WO2011030489A1 - ガス拡散層及びその製造方法、並びに燃料電池 - Google Patents

ガス拡散層及びその製造方法、並びに燃料電池 Download PDF

Info

Publication number
WO2011030489A1
WO2011030489A1 PCT/JP2010/004350 JP2010004350W WO2011030489A1 WO 2011030489 A1 WO2011030489 A1 WO 2011030489A1 JP 2010004350 W JP2010004350 W JP 2010004350W WO 2011030489 A1 WO2011030489 A1 WO 2011030489A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
gas
gas diffusion
fuel cell
flow path
Prior art date
Application number
PCT/JP2010/004350
Other languages
English (en)
French (fr)
Inventor
山内将樹
辻庸一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10815092.1A priority Critical patent/EP2477262A4/en
Priority to US13/139,022 priority patent/US8790846B2/en
Priority to CN201080003671.3A priority patent/CN102257661B/zh
Priority to JP2011516599A priority patent/JP4818486B2/ja
Publication of WO2011030489A1 publication Critical patent/WO2011030489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell that uses a reducing agent such as pure hydrogen or methanol as a fuel gas, or reformed hydrogen from a fossil fuel, and uses air (oxygen) or the like as an oxidant gas. More specifically, the present invention relates to a gas diffusion layer provided in the fuel cell and a manufacturing method thereof.
  • a reducing agent such as pure hydrogen or methanol
  • air oxygen
  • the present invention relates to a gas diffusion layer provided in the fuel cell and a manufacturing method thereof.
  • a fuel cell for example, a polymer electrolyte fuel cell, causes a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air to react electrochemically in a gas diffusion layer having a catalyst layer such as platinum.
  • a catalyst layer such as platinum
  • FIG. 8 is a schematic diagram showing a basic configuration of a conventional polymer electrolyte fuel cell.
  • a unit cell (also referred to as a cell) 100 of a polymer electrolyte fuel cell includes a membrane electrode assembly 110 (hereinafter referred to as MEA: Membrane-Electrode-Assembly) and a pair of plate-like conductive elements disposed on both sides of the MEA 110.
  • MEA Membrane-Electrode-Assembly
  • the separator 120 is provided.
  • the MEA 110 includes a polymer electrolyte membrane (ion exchange resin membrane) 111 that selectively transports hydrogen ions, and a pair of electrode layers 112 formed on both surfaces of the polymer electrolyte membrane 111.
  • the pair of electrode layers 112 are formed on both surfaces of the polymer electrolyte membrane 111, and are formed on the catalyst layer 113, which is mainly composed of carbon powder carrying a white metal catalyst, and on the catalyst layer 113.
  • a gas diffusion layer 114 having both gas permeability and water repellency.
  • the gas diffusion layer 114 includes a porous base material 115 made of carbon fibers and a coating layer (water-repellent carbon layer) 116 made of carbon and a water repellent material.
  • the pair of separators 120 are provided with a fuel gas flow path 121 for flowing a fuel gas and an oxidant gas flow path 122 for flowing an oxidant gas on a main surface contacting the gas diffusion layer 114. Yes.
  • the pair of separators 120 is provided with a cooling water passage 123 through which cooling water or the like passes.
  • one or more cells 100 configured as described above are generally stacked and used by electrically connecting adjacent cells 100 in series.
  • the stacked cells 100 are applied with a predetermined fastening pressure by a fastening member 130 such as a bolt in order to prevent the fuel gas and the oxidant gas, which are reaction gases, from leaking and to reduce the contact resistance. Fastened with pressure. Therefore, the MEA 110 and the separator 120 are in surface contact with a predetermined pressure.
  • the separator 120 has current collecting properties for electrically connecting the MEAs 110 and 110 adjacent to each other in series.
  • a sealing material (gasket) 117 is provided between the pair of separators 120 and 120 so as to cover the side surfaces of the catalyst layer 113 and the gas diffusion layer 114. Is arranged.
  • a gas flow path is provided in the separator.
  • a method for realizing this configuration for example, there is a method in which carbon and resin are used as the material of the separator, and these are injection-molded using a mold having irregularities corresponding to the shape of the gas flow path.
  • the manufacturing cost is high.
  • a method for realizing the above configuration there is a method in which a metal is used as a material for the separator and the metal is rolled using a mold having irregularities corresponding to the shape of the gas flow path.
