WO2011030917A1 - 超音波を用いた物品の洗浄方法 - Google Patents
超音波を用いた物品の洗浄方法 Download PDFInfo
- Publication number
- WO2011030917A1 WO2011030917A1 PCT/JP2010/065993 JP2010065993W WO2011030917A1 WO 2011030917 A1 WO2011030917 A1 WO 2011030917A1 JP 2010065993 W JP2010065993 W JP 2010065993W WO 2011030917 A1 WO2011030917 A1 WO 2011030917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- cleaning
- tank
- nitrogen
- washing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
- B08B3/123—Cleaning travelling work, e.g. webs, articles on a conveyor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
- A61L2/186—Peroxide solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67051—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67057—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/70—Cleaning devices specially adapted for surgical instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/025—Ultrasonics
Definitions
- the present invention is a method for cleaning an article using ultrasonic waves, in which oxygen and nitrogen are dissolved in cleaning water at a high concentration (dissolved saturated concentration or a concentration close thereto), and a sonochemistry reaction is caused by ultrasonic vibration.
- This is a technology for cleaning and sterilization using the generated hydrogen peroxide and nitric acid. It is useful as a method for cleaning and sterilizing articles such as semiconductor products, metal processed products, medical instruments, and tableware.
- an ultrasonic cleaning method a method of irradiating an article to be cleaned immersed in cleaning water with ultrasonic waves from a plurality of different directions is known (for example, JP-A-5-308077, Japanese Utility Model Laid-Open No. 56-20684). No., JP-A-2006-35139, JP-A-2009-125645, JP-A-6-262148). According to this method, ultrasonic waves are easily irradiated on the entire surface of the object to be cleaned, and a cleaning effect with little unevenness can be obtained.
- JP-A-5-308067, JP-A-56-20684, JP-A-2006-35139, JP-A-2009-125645, and JP-A-6-262148 disclose ultrasonic vibration.
- the vibration of the child acts on the total amount of washing water stored in the washing tank, or the tank itself is ultrasonically vibrated to propagate ultrasonic vibration to the washing water. Vibration is weak.
- a standing wave is formed by the water surface of the washing tank, and random ultrasonic vibrations of water molecules are weakened. For these reasons, the action of ultrasonic vibration is weak and the cleaning power is low.
- the washing water was pure water and clean water, and oxygen and nitrogen were not sufficiently dissolved, so that sonochemistry reaction hardly occurred and sterilizing power could not be expected so much.
- a method is known in which cleaning is performed by applying ultrasonic vibration to cleaning water in which oxygen and nitrogen are dissolved at high concentrations (see, for example, Japanese Patent Application Laid-Open Nos. 9-194487 and 2005-45159). According to this method, a large amount of H 2 O 2 (hydrogen peroxide) or HNO 3 (nitric acid) is generated in the washing water, and a high decomposition and sterilization effect can be obtained by these oxidizing actions.
- H 2 O 2 hydrogen peroxide
- HNO 3 nitric acid
- the ultrasonic waves are applied from one direction, the cleaning and sterilizing effect is uneven as in the techniques described in JP-A-9-194487 and JP-A-2005-45159. Further, since the ultrasonic vibrator is attached to the cleaning tank, sufficient cleaning cannot be expected unless the ultrasonic wave is strongly output for the above reason. Furthermore, the continuous ultrasonic cleaning device disclosed in Japanese Patent Application Laid-Open No. 4-176379 previously developed by the present inventors uses a pair of upper and lower ultrasonic vibrators to pass an object to be cleaned between them. This cleaning method is intended to strongly clean an object to be cleaned by making ultrasonic vibrations strong by facing the ultrasonic vibrators up and down.
- this cleaning method is not aware of the sonochemistry reaction, and the cleaning water is a water stream that flows between ultrasonic transducers at a high rate and at a high rate. Hydrogen and nitrous acid flow quickly and flow out, which is insufficient for cleaning the object to be cleaned. In addition, oxygen / nitrogen gas dissolved in the wash water is consumed as it circulates, the dissolved concentration is greatly reduced and the sonochemistry reaction is weakened, and the continuous and stable sterilization and washing power due to the sonochemistry reaction is not so much. I could't expect it.
- the problem to be solved by the present invention is to solve these conventional problems, to obtain a high cleaning power and a high sterilizing effect at the same time so as to remove fingerprint fat adhering to the surface of the article, and low output. It is an object of the present invention to provide an ultrasonic cleaning method capable of obtaining a high cleaning and sterilizing effect with ultrasonic waves. Furthermore, another object of the present invention is to provide a cleaning method capable of performing continuous cleaning and sterilization processing that can stably and continuously clean and sterilize articles by using cleaning water and can reduce both equipment and running cost. It is in.
- the configuration of the present invention that solves this problem is as follows.
- Oscillating surfaces oscillate in such a manner that the oscillating surface is immersed below the surface of the cleaning water in a cleaning tank in which cleaning water in which oxygen and nitrogen are dissolved in high concentration in water is continuously supplied and stored.
- a plurality of ultrasonic vibrators are arranged so as to face each other, and cleaning water in which oxygen and nitrogen are dissolved at a high concentration is sandwiched between or surrounded by opposed oscillation surfaces at 15 to 100 cm / min
- the object to be cleaned is placed in the gap area for a predetermined time, and dissolved oxygen and nitrogen in the washing water are decomposed by ultrasonic vibration of the ultrasonic vibrator facing in the gap area.
- a method for cleaning an article using ultrasonic waves characterized in that hydrogen peroxide and nitric acid are generated to clean and sterilize an object to be cleaned, in which oxygen and nitrogen are dissolved in a high concentration Continuously into the cleaning tank All the supplied wash water is continuously discharged from the wash tank after flowing so that only a part of the wash water passes through the space, and the discharged wash water is dissolved into the dissolving part where oxygen and nitrogen are dissolved. After the dissolved concentration is increased at the dissolution zone and both oxygen and nitrogen are dissolved at a high concentration, the pump is supplied to the cleaning tank with a pump to circulate and use the cleaning water.
- the diversion ratio with respect to the flow rate drained without passing through the region is made smaller than the lower increase rate of the dissolved oxygen or nitrogen concentration increase rate in the wash water of the dissolution part,
- the washing water supplied to the washing tank always allows continuous washing so that oxygen and nitrogen are dissolved at a high concentration.
- openings are provided on the left and right side walls of the washing tank, and the washing tank is provided through the left and right openings. Move in the water inside and clean A conveyor is provided to transport objects so that they pass through the narrow area below the surface of the cleaning water, and the cleaning water supplied to the cleaning tank is blown out in the form of a water film near the left and right openings inside the tank to form a water curtain.
- a large amount of washing water in the washing tank is prevented from being drained from the opening of the tank, and further, a part of the washed-out washing water is guided while being decelerated by the baffle plate provided in the tank, and from the left and right side surfaces of the narrow space area.
- the cleaning water is allowed to flow in the opposite direction, and the cleaning water is dropped into the atmosphere in the form of a water film or a water vein from the opening of the cleaning tank, and in the middle of dropping, it comes into contact with oxygen and nitrogen in the atmosphere and dissolves them in the cleaning water.
- the washing water falling in the water receiving tank below the washing tank is collected, and the collected washing water is sent to the washing tank by a pump and supplied, and the receiving portion is arranged below the opening of the washing tank.
- the ultrasonic transducers are opposed to each other, and the ultrasonic vibrations are concentrated in the space between the opposed surfaces. In this region, strong and random ultrasonic vibrations are applied to water, oxygen, and nitrogen. Thus, a large amount of H 2 O 2 or HNO 3 is generated, and a high cleaning and sterilizing effect with strong and less unevenness can be obtained simultaneously as a cavitation state. Furthermore, the continuous generation of high concentrations of hydrogen peroxide and nitric acid is maintained by flowing wash water in which oxygen and nitrogen are dissolved at high concentrations in the space between the flow rates of 15 to 100 cm / min.
- FIG. 1 is an explanatory diagram of an ultrasonic cleaning apparatus according to an embodiment.
- FIG. 2 is an explanatory diagram illustrating a state of the diversion of the supplied cleaning water according to the embodiment.
- FIG. 3 is an explanatory diagram showing the inflow and outflow states of the wash water in the narrow space region of the example.
- FIG. 4 is an explanatory diagram showing fluctuations in the concentration of dissolved oxygen / nitrogen in the wash water.
- the washing tank of the present invention may have not only a water tank structure but also a water channel structure in which washing water flows and an object to be cleaned can be placed in the water flow.
- the “high concentration” of oxygen and nitrogen dissolved in the washing water of the present invention is a saturated dissolved concentration under atmospheric pressure, or a concentration before and after this, 70% or more of the saturated dissolved concentration.
- the dissolved concentration of gas in the atmosphere is expressed by solubility, and the volume unit is cm 3 at 1 atmosphere, oxygen is 0.031 cm 3 / water 1 cc at room temperature, nitrogen is about 0.016 cm 3 / water 1 cc at room temperature. It is. It is also possible to apply pressure to make it much higher than the saturated dissolved concentration, including this.
