2は加熱室 1 5 1の外側に設けられている周波数 2 . 4 5 G H zのマイクロ 波を発振するマグネト口ンを含む高周波発生部、 1 5 3は導波管、 1 5 4は給電 口である。 1 5 5はターンテーブル、 1 5 6はターンテーブル 1 5 5を回転駆動 するモータ、 1 5 7は扉、 1 5 8は扉 1 5 7の四辺に施されたマイクロ波の 1 / 4波長に対応したチョーク構造の電波漏洩防止手段である。 Gはターンテーブル 1 5 5の上に載置された被加熱物である。
マグネトロン 1 5 2が駆動されると、 マグネトロン 1 5 2から発振された周波 数 2 . 4 5 G H zのマイクロ波は導波管 1 5 3を通って給電口 1 5 4から加熱室 1 5 1内に放射され、 加熱室 1 5 1の金属壁によって反射されて加熱室 1 5 1内 に定在波が生じる。 周波数 2 . 4 5 G H zのマイクロ波の場合、 その波長は約 1 2 c mとなるので、 加熱室 1 5 1の金属壁によって反射されて加熱室 1 5 1内に 生じる定在波はその間隔がその 1 / 2の約 6 c mとなり、 電界の強い腹の部分で マイクロ波は被加熱物 Gに吸収されて、 被加熱物 Gが加熱される。
しかしながら、 約 6 c mの間隔は被力卩熱物 Gにとつてはムラとなってしまうた め、 ターンテープル 1 5 5をモータ 5 6でゆっく り回転させて被加熱物 G上での 電界を乱し、 被加熱物 G上で定在波が生じないようにしている。
このように従来例の高周波加熱装置 1 5 0は、 ムラのない加熱をするために、 ターンテーブル 1 5 5とモータ 1 5 6が必要なため、 構造が複雑となり、 信頼性 の低下、 コスト高となってしまった。 この欠点を解消するものとして、 上記特許文献 2記載の実施例の高周波加熱装 置がある。 図 1 5は上記特許文献 2記載の実施例の高周波加熱装置の内部構造を 示す図で、 (a) は縦断面図、 (b) は図 (a) のは導波管 5 3を通る横断面図 である。
図 1 5 (a) において、 1 60は実施例の高周波加熱装置、 1 6 1は加熱室、 1 62は加熱室 1 6 1の外側に設けられている周波数 5. 8 GHzのマイクロ波 を発振するマグネトロンを含む高周波発生部、 163は導波管、 1 64は給電口 である。 165は被加熱物載置用のテーブル、 1 67は扉、 1 68は扉 1 6 7の 四辺に施されたマイクロ波の 1ノ 4波長に対応したチョーク構造の電波漏洩防止 手段である。 Gはテーブル 16 5の上に载置された被加熱物である。
また、 図 1 5 (b) において、 給電口 1 64は高周波発生部 1 62の横幅の略 等しい幅である狭い導波管 1 6 3の先端に 1個設けられており、 高周波発生部 1 62から発振されたマイクロ波はこの給電口 164からのみ加熱室 1 6 1内に放 射される。
そこで、 マグネトロン 16 2が駆動されると、 マグネトロン 1 62から発振さ れた周波数 5. 8 GH zのマイクロ波は導波管 1 6 3を通って給電口 1 64から 加熱室 16 1内に放射され、 加熱室 16 1の金属壁によって反射されて加熱室 1 6 1内に定在波が生じる。 周波数 5. 8 GH zのマイクロ波の場合、 その波長は 約 5. 1 7 cmとなるので、 加熱室 1 6 1の金属壁によって反射されて加熱室 1 6 1内に生じる定在波はその間隔がその 1Z2の約 2. 6 cmとなり、 電界の強 い腹の部分でマイクロ波は被加熱物 Gに吸収されて、 被加熱物 Gが加熱される。 そしてこの約 2. 6 cmの間隔は被加熱物 Gにとつては小さなものであるため目 立つムラとはならない。
したがって、 前述の役目をするターンテーブルもモータも不要となるため、 構 造が簡単となり、 信頼性が向上し、 コスト安となる。
このようにして、 図 1 5の高周波加熱装置 1 60は周波数 5. 8 GHzのマイ クロ波を発振するマグネトロンを用いるため、 加熱室 1 6 1内に生じる定在波が その間隔がその 1ノ 2の約 2. 6 cmとなるので加熱ムラが目立たなくなるとは いえ、 まだムラは若干生じていた。 また、 給電口 1 6 4が加熱室 1 6 1の天井中央にのみしかないため、 加熱室 1 6 1の中央と隅との間にマイクロ波の電界強度の差が生じたので、 被加熱物 Gの 中央と端とに加熱差が生じた。
本発明の目的はこれらの欠点を解決するもので、 加熱ムラをさらに目立たなく できて、 加熱室の中央と隅との間にマイクロ波の電界強度の差が生じない、 加熱 室の床部裏側の中央部近傍のスペースが有効利用できる高周波加熱装置を提供す ることにある。 従前より、 被加熱物を収容する加熱室に高周波を供給して被加熱物を加熱調理 する高周波加熱装置が、 食材の加熱調理用として広く利用されている。 この種の 高周波加熱装置は、 周波数が 2 . 4 5 G H zの高周波を発生するマグネトロンを 搭載し、 発生させた高周波を加熱室内に供給している。 加熱室内では、 高周波の 供給により定在波が形成され、 この発生する定在波の波長は約 1 2 c mとなり、 その 1ノ 2の約 6 c mの間隔で電界の強い実質的な加熱スポットが発生すること になる。 しかし、 この加熱スポットの間隔は、 加熱調理する食材の大きさと比較 すると長いため、 食材中に存在し得る加熱スポットの分布密度が低くなり、 食材 が部分的に加熱されて加熱ムラが生じやすくなる傾向があった。
そこで、 使用する高周波の周波数を 2 . 4 5 G H zから 5 . 8 G H zに変更し て前記加熱スポットの間隔を狭め、 これにより加熱スポットの分布密度を高めて 被加熱物の加熱ムラを低減させようとする技術が提案されている (例えば特許文 献 3参照) 。
(特許文献 3 )
特開平 3 _ 2 0 3 1 9 1号公報
しかしながら、 5 . 8 G H zの高周波は、 2 . 4 5 G H zの高周波と比較する と加熱スポットの分布密度が高くなる反面、 被加熱物への吸収深さが浅くなるた め、 被加熱物が厚肉である場合には、 被加熱物の表面が主に加熱され、 被加熱物 の内部が加熱不足になるといった加熱ムラが生じやすくなる。
従って、 加熱分布が密となる 5 . 8 G H zの高周波では、 被加熱物が薄肉であ る場合は良好な均一加熱効果が期待できるが、 厚肉の被加熱物に対しては深さ方 向に加熱ムラが大きくなり、 結局は均一加熱が困難になる。 なお、 厚肉の場合で も被加熱物の表面から熱伝導により内部が加熱されるが、 内部に熱が伝わるまで には時間がかかり、 高周波加熱の最大の利点である急速加熱効果が奏されないこ とになる。
本発明は、 上記事情を考慮してなされたもので、 加熱ムラの発生を抑制し、 厚 肉の被加熱物であっても迅速に均一加熱処理が可能な高周波加熱装置及びその制 御方法を提供することを目的としている。
<発明の開示 >
上記目的を達成するための本発明に係る高周波加熱装置は、 加熱室内の被加熱 物に 5 . 8 G H zのマイクロ波を照射して、 前記被加熱物の加熱を行う高周波加 熱装置であって、 前記マイクロ波を出射する給電口を備えた導波管を、 前記加熱 室を画成するキヤビティに複数本装備したことを特徴とする。
このように構成された高周波加熱装置においては、 複数本の導波管による複数 の給電口が、 マイクロ波による加熱スポットの分布を広げて、 被加熱物の表面の より広範囲の部分にマイクロ波を当てることができる。
その結果、 焼き深度の浅い 5 . 8 G H zのマイクロ波でも、 例えば対向する双 方向から被加熱物を加熱することで、 実質的な焼き深度を 2倍に強化することが できる。
なお、 5 . 8 G H zのマイクロ波の焼き深度が浅いという短所を補うために、 被加熱物上のマイクロ波が当たる面を増やすという観点からすると、 マイクロ波 を出射する給電口は、 キヤビティの複数の壁面に分散して装備することが好まし く、 具体的には、 請求項 2に記載したように、 前記給電口を配置する前記キヤビ ティの壁面を、 前記加熱室の上下面、 又は上面及ぴ側面、 又は側面及ぴ下面とし た構成とすると良い。
また、 加熱室内の被加熱物に対して、 上面からのマイクロ波の照射を広範囲に 均一分散させる点では、 請求項 3に記載したように、 前記キヤビティの上壁に配 置された少なくとも 2本の導波管によって、 前記加熱室の上面に前記給電口を 2 個口設けた構成とすると良い。 また、 請求項 4に記載の高周波加熱装置は、 請求項 3に記載の高周波加熱装置 において、 更に、 前記キヤビティの上壁の少なくとも 2本の導波管は、 導波管の 横断面の長辺が上下方向に向いた縦型配置になされたことを特徴とする。
5 . 8 G H zのマイクロ波を誘導する導波管の横断面積は、 2 . 4 5 G H zの マイクロ波を誘導する導波管の横断面積の約 1 / 4程度に縮小される。そのため、 5 . 8 G H Z用の導波管の長辺寸法は、 2 . 4 5 G H z用の導波管の短辺寸法と 略同程度になる。
従って、 キヤビティの上面側に確保する導波管の設置スペースは、 2 . 4 5 G H z用の導波管をその長辺を水平に向けてキヤビティの上面に設置している従前 の高周波加熱装置と同等に設定したとしても、 5 . 8 G H z用の導波管は長辺を 垂直に向けた縦型配置に装備することができる。 そして、 このように縦型配置で 導波管を装備した構成とすることで、 キヤビティ上面の導波管の占有面積を縮小 することができる。
その結果、キヤビティ上面に空きスペースが増えて、請求項 5に記載のように、 前記キヤビティの上面の内、 前記縦型配置の導波管の装備領域を除く領域に面ヒ ータを配置した構成とすれば、 面ヒータの装備領域が拡大できて、 面ヒータを作 動させるオーブン加熱処理時の温度分布をより広域に均一化でき、 加熱ムラの無 いオープン加熱を実現することが可能になる。 また、 本発明の高周波加熱装置は、 高周波発生部と、 該高周波発生部からの高 周波を供給して被加熱物を加熱処理する天井 '側壁 ·床部から構成される加熱室 と、 を有する高周波加熱装置において、 多数の給電口を備えて成る直方体状広域 導波管を前記加熱室の裏側に備え、 かつ前記高周波発生部を前記直方体状広域導 波管の直近に設けたことを特徴とする。
以上の構成により、 導波管の構造が幅広い構造をしているので、 多数の給電口 を設けることが可能となり、 均一加熱に近づけることができる。
また、 本発明の高周波加熱装置は、 前記直方体状広域導波管が前記床部の略全 面に広がる大きさをしておりかつ前記多数の給電口を前記床部側に向けて前記床 部の裏側に設けられたことを特徴とする。 以上の構成により、 床部の裏側略全体が導波管構造をしており、 かつ床部の略 全面に多数の給電口を備えているので、 加熱室の中央と隅との間にマイクロ波の 電界強度の差が生じなくなり、 均一加熱に近づけることができる。 また、 床部か らのマイクロ波照射なので被加熱部に近く、 加熱効率もよくなる。
さらに、 電波を撹拌させるためのターンテーブルや回転アンテナ等の構成を設 けなくてもよいため、 電波スパークや電波漏洩等の信頼性も向上する。
また、 本発明の高周波加熱装置は、 前記直方体状広域導波管が前記天井の略全 面に広がる大きさをしておりかつ前記多数の給電口を前記天井側に向けて前記天 井の裏側に設けられたことを特徴とする。
以上の構成により、 天井の裏側略全体が導波管構造をしており、 かつその略全 面に多数の給電口を備えているので、 均一な電波が天井一面からシャワーのよう に降り注ぐため、 さらに均一な加熱が可能となる。
また、 本発明の高周波加熱装置は、 前記高周波発生部から供給される高周波の 周波数が 5 . 8 G H zであることを特徴とする。
以上の構成により、 マイクロ波の波長が従来の主流であった 2 . 4 5 G H zの 場合と比べ定在波の間隔が狭くなるので、 さらに均一加熱に近づけることができ る。
また、 本発明の高周波加熱装置は、 前記多数個の給電口の大きさが前記高周波 発生部の近傍では小さめであり、 前記高周波発生部から遠ざかるにしたがつて大 きくなることを特徴とする。
以上の構成により、 高周波発生部の近傍と遠くとのマイクロ波の電界強度の差 が生じなくなり、 より均一加熱に近づけることができる。 また、 本発明の目的は下記構成により達成される。
( 1 ) 被加熱物を収容する加熱室に高周波発生部から高周波を供給し、 被加熱物 を加熱処理する高周波加熱装置であって、 前記高周波発生部が、 周波数が 2 . 4 5 G H zの高周波を発生する第 1高周波発生部と、 周波数が 5 . 8 G H zの高周 波を発生する第 2高周波発生部とを備えた高周波加熱装置。
この高周波加熱装置によれば、 加熱効果の高い周波数が 2 . 4 5 G H zの高周 波と、 加熱分布が均一な周波数が 5 . 8 G H zの高周波との 2種類の高周波を加 熱室に供給することができ、 加熱ムラの発生を抑制して、 厚肉の被加熱物であつ ても迅速に均一加熱処理が可能となる。