  • the cost can be reduced as compared with the injection molding method, but there is a problem that the separator is easily corroded and the power generation performance as a fuel cell is lowered.
  • the gas diffusion layer is composed of a porous member in order to provide gas diffusibility. For this reason, it is easier to form the gas flow path in the gas diffusion layer than to form it in the separator, and it is advantageous for reducing the cost and improving the power generation performance.
  • the gas diffusion layer having such a configuration include those described in Patent Documents 1 to 3.
  • Patent Document 1 a porous member based on carbon fiber is molded by a papermaking method using a molding jig having a plurality of flow path molds extended in a rectangular parallelepiped shape, and the molding jig is formed after the molding.
  • a technique for forming a gas flow path inside a gas diffusion layer by extracting the gas is described.
  • Patent Document 2 after a partition wall made of a resin or metal forming a gas flow path is patterned on a separator, a porous member based on carbon fiber is formed so as to cover the partition wall. A technique for forming a gas flow path in the diffusion layer is described.
  • Patent Document 3 a flow path component member made of carbon paper in which a gas flow path structure is formed by punching or the like is disposed between a porous member based on carbon fiber and a flat plate separator. A technique for forming a gas flow path in a gas diffusion layer is described.
  • the gas diffusion layer is generally composed of a porous member based on carbon fiber as described in Patent Documents 1 to 3.
  • a porous member based on carbon fiber is expensive because the manufacturing process is complicated and the manufacturing cost is high.
  • a technique for reducing the cost of a fuel cell by configuring a gas diffusion layer without using a porous member based on carbon fiber has been proposed.
  • As a gas diffusion layer having such a configuration for example, there is one described in Patent Document 4.
  • Patent Document 4 describes a technique in which a gas diffusion layer is formed by mixing graphite, carbon black, unfired PTFE (polytetrafluoroethylene), and fired PTFE without using carbon fiber as a base material. .
  • JP 2006-339089 A Japanese Patent Laying-Open No. 2005-294121 JP 2000-123850 A Japanese Patent Laid-Open No. 2003-187809
  • the porosity is usually as high as 80% or more. For this reason, when a gas flow path is formed in this gas diffusion layer, there is a possibility that the reaction gas permeates (shortcuts) inside the rib portion that separates the gas flow paths adjacent to each other. That is, the fuel gas or the oxidant gas does not flow along the shape of the gas flow path from the upstream part to the downstream part of the gas flow path, so that the gas diffusibility is lowered and the power generation performance may be lowered.
  • the partition wall can prevent the reaction gas from passing through the inside of the rib portion.
  • the conductivity is lowered, thereby increasing the IR loss.
  • the partition walls are made of metal, side reactions are liable to occur and the durability of the polymer electrolyte membrane is lowered. That is, as a result, the power generation performance may be reduced.
  • the porosity can be made lower than 80%. Therefore, it is possible to suppress the reaction gas from passing through the inside of the rib portion.
  • a gas diffusion layer configured without using carbon fiber as a base material (hereinafter referred to as a base material-less gas diffusion layer) has a problem of low strength. For this reason, when the gas flow path is formed in the base material-less gas diffusion layer by rolling or the like, for example, the ribs separating the gas flow paths adjacent to each other are deformed by the pressure applied when the cell is assembled. The cross-sectional area may become excessively small.
  • the porosity may be lowered (densified).
  • the gas diffusibility is hindered, and particularly the reactive gas does not reach the catalyst layer vertically below the rib portion, causing variations in the in-plane power generation distribution and lowering the voltage. That is, as a result, the power generation performance is reduced.
  • an object of the present invention is to solve the above-mentioned problems, and in a gas diffusion layer having a gas flow path formed on one main surface, the gas diffusion layer capable of further improving the power generation performance and the production thereof A method and a fuel cell provided with the gas diffusion layer are provided.
  • the gas diffusion layer is A first diffusion layer having a gas flow path formed on one main surface;
  • a multi-layer structure having The first and second diffusion layers are composed of a porous member mainly composed of conductive particles and a polymer resin, The porosity of the first diffusion layer is lower than the porosity of the second diffusion layer;
  • a gas diffusion layer for a fuel cell is provided.