- the dissolving portion of the present invention is a component that dissolves oxygen and nitrogen at a high concentration in the wash water.
- the wash water is a water film / water vein in the atmosphere. Oxygen, nitrogen, and washing water in the atmosphere are brought into contact with each other to be dissolved by being dropped or blown out in the form of spray, spray or shower.
- the flow rate of the wash water in which oxygen and nitrogen are dissolved at a high concentration flowing into the gap region of the present invention (the average flow rate when the flow rate varies) is 15 to 100 cm / min, preferably 20 to 60 cm / min.
- the flow rate was in the range of 15 to 100 cm / min. Desirably, the flow rate was preferably 20 to 60 cm / min.
- the ratio of the flow rate that flows into the gap region out of the total flow rate of the wash water that is supplied to the washing tank is equal to or less than the rate of concentration increase that increases the concentration of the dissolved water in the dissolution zone, thereby Oxygen and nitrogen that are decomposed and lost by the passage of water can be recovered in the dissolved part, cleaning water can be continuously circulated, and the cleaning and sterilization process can be stably performed for a long time without losing the cleaning and sterilizing power.
- the flow rate v of the washing water in the gap region and the inflow area where the washing water flows into the gap region is S
- the total power Wt of the opposed ultrasonic transducers that apply ultrasonic vibration to the gap region is If the inequality 1 and preferably the inequality 2 are satisfied, it is possible to cleanly remove difficult-to-remove deposits such as fingerprint fat on the surface of the object to be cleaned.
- the unit is cm, second, and watt.
- the value of (Wt / (v * S)) is low when the flow velocity v is fast as described above, and becomes large when v is slow (small), and the above flow velocity range and the total ultrasonic power are also appropriate. It was found that the following inequalities 1 and 2 are good.
- the concentration ⁇ immediately before dropping from the opening is ⁇ * q 1 / (q 1 + q 2 ) because oxygen and nitrogen passing through the narrow space are almost decomposed and consumed, and this is the ratio value ⁇ in the melting portion.
- the flow rate of the flow rate flowing into the gap between the wash waters to which the ratio value ⁇ is supplied is made larger than the split flow rate ratio (q 2 / q 1 ) with respect to the non-passage flow rate.
- FIG. 1 is an explanatory view of an ultrasonic cleaning apparatus T used in the embodiment.
- FIGS. 2 to 4 are explanatory views of the embodiment showing the flow of the washing water and the fluctuations in dissolved concentrations and flow rates of oxygen and nitrogen.
- 1 is a water receiving tank
- 1a is a passing port of the conveyor 3 opened on the left and right side surfaces above the water receiving tank
- 2 is a cleaning tank
- 2a is an opening provided on the left and right side surfaces of the cleaning tank, It has become.
- 2b is an ejection part for ejecting washing water in the form of a water film from an elongated slit
- 2c is a temporary storage part for washing water
- 3 is a transport conveyor using a slat conveyor through which water can pass up and down
- 4 is separated by 10 cm.
- a pair of upper and lower ultrasonic transducers of 1000 watts 4a is the vibration surface
- 5 is a pump
- 6 is a supply pipe for cleaning water
- 7 is a gap in the vibration surface opposite to the ultrasonic transducer 4.
- the region has a space having a height of 10 cm, a left and right length of 40 cm and a width of 30 cm.
- the ultrasonic cleaning apparatus of the present embodiment has a cleaning tank 2 disposed in a water receiving tank 1 having an open upper surface, and a passage port 1 a, The opening 2a is opened, the conveying conveyor 3 is connected to the front and rear passage ports 1a and 2a, and the wash water W is stored in the water receiving tank 1.
- the ejection part 2b provided with the slit of width 5mm is attached.
- an ultrasonic transducer 4 is arranged vertically with a 10 cm interval so that its oscillation surface faces below the water surface, and a pump 5 for supplying the cleaning water W of the water receiving tank 1 to the ejection part 2b
- a supply pipe 6 is provided.
- the water storage capacity of the water receiving tank 1 is 100 to 300 liters, the volume of the cleaning tank 2 is 30 to 60 liters, and the water supply capacity of the pump 4 is 300 to 1000 liters / minute.
- Each ultrasonic transducer 4 is 1000 watts, and the frequency is 25 kHz / 40 kHz / 120 kHz.
- the cleaning water W in which oxygen and nitrogen stored in the water receiving tank 1 are dissolved to a saturated dissolved concentration is sent to the cleaning tank 2 through the supply pipe 6.
- the washing water sent through the supply pipe 6 is stored in the temporary water storage unit 2 c, and then the water-curtain at a high speed of 50 m / min from the jetting unit 2 b having a slit-like jet port 5 mm wide and 60 cm long. Erupts in a shape.
- the water curtain Wa of the ejection part 2b is configured to close the opening 2a of the cleaning tank 2, and a large amount of cleaning water in the cleaning tank 2 having a higher water surface than the opening 2a is discharged from the opening 2a. Suppresses and maintains the water level.
- Most of the water flow of the water curtain Wa is caused by a pair of upper and lower baffle plates 8 (about 90%) between the baffle plate 8 and the tank inner surface, and is discharged from the opening 2a.
- About 10% of a portion of the water in the water curtain Wa flows from the gap between the upper and lower baffle plates 8 into the space 7 between the ultrasonic transducers 4 so as to face from both the left and right sides.
- the inflow speed is greatly reduced by about 50 cm / min.
- the gap area has a height of 10 cm, a depth of 30 cm, a length (left and right length) of about 40 cm, and the volume L of the area is 12 liters.
- Oxygen and nitrogen flowing into the gap region 7 are decomposed by powerful ultrasonic vibrations by the ultrasonic transducers 4 above and below the gap region, and immediately become hydrogen peroxide solution and nitric acid.
- the concentration of oxygen and nitrogen in the wash water flowing out from the gap region 7 is therefore nearly 0%.
- the wash water forms a water film / water vein from the opening 2a. It falls downward and is collected and stored by the water receiving tank 1. Wash water comes into contact with oxygen and nitrogen gas in the air while falling in the form of a water film / water vein, and these gases are dissolved in the wash water during the fall to increase their concentration.
- dissolution part of this invention consists of the simple structure of the opening 2a of the washing tank 2 and the water receiving tank 1 installed in the downward direction in the Example.
- the dissolved concentration of these gases can be increased by about 15% in a single drop.
- the ratio value ⁇ of the increase in concentration at the dissolution part is about 0.15.
- the amount of cleaning water supplied from the left and right jets 2b is about 300 liters / minute, and the amount of cleaning water flowing into the narrow space 7 is about 10% of water supplied at about 30 liters / minute.
- the washing water that has flowed into the gap area 7 is dissolved in the washing water by random and powerful ultrasonic vibrations generated in this area by the 1000 watt ultrasonic transducers 4 located above and below at intervals of 10 cm. Nitrogen and nitrogen are decomposed as shown in the following formula to produce hydrogen peroxide, nitric acid, etc., and the high sterilizing power, degreasing power and cavitation due to these are expressed.
- the diversion ratio (q 2 / q 1 ) of the flow rate that passes (inflows) and the non-passage (does not flow in) flow rate in this embodiment is approximately 0.1, and the volume L of the narrow region 7 is 12 liters.
- the flow rate of the cleaning water into the gap region 7 is practically 15 to 100 cm / min, and preferably 20 to 60 cm / min. If it is smaller than the lower limit value, the inflow amount of cleaning water in which oxygen and nitrogen are dissolved at a high concentration is insufficient, so that the production of hydrogen peroxide and nitric acid is small and the cleaning sterilization power is decreased. When the upper limit is exceeded, the generated hydrogen peroxide solution, nitric acid, and cavitation flow out and are lost, and the cleaning and sterilizing effect is weakened. It also affects the total power Wt of the ultrasonic transducer, and the value of (Wt / (v * S)) is practically in the range of 0.67 to 13.3, 1.1 to 10.0.
- the range was found to be a preferred range.
- the transport conveyor 3 is operated, and the object 2 to be cleaned is opened in the cleaning tank 2 through the water receiving tank 1 by the transport conveyor 3. Then, the object to be cleaned A is sent out into the cleaning water in the cleaning tank 2 to pass the object to be cleaned through the narrow space 7 at a constant speed.
- the object A to be cleaned could be strongly cleaned and sterilized with strong ultrasonic vibration, cavitation, hydrogen peroxide solution, nitric acid and the like of water concentrated on the space.