( 2 ) 前記第 1高周波発生部へ駆動電力を供給する第 1インバータ回路と、 前記 第 2高周波発生部へ駆動電力を供給する第 2インバータ回路と、 これらインバー タ回路により前記第 1高周波発生部と前記第 2高周波発生部とを同時に又は交互 に駆動する駆動制御部とを備えた (1 ) 記載の高周波加熱装置。
この高周波加熱装置によれば、 第 1高周波発生部と第 2高周波発生部への駆動 電力をそれぞれ別個のインバータ回路で供給するので、 各高周波発生部から同時 に又は交互に高周波を出力させることができ、 また、 出力強度も可変にできるた め、 複雑な加熱パターンであっても簡単に制御が行える。
( 3 ) 前記第 1高周波発生部及び第 2高周波発生部へ駆動電力を供給する単 の ィンパータ回路と、 前記第 1高周波発生部と前記第 2高周波発生部への給電を交 互に切り替えて駆動する駆動制御部とを備えた (1 ) 記載の高周波加熱装置。 この高周波加熱装置によれば、 単一のインバータ回路により第 1高周波発生部 と第 2高周波発生部への給電を制御できるため、 駆動制御部の回路構成が簡略化 され、 設置に必要とするスペースが小さく済み、 装置の小型軽量化に寄与するこ とができる。
( 4 ) 前記加熱室の上面に設けられ高周波を前記加熱室內に導入する上側給電口 と、 前記加熱室の下面に設けられ高周^を前記加熱室内に導入する下側給電口と を備え、 該上側給電口と下側給電口のそれぞれから前記第 1高周波発生部又は前 記第 2高周波発生部からの高周波を個別に導入する (1 ) 〜 (3 ) のいずれか 1 項記載の高周波加熱装置。
この高周波加熱装置によれば、 上側給電口と下側給電口とのそれぞれから第 1 高周波発生部又は第 2高周波発生部からの高周波を個別に加熱室へ導入するので、 高周波の加熱特性に応じた最適な位置から各高周波を照射可能になる。
( 5 ) 前記加熱室の空間を上下に分割する仕切板を設けた (4 ) 記載の高周波加 熱装置。
この高周波加熱装置によれば、 加熱室の空間を上下に分割することにより、 上 側空間に一方の高周波を供給し、下側空間に他方の高周波を供給することができ、 各高周波を個別の空間に供給して加熱することができる。
(6) 前記仕切板が高周波発熱体を備え、 高周波の照射により発熱する (5) 記 載の高周波加熱装置。
この高周波加熱装置によれば、 仕切板の高周波発熱体が高周波の照射により発 熱するので、この仕切板に載置された被加熱物を輻射熱や伝導熱により加熱して、 被加熱物に焦げ目を付けることができる。 また、 加熱室を暖めて予熱効果を持た せることもできる。
( 7 ) 前記加熱室の上側給電口から前記第 2高周波発生部からの高周波を前記加 熱室内に導入する (4) 〜 (6) のいずれか 1項記載の高周波加熱装置。
この高周波加熱装置によれば、 第 2高周波発生部からの 5. 8 GHzの高周波 が上側給電口から供給されるので、 加熱室内の被加熱物を均一に加熱することが できる。
(8) 前記加熱室が、 開口部を有する加熱室本体と、 該開口部を開閉自在に覆う 開閉扉とを有し、 前記加熱室本体と前記開閉扉とが対向する部分の少なくとも一 方に、 電波洩れ防止用のチョークが形成され、 該チョークが前記第 1高周波発生 部と前記第 2高周波発生部からの各高周波を遮蔽するものである (1) 〜 (7) のいずれか 1項記載の高周波加熱装置。
この高周波加熱装置によれば、 小型のチョーグでありながら、 開閉扉が閉じら れたときに、 加熱室内部に供給される 2種類の異なる周波数の高周波が洩れ出す ことがない。
(9) 被加熱物を収容する加熱室に高周波発生部から高周波を供給し、 被加熱物 を加熱処理する高周波加熱装置の制御方法であって、 前記高周波発生部から、 周 波数が 2. 45 GHzの高周波と周波数が 5. 8 GHzの高周波とを同時に又は 交互に前記加熱室に供給する高周波加熱装置の制御方法。
この高周波加熱装置の制御方法によれば、 周波数が 2. 45 GHzの高周波と 周波数が 5. 8 GHzの高周波とを同時に又は交互に前記加熱室に供給すること により、 加熱効果の高い 2. 45 GHzの高周波と、 均一加熱効果の高い 5. 8 GHzの高周波とが選択的に供給可能となるので、 被加熱物の形状や加熱目的に 応じた適切な高周波を供給して効率の良い加熱処理を行うことができる。
(10) 前記各周波数のうち、 いずれか一方の高周波を加熱初期に出力し、 加熱 開始から所定時間経過後又は所定温度到達後にいずれか他方の高周波の出力を開 始する (9) 記載の高周波加熱装置の制御方法。
この高周波加熱装置の制御方法によれば、 加熱効果の高い周波数が 2. 45 G Hzの高周波を加熱初期に供給し、 被加熱物を一気に昇温させ、 また、 所定時間 経過後或いは所定温度到達後に周波数が 5. 8GHzの高周波を供給することで、 加熱温度の均一化を図り、 被加熱物を温度分布の少ない均一加熱状態にすること ができる。 また、 これとは逆に先に 5. 8 GH zの高周波を供給して、 2. 45 GHzの高周波を後から供給する場合には、 加熱後半に強く加熱する調理等に好 適な加熱パターンとなる。
(1 1) 前記各周波数を同時に出力する場合に、 各高周波の出力を、 高周波出力 のための駆動電力の合計が高周波加熱装置の定格電力を超えないように少なくと もいずれか一方の出力を制限する (9) 又は (1 0) 記載の高周波加熱装置の制 御方法。
この高周波加熱装置の制御方法によれば、 各高周波の出力が定格電力を超える ような場合には、 いずれか一方の高周波の出力を制限して、 高周波出力のための 駆動電力の合計が高周波加熱装置の定格電力を超えないようにできる。 <図面の簡単な説明 >
図 1は、 本発明に係る高周波加熱装置の第 1の実施の形態の断面図であり、 図 2は、 本発明に係る高周波加熱装置の第 2の実施の形態の断面図であり、 図 3は、 本発明に係る高周波加熱装置の第 3の実施の形態の斜視図であり、 図 4 (a) は 2. 45 GH zのマイクロ波を誘導する導波管の横断面図、 (b) は 5. 8 GHzのマイクロ波を誘導する導波管の横断面図であり、
図 5は、 本発明に係る高周波加熱装置の第 4の実施の形態の斜視図であり。 図 6は、 図 5の A— A断面図であり、
図 7は、 本発明に係る高周波加熱装置の第 5の実施の形態の断面図で、 (a)
(b) は加熱室内のそれぞれ異なる加熱分布の電気力線を示した図であり、 図 8は、 本発明に係る高周波加熱装置の第 6の実施の形態の平面図であり。 図 9は、 2. 45 GHz及ぴ 5. 8 G H zのマイクロ波の加熱分布特性の比較 図である。
図 10は、 本発明に係る高周波加熱装置を説明する図で、 (a) はその内部構 造を示す縦断面図、 (b) は床部に設けられた給電口の配置状態の 1例であり、 図 1 1 (a) 〜 (c) は、 図 1の高周波加熱装置に用いられる蒸気発生部の蒸 発皿を示す斜視図であり、
図 1 2は、 本発明が使用する 5. 8 GH zのマグネトロンを駆動する電源の構 成図であり、
図 1 3は、高周波加熱装置に本発明に係る直方体状広域導波管を適用した例で、 (a) は高周波加熱装置の床部に、 (b) は高周波加熱装置の天井に、 それぞれ 適用した例を示す正面斜視図であり、
図 14は、 第 1従来例の高周波加熱装置の内部構造を示す縦断面図であり、 図 1 5は、 第 2従来例の高周波加熱装置の内部構造を示す図で、 (a) は縦断 面図、 (b) は図 (a) の導波管 53を通る横断面図であり、
図 1 6は、 本発明に係る高周波加熱装置の概念的な構成図であり、
図 1 7は、 高周波加熱装置の高周波駆動部の構成図であり、
図 1 8は、 電波洩れ防止用のチョークを説明するための高周波加熱装置の外観 斜視図であり、
図 1 9は、 図 3の A— A断面 (a) と B— B断面 (b) を示す断面図であり、 図 20は、 チョークの斜視図であり、
図 21は、 スタラー羽根を説明するための高周波加熱装置の一部概略断面であ り、
図 22は、 高周波加熱装置の概略断面図であって、 (a) は 2. 45 GH zの 高周波の上方給電、 (b) は側方給電を示す説明図であり、
図 23は、 加熱室に現れるある瞬間の定在波の状態で (a) は 2. 45GHz の高周波、 (b) は 5. 8 GHzの高周波、 (c) は 2. 45 GHzと 5. 45 GHzの高周波の合波を示す説明図であり、
図 24は、 仕切板により加熱室を上下に分割した周波加熱装置の概念的な断面 構成図であり、
図 25は、 仕切板の断面図であり、
図 26は、 高周波駆動部の他の構成例を示す構成図であり、
図 27は、 第 1高周波発生部、 第 2高周波発生部への給電パターンであって、 5. 8 GHzと 2. 45 GH zの高周波を交互に出力するパターンを示す説明図 であり、
図 28は、 第 1高周波発生部、 第 2高周波発生部への給電パターンであって、 5. 8 GHzと 2. 45 GH zの高周波を同時に出力するパターンを示す説明図 であり、
図 29は、 第 1高周波発生部、 第 2高周波発生部への給電パターンであって、 2. 45 GHzの高周波を先に出力して 5. 8 GH zの高周波を後から出力する パターンを示す説明図であり、
図 30は、 第 1高周波発生部、 第 2高周波発生部への給電パターンであって、 5. 8 GHzの高周波のみ出力するパターンを示す説明図である。
なお、 図中の符号、 1は高周波加熱装置、 2は加熱室、 3はキヤビティ、 3 a は上壁、 3 bは後壁 (側壁) 、 3 cは底壁、 5はマグネトロン、 7, 9は給電口、 7 a , 7 b, 7 cは給電口、 1 1は導波管、 1 1 a, l i b, 1 1 cは導波管、 1 3は外殻筐体、 1 5は前面開閉扉、 21, 3 1, 41は高周波加熱装置、 43 は面ヒータ、 51, 6 1は高周波加熱装置、 1 1 0は本発明に係る高周波加熱装 置、 1 1 1は加熱室、 1 1 1 aは加熱室の天井、 1 1 1 bは加熱室の側壁、 1 1 l cは床部、 1 1 2は高周波発生部、 1 1 3は導波管、 1 1 3 bは給電口、 1 1 7は扉、 1 1 8は電波漏洩防止手段、 1 31は商用電源、 1 32はマグネトロン、
1 33は整流回路、 1 34はチョークコイル、 1 3 5は平滑コンデンサ、 1 36 はインバータ、 1 3 6 1はインバータ制御回路、 1 362はサーミスタ、 1 38 は昇圧トランス、 1 38 1は 1次卷線、 1 382は 2次巻線、 1 3 83はフイラ メント加熱用卷線、 1 3 9は半波整流回路、 140は加熱調理器、 14 1は加熱 室、 141 aは天井、 141 bは側壁、 14 1 cは床部、 143は高周波発生部、
144は床側配置直方体状広域導波管、 145は給電口、 146は天井側直方体 状広域導波管、 147は給電口、 21 1は加熱室、 21 3は第 1高周波発生部、 21 5は第 2高周波発生部、 21 7は高周波駆動部、 21 9は制御部、 225は マグネトロン (2. 45GHz用) 、 227は下側給電口、 229は下側導波管、 231はマグネトロン ( 5. 8 G H z用) 、 23 3は上側給電口、 235は上側 導波管、 237は第 1インバータ回路、 267は第 2インバータ回路、 273は 駆動制御部、 275は開閉扉、 277は加熱室本体、 279はチョーク、 28 1 は導体片、 283は金属板、 28 5は溝、 297は仕切板、 2 100, 2200 は高周波加熱装置、 2 1 09は切り替えスィツチ、 2 1 1 1は駆動制御部、 Mは 被加熱物である。 <発明を実施するための最良の形態 >
以下、 添付図面に基づいて本発明の好適な実施の形態に係る高周波加熱装置を 詳細に説明する。
図 1は、 本発明に係る高周波加熱装置の第 1の実施の形態による断面図である この第 1の実施の形態の高周波加熱装置 1は、 家庭用の電子レンジとして使用 可能なもので、 加熱室 2を画成するキヤビティ 3と、 5. 8 GHzのマイクロ波 をアンテナ 5 aから出力する高周波発生手段であるマグネトロン 5と、 アンテナ 5 aから出力されたマイクロ波を導いて加熱室 2に出射する給電口 7, 9をそれ ぞれに備えた'複数本の導波管 1 1 a, 1 1 bと、 キヤビティ 3の外周囲を囲って キヤビティ 3の周りにマグネトロン 5や導波管 1 1 a, l i bの設置スペースを 確保する外殻筐体 1 3と、 被加熱物を加熱室 2に出し入れするために加熱室 2の 前面を開閉する前面開閉扉 1 5とを備えた構成である。
図 1は、装置を右側面側から見た状態での断面図で、図の左端面が装置の前面、 図の下端面が装置の底面である。