  • the “porous member mainly composed of conductive particles and polymer resin” means a structure (so-called “supported by conductive particles and polymer resin” without using carbon fiber as a base material). It means a porous member having a self-supporting structure).
  • a surfactant and a dispersion solvent are used as described later. In this case, during the production process, the surfactant and the dispersion solvent are removed by firing, but they may not be sufficiently removed and may remain in the porous member.
  • the self-supporting structure does not use carbon fiber as a base material, it means that the surfactant and the dispersion solvent remaining in this manner may be contained in the porous member. It also means that other materials may be included in the porous member as long as the self-supporting structure does not use carbon fiber as a base material.
  • the first and second diffusion layers are composed of conductive particles and a polymer resin as main components, and a porous material to which carbon fibers having a weight less than that of the polymer resin are added.
  • a gas diffusion layer for a fuel cell according to the first aspect, comprising members, is provided.
  • the carbon fiber is the gas diffusion layer for a fuel cell according to the second aspect, which is any one of vapor grown carbon fiber, milled fiber, and chop fiber. provide.
  • the gas diffusion layer for a fuel cell according to the second or third aspect, wherein the composition ratio of the carbon fiber is higher in the first diffusion layer than in the second diffusion layer.
  • the conductive particles contained in the first diffusion layer are composed of two or more types of carbon materials having different average particle diameters.
  • a gas diffusion layer for a fuel cell as described in 1. is provided.
  • the fuel according to any one of the first to fifth aspects, wherein the composition ratio of the polymer resin is lower in the first diffusion layer than in the second diffusion layer.
  • a gas diffusion layer for a battery is provided.
  • the gas diffusion layer for a fuel cell according to any one of the first to sixth aspects, wherein the porosity of the first diffusion layer is 20% or more and less than 50%. To do.
  • the gas diffusion layer for a fuel cell according to any one of the first to seventh aspects, wherein the porosity of the second diffusion layer is 65% or more and less than 80%. To do.
  • a polymer electrolyte membrane comprising: At least one of the pair of gas diffusion layers is the gas diffusion layer according to any one of the first to eighth aspects, The first diffusion layer is in contact with the current collector plate, and the second diffusion layer is in contact with the catalyst layer; A fuel cell is provided.
  • a polymer electrolyte membrane An anode catalyst layer formed on one main surface of the polymer electrolyte membrane; An anode gas diffusion layer laminated on the anode catalyst layer; A separator laminated on the anode gas diffusion layer and having a gas flow path formed on a main surface in contact with the anode gas diffusion layer; A cathode catalyst layer formed on the other main surface of the polymer electrolyte membrane; A cathode gas diffusion layer laminated on the cathode catalyst layer; Current collectors laminated on the cathode gas diffusion layer; With The cathode gas diffusion layer is the gas diffusion layer according to any one of the first to eighth aspects, The first diffusion layer is in contact with the current collector plate, and the second diffusion layer is in contact with the catalyst layer; A fuel cell is provided.
  • the method for producing a gas diffusion layer used in a fuel cell Create two sheet-like porous members with different porosities, A porous member having a low porosity is placed in a mold having a protrusion corresponding to the shape of the gas flow path after the porous member having a low porosity out of the two porous members thus prepared. Forming a gas flow path on one main surface of the member; The porous member having a high porosity is laminated and bonded to the other main surface of the porous member having a low porosity forming the gas flow path.
  • the manufacturing method of the gas diffusion layer for fuel cells is provided.
  • a method for producing a gas diffusion layer used in a fuel cell Create two sheet-like porous members with different porosities, Laminating the two porous members produced above, The stacked two porous members are placed in a mold having a protrusion corresponding to the shape of the gas flow path so that the porous member having a low porosity faces the protrusion, and then rolled. Forming a gas flow path on one main surface of the porous member having a low porosity, The manufacturing method of the gas diffusion layer for fuel cells is provided.
  • the gas diffusion layer for a fuel cell of the present invention, has a multilayer structure including the first diffusion layer and the second diffusion layer, and the porosity of the first diffusion layer in which the gas flow path is formed is set to the first. 2 Lower than the diffusion layer. That is, the strength of the first diffusion layer is higher than that of the second diffusion layer. As a result, it is possible to prevent the gas flow paths from being blocked due to deformation of the rib portions separating the gas flow paths adjacent to each other due to pressure applied when a plurality of cells are stacked and pressure-fastened. .