- the technology of the present invention is used for the purpose of cleaning and sterilizing dirt and oil adhering to electronic parts, machined products, medical instruments, medals, coins, dentures and the like. Further, the present invention can also be applied to air cleaning in which ultrasonic transducers are arranged facing left and right, and the air in the room is made into fine bubbles and sent from below into the space between them for cleaning and sterilization.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
物品の表面に付着した脂・汚れ等を超音波を用いて強力に洗浄し且つ強く殺菌させることができる超音波洗浄方法を提供する。更に連続的に洗浄殺菌できる設備の費用とそのランニングコストを廉価にできるようにする。 酸素と窒素を高濃度に溶存させた洗浄水(W)を貯えた洗浄槽(2)の水面下に発振面が対向するように上下一対の超音波振動子(4)を配置し同超音波振動子の発振面間の狭間領域(7)に酸素と窒素を高濃度に溶存させた洗浄水の一部を邪魔板(8)で水量・流速を抑えて略50cm/分の流速で流入させる。洗浄槽(2)の側面を開口し、同開口を介して被洗浄物(A)を通過させる搬送コンベヤ(3)を配置し、同開口から洗浄水を排出させ、同開口の内側に洗浄槽(2)へ供給する洗浄水を噴出して水カーテン(Wa)を形成して開口からの大量の排水を抑え、又開口から落下した洗浄水を下方の受水槽(1)で受けてボンプで洗浄槽(2)へ圧送して洗浄水を循環的に使用する。
Description
本発明は、超音波を用いた物品の洗浄方法であって、洗浄水に酸素と窒素を高濃度(溶存飽和濃度又はそれに近い濃度)に溶存させ、超音波振動でソノケミストリー反応を生起させて発生する過酸化水素と硝酸によって洗浄と殺菌を行う技術である。半導体製品・金属加工品・医療器具・食器等の物品の洗浄・殺菌方法として有用である。
従来、超音波洗浄方法として、洗浄水中に浸漬した被洗浄物品に対して超音波を異なる複数の方向から照射する方法が公知である(例えば特開平5−308067号公報、実開昭56−20684号公報、特開2006−35139号公報、特開2009−125645号公報、特開平6−262148号公報参照)。この方法によれば、超音波が被洗浄物の表面全面に照射されやすくなり、ムラの少ない洗浄効果が得られるというものである。しかしながら特開平5−308067号公報、実開昭56−20684号公報、特開2006−35139号公報、特開2009−125645号公報、特開平6−262148号公報に記載の技術は、超音波振動子の振動が洗浄槽に貯えられた洗浄水全量に対して作用するものであり、あるいは槽自体を超音波振動させて洗浄水に超音波振動を伝播させるものであるため、水分子に対する超音波振動は弱いものとなる。更に洗浄槽の水面によって定常波が形成されて、水分子のランダムな超音波振動が弱まる。これらの理由で超音波振動の作用が弱く洗浄力が低いものとなる。又洗浄水は純水、上水であって、充分に酸素と窒素が溶存していないのでソノケミストリー反応がほとんど発生せず、殺菌力はあまり期待できなかった。
また、酸素と窒素を高濃度に溶存させた洗浄水に超音波振動を与えて洗浄する方法が公知である(例えば特開平9−194887号公報、特開2005−45159号公報参照)。この方法によれば、洗浄水中にH2O2(過酸化水素)やHNO3(硝酸)が多量に生じ、これらの酸化作用により高い分解殺菌効果が得られるというものである。しかし、特開平9−194887号公報、特開2005−45159号公報に記載の技術は、いずれも超音波を一方向から照射するものであるから、超音波が被洗浄物の全面に均一に照射されず、分解殺菌効果にムラがあった。また、酸素と窒素は導入管等を用いて強制的に注入するから、超音波洗浄装置が高コストとなる問題があった。更に、超音波振動子は洗浄槽に取り付けているから、超音波振動は前記理由によってまだ弱く、洗浄水中に溶存した酸素と窒素が分解して過酸化水素と硝酸を発生させるソノケミストリー反応が不充分であり、洗浄・殺菌力が低いという問題点がある。更に、水槽内の洗浄水を交換せず又酸素と窒素の吹き込みのない超音波振動によるバッチ式洗浄殺菌では洗浄水中の酸素と窒素が短時間で分解して消費され、洗浄殺菌力が失われる。
また、洗浄水を大気に触れさせながら循環させ、大気中の窒素を洗浄水中に自然に取り込ませて溶存させる方法も公知である(例えば特開2008−91546号公報参照)。しかし、特開2008−91546号公報記載の技術は、洗浄水の水面のみを大気に触れるようにしているから、窒素の取り込み量が不十分となり、これを補うために洗浄水の流量調整装置と温度調整装置を別途必要とし、超音波洗浄装置が依然高コストとなる問題があった。また、超音波を一方向から照射するものであるから、特開平9−194887号公報、特開2005−45159号公報に記載の技術と同様に洗浄殺菌効果にムラがあった。さらに、超音波振動子は洗浄槽に取り付けているから、前記理由から超音波は強く出力しないと充分な洗浄が期待できなかった。
更に、本発明者等が先に開発した特開平4−176379号公報の連続超音波洗浄装置は、上下一対の超音波振動子を用いて、その間に被洗浄物を通過させるものであるが、この洗浄方法は超音波振動子を上下対向して超音波振動を強力にして被洗浄物を強力に洗浄しようとするものであった。しかしながら、この洗浄方法ではソノケミストリー反応について認識されていず、且つ洗浄水は超音波振動子間を速く且つかなりの割合で流れる水流のため、ソノケミストリー反応が生じてもその反応で発生した過酸化水素、亜硝酸は速く流れて流出し被洗浄物の洗浄には不充分となる。又、洗浄水に溶存していた酸素・窒素ガスは循環するうちに消費され、溶存濃度が大幅に低下しソノケミストリー反応が弱くなり、ソノケミストリー反応による連続的で安定した殺菌・洗浄力はあまり期待できなかった。
また、酸素と窒素を高濃度に溶存させた洗浄水に超音波振動を与えて洗浄する方法が公知である(例えば特開平9−194887号公報、特開2005−45159号公報参照)。この方法によれば、洗浄水中にH2O2(過酸化水素)やHNO3(硝酸)が多量に生じ、これらの酸化作用により高い分解殺菌効果が得られるというものである。しかし、特開平9−194887号公報、特開2005−45159号公報に記載の技術は、いずれも超音波を一方向から照射するものであるから、超音波が被洗浄物の全面に均一に照射されず、分解殺菌効果にムラがあった。また、酸素と窒素は導入管等を用いて強制的に注入するから、超音波洗浄装置が高コストとなる問題があった。更に、超音波振動子は洗浄槽に取り付けているから、超音波振動は前記理由によってまだ弱く、洗浄水中に溶存した酸素と窒素が分解して過酸化水素と硝酸を発生させるソノケミストリー反応が不充分であり、洗浄・殺菌力が低いという問題点がある。更に、水槽内の洗浄水を交換せず又酸素と窒素の吹き込みのない超音波振動によるバッチ式洗浄殺菌では洗浄水中の酸素と窒素が短時間で分解して消費され、洗浄殺菌力が失われる。
また、洗浄水を大気に触れさせながら循環させ、大気中の窒素を洗浄水中に自然に取り込ませて溶存させる方法も公知である(例えば特開2008−91546号公報参照)。しかし、特開2008−91546号公報記載の技術は、洗浄水の水面のみを大気に触れるようにしているから、窒素の取り込み量が不十分となり、これを補うために洗浄水の流量調整装置と温度調整装置を別途必要とし、超音波洗浄装置が依然高コストとなる問題があった。また、超音波を一方向から照射するものであるから、特開平9−194887号公報、特開2005−45159号公報に記載の技術と同様に洗浄殺菌効果にムラがあった。さらに、超音波振動子は洗浄槽に取り付けているから、前記理由から超音波は強く出力しないと充分な洗浄が期待できなかった。
更に、本発明者等が先に開発した特開平4−176379号公報の連続超音波洗浄装置は、上下一対の超音波振動子を用いて、その間に被洗浄物を通過させるものであるが、この洗浄方法は超音波振動子を上下対向して超音波振動を強力にして被洗浄物を強力に洗浄しようとするものであった。しかしながら、この洗浄方法ではソノケミストリー反応について認識されていず、且つ洗浄水は超音波振動子間を速く且つかなりの割合で流れる水流のため、ソノケミストリー反応が生じてもその反応で発生した過酸化水素、亜硝酸は速く流れて流出し被洗浄物の洗浄には不充分となる。又、洗浄水に溶存していた酸素・窒素ガスは循環するうちに消費され、溶存濃度が大幅に低下しソノケミストリー反応が弱くなり、ソノケミストリー反応による連続的で安定した殺菌・洗浄力はあまり期待できなかった。
