WO2011033701A1 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
WO2011033701A1
WO2011033701A1 PCT/JP2010/003398 JP2010003398W WO2011033701A1 WO 2011033701 A1 WO2011033701 A1 WO 2011033701A1 JP 2010003398 W JP2010003398 W JP 2010003398W WO 2011033701 A1 WO2011033701 A1 WO 2011033701A1
Authority
WO
WIPO (PCT)
Prior art keywords
main bit
voltage
memory cell
bit lines
bit line
Prior art date
Application number
PCT/JP2010/003398
Other languages
English (en)
French (fr)
Inventor
小関隆夫
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010546978A priority Critical patent/JPWO2011033701A1/ja
Priority to US13/014,360 priority patent/US8331157B2/en
Publication of WO2011033701A1 publication Critical patent/WO2011033701A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/563Multilevel memory reading aspects
    • G11C2211/5634Reference cells

Definitions

  • the present invention relates to a semiconductor memory device, and more particularly to a technique for adjusting a threshold voltage of a reference cell included in the semiconductor memory device.
  • FIG. 14 shows a configuration example of a general semiconductor memory device.
  • memory cells MC911 and MC921 are connected to a word line WL91
  • memory cells MC912 and MC922 are connected to a word line WL92.
  • Memory cells MC911 and MC912 are connected to sub-bit line SBL91
  • memory cells MC921 and MC922 are connected to sub-bit line SBL92.
  • the voltage source VMS9 applies a read voltage to the memory cell to be read out of the memory cells MC911, MC912,.
  • the main bit lines MBL91 and MBL92 correspond to the sub bit lines SBL91 and SBL92, respectively.
  • the decoder DEC9 connects the sub bit line connected to the memory cell to be read out of the sub bit lines SBL91 and SBL92 to the main bit line corresponding to the sub bit line.
  • Reference bit lines RBL91 and RBL92 correspond to main bit lines MBL91 and MBL92, respectively.
  • Reference cell RC91 corresponds to memory cells MC911 and MC912, and reference cell RC92 corresponds to memory cells MC921 and MC922.
  • Reference cells RC91 and RC92 are connected to reference word line RWL91 and are connected to reference bit lines RBL91 and RBL92 via switches RSL91 and RSL92, respectively.
  • the voltage source VRS9 applies a read voltage to the reference cell corresponding to the memory cell to be read out of the reference cells RC91 and RC92.
  • Sense amplifier SA91 is connected to main bit line MBL91 and reference bit line RBL91
  • sense amplifier SA92 is connected to main bit line MBL92 and reference bit line RBL92.
  • FIG. 15 shows a configuration example of the sense amplifier SA91 shown in FIG.
  • the level shifter LS9 converts the voltage of the memory bit line MBL91 and the voltage of the reference bit line RBL91 into voltages within the operating range of the differential amplifier circuit COM9.
  • the differential amplifier circuit COM9 amplifies the voltage pair from the level shifter LS9 and outputs it as output voltages O91 and O92.
  • the latch circuit LAT9 converts the voltage levels of the output voltages O91 and O92 into a logic level (a voltage level at which it can be determined whether the data is 0 data or 1 data).
  • the voltage source VMS9 When reading data from the memory cell MC911, the voltage source VMS9 applies a read voltage (for example, a voltage of about 1V) to the memory cell MC911.
  • the decoder DEC9 connects the sub bit line SBL91 and the main bit line MBL91.
  • a drive voltage (for example, a voltage of about 4V) is applied to the word line WL91.
  • the voltage source VRS9 applies a read voltage (for example, a voltage of about 1V) to the reference cell RC91, the switch RSL91 is set in a conductive state, and a drive voltage (for example, a voltage of about 4V) is applied to the reference word line RWL91. ) Is applied.
  • the bit line parasitic capacitance (CBL) of the main bit line MBL91 is charged by the current generated in the main bit line MBL91 (current generated in the memory cell MC911 to be read). Therefore, as shown in the upper diagram of FIG. 16, the voltage (VinM) of the main bit line MBL91 gradually rises with time. The same applies to the voltage (VinR) of the reference bit line RBL91. Further, the amount of increase of the voltage (VinM) of the main bit line MBL91 with time changes depending on the magnitude of the threshold voltage of the memory cell MC911 (or MC912).
  • the latch circuit LAT9 sets the voltage level of the output voltage O91 to 1.
  • the data level is set (see the solid line in the lower diagram of FIG. 16).
  • the latch circuit LAT9 sets the voltage level of the output voltage O91 to 0 data level (the lower diagram of FIG. 16). (See dashed line).
  • the voltage waveform Vo91 corresponds to the waveform of the output voltage O91
  • the voltage waveform Vo92 corresponds to the waveform of the output voltage O92.
  • the output voltage O91 depends on the magnitude relationship between the current value of the reference cell (voltage value of the reference bit line) input to the sense amplifier and the current value of the memory cell (voltage value of the main bit line). It is determined whether the voltage level is 1 data level or 0 data level. Further, in each of the memory cells MC911, MC912,..., MC922, it is defined by the threshold voltage of the memory cell whether the data stored in the memory cell is 1 data or 0 data.
  • the current values of the reference cells RC91 and RC92 are in this memory.
  • the threshold voltages of the reference cells RC91 and RC92 are accurately set so as to coincide with the median value of the change width of the cell current value (the median value between the current value when 0 data is stored and the current value when 1 data is stored). Must be set.
  • CMOS transistors are used as the reference cells RC91 and RC92, the yield decreases due to variations in manufacturing characteristics. In addition, when an advanced circuit design for expanding the allowable range of the characteristic variation is performed, the chip area increases. On the other hand, when non-volatile memory elements are used as the reference cells RC91 and RC92, it is possible to suppress variations in characteristics of the reference cell by adjusting the threshold voltage of the reference cell at the time of inspection. Yield reduction and chip area increase are unlikely to occur. Furthermore, since the characteristic variation of the read circuit such as the sense amplifier can be adjusted by the reference cell using the nonvolatile memory element, it is possible to increase the operation margin and improve the specifications.
  • the initial setting of the threshold voltage of the reference cell is performed as follows. First, the current value of the reference cell is measured. Next, when the current value of the reference cell does not reach the desired current value, a bias voltage is applied to the reference cell to change the threshold voltage of the reference cell. Such a process is repeated until the current value of the reference cell reaches a desired current value. In this way, the threshold voltage of the reference cell is adjusted.
  • Patent Documents 1 and 2 disclose techniques for realizing high-speed adjustment by using another reference cell different from the reference cell connected to the reference bit line.
  • Patent Documents 3 and 4 disclose a technique for eliminating an external terminal (an external terminal necessary for monitoring a current value when adjusting a reference cell) by providing a current source inside the chip. Yes.
  • JP 2004-39075 A JP 2006-294135 A Japanese Patent No. 3237610 JP-A-7-153287
  • an object of the present invention is to provide a technique capable of improving the adjustment accuracy of the threshold voltage of a reference cell in a semiconductor memory device.
  • a semiconductor memory device includes a plurality of first main bit lines corresponding to at least one first memory cell and a plurality of second main bits corresponding to at least one second memory cell. Output at least one read data corresponding to a difference between the voltage of any one of the plurality of first main bit lines and the voltage of any one of the plurality of second main bit lines.
  • a predetermined reference is applied to a sense amplifier and a first main bit line corresponding to a second main bit line that generates a current corresponding to a threshold voltage of the second memory cell among the plurality of first main bit lines.
  • a voltage supply switching unit for supplying a voltage; a second main bit line generating a current according to a threshold voltage of the second memory cell among the plurality of second main bit lines; and a ground node Between and a resistance switching section for conducting a predetermined resistance value.
  • the second main bit line (for example, the reference) is caused by noise such as fluctuations in the power supply voltage. Bit line) voltage can be suppressed from fluctuating. Therefore, the sense amplifier can accurately detect the voltage difference between the first and second main bit lines, so that the threshold voltage of the second memory cell can be accurately adjusted.
  • a semiconductor integrated circuit includes a plurality of first main bit lines corresponding to at least one first memory cell and a plurality of second main bits corresponding to at least one second memory cell. Output at least one read data corresponding to a difference between the voltage of any one of the plurality of first main bit lines and the voltage of any one of the plurality of second main bit lines.
  • a semiconductor memory device including a sense amplifier; and a first main corresponding to a second main bit line that generates a current corresponding to a threshold voltage of the second memory cell among the plurality of first main bit lines.
  • a voltage supply switching unit that supplies a predetermined reference voltage to the bit line; and a second main that generates a current corresponding to a threshold voltage of the second memory cell among the plurality of second main bit lines. Tsu DOO line and between the ground node and a resistance switching section for conducting a predetermined resistance value.
  • the sense amplifier can accurately detect the voltage difference between the first and second main bit lines, so that the threshold voltage of the second memory cell can be accurately adjusted.