この第 1の実施の形態では、 マグネトロン 5は、 キヤビティ 3の後壁 3 b外面 に装備されており、 第 1の導波管 1 1 aは、 このマグネトロン 5から上方に延伸 して加熱室 2の上面となるキヤビティ 3の上壁 3 aに沿って装備され、 その給電 口 7が上壁 3 aの略中央に開口する。 また第 2の導波管 1 1 bは、 マグネトロン 5から下方に延びて装備され、 その給電口 9が加熱室 2の後面となるキヤビティ 3の後壁 3 bの下端寄り位置に開口する。
このように構成された高周波加熱装置 1においては、 各導波管 1 1 a , l i b のそれぞれの給電口 7 , 9からマイクロ波が出射されるため、 マイクロ波による 加熱スポットの分布を広げることができ、 被加熱物の表面のより広範囲の部分に マイクロ波が当たるようになる。
その結果、 焼き深度の浅い 5 . 8 G H zのマイクロ波でも、 直交する加熱室の 2方向からそれぞれ被加熱物を加熱することで、 実質的な焼き深度を増強するこ とができ、 加熱室 2内にターンテーブルやステラファン等の電磁波攪拌手段を装 備せずとも、 被加熱物の表層及び内深部の全域に対して、 加熱ムラの発生を抑止 することができる。
従って、 厚肉の被加熱物に対しても、 加熱ムラの無い良好な加熱を実現でき、 且つ、 電磁波攪拌手段の削除によって構造の簡略化やこれに伴う装置の小型化、 或いは、 製作コストゃ運転コストの低減を図ることができる。
なお、 5 . 8 G H zのマイクロ波の焼き深度の浅いという短所を捕うために、 被加熱物上のマイクロ波が当たる面を増やすという観点からすると、 マイクロ波 を出射する給電口の配置は、 キヤビティ 3の複数の内壁面に分散して装備すれば よく、 上記実施の形態に限らない。 また、 導波管の装備数も、 上記実施の形態の 2本に限らない。 3本以上の任意数に増設可能である。
給電口の装備位置は、 具体的には、 加熱室 2の上下面、 又は上面及ぴ側面 (後 面も含む) 、 又は側面 (後面も含む) 及び下面とすることが可能である。
図 2は本発明に係る高周波加熱装置の第 2の実施の形態の断面図である。 この第 2の実施の形態の高周波加熱装置 2 1は、 2つの給電口 7 , 9が、 加熱 室 2の上下面、 即ち、 キヤビティ 3の上壁 3 a及び底壁 3 cに対向して開口する ように、 導波管 1 1 a , 1 1 bが配置された構成で、 第 1の導波管 1 1 aは第 1 の実施の形態と同じであるが、 第 2の導波管 l i bは、 マグネトロン 5から下方 に延伸して加熱室 2の下面となるキヤビティ 3の底壁 3 cに沿って装備されて、 給電口 9が底壁 3 cの略中央に開口する。
なお、 給電口 7 , 9の装備位置の変更と、 それに伴う導波管 1 1 a , 1 1 の 形状変更以外は、 第 1の実施の形態と共通の構成であるので、 共通の構成には、 同番号を付して説明を省略する。
このようにキヤビティ 3の対向する壁面に給電口 7, 9を対向配置した構成で は、 焼き深度の浅い 5. 8 GH zのマイクロ波でも、 対向する双方向からそれぞ れ被加熱物を加熱することで、 実質的な焼き深度を増強することができ、 加熱室 2内にターンテーブルゃステラファン等の電磁波攪拌手段を装備せずとも、 被加 熱物の表層及ぴ內深部の全域に対して、 加熱ムラの発生を抑止することができ、 第 1の実施の形態と同様に、 厚肉の被加熱物に対しても、 加熱ムラの無い良好な 加熱を実現でき、 且つ、 電磁波攪拌手段の削除によって構造の簡略化やこれに伴 う装置の小型化、 或いは、 製作コストや運転コストの低減を図ることができる。 図 3は本発明に係る高周波加熱装置の第 3の実施の形態の後面側からの斜視図 である。
この第 3の実施の形態の高周波加熱装置 3 1は、 キヤビティ 3の上壁 3 aに配 置された 2本の導波管 1 l a, 1 1 bによって、 加熱室 2の上面に給電口 7 a , 7 bを 2個口設けた構成としている。 2本の導波管 1 1 a, l i bは、 マグネト ロン 5から上方に延伸した 1本の共通管 1 1が 2分岐して形成される。
このような構成では、 加熱室 2内に収容した被加熱物に対して、 上面からのマ イク口波の当たりを広範囲に均一分散させることができ、 被加熱物上面への加熱 分布を大幅に向上させることが期待できる。
なお、 この図 3のように加熱室 2の上面に 2個口の給電口 7 a , 7 bを装備す る構成に、 加熱室 2の側面 (後面も含む) 又は底面に給電口を設ける構成を組み 合わせることで、 更に、 被加熱物への均一加熱性を向上させることができる。 なお、図 4 (&)は2. 450112のマイク口波を誘導する導波管の横断面図、 (b) は 5. 8 GH zのマイクロ波を誘導する導波管の横断面図である。 それぞ れの横断面図は同一縮尺で描いてある。
図示のように、 5. 8 GHzのマイクロ波を誘導する導波管の横断面積は、 2. 45 GHzのマイク口波を誘導する導波管の横断面積の約 1ノ 4程度に縮小され る。 そのため、 5. 8 GH z用の導波管の長辺寸法 b 2は、 2. 45 GHz用の 導波管の短辺寸法 a 1と略同程度になる。
図 5は、 本発明に係る高周波加熱装置の第 4の実施の形態の後面側からの斜視 図である。
この第 4実施の形態の高周波加熱装置 4 1は、 図 4に示した導波管の寸法差を 考慮して、 図 3に示した高周波加熱装置 3 1を更に改良したもので、 キヤビティ 3の上壁 3 aに配置された 2本の導波管 1 l a , 1 1 bは、 導波管の横断面の長 辺 b 2が上下方向に向いた縦型配置で装備し、 更に、 キヤビティ 3の上壁 3 aの 内、 縦型配置した導波管の装備領域を除く領域に面ヒータ 4 3を配置している。 使用するマイクロ波の周波数が 5 . 8 G H zの場合には、 このように、 キヤビ ティ 3の上壁 3 aに配置される導波管 1 1 a, 1 1 bを縦型配置にしても、 図 6 に示すように、キヤビティ 3の上面側に確保する導波管の設置スペース Lは、 2 . 4 5 G H z用の導波管をその長辺を水平に向けてキヤビティ 3の上面に設置して いた従来の高周波加熱装置と同等に設定することができる。 そして、 導波管を縦 型配置とすることで、 キヤビティ 3の上壁 3 aにおける導波管の幅方向の占有を 縮減して、 占有面積を縮小することができる。
その結果、 キヤビティ 3上壁 3 aの空き面積が増えて、 図 5に示したように、 キヤビティ 3の上壁 3 aの内、 導波管 1 1 a, 1 1 bの装備領域を除く大きな空 き領域の全域に面ヒータ 4 3を配置した構成とすることができる。
即ち、 より大面積に面ヒータ 4 3を装備することが可能になり、 面ヒータ 4 3 を作動させるオープン加熱処理時の温度分布をより広域に均一化して、 加熱ムラ の無いオープン加熱を実現することが可能になる。
なお、 上記のように導波管を縦型配置する位置は、 キヤビティ 3の上壁 3 aに 限らない。
図 7 ( a ) ( b ) は、 本発明に係る高周波加熱装置の第 5の実施の形態の断面 図である。 なお、 (a ) ( b ) は加熱室内における異なる加熱分布の例を電気力 線によって示している。
この第 5実施の形態の高周波加熱装置 5 1は、 先に図 2に示したような、 加熱 室 2の上下面に対向させて 2本の導波管 1 1 a, 1 1 bを配置する構成において、 これらの導波管 1 1 a, 1 l bを、 それぞれ縦型配置に設定したものである。 このような構成では、 上下に対向した各給電口 7, 9から放射されるマイクロ 波は、 位相が 1 8 0 ° ずれた定在波を形成するため、 被加熱物に対する加熱分布 の更なる均一化を期待することができる。
さらに述べれば、 上下の各給電口 7, 9から放射されるマイクロ波は、 位相を 1 8 0° ずらしたことにより、 双方のマイクロ波は電界 Eの方向を一方向にそろ えることができる。 これにより、 (a) (b) に示すように、 双方の電界を加算 した電界強度により、被加熱物の加熱を促進できる。また、 (b) に示すように、 食品の內部により多いマイクロ波エネルギーを伝えることができる。
なお、 (a) (b)は、被加熱物に応じて任意に選択することが困難であるが、 被加熱物の加熱進行に伴う時間的変化として、 (a) (b) の何れかを生じるこ とが期待できるので、 加熱の均一化の促進が図れる。
なお、 キヤビティ 3に複数本の導波管を装備する場合、 その装備数は上記実施 の形態に示した 2本に限るものでなく、 任意数に改良可能である。
図 8は、 本発明に係る高周波加熱装置の第 6の実施の形態のキヤビティ上面の 平面図である。
この高周波加熱装置 6 1は、 キヤビティ 3の上壁 3 aに 3本に分岐した導波管 1 1 a , l i b, 1 1 cによって、 3個口の給電口 7 a , 7 b, 7 cを装備する ようにし、 且つ、 3個口の給電口 7 a , 7 b , 7 cは、 中央の給電口 7 bの位置 を、 他の給電口 7 a , 7 cとはずらしている。 また、 中央の導波管 l i bは分岐 基部 1 2において、 他の導波管 1 1 a, 1 1 cと較べて横断面積が縮小した形態 に絞り加工されている。 なお、 3本の導波管はいずれも縦型配置されている。 このようにすることで、 加熱室 2の上面からのマイクロ波の放射を更に加熱室 2の広域に高密度で均一拡散させることが可能になり、 被加熱物に対する加熱ム ラの防止を更に徹底することができる。 なお、 中央の導波管 1 1 bが絞り加工さ れる理由は、 他の導波管 1 1 a, 1 1 cと較べて、 マグネトロン 5から直線的に 延伸してマイクロ波の誘導効率が高いため、 これを制限して他の導波管 1 1 a , 1 1 cとのバランスを図ることによる。 以下、 本発明の第 7の実施の形態について詳細に説明する。
図 1 0は本発明に係る高周波加熱装置を説明する図で、 (a ) はその内部構造 を示す縦断面図、 (b) は床部に設けられた給電口の配置状態の 1例である。 図 1 0 (a) において、 1 10は本発明に係る高周波加熱装置、 1 1 1は加熱 室で、 1 1 1 aは加熱室の天井、 1 1 1 bは加熱室の側壁、 1 1 1 cは床部であ る。 床部 1 1 1 cは金属でない材料、 例えばセラミックでできている。 1 1 2は 加熱室 1 1 1の床部 1 1 1 cの裏側の外側に設けられている周波数 5. 8 GHz のマイクロ波を発振するマグネトロンを含む高周波発生部、 1 1 3は加熱室 1 1 1の床部 1 1 1 cの裏側に設けられている導波管で、その形状は直方体(例えば、 縦 30 cmX横 30 c;mX高さ 5 cm) をしたいわゆる直方体状の広域導波管で ある。 その 6面のうち広い面の広さは略、 床部 1 1 1 cの広さと一致している。 そして、 1 1 3 aは導波管天井 (床部 1 1 1 cに対向している面) 、 1 1 3 bは 導波管天井 1 1 3 aの略全面に亘つて形成された多数の給電口である。 1 1 7は 扉、 1 18は扉 1 1 7の四辺に施されたマイクロ波の 1Z4波長に対応したチヨ ーク構造の電波漏洩防止手段である。
図 10 (b) は導波管天井 1 1 3 aの略全面に亘つて形成された給電口の 1つ の配置例である。 ここでは各給電口 1 1 3 bはそれぞれ長辺が 1Z 4 λ (約 1. 3 cm) 以上の長さを持つ矩形で、 高周波発生部 1 1 2に近い列は 7個、 次いで 8個、 高周波発生部 1 1 2に遠い列は 9個としてある。
このような多数個の給電口の配置状態とすることにより、 高周波発生部 1 1 2 に近い電界強度の強いマイクロ波は加熱室内 1 1 1に少なく入り、 高周波発生部 1 1 2に遠い電界強度の弱いマイクロ波は多く入るので、 加熱室内 1 1 1では比 較的均一な電界強度になり、 被加熱物 Gの均一加熱に寄与することとなる。 これに対して、 従来の導波管 1 1 3は図 1 5 (b) に示すように、 細長い管体 でしかも給電口 1 54は 1個であるので、 加熱室内 1 1 1では均一な電界強度が 得られ難く、 したがって被加熱物 Gの均一加熱が困難であった。
さらに、 本発明では、 高周波発生部 1 1 2に近い列の給電口 1 1 3 b 1は孔の 大きさが小さめとして、 高周波発生部 1 1 2から遠ざかるにしたがって大きくな るようにしているので、 高周波発生部 1 1 2に近い電界強度の強いマイクロ波は 加熱室内 1 1 1に少なく入り、 高周波発生部 1 1 2に遠い電界強度の弱いマイク 口波は多く入るため、 加熱室内 1 1 1では比較的均一な電界強度になり、 被加熱 物 Gの均一加熱に寄与することとなる。 この高周波加熱装置 1 1 0の動作は次のようになる。