  • the reaction gas can flow at a constant flow rate along the shape of the gas flow channel from the upstream portion to the downstream portion of the gas flow channel.
  • the porosity of the second diffusion layer is higher than that of the first diffusion layer, the reaction gas is diffused vertically below the rib portion by the gas diffusivity of the second diffusion layer, and the in-plane power generation distribution Variations can be suppressed. Therefore, the power generation performance can be further improved.
  • the first and second diffusion layers are composed of a porous member mainly composed of conductive particles and a polymer resin, the cost can be reduced and a gas flow having a complicated shape can be achieved. The path can also be easily formed.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a gas diffusion layer alone according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a method for manufacturing a gas diffusion layer according to an embodiment of the present invention,
  • FIG. 4A is a schematic explanatory view showing a method for producing a gas diffusion layer according to an embodiment of the present invention.
  • FIG. 4B is a schematic explanatory diagram illustrating a process following FIG. 4A.
  • FIG. 4C is a schematic explanatory diagram illustrating a process following FIG. 4B.
  • FIG. 5 is a flowchart showing another manufacturing method of the gas diffusion layer according to the embodiment of the present invention.
  • FIG. 6A is a schematic explanatory view showing another method of manufacturing the gas diffusion layer according to the embodiment of the present invention
  • FIG. 6B is a schematic explanatory diagram illustrating a process following FIG. 6A.
  • FIG. 6C is a schematic explanatory view showing a process following FIG. 6B.
  • FIG. 7 is a schematic cross-sectional view showing a modification of the basic configuration of the fuel cell according to the embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of a conventional fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a fuel cell according to an embodiment of the present invention.
  • the fuel cell according to the present embodiment is a polymer electrolyte type that generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. It is a fuel cell.
  • the present invention is not limited to the polymer electrolyte fuel cell, and can be applied to various fuel cells.
  • the fuel cell according to the present embodiment includes a membrane electrode assembly 10 (hereinafter referred to as MEA) and a pair of conductive plate current collectors 20A and 20C that are disposed on both sides of the MEA 10 and have conductivity.
  • a cell (unit cell) 1 is provided.
  • the fuel cell according to the present embodiment may be configured by stacking a plurality of the cells 1. In this case, the stacked cells 1 are fastened with a predetermined fastening pressure by a fastening member (not shown) such as a bolt so that the fuel gas and the oxidant gas do not leak and the contact resistance is reduced. It is preferred that
  • the MEA 10 includes a polymer electrolyte membrane 11 that selectively transports hydrogen ions and a pair of electrode layers formed on both surfaces of the polymer electrolyte membrane 11.
  • One of the pair of electrode layers is an anode electrode (also referred to as a fuel electrode) 12A, and the other is a cathode electrode (also referred to as an air electrode) 12C.
  • the anode electrode 12A is formed on one surface of the polymer electrolyte membrane 11, and is formed on the anode catalyst layer 13A and a pair of anode catalyst layers 13A mainly composed of carbon powder carrying a white metal catalyst.
  • an anode gas diffusion layer 14A having both current collecting action, gas permeability and water repellency.
  • the cathode electrode 12C is formed on the other surface of the polymer electrolyte membrane 11, and is formed on the cathode catalyst layer 13C and a pair of cathode catalyst layers 13C mainly composed of carbon powder carrying a white metal catalyst. And a cathode gas diffusion layer 14C having both current collecting action, gas permeability and water repellency.
  • the anode gas diffusion layer 14A has a multi-layer structure including a first anode diffusion layer 15A that is an example of a first diffusion layer and a second anode diffusion layer 16A that is an example of a second diffusion layer.
  • the first and second anode diffusion layers 15A and 16A are formed of a base material-less gas diffusion layer that does not use carbon fiber as a base material.
  • the first and second anode diffusion layers 15A and 16A are composed of a porous member mainly composed of conductive particles and a polymer resin.
  • a fuel gas passage 21A for flowing fuel gas is provided on one main surface of the first anode diffusion layer 15A.
  • the ends of the rib portions 22A that separate the fuel gas passages 21A, 21A adjacent to each other are in contact with the current collector plate 20A at a predetermined pressure. This prevents the fuel gas from flowing outside the fuel gas channel 21A (external leak).
  • the other main surface of the first anode diffusion layer 15A is in contact with the second anode diffusion layer 16A.