  • an electronic device includes a plurality of first main bit lines corresponding to at least one first memory cell and a plurality of second main bits corresponding to at least one second memory cell. Output at least one read data corresponding to a difference between the voltage of any one of the plurality of first main bit lines and the voltage of any one of the plurality of second main bit lines.
  • a semiconductor memory device including a sense amplifier; and a first main corresponding to a second main bit line that generates a current corresponding to a threshold voltage of the second memory cell among the plurality of first main bit lines.
  • a voltage supply switching unit that supplies a predetermined reference voltage to the bit line; and a second main that generates a current corresponding to a threshold voltage of the second memory cell among the plurality of second main bit lines. Tsu DOO line and between the ground node and a resistance switching section for conducting a predetermined resistance value.
  • the sense amplifier can accurately detect the voltage difference between the first and second main bit lines, so that the threshold voltage of the second memory cell can be accurately adjusted.
  • the threshold voltage of the second memory cell can be accurately adjusted.
  • FIG. 1 is a diagram illustrating a configuration example of a semiconductor memory device according to Embodiment 1.
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a sense amplifier illustrated in FIG. 1.
  • the figure for demonstrating the connection relation in the case of adjusting the threshold voltage of the reference cell shown in FIG. The figure for demonstrating the relationship between the voltage of the main bit line at the time of threshold voltage adjustment of a reference cell, and the voltage of a reference bit line.
  • the figure for demonstrating the modification 1 of the resistance switching part shown in FIG. The figure for demonstrating the modification 2 of the resistance switching part shown in FIG.
  • FIG. 7 is a diagram for explaining a modification of the semiconductor memory device shown in FIG. 1.
  • FIG. 6 is a diagram illustrating a configuration example of a semiconductor memory device according to a second embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a semiconductor integrated circuit according to a third embodiment.
  • 4A and 4B are diagrams for explaining a configuration of a conventional semiconductor memory device.
  • FIG. 15 is a diagram for describing a configuration of a sense amplifier illustrated in FIG. 14. The figure for demonstrating operation
  • FIG. 1 shows a configuration example of the semiconductor memory device according to the first embodiment.
  • This semiconductor memory device includes memory cells MC11, MC12, MC21, MC22, word lines WL1, WL2, sub bit lines SBL11, SBL12, voltage source VMS, decoder DEC, main bit lines MBL11, MBL12, and reference cells.
  • the memory cells MC11, MC12,..., MC22 are constituted by, for example, a MONOS type nonvolatile memory element or a floating gate type nonvolatile memory element.
  • Memory cells MC11 and MC21 are connected to word line WL1, and memory cells MC12 and MC22 are connected to word line WL2.
  • Memory cells MC11 and MC12 are connected to sub bit line SBL11, and memory cells MC21 and MC22 are connected to sub bit line SBL12.
  • the voltage source VMS applies a read voltage to the memory cell to be read out of the memory cells MC11, MC12,.
  • the main bit lines MBL11 and MBL12 correspond to the sub bit lines SBL11 and SBL12, respectively.
  • the decoder DEC connects a sub bit line connected to the memory cell to be read out of the sub bit lines SBL11 and SBL12 to a main bit line corresponding to the sub bit line.
  • Reference bit lines RBL11 and RBL12 correspond to main bit lines MBL11 and MBL12, respectively.
  • the reference cells RC11 and RC12 are configured by, for example, a MONOS type nonvolatile memory element or a floating gate type nonvolatile memory element.
  • Reference cells RC11 and RC12 are connected to reference word line RWL1, and are connected to reference bit lines RBL11 and RBL12 via switches RSL11 and RSL12, respectively.
  • the voltage source VRS applies a read voltage to the reference cell corresponding to the memory cell to be read out of the reference cells RC11 and RC12.
  • the sense amplifier SA11 outputs read data according to the difference between the voltage of the main bit line MBL11 and the voltage of the reference bit line RBL11, and the sense amplifier SA12 outputs the voltage of the main bit line MBL12 and the voltage of the reference bit line RBL12. Read data is output according to the difference.
  • FIG. 2 shows a configuration example of the sense amplifier SA11 shown in FIG.
  • the sense amplifier SA11 includes a level shifter LS, a differential amplifier circuit COM, and a latch circuit LAT.
  • the level shifter LS converts the voltage of the memory bit line MBL11 and the voltage of the reference bit line RBL11 into a voltage within the operation range of the differential amplifier circuit COM.
  • the differential amplifier circuit COM amplifies the voltage pair from the level shifter LS and outputs it as output voltages O1 and O2.
  • the latch circuit LAT converts the voltage level of the output voltages O1 and O2 to a logic level (a voltage level at which it can be determined whether the data is 0 data or 1 data).
  • the sense amplifier SA12 has a configuration similar to that of the sense amplifier SA11.
  • a drive voltage for example, a voltage of about 4V
  • the voltage source VMS applies a read voltage (for example, a voltage of about 1V) to the memory cell MC11.
  • the decoder DEC connects the sub bit line SBL11 corresponding to the memory cell MC11 to the main bit line MBL11. Thereby, a current corresponding to the threshold voltage of the memory cell MC11 is generated in the main bit line MBL11.
  • a drive voltage for example, a voltage of about 4 V
  • the voltage source VRS applies a read voltage (for example, a voltage of about 1 V) to the reference cell RC11 corresponding to the memory cell MC1 to be read.
  • the switch RSL11 corresponding to the reference cell RC11 is set to the conductive state.
  • a current corresponding to the threshold voltage of the reference cell RC11 is generated in the reference bit line RBL11.
  • the sense amplifier SA11 outputs read data according to the difference between the voltage of the main bit line MBL11 and the voltage of the reference bit line RBL11. For example, when the voltage of the main bit line MBL11 is higher than the voltage of the reference bit line RBL11, the sense amplifier SA11 sets the voltage level of the read data to “1 data level” and the voltage of the main bit line MBL11 is the reference. When the voltage is lower than the voltage of the bit line RBL11, the voltage level of the read data is set to “0 data level”. In this way, data stored in the memory cell MC11 is read.
  • the decoder DEC disconnects the main bit line MBL11 from the sub bit line SBL11.
  • the switch SW101 corresponding to the main bit line MBL11 is set to a conductive state.
  • the switch SW201 corresponding to the reference cell RC11 is set in a conductive state, and the resistance element R200 is connected to the reference bit line RBL11 corresponding to the reference cell RC11.
  • a drive voltage for example, a voltage of about 4V
  • the voltage source VRS applies a read voltage (for example, a voltage of about 1V) to the reference cell RC11.
  • the reference bit line RBL11 that generates a current according to the threshold voltage of the reference cell RC11 is connected to the resistance element R200, and the main bit line MBL11 corresponding to the reference bit line RBL11 is connected to the voltage source 100.
  • the reference voltage VREF from the voltage source 100 is supplied to the main bit line MBL11, and a voltage corresponding to the threshold voltage of the reference cell RC11 and the resistance value of the resistance element R200 is generated on the reference bit line RBL11.
  • the current value of the reference cell RC11 is set to “20 ⁇ A”.
  • the sensitivity of the sense amplifier SA11 is highest when the difference between the voltage of the main bit line MBL11 and the voltage of the reference bit line RBL11 is “200 mV”
  • the reference voltage VREF is set to “200 mV”.
  • the threshold voltage of the reference cell RC11 is changed so that the threshold voltage of the reference cell RC11 gradually increases, and every time the threshold voltage of the reference cell RC11 is changed, a predetermined waiting time (for example, the reference bit line RBL11) is changed.
  • the read data output from the sense amplifier SA11 after the elapse of time required for the voltage to converge is monitored.
  • the voltage of the main bit line MBL11 is set to the “reference voltage VREF”.
  • the voltage of the reference bit line RBL11 gradually changes in the order of the voltage waveforms V101, V102, V103, V104 as the threshold voltage of the reference cell RC11 increases. That is, the voltage (voltage in a steady state) of the reference bit line RBL11 after a predetermined waiting time gradually decreases.
  • the adjustment of the threshold voltage of the reference cell RC11 is completed when the voltage level of the read data output from the sense amplifier SA11 transitions from “1 bit data level” to “0 data level”. Thereby, the threshold voltage of the reference cell RC11 can be set to a desired threshold voltage.
  • the resistance element (R200) is connected to the reference bit line (RBL11) corresponding to the reference cell.
  • the steady current corresponding to the reference cell (RC11) can be converted into a voltage, so that the voltage of the reference bit line (RBL11) can be prevented from fluctuating due to noise such as fluctuations in the power supply voltage. Therefore, since the sense amplifier (SA11) can accurately detect the voltage difference between the main bit line (MBL11) and the reference bit line (RBL11), the threshold voltage of the reference cell (RC11) can be accurately adjusted.
  • the area of the semiconductor memory device can be reduced, and further, the threshold voltage of another reference cell does not need to be adjusted.
  • the adjustment time of the threshold voltage of the cell can be shortened.
  • the semiconductor memory device has n ⁇ m (n and m are two or more) arranged in a matrix. (Integer) memory cells may be provided.