本発明が解決しようとする課題は、従来のこれらの問題点を解消し、物品の表面に付着した指紋脂も除去できる程に高い洗浄力と高い殺菌効果も同時に得ることができ、しかも低出力の超音波で高い洗浄殺菌効果を得ることができる超音波洗浄方法を提供することにある。更に、本願発明の他の課題は、洗浄水を循環使用して物品を安定的で且つ連続的に洗浄殺菌でき、しかも設備とランニングコストとも廉価にできる連続洗浄殺菌処理できる洗浄方法を提供することにある。
かかる課題を解決した本発明の構成は、
1) 水中に酸素及び窒素を高濃度に溶存させた洗浄水が連続的に供給されて洗浄水を貯える洗浄槽内に、発振面が洗浄水の水面下に浸漬するように且つ互に発振面が対向するように複数の超音波振動子を配置し、対向する発振面によってはさまれた又は囲まれた狭間領域に酸素と窒素を高濃度に溶存させた洗浄水が15~100cm/分の範囲の流速で流入するようにするとともに、被洗浄物を上記狭間領域に所定時間置き、上記狭間領域において対向する超音波振動子の超音波振動によって洗浄水中の溶存酸素と窒素とを分解して過酸化水素と硝酸とを発生させて被洗浄物の洗浄と殺菌を行うことを特徴とする超音波を用いた物品の洗浄方法であって、酸素と窒素とを高濃度に溶存させた洗浄水を洗浄槽内へ連続的に供給するとともに、供給された洗浄水の一部のみが狭間領域を通過するように流した後供給された洗浄水全量を連続的に洗浄槽から排出し、排出した洗浄水を酸素と窒素とを溶存させる溶解部へ送り、同溶解部で溶存濃度を高めて酸素と窒素とも高濃度に溶存させた後ポンプで洗浄槽に供給して洗浄水を循環使用するとともに、洗浄槽内に供給される洗浄水のうち狭間領域を通過する流量の狭間領域を通過しないで排水される流量に対する分流比率が溶解部の洗浄水中の溶存の酸素又は窒素の各濃度上昇の比率のうち低い方の上昇比率より小さくなるようにし、洗浄槽に供給する洗浄水が常時酸素と窒素とを高濃度に溶存させるようにして連続洗浄を可能とし、更に洗浄槽の左右側壁面それぞれに開口を設け、左右の同開口を介して洗浄槽内の水中を移動して被洗浄物が洗浄水面下の狭間領域を通過するように搬送する搬送コンベヤを設け、洗浄槽に供給される洗浄水を槽内側の左右の開口付近で水膜状に吹き出して水カーテンを形成し、左右の開口から洗浄槽内の洗浄水が大量に排水するのを抑止し、更に吹き出した洗浄水の一部が槽内に設けた邪魔板によって減速されながら誘導されて狭間領域の左右側面から互に対向するように流入するようにし、しかも洗浄槽の開口から洗浄水を水膜又は水脈状に大気中に落下させ、落下途中において大気中の酸素と窒素と接触してこれらを洗浄水に溶存させ、洗浄槽の下方の受水槽で落下する洗浄水を回収し、回収した洗浄水をポンプで洗浄槽に送って供給するようにし、溶解部が洗浄槽の開口と同開口の下方に配置した受水槽とから形成される、超音波を用いた物品の洗浄方法
にある。
本発明によれば、超音波振動子の発振面を対向させ、対向した狭間領域に超音波振動を集中し、この領域において水と酸素と窒素に対して強力でランダムな超音波振動を与えることで、H2O2やHNO3を多量に発生させ、キャビテーション状態として強力でムラの少ない高い洗浄殺菌効果が同時に得られるようになる。更に、酸素と窒素を高濃度に溶存させた洗浄水を狭間領域に15~100cm/分の流速の範囲で流すようにしたことで、高い濃度の過酸化水素と硝酸の連続的発生を維持し且つ発生した過酸化水素と硝酸の速い拡散流出を防ぎ、狭間領域に高い濃度の過酸化水素と硝酸とキャビテーション状態とを確保して物品の洗浄と殺菌の強い効果を長時間安定的に維持できるようにしている。
以下、添付図面と本発明の好適な実施形態の記載から本発明を一層十分に理解できるであろう。
かかる課題を解決した本発明の構成は、
1) 水中に酸素及び窒素を高濃度に溶存させた洗浄水が連続的に供給されて洗浄水を貯える洗浄槽内に、発振面が洗浄水の水面下に浸漬するように且つ互に発振面が対向するように複数の超音波振動子を配置し、対向する発振面によってはさまれた又は囲まれた狭間領域に酸素と窒素を高濃度に溶存させた洗浄水が15~100cm/分の範囲の流速で流入するようにするとともに、被洗浄物を上記狭間領域に所定時間置き、上記狭間領域において対向する超音波振動子の超音波振動によって洗浄水中の溶存酸素と窒素とを分解して過酸化水素と硝酸とを発生させて被洗浄物の洗浄と殺菌を行うことを特徴とする超音波を用いた物品の洗浄方法であって、酸素と窒素とを高濃度に溶存させた洗浄水を洗浄槽内へ連続的に供給するとともに、供給された洗浄水の一部のみが狭間領域を通過するように流した後供給された洗浄水全量を連続的に洗浄槽から排出し、排出した洗浄水を酸素と窒素とを溶存させる溶解部へ送り、同溶解部で溶存濃度を高めて酸素と窒素とも高濃度に溶存させた後ポンプで洗浄槽に供給して洗浄水を循環使用するとともに、洗浄槽内に供給される洗浄水のうち狭間領域を通過する流量の狭間領域を通過しないで排水される流量に対する分流比率が溶解部の洗浄水中の溶存の酸素又は窒素の各濃度上昇の比率のうち低い方の上昇比率より小さくなるようにし、洗浄槽に供給する洗浄水が常時酸素と窒素とを高濃度に溶存させるようにして連続洗浄を可能とし、更に洗浄槽の左右側壁面それぞれに開口を設け、左右の同開口を介して洗浄槽内の水中を移動して被洗浄物が洗浄水面下の狭間領域を通過するように搬送する搬送コンベヤを設け、洗浄槽に供給される洗浄水を槽内側の左右の開口付近で水膜状に吹き出して水カーテンを形成し、左右の開口から洗浄槽内の洗浄水が大量に排水するのを抑止し、更に吹き出した洗浄水の一部が槽内に設けた邪魔板によって減速されながら誘導されて狭間領域の左右側面から互に対向するように流入するようにし、しかも洗浄槽の開口から洗浄水を水膜又は水脈状に大気中に落下させ、落下途中において大気中の酸素と窒素と接触してこれらを洗浄水に溶存させ、洗浄槽の下方の受水槽で落下する洗浄水を回収し、回収した洗浄水をポンプで洗浄槽に送って供給するようにし、溶解部が洗浄槽の開口と同開口の下方に配置した受水槽とから形成される、超音波を用いた物品の洗浄方法
にある。
本発明によれば、超音波振動子の発振面を対向させ、対向した狭間領域に超音波振動を集中し、この領域において水と酸素と窒素に対して強力でランダムな超音波振動を与えることで、H2O2やHNO3を多量に発生させ、キャビテーション状態として強力でムラの少ない高い洗浄殺菌効果が同時に得られるようになる。更に、酸素と窒素を高濃度に溶存させた洗浄水を狭間領域に15~100cm/分の流速の範囲で流すようにしたことで、高い濃度の過酸化水素と硝酸の連続的発生を維持し且つ発生した過酸化水素と硝酸の速い拡散流出を防ぎ、狭間領域に高い濃度の過酸化水素と硝酸とキャビテーション状態とを確保して物品の洗浄と殺菌の強い効果を長時間安定的に維持できるようにしている。
以下、添付図面と本発明の好適な実施形態の記載から本発明を一層十分に理解できるであろう。
図1は、実施例の超音波洗浄装置の説明図である。
図2は、実施例の供給された洗浄水の分流の状態を示す説明図である。
図3は、実施例の狭間領域での洗浄水の流入と流出状態を示す説明図である。
図4は、洗浄水中の溶存酸素・窒素の濃度変動を示す説明図である。
図2は、実施例の供給された洗浄水の分流の状態を示す説明図である。
図3は、実施例の狭間領域での洗浄水の流入と流出状態を示す説明図である。
図4は、洗浄水中の溶存酸素・窒素の濃度変動を示す説明図である。
本発明の洗浄槽は、水槽構造ばかりでなく、洗浄水が流れて被洗浄物をその水流中に置ける水路構造のものであってもよい。
本発明の洗浄水に溶存された酸素と窒素の「高濃度」とは、大気圧下の飽和溶存濃度又はこの前後の濃度、飽和溶存濃度の70%以上のものである。通常、大気下での気体の溶存濃度は溶解度で表現され、1気圧時の容積単位cm3で、酸素は室温で0.031cm3/水1cc,窒素は室温で0.016cm3/水1cc程である。加圧して飽和溶存濃度よりかなり高くすることも可能であり、これも含むものである。又洗浄水としては、純水・上水道水等の水に洗浄剤を加えてもよい。
本発明の溶解部は、洗浄水中に酸素と窒素を高濃度に溶存させる構成部であり、この溶解部での酸素と窒素を溶存する方法としては、洗浄水を大気中で水膜状・水脈状・噴霧状又はシャワー状に落下又は吹き出せることで大気中の酸素と窒素と洗浄水を接触させて溶存させる。
本発明の狭間領域に流入する高濃度に酸素と窒素とを溶存させた洗浄水の流速(流速が変動しているときはその平均流速)は15~100cm/分、好ましくは20~60cm/分とする。これは、流速が遅いと、狭間領域内にある洗浄水の溶存された酸素と窒素はこの狭間領域に入ると直ちに超音波振動により分解して消費されるので、絶えず新しい洗浄水をこの狭間領域に流入させねば狭間領域内の酸素と窒素がなくなり新しい過酸化水素と硝酸が発生しなくなる。又発生していた過酸化水素と硝酸とは化学反応・拡散・流出で低濃度となり、洗浄殺菌力を失う。又発生していたキャビテーションも流出してしまうので絶えず新しい洗浄水の供給が必要となる。