  • the first anode diffusion layer 15A has a lower porosity than the second anode diffusion layer 16A.
  • the second anode diffusion layer 16A is in contact with the anode catalyst layer 13A.
  • the cathode gas diffusion layer 14 ⁇ / b> C has a multilayer structure including a first cathode diffusion layer 15 ⁇ / b> C that is an example of a first diffusion layer and a second cathode diffusion layer 16 ⁇ / b> C that is an example of a second diffusion layer.
  • the first and second cathode diffusion layers 15C and 16C are formed of a base material-less gas diffusion layer that does not use carbon fiber as a base material.
  • the first and second cathode diffusion layers 15C and 16C are made of a porous member mainly composed of conductive particles and a polymer resin.
  • an oxidant gas flow path 21C for flowing an oxidant gas is provided on one main surface of the first cathode diffusion layer 15C.
  • the tips of the rib portions 22C separating the oxidant gas flow paths 21C and 21C adjacent to each other are in contact with the current collector plate 20C at a predetermined pressure. This prevents the oxidizing gas from flowing outside the oxidizing gas channel 21C (external leakage).
  • the other main surface of the first cathode diffusion layer 15C is in contact with the second cathode diffusion layer 16C.
  • the first cathode diffusion layer 15C has a lower porosity than the second cathode diffusion layer 16C.
  • the second cathode diffusion layer 16C is in contact with the cathode catalyst layer 13C.
  • the fuel gas is supplied to the anode electrode 12A through the fuel gas flow path 21A, and the oxidant gas is supplied to the cathode electrode 12C through the oxidant gas flow path 21C, whereby an electrochemical reaction occurs, and electric power and heat are generated. appear.
  • the fastening pressure is 2 to 10 kgf / cm 2. Is preferred.
  • the fastening pressure is larger than 10 kgf / cm 2 , the rib portions 22A and 22C are easily deformed.
  • the fastening pressure is smaller than 2 kgf / cm 2 , the contact resistance between the members increases rapidly, or the fuel gas or the oxidant gas hardly flows along the fuel gas channel 21A or the oxidant gas channel 21C. Become.
  • the current collector plates 20A and 20C are made of a material such as a metal having low gas permeability.
  • current collector plates 20A and 20C are made of a material such as carbon or metal having excellent corrosion resistance, conductivity, gas impermeability, and flatness.
  • the current collector plates 20A and 20C may be provided with a cooling water flow path (not shown) through which cooling water or the like passes.
  • an anode gasket 17A is provided as a sealing material so as to cover the side surfaces of the anode catalyst layer 13A and the anode gas diffusion layer 14A.
  • a cathode is used as a sealing material so as to cover the side surfaces of the cathode catalyst layer 13C and the cathode gas diffusion layer 14C.
  • a gasket 17C is disposed.
  • thermoplastic resin thermosetting resin, or the like
  • materials for the anode gasket 17A and the cathode gasket 17C silicon resin, epoxy resin, melamine resin, polyurethane resin, polyimide resin, acrylic resin, ABS resin, polypropylene, liquid crystalline polymer, polyphenylene sulfide resin, polysulfone, glass fiber A reinforced resin or the like can be used.
  • the anode gasket 17A and the cathode gasket 17C are preferably partially impregnated in the periphery of the anode gas diffusion layer 14A or the cathode gas diffusion layer 14C. Thereby, power generation durability and strength can be improved.
  • a gasket is provided between the current collector plate 20A and the current collector plate 20C so as to cover the side surfaces of the polymer electrolyte membrane 11, the anode electrode 12A, and the cathode electrode 12C. You may arrange. Thereby, deterioration of the polymer electrolyte membrane 11 can be suppressed, and handling of the MEA 10 and workability during mass production can be improved.
  • the configuration of the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C according to this embodiment will be described in more detail.
  • the anode gas diffusion layer 14A and the cathode gas diffusion layer 14C have the same configuration unless otherwise specified. For this reason, when the matters common to these are described, these are simply referred to as the gas diffusion layer 14.
  • the first anode diffusion layer 15A and the first cathode diffusion layer 15C are referred to as the first diffusion layer 15, and the second anode diffusion layer 16A and the second cathode diffusion layer 16C are referred to as the second diffusion layer 16.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a gas diffusion layer alone.