  • the semiconductor memory device may include a number of word lines, sub bit lines, main bit lines, reference cells, reference bit lines, and sense amplifiers corresponding to the number of memory cells (for example, the number of rows).
  • the threshold voltage adjustment of two or more reference cells may be executed in parallel. That is, the voltage supply switching unit 101 supplies a reference voltage to each of two or more main bit lines corresponding to two or more reference bit lines, each of which generates a current corresponding to a threshold voltage of two or more reference cells.
  • the resistance switching unit 102 may conduct each of the two or more reference bit lines and the ground node with a predetermined resistance value.
  • the threshold voltages of the reference cells RC11 and RC12 can be adjusted in parallel by setting all of the switches SW101, SW102, SW201, and SW202 to the conductive state.
  • a plurality of reference cells may be provided for one sense amplifier as in a multi-value nonvolatile memory. Even in such a configuration, the threshold voltage of the reference cell can be accurately adjusted.
  • threshold voltage adjustment of the reference cell described above may be performed after the completion of the manufacture of the semiconductor memory device, or may be performed after the thermal stress test in the inspection process of the semiconductor memory device.
  • the voltage source 100 and the resistance element R200 may be interchanged. With this configuration, it is possible to cause the sense amplifiers SA11 and SA12 to perform data determination without using the reference cells RC11 and RC12 during a read operation, and the area of the semiconductor memory device can be reduced.
  • the resistance value of the resistance switching unit 102 may be a fixed value or a variable value.
  • the resistance switching unit 102 may include the variable resistance element R200a illustrated in FIG. 5 instead of the resistance element R200 illustrated in FIG.
  • Variable resistance element R200a includes resistance elements R211 and R212 and switches SW211 and SW212. By controlling on / off of the switches SW211 and SW212, the resistance value of the resistance switching unit 102 can be changed. With this configuration, even when the resistance value of the resistance element does not match the desired value due to manufacturing variations, the resistance value of the resistance switching unit 102 can be adjusted to match the desired value.
  • the resistance switching unit 102 may include three or more resistance elements and three or more switches.
  • the resistance switching unit 102 may include the resistance elements R201 and R202 illustrated in FIG. 6 instead of the resistance element R200 illustrated in FIG.
  • Resistance element R201 is connected between switch SW201 and the ground node, and resistance element R202 is connected between switch SW202 and the ground node. That is, a resistance element is connected to each reference bit line via a switch. With this configuration, the threshold voltage of the reference cell can be adjusted for each sense amplifier.
  • the threshold voltage adjustment of two or more reference cells may be executed in parallel. That is, the voltage supply switching unit 101 supplies a reference voltage to each of two or more main bit lines corresponding to two or more reference bit lines, each of which generates a current corresponding to a threshold voltage of two or more reference cells.
  • the resistance switching unit 102 may conduct between the two or more reference bit lines and the ground node with a resistance value corresponding to the reference bit line for each reference bit line.
  • the threshold voltages of the reference cells RC11 and RC12 can be individually adjusted by setting all the switches SW101, SW102, SW201, and SW202 to the conductive state.
  • the resistance switching unit 102 may include the resistance transistors T201 and T202 illustrated in FIG. Resistor transistor T201 is connected between reference bit line RBL11 and the ground node, and resistor transistor T202 is connected between reference bit line RBL12 and the ground node. Each resistance value (on-resistance value) of the resistance transistors T201 and T202 can be adjusted by the gate voltage of the transistor.
  • a voltage is applied to the gates of the resistance transistors T201 and T202 so that the resistance transistor operates in the triode region.
  • the resistance transistors T201 and T202 can be used as resistance elements.
  • a voltage for example, 0 V
  • a voltage is applied to the gates of the resistance transistors T201 and T202 so that the resistance transistors are in a non-conductive state. That is, the resistance transistors T201 and T202 can be switched between a conduction state in which a current is passed with a predetermined resistance value and a non-conduction state in which a current is not allowed to pass according to the gate voltage.
  • the resistance elements R200, R201, and R202 may be composed of MOS transistors to which a predetermined gate voltage is applied. Further, the resistance elements R200, R201, and R202 may be configured by polysilicon resistors. In this case, resistance variation can be suppressed, and the adjustment accuracy of the threshold voltage of the reference cell can be improved. Further, the resistance elements R200, R201, and R202 may be configured by well resistance. In this case, since a relatively large sheet resistance can be obtained, the area required for the resistance element can be reduced.
  • the voltage supply switching unit 101 may further include a voltage adjusting unit 111 shown in FIG. 8 in addition to the configuration shown in FIG. With this configuration, the threshold voltage of the reference cell can be arbitrarily set. Further, even when the reference voltage VREF from the voltage source 100 varies due to manufacturing variations, by correcting the reference voltage VREF and outputting it as the reference voltage V111, the threshold voltage of the reference cell is changed by the variation of the reference voltage VREF. It can suppress that adjustment accuracy deteriorates. As shown in FIG. 9, the voltage adjusting unit 111 includes a plurality of resistor elements RR1, RR2,..., RR5 and a plurality of resistor elements RR1, RR2,.
  • It may be a resistance dividing circuit constituted by switches SW1, SW2,..., SW4, or may be constituted by a transistor T1 and resistance elements RR6, RR7 connected in series and an operational amplifier OP as shown in FIG. It may be a regulator circuit.
  • the voltage adjusting unit 111 By configuring the voltage adjusting unit 111 with a resistance dividing circuit, the circuit configuration can be simplified as compared with the case where the voltage adjusting unit 111 is configured with a regulator circuit.
  • the voltage adjustment unit 111 with a regulator circuit, it is possible to enhance the tolerance to fluctuations in the power supply voltage, compared with the case where the voltage adjustment unit 111 is configured with a resistance divider circuit, and the reference cell of the reference cell due to the fluctuation in power supply voltage is increased. It is possible to suppress deterioration in threshold voltage adjustment accuracy.
  • the semiconductor memory device shown in FIG. 1 may include the pad 112 shown in FIG. 11 instead of the voltage source 100.
  • the pad 112 is supplied with a reference voltage VREF from a voltage source provided outside the semiconductor memory device.
  • the reference voltage VREF can be arbitrarily set by a voltage source provided outside.
  • the voltage source 100 need not be provided inside the semiconductor memory device, the area of the semiconductor memory device can be reduced.
  • FIG. 12 shows a configuration example of the semiconductor memory device according to the second embodiment.
  • This semiconductor memory device includes a delay circuit 301 in addition to the configuration of the semiconductor memory device shown in FIG.
  • the delay circuit 301 supplies a control signal (for example, a differential start signal or a latch start signal) to the sense amplifiers SA11 and SA12 at a timing delayed from the timing at which normal reading is performed.
  • a control signal for example, a differential start signal or a latch start signal
  • the delay circuit 301 may be an inverter delay circuit constituted by a single stage inverter or a plurality of cascaded inverters, or may be a microcontroller. With this configuration, the output timing of the differential start signal and the latch start signal can be arbitrarily set, and the adjustment accuracy of the threshold voltage of the reference cell can be further improved. Further, by configuring the delay circuit 301 with a microcontroller, the threshold voltage of the reference cell can be automatically adjusted.
  • FIG. 13 shows a configuration example of a semiconductor integrated circuit (or electronic device) according to the third embodiment.
  • the semiconductor integrated circuit includes a semiconductor memory device 10, a voltage source 100, a resistance switching unit 102, and a delay circuit 301.
  • the semiconductor memory device 10 includes the memory cells MC11, MC12, MC21, MC22, the word lines WL1, WL2, the sub bit lines SBL11, SBL12, the voltage source VMS, the decoder DEC, the main bit line MBL11, MBL12, reference cells RC11 and RC12, a reference word line RWL1, a voltage source VRS, switches RSL11 and RSL12, reference bit lines RBL11 and RBL12, and sense amplifiers SA11 and SA12 are provided.
  • These connection relationships are the same as those in FIG. That is, voltage source 100, resistance switching unit 102, and delay circuit 301 may be provided outside the semiconductor memory device. In addition, the voltage source 100, the resistance element R200, and the delay circuit 301 may be used in another circuit that is not the semiconductor memory device 10 inside the semiconductor integrated circuit (or electronic device). With this configuration, the area of the semiconductor memory device can be reduced.
  • the semiconductor memory device described above is suitable for semiconductor integrated circuits, electronic devices, and the like because it can suppress the influence of reference cell threshold determination caused by noise and can accurately adjust the threshold voltage of the reference cell. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