又、洗浄水の流速が速いと、発生した過酸化水素と硝酸及びキャビテーション状態がこの狭間領域外へ流出して、やはり洗浄殺菌力が低下する。
流速は、15~100cm/分の範囲がその両者を調和させて高い洗浄殺菌力を高めるものであった。望ましくはその流速は20~60cm/分が好ましいものであった。
本発明で洗浄槽に供給される洗浄水の全流量のうち狭間領域に流入させる流量の割合は、溶解部でその溶存の濃度を高める濃度上昇の比率以下にすることで、狭間領域の洗浄水の通過で分解して失われる酸素と窒素とが溶解部で回復でき、洗浄水を連続的に循環使用でき、洗浄殺菌の処理を安定して且つ長時間その洗浄殺菌力を失わないことを可能とする。
本発明では、狭間領域での洗浄水の流速vと、狭間領域に洗浄水が流入する流入面積をSとし、狭間領域に超音波振動を与える対向した超音波振動子の総電力Wtが下記の不等式1好ましくは不等式2を満足させれば、被洗浄物の表面の指紋脂等の取り除きにくい付着物を短時間できれいに除去できるものとすることができた。単位はcm,秒,ワットである。(Wt/(v*S))の値は、流速vが上記の如く速いと低い値となり、vが遅い(小さい)と大きくなり、上記の流速の範囲及び超音波の総電力も適切なものがよく、下記の不等式1,2のものがよいことが分かった。
(数式1)
不等式1:0.67<(Wt/(v*S))<13.3
不等式2:1.1<(Wt/(v*S))<10.0
尚、上記不等式で(Wt/(v*S))の値を(Wt/q2)にすることもできる。v,sの値が不明又は計測できにくく、通過流量q2の方が測定でき易い又は計算し易い場合は、(Wt/(v*S))を(Wt/q2)に置き代えることもできる。更に分流割合kをk=q2/(q1+q2)=q2/Qとすると、q2=k*Qであるから、更に(Wt/(v*S))を(Wt/(k*Q))に置き代えるようにしてもよい。不等式1,2は下記数2に置き代えることができる。
(数2)
不等式3:0.67<(Wt/(k*Q))<13.3
不等式4:1.1<(Wt/(k*Q))<10.0
k=q2/Q=分流割合
又、洗浄槽に供給される酸素と窒素とを高濃度αに溶存させた洗浄水の流量をQとし、供給された洗浄水が狭間領域を通過する流量をq2とし、狭間領域を通過しないでそのまま排水される流量をq1=(Q−q2)とし、溶解部での酸素と窒素の濃度上昇の低い方の濃度上昇の比率値をγとしたとき、開口から落下する直前の濃度βは、狭間領域を通過する酸素と窒素はほとんど分解して消費されるのでα*q1/(q1+q2)であり、これが溶解部で比率値γで濃度上昇し、しかも比率値γが供給される洗浄水の狭間領域に流入する流量の非通過の流量に対する分流比率(q2/q1)より大きくするようになっているので、溶解部を経た後の洗浄水の濃度δは(β+γβ)となり、濃度上昇の比率値γ=(δ−β)/βが分流比率(q2/q1)の値より大きいので下式のように、濃度δは供給時の濃度αより大きくなる。
(数3)
q2/q1<γ
δ=β+γβ=β(1+γ)=α*q1*(1+γ)/(q1+q2)
δ>α*q1*(1+q2/q1)/(q1+q2)=α
δ>α
このように、溶解部の濃度上昇の比率γを分流比率より大きくすることで(又は分流比率を溶解部の濃度上昇の比率γより小さくすることで)、洗浄槽へ供給する洗浄水の酸素と窒素の濃度は所定の高濃度以上を維持して連続で長時間の洗浄殺菌を可能とする。尚、初期的にこれら濃度にするには、超音波振動子を作動させないで繰り返し循環させることで、所定の高濃度にできる。
以下、本発明を実施例と図面に基づいて具体的に説明する。図1は実施例に用いた超音波洗浄装置Tの説明図である。図2~4はその洗浄水の流れと、酸素と窒素の溶存濃度と流量との変動を示す実施例の説明図である。
図中、1は受水槽、1aは同受水槽の上方の左右側面に開口した搬送コンベヤ3の通過口、2は洗浄槽、2aは洗浄槽の左右の側面に設けた開口であって排水口となっている。2bは細長のスリットから水膜状に洗浄水を噴出する噴出部、2cは洗浄水の一時貯水部、3は水が上下に通過できるスラットコンベヤを用いた搬送コンベヤ、4は10cmの間隔を離して設けた上下一対の各1000watt(ワット)の超音波振動子、4aはその振動面、5はポンプ、6は洗浄水の供給管、7は超音波振動子4の対向した振動面内の狭間領域で、高さ10cm,左右長さ40cm,幅30cmの空間を有する。8は噴出部2bから槽内側の開口2aに沿って水膜状に噴出して水流の大部分が狭間領域7へ流入しないように流入水量と流入速度とを制御する上下一対の邪魔板、9は受水槽1の洗浄水がポンプ5に入る前に設けたゴミ除去部である。Aは被洗浄物である半導体基板、Wは洗浄水、Waは水カーテンである。
本実施例の超音波洗浄装置は、図1に示すように、上面が開放された受水槽1内部に洗浄槽2を配置し、受水槽1と洗浄槽2の前後の側面に通過口1a,開口2aを開口し、その前後の通過口1a,開口2aに搬送コンベヤ3を連通し、受水槽1に洗浄水Wを貯水している。洗浄槽2の左右の開口2aの上方位置には、洗浄水Wの水カーテンWaが開口2aの槽内側に沿って形成されるように、下向きに且つやや内向きに噴出させる長さ60cmでスリット幅5mmのスリットを備えた噴出部2bを取り付けている。洗浄槽2内には超音波振動子4をその発振面が水面下で対向するように10cm間隔をおいて上下に配置し、受水槽1の洗浄水Wを噴出部2bへ給水するポンプ5と供給管6を設けている。
受水槽1の貯水量は100~300リットル、洗浄槽2の容積は30~60リットル、ポンプ4の給水能力は300~1000リットル/分可能である。各超音波振動子4は1000ワットで周波数は25kHz・40kHz・120kHzの切替式である。
本実施例では、ポンプ5を作動させると、受水槽1に貯えた酸素と窒素とを飽和溶存濃度程度に溶存させた洗浄水Wは供給管6を介して洗浄槽2へ送られる。
洗浄槽2では、供給管6で送られた洗浄水は一時貯水部2cで貯えられた後、スリット状の噴出口が5mm幅で60cm長さの噴出部2bから50m/分の高速で水カーテン状に噴出する。噴出部2bの水カーテンWaは洗浄槽2の開口2aを閉鎖するようになって、この開口2aより高い水面となっている洗浄槽2内の洗浄水が大量に開口2aから排出されるのを抑止して水面の高さを維持している。
水カーテンWaの水流は上下一対の邪魔板8によって大部分(90%程)は邪魔板8と槽内面との間で遊水して開口2aから排出される。
水カーテンWaの水中の一部の10%程度の水が上下の邪魔板8の間隙から超音波振動子4間の狭間領域7へ左右両側から対向するように流入する。その流入速度は略50cm/分程で大幅に減速されている。狭間領域は高さ10cm,奥行30cm,長さ(左右長)は40cm程でその領域の容積Lは12リッターである。水カーテン状に噴出した酸素と窒素を高濃度に溶存させた洗浄水の一部はこの狭間領域7へ左右から対向して進入したらその領域7の前後から流出する。この状態を図3に示している。
狭間領域7へ流入した洗浄水の酸素と窒素は狭間領域の上下の超音波振動子4による強力な超音波振動によって分解され、直ちに過酸化水素水と硝酸になる。一方狭間領域7から流出する洗浄水の酸素と窒素の濃度はそのため略0%近くとなる。この流出した洗浄水は狭間領域7に流入(通過)しない洗浄水(90%程度)と合流し、開口2aから槽外へ排出され、洗浄水はこの開口2aから水膜・水脈状となって下方へ落下し、受水槽1によって回収され、貯えられる。洗浄水はこの水膜・水脈状となって落下する途中に大気中の酸素と窒素ガスと接触し、落下途中でこれらガスを洗浄水中へ溶解してそれらの濃度を高める。このように本発明の溶解部は実施例では洗浄槽2の開口2aとその下方に設置された受水槽1の簡単な構成からなっている。そしてこれらガスの溶存濃度は一回の落下で大略15%程濃度を高めることができる。溶解部での濃度上昇の比率値γは0.15程である。
左右の噴出部2bから洗浄水の供給量は略300リットル/分程であり、又狭間領域7に流入する洗浄水量は約30リットル/分で供給される洗浄水の略10%程である。
狭間領域7に流入した洗浄水は、10cm間隔の上下にある各1000watt(ワット)の超音波振動子4によってこの領域に生起するランダムで強力な超音波振動によって、洗浄水中に溶存させていた酸素と窒素は下式のように分解されて過酸化水素水と硝酸等が生成され、これらによる高い殺菌力・脱脂力及びキャビテーションと併せて高い洗浄力を発現する。