マグネトロン 1 1 2が駆動されると、 マグネトロン 1 1 2から周波数 5. 8 G H zのマイク口波が発振される。発振された周波数 5. 8 GH zのマイク口波は、 加熱室 1 1 1の床部 1 1 1 cの裏側全体に設けられた導波管 1 1 3を通って床部 1 1 1 cの裏側全面に行き渡り、 導波管 1 1 3に散在して設けられている多数の 各給電口 1 1 3 bから加熱室 1 1 1内に入り、 しかも電界強度に反比例して給電 口 1 1 3 bの個数およぴ孔の大きさが決められているので、 結果的に加熱室 1 1 1内に均一な電界分布ができ、 したがってこれによつて被加熱物 Gはムラなく加 熱されることとなる。
しかも導波管の直方体と構造も簡単で、 堅固であり、 信頼性の向上、 コスト安 となる。
また、 直方体状広域導波管 1 1 3を床部裏側の従来の空きスペースに形成した ため、 空間を有効利用できると共に、 図 1 5での加熱室 1 5 1の天井に設けられ た導波管 1 5 3のスペース分だけ加熱室内の空間容積を大きくすることができる。 また、 給電口が被加熱物である食品に近くなるので電波の吸収が良くなる。 そして、 ヒータ付き電子レンジの場合に上ヒータの配置が非常に簡単となる。 図 1 1は直方体状広域導波管の導波管天井に設けられた給電口の他の配置例で ある。
図 1 1 (a) は放射状配置の給電口を持つ直方体状広域導波管である。
図において、 1 1 2は高周波発生部、 1 1 3は直方体状広域導波管、 1 1 3 a は天井、 1 1 3 bは天井 1 1 3 aに開けられた給電口、 b l〜b 3はそれぞれ大 きさの異なる孔である。
長孔状の給電口 b l〜b 3は加熱室 1 1 1の導波管天井 1 1 3 aの中心から放 射状に配置している。 そして、 給電口 b 1と b 3とを比較して判るように、 中心 から遠くなるにつれて長孔が長くなつている。
この結果、 比較的マイクロ波の届きにくいコーナー部にまで均一な電界分布で き、 被加熱物 Gの広さに関係なくムラのない加熱されることとなる。
図 1 1 (b) は碁盤目状配置の給電口を持つ直方体状広域導波管である。
図において、 1 1 2は高周波発生部、 1 1 3は直方体状広域導波管、 1 1 3 a は天井、 1 1 3 bは天井 1 1 3 aに開けられた給電口、 b l〜b 4はそれぞれ大 きさの異なる孔である。
矩形状の給電口 b 1〜! D 4は加熱室 1 1 1の導波管天井 1 1 3 a上に碁盤目状 に配置ししている。 そして、 給電口 b 1 aと b 4とを比較して判るように、 高周 波発生部 1 1 2側から遠くなるにしたがって、 その給電口の一辺が長くなつてい る。
この結果、 高周波発生部 1 1 2の設置部とは反対側の比較的マイクロ波の届き にくい部分まで均一な電界分布でき、 被加熱物 Gの広さに関係なくムラのない加 熱されることとなる。
図 1 1 (c) は放射状配置の給電口を持つ直方体状広域導波管である。
図において、 1 1 2は高周波発生部、 1 1 3は直方体状広域導波管、 1 1 3 a は天井、 1 1 3 bは天井 1 1 3 aに開けられた給電口、 b 1〜 b 3はそれぞれ大 きさの異なる孔である。
矩形状の給電口 b 1〜 b 3は加熱室 1 1 1の導波管天井 1 1 3 a上に高周波発 生部 1 1 2から放射状に配置している。 そして、 給電口 b 1と b 3とを比較して 判るように、 中心から遠くなるにつれて長孔が長くなっている。
この結果、 高周波発生部 1 1 2の設置部とは反対側の比較的マイクロ波の届き にくい部分まで均一な電界分布でき、 被加熱物 Gの広さに関係なくムラのない加 熱されることとなる。 "
図 1 2は本発明が使用する 5. 8 GH zのマグネトロンを駆動する電源の構成 図である。 図において、 商用電源 1 3 1からの交流は整流回路 1 33によって直 流に整流され、 整流回路 1 33の出力側のチョークコィノレ 1 34と平滑コンデン サ 1 35で平滑され、 インバータ 1 36の入力側に与えられる。 直流はインバー タ 1 36の中の半導体スィツチング素子のオン ·オフにより所望の高周波 (20 〜40 kHz) に変換される。 インバ一タ 1 36は、 直流を高速でスイッチング する I GBT (I n s u l a t e d Ga t e B i o l a r T r a n s i s t o r ) とこの I GB Tを駆動制御するインバ タ制御回路 1 36 1によって 制御され、 昇圧トランス 1 38の 1次側を流れる電流が高速でオン Zオフにスィ ツチングされる。 制御回路 1 36 1の入力信号は整流回路 1 33の 1次側電流を C T 1 3 7で検 出し、 その検出電流はインバータ制御回路 1 36 1に入力され、 インパータ 1 3 6の制御に用いられる。 また、 I GBTを冷やす放熱フィンに温度センサ (サー ミスタ) 1 362を取り付けてこの温度センサによる検出温度情報をインバータ 制御回路 1 36 1に入力して、 ィンパータ 1 36の制御に用いている。
昇圧トランス 1 38では 1次卷線 1 38 1にィンパータ 1 3 6の出力である高 周波電圧が加えられ、 2次卷線 1 38 2に巻線比に応じた高圧電圧が得られる。 また、昇圧トランス 1 38の 2次側に卷回数の少ない卷線 1 38 3が設けられ 5. 8 GH z発振用のマグネトロン 1 32のフィラメント 1 3 21の加熱用に用いら れている。 昇圧トランス 1 38の 2次巻線 1 382はその出力を整流する倍電圧 半波整流回路 1 39を備えている。 倍電圧半波整流回路 1 39は高圧コンデンサ 1 3 9 1及び 2個の高圧ダイオード 1 3 9 2, 1 39 3により構成される。
以上の構成を有する回路によって、 交流が整流 '平滑され、 インパータで高周 波に変換され、高圧トランスによって高周波高圧に変圧された後、高圧整流され、 マグネトロンが駆動される。 マグネトロンが駆動されると、 5. 8GHzのマイ クロ波がアンテナから発振され、 5. 8 GH zマイクロ波は加熱室床部の裏側略 全面で構成される広い導波管を伝って、 導波管壁面での反射を繰り返しながら最 適の給電口から加熱室内に入ってゆくこととなる。
したがって、 床部の裏側の略全体が導波管構造をしており、 かつ床部の略全面 に高周波を前記加熱室内へ通過させる給電口を多数個備えているので、 加熱室の 中央と隅との間にマイクロ波の電界強度の差が生じなくなり、 均一加熱に近づけ ることができる。 さらに、 床部裏側の隅に設けられているスチーム発生装置と並 んで、 手前側に導波管が設けられるので無駄な空間が無くなると共に、 従来の導 波管の設置されていた天井裏のスペースの分だけ加熱室内の空間容積を大きくす ることができる。
このように周波数が 5. 8 GH zの発振をするマグネトロンを用いることによ り、 波長が約 5 cmとなるので、 本発明に係る直方体状広域導波管に対して波長 が小さいことから直方体状広域導波管の中をマイク口波が飛びやすくなり、 マイ ク口波をランダムに分布させ、 加熱の均一化を図ることが可能となる。 上記説明では、 使用するマグネト口ンは周波数が 5. 8 GH zのマグネトロン を用いているが、 本発明はこれに限るものではなく、 汎用の 2. 45 GHzのマ グネトロンであっても構わない。 ただし、 後者の場合は、 波長が約 12 cmもあ るので、 本発明に係る直方体状広域導波管の大きさに対して大きくなり、 したが つて直方体状広域導波管の中でマイクロ波をランダムに分布させるための工夫が 必要である。
本発明によれば、 給電口の個数と孔の大きさをマグネトロンカゝらの距離に依存 させることにより均一とすることが可能となるので、 2. 45 GHzのマグネト ロンの場合も給電口の個数と孔の大きさを慎重に選べば、均一加熱が可能となる。 図 1 3は高周波加熱装置に本発明に係る直方体状広域導波管を適用した例を示 す正面斜視図で、 (a) は高周波加熱装置の床部に、 (b) は高周波加熱装置の 天井に、 それぞれ直方体状広域導波管を適用した例を示す正面斜視図である。 図 では扉は省略し、 直方体状広域導波管は加熱装置本体から外した状態で示してい る。
図 1 3 (a) において、 140は加熱室にマイクロ波を供給して被加熱物を加 熱処理する加熱調理器である。 141は加熱室で、 天井 141 aと側壁 14 1 b と床部 141 cとから構成されている。 142は加熱室 141内の空気を循環さ せる循環ファン、 143はマグネトロンを含む高周波発生部、 144は本発明に 係る直方体状広域導波管、 145は給電口である。 —
加熱室 141は、 前面開放の箱形の本体ケース内部に形成されており、 本体ケ ースの前面に、 加熱室 141の被加熱物取出口を開閉する開閉扉 (図示省略) が 設けられている。開閉扉は、下端が本体ケースの下縁にヒンジ結合されることで、 上下方向に開閉可能となっている。
直方体状広域導波管 144は、 その大きさが本発明により床部 141 cの略全 面に等しい大きさとなっている。 従来の導波管は断面が矩形で、 幅が高周波発生 部の幅に等しい細長い管体でしかも給電口は 1個であるので、 加熱室内では均一 な電界強度が得られ難く、 したがって被加熱物 Gの均一加熱が困難であつたが、 この直方体状広域導波管 144によれば、 床部側に給電口 145が無数に散在し ており、 しかもその大きさが前記高周波発生部 143の近傍では小さめであり、 高周波発生部 1 4 3から遠ざかるにしたがって大きくなるようにしているので、 床部に置かれた被加熱物が熱効率よく加熱されしかも均一な加熱が可能となる。 また、 直方体状広域導波管 1 1 3を特に床部に配置することにより、 加熱室内 の空間容積を大きくすることができ、 また、 給電口が被加熱物である食品に近く なるので、 電波の吸収が良くなる。 さらに、 ヒータ付き電子レンジのモデルにあ つては上ヒータの配置が非常に簡単となる、 といった効果も得られる。
図 1 3 ( b ) において、 同じく 1 4 0は加熱調理器、 1 4 1は加熱室、 1 4 2 は循環ファン、 1 4 3は高周波発生部、 1 4 6は直方体状広域導波管、 1 4 7は 給電口である。
直方体状広域導波管 1 4 6は、 その大きさが本発明により天井 1 4 1 aの略全 面に等しい大きさとなっており、 さらにその天井側に給電口 1 4 7が無数に散在 しており、しかもその大きさが前記高周波発生部 1 4 3の近傍では小さめであり、 高周波発生部 1 4 3から遠ざかるにしたがって大きくなるようにしているので、 均一な電波が天井一面からシャワーのように降り注ぐため、 さらに均一な加熱が 可能となる。
また、 直方体状広域導波管 1 1 3を特に天井に配置することにより床下に十分 なスペースができるため、 食品加熱を自動で行う場合に食品の重量を検出する重 量センサが配置し易くなり、 さらに、 ターンテーブルを使用するモデルにあって はターンテーブルが簡単に構成できることとなる。 以下、 第 8の実施の形態として、 本発明に係る高周波加熱装置及びその制御方 法の好適な実施の形態について、 図面を参照して詳細に説明する。
図 1 6は本発明に係る高周波加熱装置の概念的な構成図、 図 1 7は高周波加熱 装置の高周波駆動部の構成図である。
図 1 6に示すように、 この高周波加熱装置 2 1 0 0は、 被加熱物 Mを収容する 加熱室 2 1 1に高周波を供給して被加熱物 Mを加熱処理するものであって、 高周 波発生部として、 周波数が 2 . 4 5 G H zの高周波を発生する第 1高周波発生部 2 1 3と、 周波数が 5 , 8 G H zの高周波を発生する第 2高周波発生部 2 1 5を 備えている。 また、 高周波加熱装置 2 1 0 0には、 これらを発振駆動する高周波 駆動部 2 1 7、 制御部 2 1 9とが設けられ、 この制御部 2 1 9には、 加熱開始を 指示するスタートスィツチや、 加熱内容を設定するメニュースィツチ等の入力操 作部 2 2 1と、 各種情報を表示する表示部 2 2 3が接続されている。 制御部 2 1 9は、入力操作部 2 2 1からの入力内容に基づいて高周波発生部を駆動制御して、 載置台 2 2 0上の被加熱物 Mを所望の条件で加熱する。
第 1高周波発生部 2 1 3は、 周波数が 2 . 4 5 G H zの高周波を発振するマグ ネトロン 2 2 5と、 マグネトロン 2 2 5のアンテナ 2 2 5 aから出力された高周 波を加熱室 2 1 1の底面側に設けた下側給電口 2 2 7へ導く下側導波管 2 2 9と を有している。
また同様に、 第 2高周波発生部 2 1 5は、 周波数が 5 . 8 G H zの高周波を発 振するマグネトロン 2 3 1と、 マグネトロン 2 3 1のアンテナ 2 3 1 aから出力 された高周波を加熱室 2 1 1の上面側に設けた上側給電口 2 3 3へ導く上側導波 管 2 3 5とを有している。