 センスアンプ(SA11)は、第1のメインビット線(MBL11)と第2のメインビット線(RBL11)との電圧差に応じた読み出しデータを出力する。電圧供給切替部(101)は、第2のメモリセル(RC11)の閾値電圧に応じた電流が発生する第2のメインビット線(RBL11)に対応する第1のメインビット線(MBL11)に基準電圧(VREF)を供給する。抵抗切替部(102)は、第2のメモリセル(RC11)の閾値電圧に応じた電流が発生する第2のメインビット線(RBL11)と接地ノードとの間を所定の抵抗値で導通させる。

Description

半導体記憶装置
 この発明は、半導体記憶装置に関し、さらに詳しくは、半導体記憶装置に含まれるリファレンスセルの閾値電圧を調整する技術に関する。
 図14は、一般的な半導体記憶装置の構成例を示す。この半導体記憶装置において、メモリセルMC911,MC921は、ワード線WL91に接続され、メモリセルMC912,MC922は、ワード線WL92に接続される。また、メモリセルMC911,MC912は、サブビット線SBL91に接続され、メモリセルMC921,MC922は、サブビット線SBL92に接続される。電圧源VMS9は、メモリセルMC911,MC912,…,MC922のうち読み出し対象のメモリセルに読み出し電圧を印加する。
 メインビット線MBL91,MBL92は、サブビット線SBL91,SBL92にそれぞれ対応する。デコーダDEC9は、サブビット線SBL91,SBL92のうち読み出し対象のメモリセルに接続されたサブビット線をそのサブビット線に対応するメインビット線に接続する。リファレンスビット線RBL91,RBL92は、メインビット線MBL91,MBL92にそれぞれ対応する。リファレンスセルRC91は、メモリセルMC911,MC912に対応し、リファレンスセルRC92は、メモリセルMC921,MC922に対応する。リファレンスセルRC91,RC92は、リファレンスワード線RWL91に接続されるとともに、スイッチRSL91,RSL92を介してリファレンスビット線RBL91,RBL92にそれぞれ接続される。電圧源VRS9は、リファレンスセルRC91,RC92のうち読み出し対象のメモリセルに対応するリファレンスセルに読み出し電圧を印加する。センスアンプSA91は、メインビット線MBL91およびリファレンスビット線RBL91に接続され、センスアンプSA92は、メインビット線MBL92およびリファレンスビット線RBL92に接続される。
 図15は、図14に示したセンスアンプSA91の構成例を示す。センスアンプSA91において、レベルシフタLS9は、メモリビット線MBL91の電圧およびリファレンスビット線RBL91の電圧を差動増幅回路COM9の動作範囲内の電圧に変換する。差動増幅回路COM9は、レベルシフタLS9からの電圧対を増幅して出力電圧O91,O92として出力する。ラッチ回路LAT9は、出力電圧O91,O92の電圧レベルを論理レベル(0データおよび1データのいずれであるのかを判定可能な電圧レベル)に変換する。
 メモリセルMC911の読み出しを行う場合、電圧源VMS9は、メモリセルMC911に読み出し電圧(例えば、1V程度の電圧)を印加する。デコーダDEC9は、サブビット線SBL91とメインビット線MBL91とを接続する。ワード線WL91には、駆動電圧(例えば、4V程度の電圧)が印加される。また、電圧源VRS9は、リファレンスセルRC91に読み出し電圧(例えば、1V程度の電圧)を印加し、スイッチRSL91が導通状態に設定され、リファレンスワード線RWL91には、駆動電圧(例えば、4V程度の電圧)が印加される。
 メインビット線MBL91に発生する電流(読み出し対象のメモリセルMC911に発生する電流)によって、メインビット線MBL91のビット線寄生容量(CBL)が充電される。そのため、図16の上図のように、メインビット線MBL91の電圧(VinM)は、時間経過に伴って徐々に上昇する。リファレンスビット線RBL91の電圧(VinR)についても同様である。また、メインビット線MBL91の電圧(VinM)の時間経過に伴う上昇量は、メモリセルMC911(または、MC912)の閾値電圧の大きさにより変化する。
 センスアンプSA91のラッチ回路LAT9のラッチ開始タイミングにおいて、メインビット線MBL91の電圧(VinM)がリファレンスビット線RBL91の電圧(VinR)よりも高い場合、ラッチ回路LAT9は、出力電圧O91の電圧レベルを1データレベルに設定する(図16の下図の実線を参照)。一方、メインビット線MBL91の電圧(VinM)がリファレンスビット線RBL91の電圧(VinR)よりも低い場合、ラッチ回路LAT9は、出力電圧O91の電圧レベルを0データレベルに設定する(図16の下図の破線を参照)。なお、電圧波形Vo91は、出力電圧O91の波形に相当し、電圧波形Vo92は、出力電圧O92の波形に相当する。
 上述のように、センスアンプに入力されるリファレンスセルの電流値(リファレンスビット線の電圧値)とメモリセルの電流値(メインビット線の電圧値)との大小関係に応じて、出力電圧O91の電圧レベルが1データレベルであるのか0データレベルであるのかを確定する。また、メモリセルMC911,MC912,…,MC922の各々では、メモリセルの閾値電圧によってそのメモリセルに格納されたデータが1データであるのか0データであるのかを定義している。メモリセルの閾値電圧の変化に応じた電流値の変化(0データ格納時の電流値と1データ格納時の電流値の差)は微小であるため、リファレンスセルRC91,RC92の電流値がこのメモリセルの電流値の変化幅の中央値(0データ格納時の電流値と1データ格納時の電流値との間の中央値)に一致するように、リファレンスセルRC91,RC92の閾値電圧を正確に設定しなければならない。
 リファレンスセルRC91,RC92としてCMOSトランジスタを用いた場合、製造上の特性ばらつきにより歩留まりが低下してしまう。また、この特性ばらつきの許容範囲を広げるための高度な回路設計が施した場合には、チップ面積が増加してしまう。これに対し、リファレンスセルRC91,RC92として不揮発性メモリ素子を用いた場合、検査時においてリファレンスセルの閾値電圧を調整することによって、リファレンスセルの製造上の特性ばらつきを抑制できるので、前述のような歩留まり低下やチップ面積の増加は発生しにくい。さらに、センスアンプなど読み出し系回路の特性ばらつきも、不揮発性メモリ素子を用いたリファレンスセルによって調整が可能であるため、動作マージンの増加やスペックの向上が望める。
 一般的に、リファレンスセルの閾値電圧の初期設定は、次のように行われる。まず、リファレンスセルの電流値を測定する。次に、リファレンスセルの電流値が所望の電流値に達していない場合には、リファレンスセルにバイアス電圧を印加してリファレンスセルの閾値電圧を変化させる。リファレンスセルの電流値が所望の電流値に達するまでこのような処理を繰り返す。このようにして、リファレンスセルの閾値電圧が調整される。
 近年、リファレンスセルの閾値電圧の調整方法として様々な手法が提案されているが、製造コストを考慮すると、より高速な調整が求められる。また、面積増加を抑制するために、通常の読み出し動作に利用されるセンスアンプを用いてリファレンスセルの電流値が所望の電流値に一致しているのかを比較判定することによって、高速な調整が行われている。例えば、特許文献1,2には、リファレンスビット線に接続されたリファレンスセルとは異なる別のリファレンスセルを用いることにより高速な調整を実現する技術が開示されている。また、特許文献3,4には、チップ内部に電流源を持たせることにより外部端子(リファレンスセルを調整する際に電流値をモニタするために必要な外部端子)を削除する技術が開示されている。
特開2004-39075号公報 特開2006-294135号公報 特許第3237610号 特開平7-153287号公報
 しかしながら、特許文献1,2の技術では、別のリファレンスセルを設けなければならないので、面積削減が困難であった。特に、特許文献1の技術では、別のリファレンスセルの閾値電圧も調整しなければならないので、調整時間を削減することが困難であった。また、特許文献3の技術では、リファレンスセル毎に電流源を設ける必要があるため、チップ面積が増大してしまう。さらに、特許文献4の技術では、通常の読み出し動作において定常電流を流して比較判定する構成であるため、高速な読み出しには適しておらず、動作電流も大きくなってしまう。また、特許文献1の別のリファレンスセルを、単純に電圧線に置き換えてリファレンスセルを調整する方法が考えられるが、高精度な閾値電圧の調整ができない可能性がある。
 そこで、この発明は、半導体記憶装置においてリファレンスセルの閾値電圧の調整精度を向上させることが可能な技術を提供することを目的とする。
 この発明の1つの局面に従うと、半導体記憶装置は、少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、上記複数の第1のメインビット線のいずれか1つの電圧と上記複数の第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプと、上記複数の第1のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、上記複数の第2のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える。
 上記半導体記憶装置では、第2のメモリセル(例えば、リファレンスセル)に応じた定常電流を電圧に変換することができるため、電源電圧の変動などのノイズによって第2のメインビット線(例えば、リファレンスビット線)の電圧が変動することを抑制できる。そのため、センスアンプは、第1および第2のメインビット線の電圧差を正確に検出できるので、第2のメモリセルの閾値電圧を正確に調整できる。
 この発明の別の局面に従うと、半導体集積回路は、少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、上記複数の第1のメインビット線のいずれか1つの電圧と上記複数の第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプとを含む半導体記憶装置と、上記複数の第1のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、上記複数の第2のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える。
 上記半導体集積回路では、第2のメモリセルに応じた定常電流を電圧に変換することができるため、電源電圧の変動などのノイズによって第2のメインビット線の電圧が変動することを抑制できる。そのため、センスアンプは、第1および第2のメインビット線の電圧差を正確に検出できるので、第2のメモリセルの閾値電圧を正確に調整できる。