この実施例の狭間領域7を通過(流入)する流量と非通過(流入しない)流量の分流比率(q2/q1)は略0.1であり、狭間領域7の容積Lは12リットルであり、左右からの狭間領域7の洗浄水の流入面積Sは約30cm×10cm×2=600cm2であり、それへの流入速度は50cm/分で、超音波振動子の総出力は2000watt(ワット)であるので、(Wt/(v*S))の値は4.0であり、又(Wt/q2)、(Wt/(k*Q))でも4.0となる。
狭間領域7への洗浄水の流入速度は、15~100cm/分が実用的であり好ましくは20~60cm/分である。下限値より小さくすると、高濃度に酸素と窒素とを溶存させた洗浄水の流入量が不足して過酸化水素水と硝酸の生成が少なく洗浄殺菌力が少なくなる。又上限値を超えると、生成した過酸化水素水と硝酸、キャビテーションが流出して散失してやはり洗浄殺菌効果が弱くなる。
又、超音波振動子の総電力Wtにも影響し、(Wt/(v*S))の値が0.67~13.3の範囲が実用的であり、1.1~10.0の範囲が好ましい範囲であることが分かった。
このように、強力なソノケミストリー反応を狭間領域7に生起させている状態で、搬送コンベヤ3を作動させ、被洗浄物Aを搬送コンベヤ3で受水槽1を介して洗浄槽2の開口2aを介して洗浄槽2内の洗浄水中へ被洗浄物Aを送り出し、被洗浄物を狭間領域7を一定速度で通過させる。これによって狭間領域に集中的に与えられている水の強力な超音波振動、キャビテーション及び過酸化水素水、硝酸等で被洗浄物Aを強力に洗浄殺菌することができた。
狭間領域に強力なソノケミストリー反応が生じていることを、洗浄水中にルミノール液を混入して狭間領域でのルミノール液の酸化による青白い光の発生状況で目視観察した。本実施例では狭間領域全体に強い大きな青白い発光を目視できたが、上方の超音波発振子の作動を停止すると、発光は作動させている下方の超音波振動子のある側の部分的なもので発光も弱いものであった。
更に、水槽中に洗浄水を貯えて超音波振動を与えるバッチ式の従来の超音波洗浄機と、本実施例の超音波洗浄装置を用いて、ブタや牛の血を塗布した医療用インジケータを洗浄した所、従来のバッチ式では血等の汚れが完全に落ちるまでには90~120分を要したが、本実施例の洗浄では1~5分で済み、きわめて短時間で医療用インジケータを完全に洗浄できた。
本発明の洗浄水に溶存された酸素と窒素の「高濃度」とは、大気圧下の飽和溶存濃度又はこの前後の濃度、飽和溶存濃度の70%以上のものである。通常、大気下での気体の溶存濃度は溶解度で表現され、1気圧時の容積単位cm3で、酸素は室温で0.031cm3/水1cc,窒素は室温で0.016cm3/水1cc程である。加圧して飽和溶存濃度よりかなり高くすることも可能であり、これも含むものである。又洗浄水としては、純水・上水道水等の水に洗浄剤を加えてもよい。
本発明の溶解部は、洗浄水中に酸素と窒素を高濃度に溶存させる構成部であり、この溶解部での酸素と窒素を溶存する方法としては、洗浄水を大気中で水膜状・水脈状・噴霧状又はシャワー状に落下又は吹き出せることで大気中の酸素と窒素と洗浄水を接触させて溶存させる。
本発明の狭間領域に流入する高濃度に酸素と窒素とを溶存させた洗浄水の流速(流速が変動しているときはその平均流速)は15~100cm/分、好ましくは20~60cm/分とする。これは、流速が遅いと、狭間領域内にある洗浄水の溶存された酸素と窒素はこの狭間領域に入ると直ちに超音波振動により分解して消費されるので、絶えず新しい洗浄水をこの狭間領域に流入させねば狭間領域内の酸素と窒素がなくなり新しい過酸化水素と硝酸が発生しなくなる。又発生していた過酸化水素と硝酸とは化学反応・拡散・流出で低濃度となり、洗浄殺菌力を失う。又発生していたキャビテーションも流出してしまうので絶えず新しい洗浄水の供給が必要となる。
又、洗浄水の流速が速いと、発生した過酸化水素と硝酸及びキャビテーション状態がこの狭間領域外へ流出して、やはり洗浄殺菌力が低下する。
流速は、15~100cm/分の範囲がその両者を調和させて高い洗浄殺菌力を高めるものであった。望ましくはその流速は20~60cm/分が好ましいものであった。
本発明で洗浄槽に供給される洗浄水の全流量のうち狭間領域に流入させる流量の割合は、溶解部でその溶存の濃度を高める濃度上昇の比率以下にすることで、狭間領域の洗浄水の通過で分解して失われる酸素と窒素とが溶解部で回復でき、洗浄水を連続的に循環使用でき、洗浄殺菌の処理を安定して且つ長時間その洗浄殺菌力を失わないことを可能とする。
本発明では、狭間領域での洗浄水の流速vと、狭間領域に洗浄水が流入する流入面積をSとし、狭間領域に超音波振動を与える対向した超音波振動子の総電力Wtが下記の不等式1好ましくは不等式2を満足させれば、被洗浄物の表面の指紋脂等の取り除きにくい付着物を短時間できれいに除去できるものとすることができた。単位はcm,秒,ワットである。(Wt/(v*S))の値は、流速vが上記の如く速いと低い値となり、vが遅い(小さい)と大きくなり、上記の流速の範囲及び超音波の総電力も適切なものがよく、下記の不等式1,2のものがよいことが分かった。
(数式1)
不等式1:0.67<(Wt/(v*S))<13.3
不等式2:1.1<(Wt/(v*S))<10.0
尚、上記不等式で(Wt/(v*S))の値を(Wt/q2)にすることもできる。v,sの値が不明又は計測できにくく、通過流量q2の方が測定でき易い又は計算し易い場合は、(Wt/(v*S))を(Wt/q2)に置き代えることもできる。更に分流割合kをk=q2/(q1+q2)=q2/Qとすると、q2=k*Qであるから、更に(Wt/(v*S))を(Wt/(k*Q))に置き代えるようにしてもよい。不等式1,2は下記数2に置き代えることができる。
(数2)
不等式3:0.67<(Wt/(k*Q))<13.3
不等式4:1.1<(Wt/(k*Q))<10.0
k=q2/Q=分流割合
又、洗浄槽に供給される酸素と窒素とを高濃度αに溶存させた洗浄水の流量をQとし、供給された洗浄水が狭間領域を通過する流量をq2とし、狭間領域を通過しないでそのまま排水される流量をq1=(Q−q2)とし、溶解部での酸素と窒素の濃度上昇の低い方の濃度上昇の比率値をγとしたとき、開口から落下する直前の濃度βは、狭間領域を通過する酸素と窒素はほとんど分解して消費されるのでα*q1/(q1+q2)であり、これが溶解部で比率値γで濃度上昇し、しかも比率値γが供給される洗浄水の狭間領域に流入する流量の非通過の流量に対する分流比率(q2/q1)より大きくするようになっているので、溶解部を経た後の洗浄水の濃度δは(β+γβ)となり、濃度上昇の比率値γ=(δ−β)/βが分流比率(q2/q1)の値より大きいので下式のように、濃度δは供給時の濃度αより大きくなる。
(数3)
q2/q1<γ
δ=β+γβ=β(1+γ)=α*q1*(1+γ)/(q1+q2)
δ>α*q1*(1+q2/q1)/(q1+q2)=α
δ>α
このように、溶解部の濃度上昇の比率γを分流比率より大きくすることで(又は分流比率を溶解部の濃度上昇の比率γより小さくすることで)、洗浄槽へ供給する洗浄水の酸素と窒素の濃度は所定の高濃度以上を維持して連続で長時間の洗浄殺菌を可能とする。尚、初期的にこれら濃度にするには、超音波振動子を作動させないで繰り返し循環させることで、所定の高濃度にできる。
以下、本発明を実施例と図面に基づいて具体的に説明する。図1は実施例に用いた超音波洗浄装置Tの説明図である。図2~4はその洗浄水の流れと、酸素と窒素の溶存濃度と流量との変動を示す実施例の説明図である。
図中、1は受水槽、1aは同受水槽の上方の左右側面に開口した搬送コンベヤ3の通過口、2は洗浄槽、2aは洗浄槽の左右の側面に設けた開口であって排水口となっている。2bは細長のスリットから水膜状に洗浄水を噴出する噴出部、2cは洗浄水の一時貯水部、3は水が上下に通過できるスラットコンベヤを用いた搬送コンベヤ、4は10cmの間隔を離して設けた上下一対の各1000watt(ワット)の超音波振動子、4aはその振動面、5はポンプ、6は洗浄水の供給管、7は超音波振動子4の対向した振動面内の狭間領域で、高さ10cm,左右長さ40cm,幅30cmの空間を有する。8は噴出部2bから槽内側の開口2aに沿って水膜状に噴出して水流の大部分が狭間領域7へ流入しないように流入水量と流入速度とを制御する上下一対の邪魔板、9は受水槽1の洗浄水がポンプ5に入る前に設けたゴミ除去部である。Aは被洗浄物である半導体基板、Wは洗浄水、Waは水カーテンである。
本実施例の超音波洗浄装置は、図1に示すように、上面が開放された受水槽1内部に洗浄槽2を配置し、受水槽1と洗浄槽2の前後の側面に通過口1a,開口2aを開口し、その前後の通過口1a,開口2aに搬送コンベヤ3を連通し、受水槽1に洗浄水Wを貯水している。洗浄槽2の左右の開口2aの上方位置には、洗浄水Wの水カーテンWaが開口2aの槽内側に沿って形成されるように、下向きに且つやや内向きに噴出させる長さ60cmでスリット幅5mmのスリットを備えた噴出部2bを取り付けている。洗浄槽2内には超音波振動子4をその発振面が水面下で対向するように10cm間隔をおいて上下に配置し、受水槽1の洗浄水Wを噴出部2bへ給水するポンプ5と供給管6を設けている。