  • the gas diffusion layer 14 has the following three functions.
  • the first is a gas diffusive function that diffuses the reaction gas flowing from the gas flow path 21 not only vertically below the gas flow path 21 but also vertically below the rib portion 22.
  • the second is a water management function that discharges excess water while appropriately moistening the inside of the catalyst layer.
  • the third is a current collecting function that forms an electron transfer path.
  • the gas diffusion layer 14 has a two-layer structure including a first diffusion layer 15 and a second diffusion layer 16.
  • the first and second diffusion layers 15 and 16 are each composed of a sheet-like and rubber-like porous member mainly composed of conductive particles and a polymer resin.
  • the porosity of the first diffusion layer 15 is set lower than the porosity of the second diffusion layer 16.
  • the porosity of the first and second diffusion layers 15 and 16 can be changed by varying the composition of the material used, the rolling force applied during production, the number of rolling operations, and the like.
  • the porosity of the first diffusion layer 15 is preferably 20% or more and less than 50%.
  • the porosity of the first diffusion layer 15 is less than 20%, the gas permeability is lowered and the reaction gas does not reach not only vertically below the rib portion 22 but also vertically below the gas flow path 21. The power generation performance is significantly reduced.
  • the porosity of the 1st diffused layer 15 is 50% or more, intensity
  • the porosity of the second diffusion layer 16 is preferably 65% or more and less than 80%.
  • the porosity of the second diffusion layer 16 is less than 65%, the gas permeability decreases, the reaction gas does not flow easily in the thickness direction, and power generation vertically below the rib portion 22 becomes difficult.
  • Examples of the material of the conductive particles constituting the first and second diffusion layers 15 and 16 include carbon materials such as graphite, carbon black, and activated carbon.
  • Examples of carbon black include acetylene black (AB), furnace black, ketjen black, and vulcan. Of these, acetylene black is preferably used as the main component of carbon black from the viewpoint of low impurity content and high electrical conductivity.
  • natural graphite, artificial graphite, etc. are mentioned as a main component of graphite. Among these, artificial graphite is preferably used as the main component of graphite from the viewpoint of a small amount of impurities.
  • a raw material form of a carbon material powder form, fibrous form, granular form, etc. are mentioned, for example. Among these, it is preferable from the viewpoint of dispersibility and handleability that the powder form is adopted as the raw material form of the carbon material.
  • the conductive particles contained in the first diffusion layer 15 are preferably configured by mixing two types of carbon materials having different average particle diameters. Thereby, since a particle with a small average particle diameter can enter into a gap between particles with a large average particle diameter, the entire porosity of the first diffusion layer 15 is reduced (for example, 60% or less). It becomes easy.
  • acetylene black is used as one carbon material
  • artificial graphite is an example of the other carbon material that can easily form a filling structure.
  • the conductive particles are configured by mixing three or more types of carbon materials, it is easy to configure a filling structure.
  • the conductive particles are more preferably configured by mixing two types of carbon materials.
  • the mixing ratio (weight ratio) thereof is preferably 0.3 or more for artificial graphite with respect to 1 for acetylene black.
  • the second diffusion layer 16 needs to have a high porosity, so that the conductive particles contained in the second diffusion layer 16 are made of one kind of carbon material. Is preferred. Moreover, it is preferable that the one type of carbon material has little variation in particle diameter. Further, the conductive particles contained in the second diffusion layer 16 may be composed of two or more types of carbon materials having different average particle diameters, like the first diffusion layer 15. However, in this case, it is preferable to adjust the blending ratio of each carbon material so that the filling structure is not formed. For example, when the conductive particles are configured by mixing acetylene black and artificial graphite, the blending ratio (weight ratio) thereof is preferably 1 for acetylene black and less than 0.3 for artificial graphite.
  • the polymer resin constituting the first and second diffusion layers 15 and 16 has a function as a binder for binding the conductive particles to each other. Further, since the polymer resin has water repellency, it also has a function (water retention) for confining water in the system inside the fuel cell. The lower the composition ratio of the polymer resin, the higher the hydrophilicity of the gas diffusion layer itself. When the hydrophilicity in the vicinity of the gas flow path 21 is high, it becomes easy to discharge condensed water to the outside of the system. For this reason, it is preferable that the blend ratio of the polymer resin is lower in the first diffusion layer 15 than in the second diffusion layer 16. In addition, since the polymer resin is non-conductive, the contact resistance between the rib portion 22 and the current collector plates 20A and 20C can be reduced by reducing the blending ratio of the polymer resin in the first diffusion layer 15. it can.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • ETFE tetrafluoroethylene / ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • the raw material form of PTFE include dispersion and powder. Among these, it is preferable from the viewpoint of workability that the dispersion is adopted as a raw material form of PTFE.