 この発明のさらに別の局面に従うと、電子機器は、少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、上記複数の第1のメインビット線のいずれか1つの電圧と上記複数の第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプとを含む半導体記憶装置と、上記複数の第1のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、上記複数の第2のメインビット線のうち上記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える。
 上記電子機器では、第2のメモリセルに応じた定常電流を電圧に変換することができるため、電源電圧の変動などのノイズによって第2のメインビット線の電圧が変動することを抑制できる。そのため、センスアンプは、第1および第2のメインビット線の電圧差を正確に検出できるので、第2のメモリセルの閾値電圧を正確に調整できる。
 以上のように、第2のメモリセルの閾値電圧を正確に調整できる。
実施形態1の半導体記憶装置の構成例を示す図。 図1に示したセンスアンプの構成例を示す図。 図1に示したリファレンスセルの閾値電圧を調整する場合の接続関係について説明するための図。 リファレンスセルの閾値電圧調整のときのメインビット線の電圧とリファレンスビット線の電圧との関係を説明するための図。 図1に示した抵抗切替部の変形例1について説明するための図。 図1に示した抵抗切替部の変形例2について説明するための図。 図1に示した抵抗切替部の変形例3について説明するための図。 図1に示した電圧供給切替部の変形例について説明するための図。 図8に示した電圧調整部の構成例を示す図。 図8に示した電圧調整部の別の構成例を示す図。 図1に示した半導体記憶装置の変形例について説明するための図。 実施形態2による半導体記憶装置の構成例を示す図。 実施形態3による半導体集積回路の構成例を示す図。 従来の半導体記憶装置の構成について説明するための図。 図14に示したセンスアンプの構成について説明するための図。 図15に示したセンサアンプの動作について説明するための図。
 以下、各実施形態について図面を参照しながら説明する。なお、以下の各実施形態は、あくまで一例であり、必ずしもこの形態に限定されるものではない。
 (実施形態1)
 図1は、実施形態1による半導体記憶装置の構成例を示す。この半導体記憶装置は、メモリセルMC11,MC12,MC21,MC22と、ワード線WL1,WL2と、サブビット線SBL11,SBL12と、電圧源VMSと、デコーダDECと、メインビット線MBL11,MBL12と、リファレンスセルRC11,RC12と、リファレンスワード線RWL1と、電圧源VRSと、スイッチRSL11,RSL12と、リファレンスビット線RBL11,RBL12と、センスアンプSA11,SA12と、電圧源100と、電圧供給切替部101と、抵抗切替部102とを備える。
 メモリセルMC11,MC12,…,MC22は、例えば、MONOS型不揮発性メモリ素子やフローティングゲート型不揮発性メモリ素子によって構成される。メモリセルMC11,MC21は、ワード線WL1に接続され、メモリセルMC12,MC22は、ワード線WL2に接続される。また、メモリセルMC11,MC12は、サブビット線SBL11に接続され、メモリセルMC21,MC22は、サブビット線SBL12に接続される。電圧源VMSは、メモリセルMC11,MC12,…,MC22のうち読み出し対象のメモリセルに読み出し電圧を印加する。
 メインビット線MBL11,MBL12は、サブビット線SBL11,SBL12にそれぞれ対応する。デコーダDECは、サブビット線SBL11,SBL12のうち読み出し対象のメモリセルに接続されたサブビット線をそのサブビット線に対応するメインビット線に接続する。リファレンスビット線RBL11,RBL12は、メインビット線MBL11,MBL12にそれぞれ対応する。リファレンスセルRC11,RC12は、例えば、MONOS型不揮発性メモリ素子やフローティングゲート型不揮発性メモリ素子によって構成される。リファレンスセルRC11,RC12は、リファレンスワード線RWL1に接続されるとともに、スイッチRSL11,RSL12を介して、リファレンスビット線RBL11,RBL12にそれぞれ接続される。電圧源VRSは、リファレンスセルRC11,RC12のうち読み出し対象のメモリセルに対応するリファレンスセルに読み出し電圧を印加する。
 センスアンプSA11は、メインビット線MBL11の電圧とリファレンスビット線RBL11の電圧との差に応じて読み出しデータを出力し、センスアンプSA12は、メインビット線MBL12の電圧とリファレンスビット線RBL12の電圧との差に応じて読み出しデータを出力する。
 図2は、図1に示したセンスアンプSA11の構成例を示す。センスアンプSA11は、レベルシフタLSと、差動増幅回路COMと、ラッチ回路LATとを含む。レベルシフタLSは、メモリビット線MBL11の電圧およびリファレンスビット線RBL11の電圧を差動増幅回路COMの動作範囲内の電圧に変換する。差動増幅回路COMは、レベルシフタLSからの電圧対を増幅して出力電圧O1,O2として出力する。ラッチ回路LATは、出力電圧O1,O2の電圧レベルを論理レベル(0データおよび1データのいずれであるのかを判定可能な電圧レベル)に変換する。なお、センスアンプSA12は、センスアンプSA11と同様の構成を有する。
  〔読み出し動作〕
 ここで、図1に示した半導体記憶装置の読み出し動作について説明する。ここでは、メモリセルMC11に格納された記憶データを読み出すものとする。
 まず、読み出し対象のメモリセルMC11に対応するワード線WL1に駆動電圧(例えば、4V程度の電圧)が印加され、電圧源VMSは、メモリセルMC11に読み出し電圧(例えば、1V程度の電圧)を印加する。デコーダDECは、メモリセルMC11に対応するサブビット線SBL11をメインビット線MBL11に接続する。これにより、メインビット線MBL11には、メモリセルMC11の閾値電圧に応じた電流が発生する。
 次に、リファレンスワード線RWL1に駆動電圧(例えば、4V程度の電圧)が印加され、電圧源VRSは、読み出し対象のメモリセルMC1に対応するリファレンスセルRC11に読み出し電圧(例えば、1V程度の電圧)を印加する。また、リファレンスセルRC11に対応するスイッチRSL11が導通状態に設定される。これにより、リファレンスビット線RBL11には、リファレンスセルRC11の閾値電圧に応じた電流が発生する。
 次に、センスアンプSA11は、メインビット線MBL11の電圧とリファレンスビット線RBL11の電圧との差に応じて読み出しデータを出力する。例えば、センスアンプSA11は、メインビット線MBL11の電圧がリファレンスビット線RBL11の電圧よりも高い場合には、読み出しデータの電圧レベルを“1データレベル”に設定し、メインビット線MBL11の電圧がリファレンスビット線RBL11の電圧よりも低い場合には、読み出しデータの電圧レベルを“0データレベル”に設定する。このようにして、メモリセルMC11に格納されたデータが読み出される。
  〔リファレンスセルの閾値電圧調整〕
 次に、図1に示した半導体記憶装置におけるリファレンスセルの閾値電圧調整について説明する。ここでは、リファレンスセルRC11の閾値電圧を調整する例について説明する。
 まず、デコーダDECは、メインビット線MBL11をサブビット線SBL11から切り離す。電圧供給切替部101では、メインビット線MBL11に対応するスイッチSW101が導通状態に設定される。また、抵抗切替部102では、リファレンスセルRC11に対応するスイッチSW201が導通状態に設定され、リファレンスセルRC11に対応するリファレンスビット線RBL11に抵抗素子R200が接続される。さらに、リファレンスワード線RWL1に駆動電圧(例えば、4V程度の電圧)が印加され、電圧源VRSは、リファレンスセルRC11に読み出し電圧(例えば、1V程度の電圧)を印加する。このように制御されることにより、図3のような接続関係が構築される。すなわち、リファレンスセルRC11の閾値電圧に応じた電流が発生するリファレンスビット線RBL11は、抵抗素子R200に接続され、リファレンスビット線RBL11に対応するメインビット線MBL11は、電圧源100に接続される。これにより、メインビット線MBL11には、電圧源100からの基準電圧VREFが供給され、リファレンスビット線RBL11には、リファレンスセルRC11の閾値電圧および抵抗素子R200の抵抗値に応じた電圧が発生する。
 例えば、リファレンスセルRC11の電流値を“20μA”に設定する場合を考える。この場合に、メインビット線MBL11の電圧とリファレンスビット線RBL11の電圧との差が“200mV”であるときにセンスアンプSA11の感度が最も高くなるとすると、基準電圧VREFを“200mV”に設定し、抵抗素子R200の抵抗値を“10kΩ(=200mV/20μA)”に設定することが好ましい。
 次に、リファレンスセルRC11の閾値電圧が徐々に高くなるようにリファレンスセルRC11の閾値電圧を変更するとともに、リファレンスセルRC11の閾値電圧を変更する毎に、所定の待ち時間(例えば、リファレンスビット線RBL11の電圧が収束するまでに要する時間)の経過後にセンスアンプSA11から出力された読み出しデータをモニタする。図4のように、メインビット線MBL11の電圧は、“基準電圧VREF”に設定される。一方、リファレンスビット線RBL11の電圧は、リファレンスセルRC11の閾値電圧の上昇に伴って、電圧波形V101,V102,V103,V104の順番で徐々に変化する。すなわち、所定の待ち時間の経過後におけるリファレンスビット線RBL11の電圧(定常状態での電圧)が徐々に低くなる。
 次に、センスアンプSA11から出力された読み出しデータの電圧レベルが“1ビットデータレベル”から“0データレベル”に遷移したときにリファレンスセルRC11の閾値電圧の調整を完了する。これにより、リファレンスセルRC11の閾値電圧を所望の閾値電圧に設定できる。
 以上のように、リファレンスセル(RC11)の閾値電圧を調整する場合にそのリファレンスセルに対応するリファレンスビット線(RBL11)に抵抗素子(R200)が接続される。これにより、リファレンスセル(RC11)に応じた定常電流を電圧に変換することができるため、電源電圧の変動などのノイズによってリファレンスビット線(RBL11)の電圧が変動することを抑制できる。そのため、センスアンプ(SA11)は、メインビット線(MBL11)とリファレンスビット線(RBL11)との電圧差を正確に検出できるので、リファレンスセル(RC11)の閾値電圧を正確に調整できる。
 また、特許文献1,2のように別のリファレンスセルを設けなくても良いので、半導体記憶装置の面積を削減でき、さらに、別のリファレンスセルの閾値電圧を調整しなくても良いので、リファレンスセルの閾値電圧の調整時間を短縮できる。