受水槽1の貯水量は100~300リットル、洗浄槽2の容積は30~60リットル、ポンプ4の給水能力は300~1000リットル/分可能である。各超音波振動子4は1000ワットで周波数は25kHz・40kHz・120kHzの切替式である。
本実施例では、ポンプ5を作動させると、受水槽1に貯えた酸素と窒素とを飽和溶存濃度程度に溶存させた洗浄水Wは供給管6を介して洗浄槽2へ送られる。
洗浄槽2では、供給管6で送られた洗浄水は一時貯水部2cで貯えられた後、スリット状の噴出口が5mm幅で60cm長さの噴出部2bから50m/分の高速で水カーテン状に噴出する。噴出部2bの水カーテンWaは洗浄槽2の開口2aを閉鎖するようになって、この開口2aより高い水面となっている洗浄槽2内の洗浄水が大量に開口2aから排出されるのを抑止して水面の高さを維持している。
水カーテンWaの水流は上下一対の邪魔板8によって大部分(90%程)は邪魔板8と槽内面との間で遊水して開口2aから排出される。
水カーテンWaの水中の一部の10%程度の水が上下の邪魔板8の間隙から超音波振動子4間の狭間領域7へ左右両側から対向するように流入する。その流入速度は略50cm/分程で大幅に減速されている。狭間領域は高さ10cm,奥行30cm,長さ(左右長)は40cm程でその領域の容積Lは12リッターである。水カーテン状に噴出した酸素と窒素を高濃度に溶存させた洗浄水の一部はこの狭間領域7へ左右から対向して進入したらその領域7の前後から流出する。この状態を図3に示している。
狭間領域7へ流入した洗浄水の酸素と窒素は狭間領域の上下の超音波振動子4による強力な超音波振動によって分解され、直ちに過酸化水素水と硝酸になる。一方狭間領域7から流出する洗浄水の酸素と窒素の濃度はそのため略0%近くとなる。この流出した洗浄水は狭間領域7に流入(通過)しない洗浄水(90%程度)と合流し、開口2aから槽外へ排出され、洗浄水はこの開口2aから水膜・水脈状となって下方へ落下し、受水槽1によって回収され、貯えられる。洗浄水はこの水膜・水脈状となって落下する途中に大気中の酸素と窒素ガスと接触し、落下途中でこれらガスを洗浄水中へ溶解してそれらの濃度を高める。このように本発明の溶解部は実施例では洗浄槽2の開口2aとその下方に設置された受水槽1の簡単な構成からなっている。そしてこれらガスの溶存濃度は一回の落下で大略15%程濃度を高めることができる。溶解部での濃度上昇の比率値γは0.15程である。
左右の噴出部2bから洗浄水の供給量は略300リットル/分程であり、又狭間領域7に流入する洗浄水量は約30リットル/分で供給される洗浄水の略10%程である。
狭間領域7に流入した洗浄水は、10cm間隔の上下にある各1000watt(ワット)の超音波振動子4によってこの領域に生起するランダムで強力な超音波振動によって、洗浄水中に溶存させていた酸素と窒素は下式のように分解されて過酸化水素水と硝酸等が生成され、これらによる高い殺菌力・脱脂力及びキャビテーションと併せて高い洗浄力を発現する。
狭間領域7への洗浄水の流入速度は、15~100cm/分が実用的であり好ましくは20~60cm/分である。下限値より小さくすると、高濃度に酸素と窒素とを溶存させた洗浄水の流入量が不足して過酸化水素水と硝酸の生成が少なく洗浄殺菌力が少なくなる。又上限値を超えると、生成した過酸化水素水と硝酸、キャビテーションが流出して散失してやはり洗浄殺菌効果が弱くなる。
又、超音波振動子の総電力Wtにも影響し、(Wt/(v*S))の値が0.67~13.3の範囲が実用的であり、1.1~10.0の範囲が好ましい範囲であることが分かった。
このように、強力なソノケミストリー反応を狭間領域7に生起させている状態で、搬送コンベヤ3を作動させ、被洗浄物Aを搬送コンベヤ3で受水槽1を介して洗浄槽2の開口2aを介して洗浄槽2内の洗浄水中へ被洗浄物Aを送り出し、被洗浄物を狭間領域7を一定速度で通過させる。これによって狭間領域に集中的に与えられている水の強力な超音波振動、キャビテーション及び過酸化水素水、硝酸等で被洗浄物Aを強力に洗浄殺菌することができた。
狭間領域に強力なソノケミストリー反応が生じていることを、洗浄水中にルミノール液を混入して狭間領域でのルミノール液の酸化による青白い光の発生状況で目視観察した。本実施例では狭間領域全体に強い大きな青白い発光を目視できたが、上方の超音波発振子の作動を停止すると、発光は作動させている下方の超音波振動子のある側の部分的なもので発光も弱いものであった。
更に、水槽中に洗浄水を貯えて超音波振動を与えるバッチ式の従来の超音波洗浄機と、本実施例の超音波洗浄装置を用いて、ブタや牛の血を塗布した医療用インジケータを洗浄した所、従来のバッチ式では血等の汚れが完全に落ちるまでには90~120分を要したが、本実施例の洗浄では1~5分で済み、きわめて短時間で医療用インジケータを完全に洗浄できた。
本発明の技術は、電子部品・機械加工品・医療器具・メダルや硬貨・入れ歯等に付着した汚れや油分等を洗浄殺菌する用途に利用される。また、超音波振動子を左右に対向して配置し、その間の空間に部屋の空気を微細な気泡にして下方から送り込んで洗浄殺菌する空気清浄にも応用できる。
尚、本発明について特定の実施形態に基づいて記載しているが、当業者であれば、本発明の請求の範囲及び思想から逸脱することなく、様々な変更・修正等が可能である。
尚、本発明について特定の実施形態に基づいて記載しているが、当業者であれば、本発明の請求の範囲及び思想から逸脱することなく、様々な変更・修正等が可能である。
1…受水槽
1a…通過口
2…洗浄槽
2a…開口
2b…噴出部
2c…一時貯水部
3…搬送コンベヤ
4…超音波振動子
5…ポンプ
6…供給管
7…狭間領域
8…邪魔板
9…ゴミ除去部
A…被洗浄物
W…洗浄水
Wa…水カーテン
1a…通過口
2…洗浄槽
2a…開口
2b…噴出部
2c…一時貯水部
3…搬送コンベヤ
4…超音波振動子
5…ポンプ
6…供給管
7…狭間領域
8…邪魔板
9…ゴミ除去部
A…被洗浄物
W…洗浄水
Wa…水カーテン
Claims (1)
- 水中に酸素及び窒素を高濃度に溶存させた洗浄水が連続的に供給されて洗浄水を貯える洗浄槽内に、発振面が洗浄水の水面下に浸漬するように且つ互に発振面が対向するように複数の超音波振動子を配置し、対向する発振面によってはさまれた又は囲まれた狭間領域に酸素と窒素を高濃度に溶存させた洗浄水が15~100cm/分の範囲の流速で流入するようにするとともに、被洗浄物を上記狭間領域に所定時間置き、上記狭間領域において対向する超音波振動子の超音波振動によって洗浄水中の溶存酸素と窒素とを分解して過酸化水素と硝酸とを発生させて被洗浄物の洗浄と殺菌を行うことを特徴とする超音波を用いた物品の洗浄方法であって、酸素と窒素とを高濃度に溶存させた洗浄水を洗浄槽内へ連続的に供給するとともに、供給された洗浄水の一部のみが狭間領域を通過するように流した後供給された洗浄水全量を連続的に洗浄槽から排出し、排出した洗浄水を酸素と窒素とを溶存させる溶解部へ送り、同溶解部で溶存濃度を高めて酸素と窒素とも高濃度に溶存させた後ポンプで洗浄槽に供給して洗浄水を循環使用するとともに、洗浄槽内に供給される洗浄水のうち狭間領域を通過する流量の狭間領域を通過しないで排水される流量に対する分流比率が溶解部の洗浄水中の溶存の酸素又は窒素の各濃度上昇の比率のうち低い方の上昇比率より小さくなるようにし、洗浄槽に供給する洗浄水が常時酸素と窒素とを高濃度に溶存させるようにして連続洗浄を可能とし、更に洗浄槽の左右側壁面それぞれに開口を設け、左右の同開口を介して洗浄槽内の水中を移動して被洗浄物が洗浄水面下の狭間領域を通過するように搬送する搬送コンベヤを設け、洗浄槽に供給される洗浄水を槽内側の左右の開口付近で水膜状に吹き出して水カーテンを形成し、左右の開口から洗浄槽内の洗浄水が大量に排水するのを抑止し、更に吹き出した洗浄水の一部が槽内に設けた邪魔板によって減速されながら誘導されて狭間領域の左右側面から互に対向するように流入するようにし、しかも洗浄槽の開口から洗浄水を水膜又は水脈状に大気中に落下させ、落下途中において大気中の酸素と窒素と接触してこれらを洗浄水に溶存させ、洗浄槽の下方の受水槽で落下する洗浄水を回収し、回収した洗浄水をポンプで洗浄槽に送って供給するようにし、溶解部が洗浄槽の開口と同開口の下方に配置した受水槽とから形成される、超音波を用いた物品の洗浄方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009209359A JP4485598B1 (ja) | 2009-09-10 | 2009-09-10 | 超音波を用いた物品の洗浄方法 |
JP2009-209359 | 2009-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030917A1 true WO2011030917A1 (ja) | 2011-03-17 |
Family