高周波駆動部 2 1 7は、 図 1 7に一例を示すように、 各マグネトロン 2 2 5, 2 3 1を個別に駆動するインバータ回路を備えている。 マグネトロン 2 2 5を駆 動する第 1インバータ回路 2 3 7には、 商用電源 2 4 9からの電力がダイオード プリッジ等の整流回路 2 5 1によって全波整流されて供給され、 これを高周波電 圧に変換した後に昇圧トランス 2 5 3の一次卷線 2 5 5に印加する。 すると、 昇 圧トランス 2 5 3の二次卷線 2 5 7に数 k Vの高周波の高電圧が発生する。 そし て、 この高周波高電圧は、 コンデンサ 2 5 8やダイオード 2 5 9からなる倍電圧 整流回路 2 6 1によって整流されて、マグネトロン 2 2 5に高電圧が印加される。 また、 昇圧トランス 2 5 3のヒータ巻線 2 6 3は、 マグネトロン 2 2 5のフイラ メント 2 6 5に接続され、 フィラメント 2 6 5を加熱する。 そして、 マグネトロ ン 2 2 5は、フィラメント 2 6 5の加熱と高電圧の印加により高周波を発振する。 上記のマグネトロン 2 2 5を駆動する第 1インバータ回路 2 3 7、 昇圧トラン ス 2 5 3、 及び倍電圧整流回路 2 6 1の各構成は、 マグネトロン 2 3 1を駆動す る第 2インバータ回路 2 6 7、 昇圧トランス 2 6 9、 及ぴ倍電圧整流回路 2 7 1 の構成と同様であるので、 同一の機能を有する部分については同一の符号を付与 することでその説明は省略するものとする。 そして、 第 1インバータ回路 2 3 7と第 2インバータ回路 2 6 7には駆動制御 部 2 7 3が接続されており、 駆動制御部 2 7 3が双方の回路の駆動タイミングゃ 給電配分等を制御部 2 1 9からの制御信号を受けて制御する。
ここで、 加熱室 2 1 1に供給する 2種類の周波数の高周波に対する電波洩れ防 止用のチョークについて説明する。
図 1 8に高周波加熱装置 2 1 0 0の外観斜視図を示した。 箱形の加熱室 2 1 1 は、 高周波加熱装置 2 1 0 0の一側面となる前面側に開閉自在に取り付けられた 開閉扉 2 7 5により開口し、 この開口部から加熱室 2 1 1内への被加熱物の出し 入れを可能とする構成になっている。 つまり、 加熱室 2 1 1は、 開口部を有する 加熱室本体 2 7 7が、 開閉扉 2 7 5により開閉自在になるため、 開閉扉 2 7 5か らの電波洩れを防止するためのチョーク 2 7 9が、 加熱室本体 2 7 7と対向する 開閉扉 2 7 5の部分に形成されている。 このチョーク 2 7 9は加熱室本体 2 7 7 側の開閉扉 2 7 5と対向する部分に形成してもよい。
ここで、 図 1 9に図 1 8の A— A断面 (a ) と B— B断面 (b ) 、 及び図 2 0 にチョークの斜視図を示した。 このチョーク 2 7 9の形状に関しては、 特許第 1 5 0 4 2 0 1号に記載のチョークと周波数は異なるものの略同様の構成となって いる。 即ち、 図 1 9 ( a ) に示すように、 開閉扉 2 7 5を形成する金属板 2 8 3 の端部で、 折り曲げ加工により溝 2 8 5を形成することで基端側壁面 2 8 7を形 成し、 さらに金属板 2 8 3-の先端を U字状に折り曲げて、 溝幅が b lの開孔部側 溝 2 8 5 aと、 溝幅が b 2の短絡側溝 2 8 5 bの壁面を形成している。 そして、 図 2 0に示すように、 開孔部側溝 2 8 5 aの側で、 導線幅を a 1, a 3、 短絡側 溝 2 8 5 bの側で導線幅を a 2, a 4として複数の導体片 2 8 1 aを形成してい る。
また、 図 1 9 ( b ) の B— B断面においては、 開孔部側溝 2 8 5 aの側で溝幅 を b 3、 短絡側溝 2 8 5 bの側で b 4として、 前記導体片 2 8 1 aと同様の形状 の導体片 2 8 1 bを複数形成している。
これら導体片 2 8 1 a , 2 8 1 bは溝 2 8 5内に互い違いに収容され、 溝 2 8 5の開孔端は溝カバー 2 8 9によって覆われており、 また、 開閉扉 2 7 5の外側 はドア力パー 2 9 1で覆われている。 上記構成のチョーク 2 7 9では、 断面 A— Aで示す溝における特性インピーダンスの比 Klは、 (1) 式で表される, (数 1)
Figure imgf000029_0001
また、 断面 B— Bで示す溝における特性インピーダンスの比 K2 は、 で表される。
(数 2)
Figure imgf000029_0002
4 b3 上記 Κ1、 Κ2 の各値は、 溝の深さ (L1+L2) と (L3+L4) が同一になる ようにそれぞれ設定している。 なお、 e effl、 £eff2 はそれぞれの溝部の実効誘 電率である。
ここで、 溝開孔部側溝の特性インピーダンス、 長さ、 位相定数を ZOl、 L1, /31 とし、 溝短絡部側溝の特性インピーダンス、 長さ、 位相定数を Z02、 L2, β2とする。 そして、 溝の開孔端から短絡端までの距離 (溝の深さ) を L (total) とすると L(total)=Ll+L2 となる。上記条件で溝の開孔端のインピーダンス Z は (3) 式で表せる。
(数 3)
Figure imgf000030_0001
伹し、 Κ=ΖΟ2,Ζ01
本実施形態では、 特性インピーダンスが Ζ 02 ≠Ζ 01 であるから、 (3) 式 において特性インピーダンスの比 Κの値は、 K≠ lとなる。 溝の開孔端のインピ 一ダンス Ζを無限大にするためには、 (3) 式の分母がゼロになればよいので、 1 =Κίαη^ 1L1 - tani32L2 を満たせばょレ、。そのため、前記 K 1, Κ2の値は、 a 1, a 2, a 3, a 4及び、 bl, b2, b3, b4を調整することで任意に設定できるので、 これら Kl、 K2 を適切に設定することにより、 1つの溝で 2. 45 GHzと 5. 8 G H zとの 2種類の周波数に対してシール効果を持たせることができる。
即ち、 5. 8 GH zの高周波に対する溝の深さ (L3+L4) と 2. 45GHz の溝の深さ (L1+L2) とが同一になるように特性インピーダンス比 Kの値を決 定する。 例えば、 2. 45 GH Zに対する特性インピーダンス比 K1 に基づき、 溝の深さ (L1+L2) を決定し、 それに合致するように、 5. 8 GHzに対する 特性インピーダンス比 K2 の値を決定する。 例えば開閉扉の厚みを 2 Omm程度 とする場合、 Kl> 1、 Κ2< 1の組み合わせとすることで、 2. 45 GH ζと 5. 8 GHzとの 2種類の高周波に対して有効に作用する電波洩れ防止用溝を構成す ることができる。
上述したように、 本実施形態のチョークの構成では、 加熱室本体 277と開閉 扉 2 7 5とが対向する部分の少なくとも一方に 1つ以上の溝を設け、 この溝の少 なくとも一つの壁面は、 溝の長手方向に間隔をおいて連続的に並べ、 かつ、 溝の 壁面に平行な導体片群により構成され、 導体片を溝幅が周期的に変化するように 配置して導線路を構成し、 溝内で誘電率、 導線路幅、 溝幅のうち少なくともいず れか 1つを変化させて溝の開口部の特性インピーダンスと、 溝の短絡端部の特性 インピーダンスの比を周期的に変えることにより、 異なる 2つの周波数の高周波 を同時に遮蔽することが可能となる。
以上説明した高周波加熱装置の構成においては、 図 21に高周波加熱装置の一 部概略断面を示すように、 必要に応じて電波撹拌用のスタラー羽根 293を導波 管 229の下側給電口 227近傍に設け、 スタラー羽根 293の回転駆動により 加熱室 21 1へ供給する電波を強制的に撹拌して、 より均一な加熱が図れるよう にしてもよい。
また、 図 22に高周波加熱装置の概略断面図を示すように、 加熱室 2 1 1の底 面に回転自在に軸支されたターンテーブル 295を設け、 均一加熱を図る構成と してもよい。 この場合には、 第 1高周波発生部 21 3を第 2高周波発生部 2 1 5 と共に加熱室 21 1の上側に配置して、 第 2高周波発生部 21 5の上側給電口 2
3 3の近傍から高周波を加熱室 2 1 1内に供給する構成としてもよく (図 2 2 (a) 参照) 、 また、 第 1高周波発生部 2 1 3を加熱室 1 1の側面に設け、 側面 から高周波を加熱室 2 1 1内に供給する構成としてもよい(図 22 (b)参照)。 次に、 本発明に係る高周波加熱装置 2 1 00の作用を説明する。
本発明の高周波加熱装置 2100を用いて、 被加熱物 Mを加熱処理する際、 加 熱室 2 1 1には、 第 1高周波発生部 21 3力、らの 2. 45 GH zの高周波、 及び 第 2高周波発生部 2 1 5からの 5. 8 GH zの高周波の少なくともいずれか一方 が個別に或いは同時に供給される。
図 23に加熱室 2 1 1に現れるある瞬間の定在波の状態を一例として示した。 (a) は 2. 45 GHzの高周波、 (b) は 5. 8 GHzの高周波、 (c) は 2.
45GHzと 5. 45 GH zの高周波の合波として示している。
図 23 (a) に示す 2. 45 G H zの高周波では、 加熱量が多くなる電界の波 腹の部分の間隔 (加熱スポットの間隔) が約 6 c mとなり、 例えば 30 c mの長 さの被加熱物 Mに対しては、 直線上に定在波の波腹の部分が僅か 5点程度しか含 み得ない。 従って、 被加熱物 Mには加熱スポット位置とそれ以外の位置とでは昇 温特性に大きく差が生じて加熱ムラが生じやすくなる。
—方、 図 23 (b) に示す 5. 8 GH zの高周波では、 加熱スポットの間隔が 約 2. 6 cmとなり、 上記長さでは直線上で 10点以上の加熱スポットが被加熱 物 Mに含み得る。 このため、 被加熱物 Mが均等に加熱されて被加熱物 Mの場所に よる加熱ムラが生じにくくなる。
しかし、 5. 8 GHzの高周波では、 被加熱物 Mに対する吸収深さが浅くなる 傾向があり、 2. 45 GHzの高周波が被加熱物 Mの表面から約 5〜 7 cmであ るのに対し、 5. 8 GHzの高周波では表面から約 2〜3 cmと浅くなる。 従つ て、 5. 8 GH zの高周波のみ用いて被加熱物 Mを加熱する場合には、 被加熱物 Mが薄肉のものであればよいが、 厚肉の場合は、 被加熱物 Mの内部と表面との間 で温度差が大きくなり、 加熱ムラが生じやすくなる。
そこで、 図 23 (c) に示すように、 2. 45 GHzの高周波と 5. 8 GHz の高周波とを同時に供糸合することで、 被加熱物 Mが厚肉の場合でも加熱ムラを小 さく抑えて均一加熱を実現することが可能となる。 即ち、 2. 45GHzの高周 波と 5. 8 GHzの高周波が重なり合うと、 加熱量が小さくなる定在波の谷の部 分でもバイアスが上がることで加熱効果が得られ、 これにより高周波の加熱効果 の均等化が図れ、 被加熱物 Mの場所や厚みによらない均一加熱が実現できる。 上記各高周波の特性とこれによる加熱効果の違いを纏めて表 1に示した。 (表 1)
Figure imgf000032_0001
被加熱物 Mの加熱分布特性に関しては、 5. 8 GHzの高周波が表面積の大き いピザや肉スライス品等の加熱に好適に利用でき、 加熱ムラの発生を抑えること ができる反面、 2. 45 GHzの高周波は前述した加熱ポイントが少ないために 加熱ムラが生じやすくなる。 しかし、 5. 8 GH zの高周波と組み合わせること で薄肉品であっても均一加熱が実現できる。また、厚肉の被加熱物に対しては 2.
45 GH zの高周波の方が有利となり、 5. 8 GHzの高周波では、 被加熱物の 内部にまで熱が通らずに、 表面からの熱伝導による加熱となつて加熱時間が長く かかる傾向があるが、 2 . 4 5 G H Zの高周波との組み合わせにより、 被加熱物 内部まで迅速な加熱が可能となる。
なお、 2 . 4 5 G H zの高周波と 5 . 8 G H Zの高周波を交互に切り替えて供 給する場合でも、 実質的に上記同様の効果を得ることができる。
以上のように、 異なる周波数の高周波を用い、 また、 各々の電力配分を調整す ることにより、 種々の形態の定在波分布を形成でき、 ムラの少ない加熱、 さらに は局部的な加熱処理が実現できる。
次に、 本発明に係る高周波加熱装置の第 9実施形態を説明する。
図 2 4に本実施形態の高周波加熱装置の概念的な断面構成図を示した。 なお、 前述した第 8実施形態の構成と同一の機能を有する部材に対しては同一の符号を 付与することでその説明は省略するものとする。