 なお、図1では、4個のメモリセルMC11,MC12,…,MC22のみを記載しているが、半導体記憶装置は、マトリクス状に配列されたn×m個(n,mは、2以上の整数)のメモリセルを備えていても良い。この場合、半導体記憶装置は、メモリセルの個数(例えば、行数)に応じた個数のワード線,サブビット線,メインビット線,リファレンスセル,リファレンスビット線,センスアンプを備えていても良い。
 さらに、図1の半導体記憶装置において、2以上のリファレンスセルの閾値電圧調整を並行して実行しても良い。すなわち、電圧供給切替部101は、2以上のリファレンスセルの閾値電圧に応じた電流がそれぞれに発生する2以上のリファレンスビット線に対応する2以上のメインビット線の各々に基準電圧を供給し、抵抗切替部102は、上記2以上のリファレンスビット線の各々と接地ノードとの間を所定の抵抗値で導通させても良い。例えば、スイッチSW101,SW102,SW201,SW202の全てを導通状態に設定することにより、リファレンスセルRC11,RC12の閾値電圧調整を並行して実行できる。
 なお、1つのセンスアンプに対して1つのリファレンスセルを設ける例について説明したが、多値不揮発性メモリのように1つのセンスアンプに対して複数のリファレンスセルが設けられていても良い。このように構成されている場合であっても、リファレンスセルの閾値電圧を正確に調整できる。
 また、上述のリファレンスセルの閾値電圧調整は、半導体記憶装置の製造完了後に行われても良いし、半導体記憶装置の検査工程における熱ストレス試験後に行われても良い。
 さらに、図1に示した半導体記憶装置において、電圧源100と抵抗素子R200とを互いに入れ替えても良い。このように構成することにより、読み出し動作のときに、リファレンスセルRC11,RC12を用いることなく、センスアンプSA11,SA12にデータ判定を実行させることが可能となり、半導体記憶装置の面積を削減できる。
  〔抵抗切替部の変形例1〕
 抵抗切替部102の抵抗値は、固定値であっても良いし、可変値であっても良い。例えば、抵抗切替部102は、図1に示した抵抗素子R200に代えて、図5に示した可変抵抗素子R200aを含んでいても良い。可変抵抗素子R200aは、抵抗素子R211,R212と、スイッチSW211,SW212とを含む。スイッチSW211,SW212のオン/オフを制御することにより、抵抗切替部102の抵抗値を変化させることができる。このように構成することにより、製造ばらつきにより抵抗素子の抵抗値が所望値に一致しない場合であっても、抵抗切替部102の抵抗値を所望値に一致するように調整できる。なお、抵抗切替部102は、3個以上の抵抗素子および3個以上のスイッチを含んでいても良い。
  〔抵抗切替部の変形例2〕
 また、抵抗切替部102は、図1に示した抵抗素子R200に代えて、図6に示した抵抗素子R201,R202を含んでいても良い。抵抗素子R201は、スイッチSW201と接地ノードとの間に接続され、抵抗素子R202は、スイッチSW202と接地ノードとの間に接続される。すなわち、リファレンスビット線毎に抵抗素子がスイッチを介して接続されている。このように構成することにより、センスアンプ毎にリファレンスセルの閾値電圧を調整できる。
 なお、図6の半導体記憶装置において、2以上のリファレンスセルの閾値電圧調整を並行して実行しても良い。すなわち、電圧供給切替部101は、2以上のリファレンスセルの閾値電圧に応じた電流がそれぞれに発生する2以上のリファレンスビット線に対応する2以上のメインビット線の各々に基準電圧を供給し、抵抗切替部102は、上記2以上のリファレンスビット線と接地ノードとの間をリファレンスビット線毎にそのリファレンスビット線に応じた抵抗値で導通させても良い。例えば、スイッチSW101,SW102,SW201,SW202の全てを導通状態に設定することにより、リファレンスセルRC11,RC12の閾値電圧を個別に調整できる。
  〔抵抗切替部の変形例3〕
 または、抵抗切替部102は、図7に示した抵抗トランジスタT201,T202を含んでいても良い。抵抗トランジスタT201は、リファレンスビット線RBL11と接地ノードとの間に接続され、抵抗トランジスタT202は、リファレンスビット線RBL12と接地ノードとの間に接続される。抵抗トランジスタT201,T202の各々の抵抗値(オン抵抗値)は、そのトランジスタのゲート電圧によって調整可能である。
 リファレンスセルの閾値電圧を調整する場合、抵抗トランジスタT201,T202のゲートには、その抵抗トランジスタが三極管領域で動作するような電圧が印加される。このような電圧を印加することによって、抵抗トランジスタT201,T202を抵抗素子として利用できる。また、通常の読み出し動作の場合には、抵抗トランジスタT201,T202のゲートには、その抵抗トランジスタが非導通状態になるような電圧(例えば、0V)が印加される。すなわち、抵抗トランジスタT201,T202は、ゲート電圧に応じて、所定の抵抗値で電流を通過させる導通状態と電流を通過させない非導通状態とを切替可能である。このように構成することにより、抵抗素子とスイッチとを個別に設けなくても良いので、抵抗切替部102の面積を削減できる。また、トランジスタT201,T202を接続する個数を調整できるように抵抗切替部102を構成することにより、製造ばらつきによる抵抗値の変動を補正でき、リファレンスセルの閾値電圧の調整精度を向上させることができる。
  〔抵抗素子の構成〕
 なお、以上の説明において、抵抗素子R200,R201,R202は、所定のゲート電圧が与えられるMOSトランジスタで構成されていても良い。また、抵抗素子R200,R201,R202は、ポリシリコン抵抗によって構成されていても良い。この場合、抵抗ばらつきを抑制でき、リファレンスセルの閾値電圧の調整精度を向上させることができる。さらに、抵抗素子R200,R201,R202は、ウェル抵抗によって構成されていても良い。この場合、比較的大きなシート抵抗を得られるので、抵抗素子に必要な面積を削減できる。
  〔電圧供給切替部の変形例〕
 また、電圧供給切替部101は、図1に示した構成に加えて、図8に示した電圧調整部111をさらに含んでいても良い。このように構成することにより、リファレンスセルの閾値電圧を任意に設定できる。また、製造ばらつきによって電圧源100からの基準電圧VREFが変動する場合であっても、基準電圧VREFを補正して基準電圧V111として出力することにより、基準電圧VREFの変動によってリファレンスセルの閾値電圧の調整精度が劣化することを抑制できる。なお、電圧調整部111は、図9のように、直列接続された複数の抵抗素子RR1,RR2,…,RR5と抵抗素子RR1,RR2,…,RR5のそれぞれの接続ノードに接続された複数のスイッチSW1,SW2,…,SW4とによって構成された抵抗分割回路であっても良いし、図10のように、直列接続されたトランジスタT1および抵抗素子RR6,RR7と演算増幅器OPとによって構成されたレギュレータ回路であっても良い。電圧調整部111を抵抗分割回路によって構成することにより、電圧調整部111をレギュレータ回路によって構成する場合よりも、回路構成を簡素化できる。また、電圧調整部111をレギュレータ回路によって構成することにより、電圧調整部111を抵抗分割回路によって構成する場合よりも、電源電圧の変動に対する耐性を強化でき、電源電圧の変動に起因するリファレンスセルの閾値電圧の調整精度の劣化を抑制できる。
  〔パッド〕
 また、図1に示した半導体記憶装置は、電圧源100に代えて、図11に示したパッド112を備えていても良い。パッド112には、半導体記憶装置の外部に設けられた電圧源からの基準電圧VREFが与えられる。このように構成することにより、外部に設けられた電圧源によって基準電圧VREFを任意に設定できる。また、半導体記憶装置の内部に電圧源100を設けなくても良いので、半導体記憶装置の面積を削減できる。
 (実施形態2)
 図12は、実施形態2による半導体記憶装置の構成例を示す。この半導体記憶装置は、図1に示した半導体記憶装置の構成に加えて、遅延回路301を備える。遅延回路301は、通常の読み出しを行うタイミングよりも遅延したタイミングで、制御信号(例えば、差動開始信号やラッチ開始信号など)をセンスアンプSA11,SA12に供給する。このように構成することにより、安定したタイミングでセンスアンプSA11,SA12に比較判定を実行させることができ、リファレンスセルの閾値電圧の調整精度を向上させることができる。
 なお、遅延回路301は、1段のインバータまたは縦続接続された複数のインバータによって構成されたインバータ遅延回路であっても良いし、マイクロコントローラであっても良い。このように構成することにより、差動開始信号やラッチ開始信号の出力タイミングを任意に設定でき、リファレンスセルの閾値電圧の調整精度をさらに向上させることができる。また、遅延回路301をマイクロコントローラによって構成することにより、リファレンスセルの閾値電圧の調整を自動で行うことも可能となる。
 (実施形態3)
 図13は、実施形態3による半導体集積回路(または、電子機器)の構成例を示す。この半導体集積回路(または、電子機器)は、半導体記憶装置10と、電圧源100と、抵抗切替部102と、遅延回路301とを備える。半導体記憶装置10は、図1に示したメモリセルMC11,MC12,MC21,MC22と、ワード線WL1,WL2と、サブビット線SBL11,SBL12と、電圧源VMSと、デコーダDECと、メインビット線MBL11,MBL12と、リファレンスセルRC11,RC12と、リファレンスワード線RWL1と、電圧源VRSと、スイッチRSL11,RSL12と、リファレンスビット線RBL11,RBL12と、センスアンプSA11,SA12とを備える。これらの接続関係は、図1と同様である。すなわち、電圧源100,抵抗切替部102,および遅延回路301は、半導体記憶装置の外部に設けられていても良い。また、電圧源100,抵抗素子R200,遅延回路301は、半導体集積回路(または、電子機器)の内部において半導体記憶装置10ではない他の回路に使用されていても良い。このように構成することにより、半導体記憶装置の面積を削減できる。
 以上のように、上述の半導体記憶装置は、ノイズに起因するリファレンスセルの閾値判定の影響を抑制でき、リファレンスセルの閾値電圧を正確に調整できるので、半導体集積回路や電子機器などに好適である。
MC11,MC12,…,MC22  メモリセル
WL1,WL2  ワード線
SBL11,SBL12  サブビット線
VMS  電圧源
DEC  デコーダ
MBL11,MBL12  メインビット線
RC11,RC12  リファレンスセル
RSK11、RSL12  スイッチ
VRS  電圧源
SA11,SA12  センスアンプ
100  電圧源
101  電圧供給切替部
SW101,SW102  スイッチ
102  抵抗切替部
SW201,SW202  スイッチ
R200,R201,R202  抵抗素子
T201,T202  抵抗トランジスタ
111  電圧調整部
112  パッド
301  遅延回路
10  半導体記憶装置