ID=42351851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065993 WO2011030917A1 (ja) | 2009-09-10 | 2010-09-09 | 超音波を用いた物品の洗浄方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4485598B1 (ja) |
TW (1) | TW201114506A (ja) |
WO (1) | WO2011030917A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102228893A (zh) * | 2011-06-10 | 2011-11-02 | 张家港市港威超声电子有限公司 | 超声振板发射面的浸没结构 |
CN106037944A (zh) * | 2016-05-16 | 2016-10-26 | 安庆米锐智能科技有限公司 | 一种用于医疗骨科手术上的器械消毒台 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010051668A1 (de) * | 2010-11-17 | 2012-05-24 | Li-Tec Battery Gmbh | Verfahren und System zur Reinigung von blatt- oder plattenförmigen Objekten |
JP2013240726A (ja) * | 2012-05-17 | 2013-12-05 | Toshio Konuma | 廃電気機器の洗浄装置 |
CN103028572B (zh) * | 2013-01-10 | 2015-09-09 | 张家港市超声电气有限公司 | 全自动通过式超声波清洗装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318036A (ja) * | 1991-04-16 | 1992-11-09 | Seiko Epson Corp | 洗浄方法 |
JP3004334U (ja) * | 1994-04-22 | 1994-11-15 | 株式会社小井製作所 | 水平コンベア式連続洗浄装置 |
JPH0889914A (ja) * | 1994-09-21 | 1996-04-09 | Sansha Electric Mfg Co Ltd | 洗浄槽内の洗浄液中の溶存空気量の増減装置 |
JP2003200120A (ja) * | 2002-01-07 | 2003-07-15 | Alps Electric Co Ltd | ウェット処理装置及びウェット処理方法 |
JP2007105686A (ja) * | 2005-10-17 | 2007-04-26 | Miyagi Prefecture | 洗浄方法および超音波洗浄用洗浄剤 |
JP2008142647A (ja) * | 2006-12-11 | 2008-06-26 | K2R:Kk | 機能水生成方法および機能水生成装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH034334U (ja) * | 1989-06-01 | 1991-01-17 |
-
2009
- 2009-09-10 JP JP2009209359A patent/JP4485598B1/ja not_active Expired - Fee Related
-
2010
- 2010-09-09 WO PCT/JP2010/065993 patent/WO2011030917A1/ja active Application Filing
- 2010-09-10 TW TW099130753A patent/TW201114506A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318036A (ja) * | 1991-04-16 | 1992-11-09 | Seiko Epson Corp | 洗浄方法 |
JP3004334U (ja) * | 1994-04-22 | 1994-11-15 | 株式会社小井製作所 | 水平コンベア式連続洗浄装置 |
JPH0889914A (ja) * | 1994-09-21 | 1996-04-09 | Sansha Electric Mfg Co Ltd | 洗浄槽内の洗浄液中の溶存空気量の増減装置 |
JP2003200120A (ja) * | 2002-01-07 | 2003-07-15 | Alps Electric Co Ltd | ウェット処理装置及びウェット処理方法 |
JP2007105686A (ja) * | 2005-10-17 | 2007-04-26 | Miyagi Prefecture | 洗浄方法および超音波洗浄用洗浄剤 |
JP2008142647A (ja) * | 2006-12-11 | 2008-06-26 | K2R:Kk | 機能水生成方法および機能水生成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102228893A (zh) * | 2011-06-10 | 2011-11-02 | 张家港市港威超声电子有限公司 | 超声振板发射面的浸没结构 |
CN106037944A (zh) * | 2016-05-16 | 2016-10-26 | 安庆米锐智能科技有限公司 | 一种用于医疗骨科手术上的器械消毒台 |
Also Published As
Publication number | Publication date |
---|---|
JP2011056408A (ja) | 2011-03-24 |
TW201114506A (en) | 2011-05-01 |
JP4485598B1 (ja) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011030917A1 (ja) | 超音波を用いた物品の洗浄方法 | |
JP4999338B2 (ja) | 基板洗浄方法、基板洗浄装置、プログラム、および記録媒体 | |
JP4705517B2 (ja) | 基板洗浄方法、基板洗浄装置、プログラム、および記録媒体 | |
WO2018021562A1 (ja) | 微細気泡洗浄装置及び微細気泡洗浄方法 | |
JPH06320124A (ja) | 超音波洗浄方法およびその洗浄装置 | |
JP2003234320A (ja) | 基板の洗浄方法、洗浄薬液、洗浄装置及び半導体装置 | |
KR20090116708A (ko) | 초음파 세정방법 | |
JP6252926B1 (ja) | 微細気泡洗浄装置及び微細気泡洗浄方法 | |
JP5015717B2 (ja) | 基板洗浄装置 | |
JP2009000595A (ja) | ウエット洗浄装置および基板洗浄システム | |
KR20070057671A (ko) | 계면활성제 함유수의 처리방법 및 처리장치 | |
JP2007287790A (ja) | 基板洗浄方法、基板洗浄装置、プログラム、および記録媒体 | |
JP6643648B2 (ja) | プラズマ液処理方法、プラズマ液処理装置および口腔洗浄装置 | |
JP2005131453A (ja) | オゾンによる容器,配管類の洗浄方法及び装置 | |
JP5393214B2 (ja) | 銅系素材の酸洗方法 | |
JPH11508644A (ja) | 導体プレート及び導体箔の化学的電解的処理のための方法と装置 | |
JPH01135024A (ja) | 洗浄方法 | |
JP2016203082A (ja) | ラジカル機能液の製造方法およびラジカル機能液を用いた浄化方法 | |
WO2009099190A1 (ja) | 洗浄装置、洗浄方法、及びこれに用いられるオゾン水生成装置 | |
JP5015763B2 (ja) | 基板洗浄方法、基板洗浄装置、プログラム、および、プログラム記録媒体 | |
JP5153729B2 (ja) | 洗浄装置、洗浄方法および被洗浄物 | |
JP2007059832A (ja) | 基板処理装置 | |
JP4042519B2 (ja) | 超音波洗浄装置 | |
JPH09213666A (ja) | 洗浄方法および洗浄装置 | |
JP2003086560A (ja) | 基板処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815506 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10815506 Country of ref document: EP Kind code of ref document: A1 |