本実施形態の高周波加熱装置 2 2 0 0は、 図 2 4に示すように、 加熱室 2 1 1 の下側から第 1高周波発生部 2 1 3からの 2 . 4 5 G H zの高周波を供給し、 加 熱室 2 1 1の上側から第 2高周波発生部 2 1 5からの 5 . 8 G H zの高周波を供 給する構成であって、 加熱室 2 1 1の全高 Hに対して、 加熱室 2 1 1上面から距 離 hの位置に加熱室 2 1 1の空間を上下に分割する仕切板 2 9 7を設けている。 仕切板 2 9 7は、 加熱室 2 1 1に対して複数の高さ位置に容易に脱着自在とさ れており、 加熱室 2 1 1の壁面に形成した係止部 2 9 9に支持されて取り付けら れる。 この仕切板 2 9 7は、 図 2 5に仕切板の断面図を示すように、 被加熱物の 載置面となる金属板 2 1 0 1と、 金属板 2 1 0 1に対峙してあるいは接触して配 置される高周波発熱体 2 1 0 3と、 高周波発熱体 2 1 0 3を金属板 2 1 0 1に固 定すると共に加熱室 2 1 1側の係止部 2 9 9と係合する固定部材 2 1 0 5とを有 する。
金属板 2 1 0 1は、 アルミメッキ鋼板からなり、 金属板 2 1 0 1自体を波形と して凹凸を形成したり、 金属板上 2 1 0 1に凸部を形成したりすることで表面に 波状の凹凸を設けている。 なお、 アルミメツキ鋼板の表側面には防汚効果の高い フッ素塗装を施し、 裏側面には吸熱効果の高い黒色耐熱塗装を施している。
高周波発熱体 2 1 0 3は、 金属板 2 1 0 1側とは反対側の面に、 高周波を吸収 して発熱する窒化物及ぴ硼化物からなる高周波発熱膜 2 103 aを基体 2 1 03 bに密着させて形成している。 基体 2 103 bは、 セラミック材又は耐熱樹脂材 からなり、 蓄熱効果の高い材料が好適に用いられる。
固定部材 2105は、 仕切板 29 7の加熱室 21 1への挿入方向に沿って両脇 側に設けられた絶縁体からなり、 加熱室 2 1 1との間に隙間を形成することで、 高周波加熱時におけるスパークの発生を防止している。
また、 金属板 21 0 1を波形にすることで、 高周波吸収膜 2 103 aと金属板 2 10 1のとの距離が遠くなり、 これにより、 高周波吸収膜 2 103 a上におけ る電界強度が高くなり、 高周波吸収膜 21 03 a上での発熱量が増加する効果も 得られる。 なお、 高周波発熱体 210 3として、 裏面に高周波発熱膜 210 3 a を設けた構成以外にも、 高周波発熱体自身を高周波で発熱するセラミックで形成 してもよレ、。
金属板 2101として、 金属製のアルミメツキ鋼板を用いたが、 表面で高周波 を反射するものであれば、 セラミック質の基材に金属メツキや金属蒸着等で高周 波の反射層を設けたもの等も利用でき、 さらには、 ステンレス、 アルミニウム及 びアルミニウム合金、 亜鉛メツキ鋼板、 アルミ亜鉛合金メッキ鋼板ゃ銅メツキ鋼 板などの各種メツキ鋼板、 冷間圧延鋼板、 クラッド材等も用いることができる。 また、 高周波吸収膜 28 1として窒化物ゃ硼化物を用いたが、 酸化スズ、 酸化ィ ンジゥム等の金属酸化物、 及ぴ複合酸化物等も用いることができる。
上記構成の高周波加熱装置 2200によれば、 加熱室 21 1が上側空間と下側 空間と 2つの空間に分割され、 それぞれの空間で所望の加熱処理が実施できる。 即ち、 この高周波加熱装置 2200では、 加熱室 21 1の上側空間 21 1 aに 第 2高周波発生部 2 1 5からの 5. 8 GH zの高周波が供給され、 また、 加熱室 21 1の下側空間 2 1 1 bに第 1高周波発生部 21 3からの 2. 45 GHzの高 周波が供給される。 上側空間 2 1 1 aの仕切板 29 7上に載置された被加熱物 M は、 上側から供給される 5. 8 GH zの高周波により加熱され、 また、 下側から 供給される 2. 45 GH zの高周波による高周波発熱体 2 1 0 3の発熱によって も加熱される。 この場合、 上側空間 2 1 1 aでは、 所謂グリル調理が行われる。 一方、 下側空間 21 1 bでは、 被加熱物 Mを加熱室 21 1の底面に載置すること で、 2. 45 GH zの高周波加熱がなされることとなる。
なお、 上記の仕切板 29 7に高周波発熱体 2103を設けない構成としてもよ い。 その場合には、 上側空間においては、 下側からの高周波による加熱を制限し て上側からの高周波加熱を主体に被加熱物 Mを加熱処理することができる。
また、上側から供給する高周波を 5. 8 GHz、下側から供給する高周波を 2. 45 GH zとしても構わない。
上記構成によれば、 前述した各周波数の高周波を共通の加熱室 1 1に供給する 以外にも、 それぞれ個別の加熱空間 21 1 a, 21 1 bを形成して、 それぞれの 空間 21 1 a, 21 1 bで個別に各周波数の高周波による加熱が実施できる。 こ れにより、 被加熱物 Mの大きさに対して必要以上の空間を用意して必要以上の加 熱エネルギを供給することがなく、 任意の大きさに空間を設定することで、 無駄 の少なレ、高効率な加熱が可能となる。
なお、 脱着自在な仕切板 297に代えて固定型の仕切構造とし、 各周波数の高 周波による個別の加熱空間を形成する構成としてもよい。 この場合には、 仕切板 29 7の脱着動作が不要となり、 加熱操作が単純化できる。
ここで、 高周波加熱装置 21 00の高周波駆動部 2 1 7の構成を単純化した構 成例を説明する。
図 1 7に示すように、 高周波駆動部 21 7には各マグネトロン 225, 2 3 1 を個別に駆動するインバータ回路をそれぞれ備えていたが、 図 26に示す高周波 駆動部の他の構成例を示すように、 単一のインバータ回路で駆動する構成として あよい。
つまり、 インバータ回路 2107に接続され、 且つ駆動するマグネトロンを切 り替えるための切り替えスィツチ 2109を切り替え制御する駆動制御部 2 1 1 1を備え、 切り替えスィッチ 21 09を制御部 21 9 (図 1 6参照) からの信号 に基づいて適宜なタイミングで切り替え制御することで、 2. 8 GHzの高周波 と 2. 45 GHzの高周波を交互に出力可能にした構成となっている。
上記構成の高周波駆動部 21 8によれば、 2つの異なる種類のマグネトロン 2 25, 23 1を単一のィンバータ回路で駆動することができるので、 高周波駆動 部 218の回路構成を大幅に簡略化でき、必要とする設置スペースが小さく済み、 装置の小型軽量化に寄与することができる。
次に、 第 1高周波発生部 213と第 2高周波発生部 215の駆動制御について 説明する。
制御部 219 (図 16参照) は、 電源からの電力を第 1高周波発生部 213で ある 2.45 GH z用のマグネトロン 225と第 2高周波発生部 21 5である 5. 8 GHz用のマグネトロン 231とに分配する信号を駆動制御部 273 (図 17 参照) に出力し、 駆動制御部 273は、 この分配信号を受けて第 1インバータ回 路 237と第 2インバータ回路 267とに給電配分する。
このときの、 第 1高周波発生部 213、 第 2高周波発生部 215への給電パタ —ンについて、 図 27〜図 30を用いて説明する。
図 27は 5. 8 GHzと 2. 45 GH zの高周波を交互に出力するパターンで ある。 この給電パターンによれば、 交互に出力が行われ、 双方の高周波を同時に 出力することがないので、 各高周波の出力を高周波加熱装置の定格電力まで印加 して出力させることができる。 従って、 各高周波発生部を最大の出力にして被加 熱物を効率良く加熱することができる。
図 1 3は 5. 8 GHzと 2. 45 GH zの高周波を同時に出力するパターンで ある。 この'ときの出力は、 双方の高周波の合計電力が高周波加熱装置の定格電力 を超えないように制御される。 図中には、 定格電力を Pとしたときに例えば双方 の高周波の電力をそれぞれ PZ 2に設定する状態を示した。 電力分配の割合は、 これ以外にも任意の割合に設定でき、 また、 例えば所定時間経過後に電力分配の 割合を変更することも可能である。
図 29は 2. 45 GH zの高周波を先に出力して 5. 8 GHzの高周波を後か ら出力するパターンである。 このパターンによれば、 被加熱物の温度が低い加熱 初期に、 加熱効果が比較的高い 2. 45 GH zの高周波を供給して被加熱物を一 気に昇温させ、 また、 所定時間経過後或いは所定温度到達後に 5. 8 GHzの高 周波を供給することで、 加熱温度の均一化を図り、 温度分布の少ない均一加熱状 態にすることができる。 また、 これとは逆に先に 5. 8 GHzの高周波を出力し て 2. 45 GHzの高周波を後から出力するパターンとしてもよい。 この場合に は、 加熱後半に強く加熱する調理等に好適となる。 なお、 加熱後半の各高周波を 同時に出力する際に、 各高周波を図 2 7に示すような交互に出力するパターンに してもよい。 その場合には、 各出力を最大出力まで印加することができる。
図 3 0は 5 . 8 G H zの高周波のみ出力するパターンである。 このパターンで は特に薄肉の被加熱物の加熱に好適となり、 温度分布の少ない状態に仕上げるこ とができる。また、 2 . 4 5 G H zの高周波のみ出力するパターンとしてもよい。 この場合には、 従前同様の高周波加熱が行える。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2003年 4月 25 日出願の日本特許出願 Να2003-121876、 2003年 5 月 8 日出願の日本特許出願 Μ 2003-130370、 2003年 5月 9 日出願の日本特許出 願 Να2003-131804、 に基づくものであり、 その内容はここに参照として取り込ま れる。
<産業上の利用可能性 >
本発明の高周波加熱装置によれば、 キヤビティによって画成された加熱室のよ り広範囲に、 マイクロ波による加熱スポットの分布を広げることができ、 被加熱 物の表面のより広範囲の部分にマイクロ波が当たるようになる。
その結果、 焼き深度の浅い 5 . 8 G H zのマイクロ波でも、 例えば対向する双 方向から被加熱物を加熱することで、 実質的な焼き深度を 2倍に強化することが でき、 加熱室内に電磁波攪拌手段を装備せずとも、 被加熱物の表層及び内深部の 全域に対して、 加熱ムラの発生を抑止することができる。
従って、 厚肉の被加熱物に対しても、 加熱ムラの無い良好な加熱を実現でき、 且つ電磁波攙拌手段の削除によつて構造の簡略化やこれに伴う装置の小型化、 或 いは、 製作コストゃ運転コストの低減を図ることができる。
また、 本発明の高周波加熱装置によれば、 多数の給電口を備えて成る直方体状 広域導波管を加熱室の裏側に備え、 かつ高周波発生部を直方体状広域導波管の直 近に設けたので、 導波管の構造が幅広い構造であるため多数の給電口を設けるこ とが可能となり、 均一加熱に近づけることができる。
また、 本発明によれば、 直方体状広域導波管が床部の略全面に広がる大きさを しておりかつ多数の給電口を床部側に向けて床部の裏側に設けられたので、 加熱 室の中央と隅との間にマイクロ波の電界強度の差が生じなくなり、 均一加熱に近 づけることができる。 また、 床部からのマイクロ波照射なので被加熱部に近く、 加熱効率もよくなる。
さらに、 電波を撹拌させるためのターンテーブルや回転アンテナ等の構成を設 けなくてもよいため、 電波スパークや電波漏洩等の信頼性も向上する。
また、 本発明によれば、 直方体状広域導波管が天井の略全面に広がる大きさを しておりかつ多数の給電口を天井側に向けて天井の裏側に設けたので、 均一な電 波が天井一面からシャワーのように降り注ぐため、 さらに均一な加熱が可能とな る。
また、 本発明によれば、 高周波発生部から供給される高周波の周波数が 5. 8 GHzであるため、 マイクロ波の波長が従来の主流であった 2. 45 GHzの場 合と比べ定在波の間隔が狭くなり、 さらに均一加熱に近づけることができる。 また、 本発明によれば、 給電口の大きさが高周波発生部の近傍では小さめであ り、 高周波発生部から遠ざかるにしたがって大きくなつているので、 高周波発生 部の近傍と遠くとのマイクロ波の電界強度の差が生じなくなり、 より均一加熱に ' 近づけることができる。
また、 本発明の高周波加熱装置によれば、 被加熱物を収容する加熱室に高周波 発生部から高周波を供給し、 被加熱物を加熱処理する高周波加熱装置であって、 高周波発生部が、 周波数が 2. 45 GHzの高周波を発生する第 1高周波発生部 と、 周波数が 5. 8 GHzの高周波を発生する第 2高周波発生部とを備えること により、 加熱効果の高い周波数が 2. 45 GHzの高周波と、 加熱分布が均一な 周波数が 5. 8 GH zの高周波との 2種類の高周波を加熱室に供給することがで き、 加熱ムラの発生を抑制して、 厚肉の被加熱物であっても迅速に均一加熱処理 が可能となる。
また、 本発明の高周波加熱装置の制御方法によれば、 周波数が 2. 45GHz の高周波と周波数が 5. 8 GHzの高周波とを同時に又は交互に前記加熱室に供 給することにより、 加熱効果の高い 2. 45 GHzの高周波と、 均一加熱効果の 高い 5. 8 GHzの高周波とが選択的に供給可能となるので、 被加熱物の形状や 加熱目的に応じた適切な高周波を供給して効率の良い加熱処理を行うことができ る。