  • the shape (pattern) of the gas flow path 21 formed in the first diffusion layer 15 is not particularly limited, and can be formed in the same manner as the shape of the gas flow path formed in the conventional separator.
  • Examples of the shape of such a gas flow path include a straight type and a serpentine type.
  • the optimum value of the width of the gas flow path 21 varies greatly depending on the electrode area, gas flow rate, current density, humidification conditions, cell temperature, etc., but within the range of 0.1 mm to 3.0 mm, particularly 0.2 mm to 1.5 mm. It is preferable to be within the range.
  • the width of the gas flow path 21 is less than 0.1 mm, there is a possibility that the width of the gas flow path 21 is not sufficient with respect to the amount of reaction gas normally flowed in the fuel cell.
  • the width of the gas flow path 21 is larger than 3.0 mm, the reaction gas may not flow through the entire gas flow path 21, and the reaction gas may stay and flooding may occur.
  • the depth of the gas flow path 21 varies greatly depending on the electrode area, gas flow rate, current density, humidification conditions, cell temperature, etc., but is in the range of 0.015 mm to 2.0 mm, particularly 0.03 mm to 0.8 mm. It is preferable to be within. If the depth of the gas flow path 21 is less than 0.015 mm, the depth of the gas flow path 21 may not be sufficient with respect to the amount of reaction gas that normally flows in the fuel cell. On the other hand, when the depth of the gas flow path 21 is larger than 2,0 mm, the reaction gas may not flow through the entire gas flow path 21, and the reaction gas may stay and flooding may occur.
  • the width of the rib portion 22 formed in the first diffusion layer 15 is preferably within a range of 0.1 mm to 3.0 mm, particularly preferably within a range of 0.2 mm to 2.0 mm.
  • the width of the rib portion 22 is less than 0.1 mm, the strength is reduced and the gas flow path 21 is easily deformed.
  • the width of the rib portion 22 is larger than 2.0 mm, the area vertically below the rib portion 22 is increased, so that the reaction gas is not uniformly diffused in the first diffusion layer 15 and the in-plane power generation distribution. There is a risk of variation.
  • the optimum value of the thickness of the second diffusion layer 16 varies greatly depending on the gas utilization rate, current density, humidification conditions, cell temperature, etc., but is in the range of 0.05 mm to 1.0 mm, particularly 0.1 mm to 0.4 mm. It is preferable to be within the range.
  • the ratio of the thickness of the second diffusion layer 16 to the first diffusion layer 15 is preferably in the range of 0.3 to 2.0.
  • the ratio of the thickness of the second diffusion layer 16 to the first diffusion layer 15 is less than 0.3, the gas diffusibility in the thickness direction is reduced, and the reaction gas reaches vertically below the rib portion 22. Disappear. As a result, the in-plane power generation distribution varies, and the power generation performance decreases.
  • the ratio of the thickness of the second diffusion layer 16 to the first diffusion layer 15 is larger than 2.0, the entire gas diffusion layer 14 becomes too thick, so that the reaction gas becomes the catalyst layer 13A, At the same time, the electric resistance increases and the power generation performance decreases.
  • the 1st and 2nd diffused layers 15 and 16 should just be a structure (so-called self-supporting body structure) supported by electroconductive particle and polymer resin, without using a carbon fiber as a base material. Therefore, the first and second diffusion layers 15 and 16 may contain a trace amount of a surfactant and a dispersion solvent used in manufacturing the gas diffusion layer, in addition to the conductive particles and the polymer resin.
  • a dispersion solvent include water, alcohols such as methanol and ethanol, and glycols such as ethylene glycol.
  • the surfactant include nonionic compounds such as polyoxyethylene alkyl ethers and zwitterionic compounds such as alkylamine oxides.
  • the conductive particles and the polymer resin tend to be uniformly dispersed, while the fluidity increases, and the gas diffusion layer It tends to be difficult to make a sheet.