Claims (23)

  1.  少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、
     少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、
     前記複数の第1のメインビット線のいずれか1つの電圧と前記複数の第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプと、
     前記複数の第1のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、
     前記複数の第2のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える
    ことを特徴とする半導体記憶装置。
  2.  請求項1において、
     前記抵抗切替部は、
      前記接地ノードに一端が接続された少なくとも1つの抵抗素子と、
      前記少なくとも1つの抵抗素子の他端と前記複数の第2のメインビット線との間に接続された少なくとも1つのスイッチとを含む
    ことを特徴とする半導体記憶装置。
  3.  請求項2において、
     前記少なくとも1つの抵抗素子は、MOSトランジスタ,ポリシリコン抵抗,およびウェル抵抗のうち少なくとも1つによって構成されている
    ことを特徴とする半導体記憶装置。
  4.  請求項1において、
     前記抵抗切替部は、前記接地ノードと前記複数の第2のメインビット線との間に接続された少なくとも1つの抵抗トランジスタを含み、
     前記少なくとも1つの抵抗トランジスタは、当該抵抗トランジスタのゲート電圧に応じて、所定の抵抗値で電流を通過させる導通状態と電流を通過させない非導通状態とを切り替えられる
    ことを特徴とする半導体記憶装置。
  5.  請求項1において、
     前記抵抗切替部の抵抗値は、可変値である
    ことを特徴とする半導体記憶装置。
  6.  請求項1において、
     前記抵抗切替部は、前記複数の第2のメインビット線のうち2以上の第2のメインビット線の各々と前記接地ノードとの間を共通の抵抗値で導通させる
    ことを特徴とする半導体記憶装置。
  7.  請求項1において、
     前記抵抗切替部は、前記複数の第2のメインビット線のうち2以上の第2のメインビット線と前記接地ノードとの間を第2のメインビット線毎に当該第2のメインビット線に応じた抵抗値で個別に導通させる
    ことを特徴とする半導体記憶装置。
  8.  請求項1において、
     前記基準電圧は、可変電圧である
    ことを特徴とする半導体記憶装置。
  9.  請求項1において、
     前記電圧供給切替部は、前記基準電圧の電圧値を調整する電圧調整部を含む
    ことを特徴とする半導体記憶装置。
  10.  請求項9において、
     前記電圧調整部は、抵抗分割回路によって構成される
    ことを特徴とする半導体記憶装置。
  11.  請求項9において、
     前記電圧調整部は、レギュレータ回路によって構成される
    ことを特徴とする半導体記憶装置。
  12.  請求項1において、
     前記基準電圧は、当該半導体記憶装置の内部に設けられた電圧源から供給された電圧である
    ことを特徴とする半導体記憶装置。
  13.  請求項1において、
     前記基準電圧は、当該半導体記憶装置の外部から供給された電圧である
    ことを特徴とする半導体記憶装置。
  14.  請求項1において、
     前記複数のセンスアンプを制御するための制御信号を出力する遅延回路をさらに備える
    ことを特徴とする半導体記憶装置。
  15.  請求項14において、
     前記遅延回路は、1段のインバータまたは縦続接続された複数のインバータによって構成されたインバータ遅延回路である
    ことを特徴とする半導体記憶装置。
  16.  請求項14において、
     前記遅延回路は、コントローラによって構成される
    ことを特徴とする半導体記憶装置。
  17.  請求項1において、
     前記複数の第1のメインビット線の各々には、読み出し動作のときに、前記第1のメモリセルの閾値電圧に応じた電流が発生し、
     前記複数の第2のメインビット線の各々には、前記読み出し動作のときおよび当該第2のメインビット線に対応する前記第2のメモリセルの閾値電圧調整のときに、当該第2のメモリセルの閾値電圧に応じた電流が発生し、
     前記電圧供給切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第1のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に前記所定の基準電圧を供給し、
     前記抵抗切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第2のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と前記接地ノードとの間を前記所定の抵抗値で導通させる
    ことを特徴とする半導体記憶装置。
  18.  少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、前記複数の第1のメインビット線のいずれか1つの電圧と前記複数の第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプとを含む半導体記憶装置と、
     前記複数の第1のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、
     前記複数の第2のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える
    ことを特徴とする半導体集積回路。
  19.  請求項18において、
     前記複数のセンスアンプを制御するための制御信号を出力する遅延回路をさらに備える
    ことを特徴とする半導体集積回路。
  20.  請求項18において、
     前記複数の第1のメインビット線の各々には、読み出し動作のときに、前記第1のメモリセルの閾値電圧に応じた電流が発生し、
     前記複数の第2のメインビット線の各々には、前記読み出し動作のときおよび当該第2のメインビット線に対応する前記第2のメモリセルの閾値電圧調整のときに、当該第2のメモリセルの閾値電圧に応じた電流が発生し、
     前記電圧供給切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第1のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に前記所定の基準電圧を供給し、
     前記抵抗切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第2のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と前記接地ノードとの間を前記所定の抵抗値で導通させる
    ことを特徴とする半導体集積回路。
  21.  少なくとも1つの第1のメモリセルに対応した複数の第1のメインビット線と、少なくとも1つの第2のメモリセルに対応した複数の第2のメインビット線と、前記第1のメインビット線のいずれか1つの電圧と前記第2のメインビット線のいずれか1つの電圧の差に応じた読み出しデータを出力する少なくとも1つのセンスアンプとを含む半導体記憶装置と、
     前記複数の第1のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に所定の基準電圧を供給する電圧供給切替部と、
     前記複数の第2のメインビット線のうち前記第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と接地ノードとの間を所定の抵抗値で導通させる抵抗切替部とを備える
    ことを特徴とする電子機器。
  22.  請求項21において、
     前記複数のセンスアンプを制御するための制御信号を出力する遅延回路をさらに備える
    ことを特徴とする電子機器。
  23.  請求項21において、
     前記複数の第1のメインビット線の各々には、読み出し動作のときに、前記第1のメモリセルの閾値電圧に応じた電流が発生し、
     前記複数の第2のメインビット線の各々には、前記読み出し動作のときおよび当該第2のメインビット線に対応する前記第2のメモリセルの閾値電圧調整のときに、当該第2のメモリセルの閾値電圧に応じた電流が発生し、
     前記電圧供給切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第1のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線に対応する第1のメインビット線に前記所定の基準電圧を供給し、
     前記抵抗切替部は、前記第2のメモリセルの閾値電圧調整のときに、前記複数の第2のメインビット線のうち当該第2のメモリセルの閾値電圧に応じた電流が発生する第2のメインビット線と前記接地ノードとの間を前記所定の抵抗値で導通させる
    ことを特徴とする電子機器。
PCT/JP2010/003398 2009-09-16 2010-05-20 半導体記憶装置 WO2011033701A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010546978A JPWO2011033701A1 (ja) 2009-09-16 2010-05-20 半導体記憶装置
US13/014,360 US8331157B2 (en) 2009-09-16 2011-01-26 Semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-214506 2009-09-16
JP2009214506 2009-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/014,360 Continuation US8331157B2 (en) 2009-09-16 2011-01-26 Semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2011033701A1 true WO2011033701A1 (ja) 2011-03-24