Claims

1 . 加熱室内の被加熱物に 5 . 8 G H zのマイクロ波を照射して、 前記被 加熱物の加熱を行う高周波加熱装置であって、
前記マイクロ波を出射する給電口を備えた導波管を、 前記加熱室を画成するキ ャビティに複数本装備したことを特徴とする高周波加熱装置。 請
2 . 前記給電口を配置する前記キヤビティの壁面を、前記加熱室の上下面、 又は上面及び側面、 又は側面及ぴ下面としたことを特徴とする請求の範囲第 1項 に記載の高周波加熱装置。 囲
3 . 前記キヤビティの上壁に配置された少なくとも 2本の導波管によって、 前記加熱室の上面に前記給電口を 2個口設けたことを特徴とする請求の範囲第 1 項に記載の高周波加熱装置。
4 . 前記キヤビティの上壁の少なくとも 2本の導波管は、 導波管の横断面 の長辺が上下方向に向いた縦型配置になされたことを特徴とする請求の範囲第 3 項に記載の高周波加熱装置。
5 . 前記キヤビティの上壁の内、 前記縦型配置の導波管の装備領域を除く 領域に面ヒータを配置したことを特徴とする請求の範囲第 4項に記載の高周波加 熱装置。
6 . 高周波発生部と、 該高周波発生部からの高周波を供給して被加熱物を 加熱処理する天井 ·側壁 ·床部から構成される加熱室と、 を有する高周波加熱装 置において、
多数の給電口を備えて成る直方体状広域導波管を前記加熱室の裏側に備え、 か つ前記高周波発生部を前記直方体状広域導波管の直近に設けたことを特徴とする 高周波加熱装置。
7 . 前記直方体状広域導波管が前記床部の略全面に広がる大きさをしてお りかつ前記多数の給電口を前記床部側に向けて前記床部の裏側に設けられたこと を特徴とする請求の範囲第 6項記載の高周波加熱装置。
8 . 前記直方体状広域導波管が前記天井の略全面に広がる大きさをしてお りかつ前記多数の給電口を前記天井側に向けて前記天井の裏側に設けられたこと を特徴とする請求の範囲第 6項記載の高周波加熱装置。 9 . 前記高周波発生部から供給される高周波の周波数が 5 . 8 G H zであ ることを特徴とする請求の範囲第 6項〜第 8項のいずれか 1項記載の高周波加熱 装置。
1 0 . 前記多数個の給電口の大きさが前記高周波発生部の近傍では小さめで あり、 前記高周波発生部から遠ざかるにしたがって大きくなることを特徴とする 請求の範囲第 6項〜第 9項のいずれか 1項記載の高周波加熱装置。
1 1 . 被加熱物を収容する加熱室に高周波発生部から高周波を供給し、 被加 熱物を加熱処理する高周波加熱装置であって、
前記高周波発生部が、 周波数が 2 . 4 5 G H zの高周波を発生する第 1高周波 発生部と、 周波数が 5 . 8 G H zの高周波を発生する第 2高周波発生部とを備え た高周波加熱装置。
1 2 . 前記第 1高周波発生部へ駆動電力を供給する第 1インバータ回路と、 前記第 2高周波発生部へ駆動電力を供給する第 2ィンバータ回路と、 これらィンバータ回路により前記第 1高周波発生部と前記第 2高周波発生部と を同時に又は交互に駆動する駆動制御部とを備えた請求の範囲第 1 1項記載の高 周波加熱装置。
1 3 . 前記第 1高周波発生部及び第 2高周波発生部へ駆動電力を供給する単 一のィンバータ回路と、
前記第 1高周波発生部と前記第 2高周波発生部への給電を交互に切り替えて駆 動する駆動制御部とを備えた請求の範囲第 1 1項記載の高周波加熱装置。
1 4 . 前記加熱室の上面に設けられ高周波を前記加熱室内に導入する上側給 電口と、 前記加熱室の下面に設けられ高周波を前記加熱室内に導入する下側給電 口とを備え、 該上側給電口と下側給電口のそれぞれから前記第 1高周波発生部又 は前記第 2高周波発生部からの高周波を個別に導入する請求の範囲第 1 1項〜第 1 3項のいずれか 1項記載の高周波加熱装置。
1 5 . 前記加熱室の空間を上下に分割する仕切板を設けた請求の範囲第 1 4 項記載の高周波加熱装置。 1 6 . 前記仕切板が高周波発熱体を備え、 高周波の照射により発熱する請求 の範囲第 1 5項記載の高周波加熱装置。
1 7 . 前記加熱室の上側給電口から前記第 2高周波発生部からの高周波を前 記加熱室内に導入する請求の範囲第 1 4項〜第 6項のいずれか 1項記載の高周 波加熱装置。
1 8 . 前記加熱室が、 開口部を有する加熱室本体と、 該開口部を開閉自在に 覆う開閉扉とを有し、 前記加熱室本体と前記開閉扉とが対向する部分の少なくと も一方に、 電波洩れ防止用のチョークが形成され、
該チョークが前記第 1高周波発生部と前記第 2高周波発生部からの各高周波を 遮蔽するものである請求の範囲第 1 1項〜第 1 7項のいずれか 1項記載の高周波 加熱装置。
1 9 . 被加熱物を収容する加熱室に高周波発生部から高周波を供給し、 被加 熱物を加熱処理する高周波加熱装置の制御方法であって、
前記高周波発生部から、 周波数が 2 . 4 5 G H zの高周波と周波数が 5 . 8 G H zの高周波とを同時に又は交互に前記加熱室に供給する高周波加熱装置の制御 方法。
2 0 . 前記各周波数のうち、 いずれか一方の高周波を加熱初期に出力し、 加 熱開始から所定時間経過後又は所定温度到達後にいずれか他方の高周波の出力を 開始する請求の範囲第 1 9項記載の高周波加熱装置の制御方法。
2 1 . 前記各周波数を同時に出力する場合に、 各高周波の出力を、 高周波出 力のための駆動電力の合計が高周波加熱装置の定格電力を超えないように少なく ともいずれか一方の出力を制限する請求の範囲第 1 9項又は第 2 0項記載の高周 波加熱装置の制御方法。
PCT/JP2004/005889 2003-04-25 2004-04-23 高周波加熱装置及びその制御方法 WO2004098241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/553,511 US20060289526A1 (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
EP04729215A EP1619933A1 (en) 2003-04-25 2004-04-23 High-frequency heating device and method for controlling same
US11/951,513 US20080087662A1 (en) 2003-04-25 2007-12-06 High frequency heating apparatus and its control method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003121876A JP2004327293A (ja) 2003-04-25 2003-04-25 高周波加熱装置
JP2003-121876 2003-04-25
JP2003-130370 2003-05-08
JP2003130370A JP2004335304A (ja) 2003-05-08 2003-05-08 高周波加熱装置
JP2003-131804 2003-05-09
JP2003131804A JP2004335361A (ja) 2003-05-09 2003-05-09 高周波加熱装置及びその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/951,513 Division US20080087662A1 (en) 2003-04-25 2007-12-06 High frequency heating apparatus and its control method

Publications (1)

Publication Number Publication Date
WO2004098241A1 true WO2004098241A1 (ja) 2004-11-11