Family

ID=43758320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003398 WO2011033701A1 (ja) 2009-09-16 2010-05-20 半導体記憶装置

Country Status (3)

Country Link
US (1) US8331157B2 (ja)
JP (1) JPWO2011033701A1 (ja)
WO (1) WO2011033701A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212750B1 (ko) 2014-07-23 2021-02-05 삼성전자주식회사 저항성 메모리 장치, 이를 포함하는 메모리 시스템 및 저항성 메모리 장치의 데이터 독출 방법
KR102474305B1 (ko) * 2016-06-27 2022-12-06 에스케이하이닉스 주식회사 저항 변화 메모리 장치 및 그 센싱 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233095A (ja) * 1996-12-17 1998-09-02 Sanyo Electric Co Ltd 不揮発性半導体メモリ
JP2001344985A (ja) * 2000-06-05 2001-12-14 Nec Corp 半導体記憶装置
JP2004054966A (ja) * 2002-07-16 2004-02-19 Fujitsu Ltd 不揮発性半導体メモリ及びその動作方法
JP2004342274A (ja) * 2003-05-19 2004-12-02 Sharp Corp 半導体記憶装置およびそれを備えた携帯電子機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153287A (ja) 1993-12-02 1995-06-16 Toshiba Corp 不揮発性半導体記憶装置
EP0905712B1 (en) * 1997-09-29 2003-04-23 STMicroelectronics S.r.l. Method and device for analog programming of flash EEPROM memory cells with autoverify
US6038166A (en) * 1998-04-01 2000-03-14 Invox Technology High resolution multi-bit-per-cell memory
JP3237610B2 (ja) * 1998-05-19 2001-12-10 日本電気株式会社 不揮発性半導体記憶装置
IT1305182B1 (it) * 1998-11-13 2001-04-10 St Microelectronics Srl Circuito di lettura analogico ad alta precisione per celle di memorianon volatile, in particolare analogiche o multilivello flash o eeprom.
JP2004039075A (ja) * 2002-07-02 2004-02-05 Sharp Corp 不揮発性半導体メモリ装置
JP4086583B2 (ja) * 2002-08-08 2008-05-14 シャープ株式会社 不揮発性半導体メモリ装置およびデータ書き込み制御方法
US6826103B2 (en) * 2002-10-30 2004-11-30 Freescale Semiconductor, Inc. Auto-tuneable reference circuit for flash EEPROM products
JP2005222625A (ja) * 2004-02-06 2005-08-18 Sharp Corp 不揮発性半導体記憶装置
ITMI20042473A1 (it) * 2004-12-23 2005-03-23 Atmel Corp Sistema per l'effettuazione di verifiche rapide durante la configurazione delle celle di riferimento flash
DE602005018738D1 (de) * 2005-03-03 2010-02-25 St Microelectronics Srl Speichervorrichtung mit auf Zeitverschiebung basierender Referenzzellenemulation
JP2006294135A (ja) * 2005-04-12 2006-10-26 Matsushita Electric Ind Co Ltd 半導体記憶装置
US7701779B2 (en) * 2006-04-27 2010-04-20 Sajfun Semiconductors Ltd. Method for programming a reference cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233095A (ja) * 1996-12-17 1998-09-02 Sanyo Electric Co Ltd 不揮発性半導体メモリ
JP2001344985A (ja) * 2000-06-05 2001-12-14 Nec Corp 半導体記憶装置
JP2004054966A (ja) * 2002-07-16 2004-02-19 Fujitsu Ltd 不揮発性半導体メモリ及びその動作方法
JP2004342274A (ja) * 2003-05-19 2004-12-02 Sharp Corp 半導体記憶装置およびそれを備えた携帯電子機器

Also Published As

Publication number Publication date
US20110122677A1 (en) 2011-05-26
US8331157B2 (en) 2012-12-11
JPWO2011033701A1 (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
US8278996B2 (en) Reference current generating circuit
JP4702572B2 (ja) 低電力多ビットセンス増幅器
KR100785185B1 (ko) 다치 데이터를 기억하는 불휘발성 반도체 기억 장치
US9105357B2 (en) Semiconductor memory device and defective judging method thereof
KR20070094508A (ko) 비트 심볼 인식방법 및 비휘발성 메모리에 다수 비트를저장하는 장치
US10998058B2 (en) Adjustment circuit for partitioned memory block
JP2014010875A (ja) 半導体記憶装置
KR20150022241A (ko) 반도체 메모리 장치
US20110267893A1 (en) Non-volatile semiconductor memory and memory system
JP4237337B2 (ja) 不揮発性メモリセルを読み出すための装置および方法
JP2005259330A (ja) バイアス電圧印加回路及び半導体記憶装置
US20100301830A1 (en) Semiconductor device including voltage generator
US11502680B2 (en) Power down detection circuit and semiconductor storage apparatus
US9589610B1 (en) Memory circuit including pre-charging unit, sensing unit, and sink unit and method for operating same
WO2011033701A1 (ja) 半導体記憶装置
JP4763689B2 (ja) 半導体装置及び基準電圧生成方法
US7872913B2 (en) Nonvolatile analog memory
US7596037B2 (en) Independent bi-directional margin control per level and independently expandable reference cell levels for flash memory sensing
TW201717205A (zh) 非依電性記憶體裝置及其操作方法
JP2006065945A (ja) 不揮発性半導体記憶装置および半導体集積回路装置
US8259505B2 (en) Nonvolatile memory device with reduced current consumption
JP5314943B2 (ja) 半導体装置及びデータ読み出し方法
US10658052B2 (en) Semiconductor device
JP2005228414A (ja) 電圧出力調整装置及び電圧出力調整方法
US20180374553A1 (en) Semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010546978

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816817

Country of ref document: EP

Kind code of ref document: A1