Family

ID=33424780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005889 WO2004098241A1 (ja) 2003-04-25 2004-04-23 高周波加熱装置及びその制御方法

Country Status (3)

Country Link
US (2) US20060289526A1 (ja)
EP (1) EP1619933A1 (ja)
WO (1) WO2004098241A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416276B (zh) * 2005-11-11 2011-09-07 Dsg科技公司 热处理系统、部件和方法
CN107254829A (zh) * 2017-08-07 2017-10-17 江苏集萃道路工程技术与装备研究所有限公司 一种新型微波加热复拌再生机及其添料复拌再生工艺

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653482B2 (en) 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
US8839527B2 (en) 2006-02-21 2014-09-23 Goji Limited Drying apparatus and methods and accessories for use therewith
US10674570B2 (en) 2006-02-21 2020-06-02 Goji Limited System and method for applying electromagnetic energy
WO2008102334A1 (en) 2007-02-21 2008-08-28 Rf Dynamics Ltd. Rf controlled freezing
CN101427605B (zh) 2006-02-21 2013-05-22 戈吉有限公司 电磁加热
WO2008007368A2 (en) * 2006-07-10 2008-01-17 Rf Dynamics Ltd. Food preparation
IL184672A (en) 2007-07-17 2012-10-31 Eran Ben-Shmuel Apparatus and method for concentrating electromagnetic energy on a remotely-located object
US9131543B2 (en) 2007-08-30 2015-09-08 Goji Limited Dynamic impedance matching in RF resonator cavity
ES2394919T3 (es) 2008-11-10 2013-02-06 Goji Limited Dispositivo y método para controlar energía
US20120241445A1 (en) * 2009-09-01 2012-09-27 Lg Electronics Inc. Cooking appliance employing microwaves
JP5645168B2 (ja) * 2009-09-07 2014-12-24 パナソニックIpマネジメント株式会社 マイクロ波加熱装置
JP5588989B2 (ja) 2009-09-16 2014-09-10 パナソニック株式会社 マイクロ波加熱装置
US9462635B2 (en) 2009-11-10 2016-10-04 Goji Limited Device and method for heating using RF energy
JP5920993B2 (ja) 2010-05-03 2016-05-24 ゴジ リミテッド モーダル解析
PL2445312T3 (pl) * 2010-10-22 2017-06-30 Whirlpool Corporation Mikrofalowe urządzenie podgrzewające i sposób działania takiego mikrofalowego urządzenia podgrzewającego
US8847130B2 (en) * 2011-05-09 2014-09-30 Kabushiki-Kaisha Takumi Heating unit of vehicle heating system
KR101831378B1 (ko) 2011-05-24 2018-02-23 삼성전자 주식회사 반도체 제조 장치
WO2013018358A1 (ja) * 2011-08-04 2013-02-07 パナソニック株式会社 マイクロ波加熱装置
EP2605617B1 (en) * 2011-12-16 2018-09-12 Whirlpool Corporation Microwave heating apparatus with dual level cavity
EP2618634A1 (en) * 2012-01-23 2013-07-24 Whirlpool Corporation Microwave heating apparatus
WO2013121288A1 (en) * 2012-02-14 2013-08-22 Goji Ltd. A device for applying rf energy to a cavity
US20130228568A1 (en) * 2012-03-02 2013-09-05 Illinois Tool Works Inc. Multiple choke system for containing wide frequency band rf leakage
JP5738814B2 (ja) * 2012-09-12 2015-06-24 株式会社東芝 マイクロ波アニール装置及び半導体装置の製造方法
US10225893B2 (en) * 2013-03-15 2019-03-05 Tf Cardinal Llc Cooking apparatus
US9541330B2 (en) 2013-07-17 2017-01-10 Whirlpool Corporation Method for drying articles
US20150047218A1 (en) * 2013-08-14 2015-02-19 Whirlpool Corporation Appliance for drying articles
WO2015024177A1 (en) 2013-08-20 2015-02-26 Whirlpool Corporation Method for detecting the status of popcorn in a microwave
US9784499B2 (en) 2013-08-23 2017-10-10 Whirlpool Corporation Appliance for drying articles
US9410282B2 (en) 2013-10-02 2016-08-09 Whirlpool Corporation Method and apparatus for drying articles
US9645182B2 (en) 2013-10-16 2017-05-09 Whirlpool Corporation Method and apparatus for detecting an energized E-field
US9546817B2 (en) 2013-12-09 2017-01-17 Whirlpool Corporation Method for drying articles
EP3087805B1 (en) 2013-12-23 2018-05-30 Whirlpool Corporation Interrupting circuit for a radio frequency generator
JP2015162272A (ja) * 2014-02-26 2015-09-07 パナソニック株式会社 マイクロ波処理装置
EP2947961A1 (en) * 2014-05-20 2015-11-25 Institut De Physique Du Globe De Paris (Établissement Public À Caractère Scientifique Et Technologique) Microwave heating device
WO2016144872A1 (en) 2015-03-06 2016-09-15 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system
US9605899B2 (en) 2015-03-23 2017-03-28 Whirlpool Corporation Apparatus for drying articles
EP3305019B1 (en) 2015-06-03 2023-07-19 Whirlpool Corporation Method and device for electromagnetic cooking
WO2017119910A1 (en) 2016-01-08 2017-07-13 Whirlpool Corporation Multiple cavity microwave oven insulated divider
WO2017119909A1 (en) 2016-01-08 2017-07-13 Whirlpool Corporation Method and apparatus for determining heating strategies
CN108605391B (zh) 2016-01-28 2020-11-17 松下电器产业株式会社 用于传送射频电磁能量以烹饪食品的方法和设备
EP3417675B1 (en) 2016-02-15 2020-03-18 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
CN109315028B (zh) * 2016-06-30 2021-07-02 松下知识产权经营株式会社 高频加热装置
WO2018031019A1 (en) 2016-08-11 2018-02-15 Whirlpool Corporation Divider assembly for a microwave oven
CN109076656B (zh) * 2016-08-22 2020-12-08 松下知识产权经营株式会社 高频加热装置
WO2018037803A1 (ja) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置
KR101781477B1 (ko) * 2016-09-19 2017-10-23 유한회사 에스피앤파트너스 전자 레인지 및 그의 방사 모듈
CN109417840B (zh) 2016-11-18 2022-04-08 惠而浦有限公司 具有多个馈送端口的微波炉的波导的rf功率控制系统及其方法
US10292212B2 (en) * 2016-11-30 2019-05-14 Hall Labs Llc Double-cavity microwave oven
CN107051270A (zh) * 2016-12-30 2017-08-18 广西利升石业有限公司 一种高效树脂加热桶
DE102017115363B4 (de) * 2017-07-10 2019-01-24 Ortner Consulting & Trading GmbH Mikrowellenofen mit einander gegenüberliegenden Strahlenauslässen
US10827569B2 (en) 2017-09-01 2020-11-03 Whirlpool Corporation Crispness and browning in full flat microwave oven
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437554U (ja) * 1977-08-19 1979-03-12
JPS5464744A (en) * 1977-10-31 1979-05-24 Nippon Electric Co High frequency heating method of and apparatus for same
JPS5512550U (ja) * 1978-07-12 1980-01-26
JPS57130395A (en) * 1981-02-05 1982-08-12 Sanyo Electric Co High frequency heater
JPS59193098A (ja) * 1982-12-29 1984-11-01 松下電器産業株式会社 電波シ−ル装置
JPS6081793A (ja) * 1983-10-13 1985-05-09 松下電器産業株式会社 高周波加熱装置
JPS61196493U (ja) * 1985-04-16 1986-12-08
JPH03283290A (ja) * 1990-03-29 1991-12-13 Toshiba Corp 高周波加熱装置
JPH0945474A (ja) * 1995-07-26 1997-02-14 Sanyo Electric Co Ltd 高周波加熱器
JP2001332380A (ja) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003308962A (ja) * 2002-04-16 2003-10-31 Matsushita Electric Ind Co Ltd 高周波加熱装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB977777A (en) * 1962-02-02 1964-12-16 Lyons & Co Ltd J Improvements in or relating to radio frequency ovens
US3662141A (en) * 1968-06-06 1972-05-09 Gen Motors Corp Oven shelf adapted to absorb microwave energy and conduct heat to a load
SE412504B (sv) * 1977-04-07 1980-03-03 Inst For Mikrovagsteknik Vid T Sett och anordning for att medelst mikrovagsenergi astadkomma en i huvudsak likformig uppvermning
US4242554A (en) * 1978-05-31 1980-12-30 General Electric Company Effective time ratio browning in a microwave oven employing high thermal mass browning unit
US4198553A (en) * 1978-06-01 1980-04-15 General Electric Company Combination oven fully utilizing the capability of a limited power source
US4329557A (en) * 1979-12-07 1982-05-11 General Electric Company Microwave oven with improved energy distribution
CA1202090A (en) * 1982-09-20 1986-03-18 Hisashi Okatsuka Microwave heating apparatus with solid state microwave oscillating device
JPS61224289A (ja) * 1985-03-27 1986-10-04 松下電器産業株式会社 電子レンジの電波漏洩防止装置
SE470343B (sv) * 1992-06-10 1994-01-24 Whirlpool Int Mikrovågsugn
KR0148906B1 (ko) * 1995-04-03 1998-12-15 구자홍 전자레인지의 전파누설방지용 도어구조
KR19990026281A (ko) * 1997-09-23 1999-04-15 윤종용 전자렌지의 마이크로파 분산장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437554U (ja) * 1977-08-19 1979-03-12
JPS5464744A (en) * 1977-10-31 1979-05-24 Nippon Electric Co High frequency heating method of and apparatus for same
JPS5512550U (ja) * 1978-07-12 1980-01-26
JPS57130395A (en) * 1981-02-05 1982-08-12 Sanyo Electric Co High frequency heater
JPS59193098A (ja) * 1982-12-29 1984-11-01 松下電器産業株式会社 電波シ−ル装置
JPS6081793A (ja) * 1983-10-13 1985-05-09 松下電器産業株式会社 高周波加熱装置
JPS61196493U (ja) * 1985-04-16 1986-12-08
JPH03283290A (ja) * 1990-03-29 1991-12-13 Toshiba Corp 高周波加熱装置
JPH0945474A (ja) * 1995-07-26 1997-02-14 Sanyo Electric Co Ltd 高周波加熱器
JP2001332380A (ja) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2003308962A (ja) * 2002-04-16 2003-10-31 Matsushita Electric Ind Co Ltd 高周波加熱装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416276B (zh) * 2005-11-11 2011-09-07 Dsg科技公司 热处理系统、部件和方法
CN107254829A (zh) * 2017-08-07 2017-10-17 江苏集萃道路工程技术与装备研究所有限公司 一种新型微波加热复拌再生机及其添料复拌再生工艺

Also Published As

Publication number Publication date
EP1619933A1 (en) 2006-01-25
US20080087662A1 (en) 2008-04-17
US20060289526A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
WO2004098241A1 (ja) 高周波加熱装置及びその制御方法
EP2597930B1 (en) Microwave heating device
US5825000A (en) Wave guide system of a microwave oven
WO2009084170A1 (ja) 加熱調理器
KR100200063B1 (ko) 전자렌지의 고주파 분산장치
KR20000075155A (ko) 히터를 가지는 전자렌지
WO2004070276A1 (ja) 加熱調理器
JP2013037795A (ja) マイクロ波加熱装置
JP2004327293A (ja) 高周波加熱装置
KR101932046B1 (ko) 마이크로파를 이용한 조리기기
JP2004335361A (ja) 高周波加熱装置及びその制御方法
JP2004335304A (ja) 高周波加熱装置
JPH08138864A (ja) 加熱調理器
GB2127259A (en) High-frequency heating appliance
KR101885654B1 (ko) 마이크로파를 이용한 조리기기
JP5957680B2 (ja) マイクロ波加熱装置
JP3102235B2 (ja) 高周波加熱装置
JP2006308114A (ja) 高周波加熱装置
KR200154601Y1 (ko) 전자 렌지의 마이크로파 방사 구조
KR100784715B1 (ko) 다수의 열풍팬을 갖는 전자레인지
WO2023074551A1 (ja) マイクロ波加熱装置
JP2012134029A (ja) マイクロ波加熱装置
JP3755995B2 (ja) 高周波加熱装置
JP3588943B2 (ja) 焦げ目付け皿付き高周波加熱装置
KR960006981B1 (ko) 전자렌지의 컨백션팬 및 도파관 설치구조

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004729215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048110881

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004729215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006289526

Country of ref document: US

Ref document number: 10553511

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10553511

Country of ref document: US