  • the first and second diffusion layers 15 and 16 may contain carbon fibers having a weight that does not hold as a base material (for example, a weight less than that of the conductive particles and the polymer resin). Since carbon fibers have a reinforcing effect, a high-strength gas diffusion layer can be produced by increasing the blending ratio of carbon fibers.
  • the first diffusion layer 15 needs to have higher strength than the second diffusion layer 16 in order to suppress deformation of the rib portion 22. For this reason, it is preferable that the first diffusion layer 15 has a higher carbon fiber blending ratio than the second diffusion layer 16. Since the first diffusion layer 15 becomes highly conductive by increasing the blending ratio of the carbon fibers of the first diffusion layer 15, the contact resistance between the rib portion 22 and the current collector plates 20A and 20C can also be reduced. .
  • Examples of the carbon fiber material include vapor grown carbon fiber (hereinafter referred to as VGCF), milled fiber, cut fiber, and chop fiber.
  • VGCF vapor grown carbon fiber
  • milled fiber, cut fiber, and chop fiber examples of the carbon fiber material.
  • VGCF vapor grown carbon fiber
  • milled fiber, cut fiber, or chop fiber is used as the carbon fiber, for example, a fiber having a fiber diameter of 5 to 20 ⁇ m and a fiber length of 20 to 100 ⁇ m may be used.
  • the raw material of the milled fiber, cut fiber, or chop fiber may be PAN, pitch, or rayon.
  • the fiber is preferably used by dispersing a bundle of short fibers produced by cutting and cutting an original yarn (long fiber filament or short fiber stable).
  • the amount of the carbon fiber is preferably less than that of the polymer resin. Adding a small amount of carbon fiber is also effective for increasing the strength of the baseless gas diffusion layer.
  • the blending amount of the carbon fiber is larger than that of the polymer resin, there is a concern that the carbon fiber pierces the film and the film deteriorates to deteriorate the performance. Moreover, it becomes a factor which becomes high in cost.
  • the first and second diffusion layers 15 and 16 do not need to use carbon fibers as a base material, and may have a self-supporting structure supported by conductive particles, a polymer resin, and carbon fibers.
  • the porosity of the second anode gas diffusion layer 16A of the anode gas diffusion layer 14A is preferably lower than the porosity of the second cathode gas diffusion layer 16C of the cathode gas diffusion layer 14C.
  • the water retention of 16 A of 2nd anode gas diffusion layers can be made high compared with the water retention of 16 C of 2nd cathode gas diffusion layers.
  • the gas diffusibility of the second cathode gas diffusion layer 16C can be made higher than the gas diffusivity of the second anode gas diffusion layer 16A.
  • FIG. 3 is a flowchart showing a method for manufacturing a gas diffusion layer according to an embodiment of the present invention.
  • 4A to 4C are schematic explanatory views thereof.
  • step S1 two sheet-like porous members having different porosities are produced.
  • the sheet-like porous member can be produced, for example, as follows.
  • a polymer resin material is added and dispersed in the kneaded product.
  • the carbon material and the polymer resin material may not be separately charged into the kneading machine, but all the materials may be simultaneously charged into the kneading machine.
  • the kneaded material obtained by kneading is rolled into a sheet by a roll press or a flat plate press.
  • the kneaded product formed into a sheet is baked to remove the surfactant and the dispersion solvent from the kneaded product.
  • the firing temperature and firing time are preferably the temperature and time at which the surfactant and the dispersion solvent evaporate or decompose.
  • the kneaded product from which the surfactant and the dispersion solvent have been removed is re-rolled to adjust the thickness. Thereby, a sheet-like porous member can be produced.
  • Two sheet-like porous members having different porosities can be manufactured by changing the conductive particles to be used, the rolling force by a press, the number of rolling operations, and the like in the production process.
  • a porous member having a high porosity one type of carbon material is used, and when producing a porous member having a low porosity, two types of carbon materials having different average particle diameters are used. That's fine. Thereby, two porous members having different porosities can be obtained.
  • the porosity of the two porous members can be increased by increasing the rolling force or the number of rolling operations with a press compared to when producing a porous member with high porosity. The difference can be increased.
  • the one having the gas flow path 21 formed on the porous member having a low porosity is the first diffusion layer 15, and the porous member having a high porosity is the first porous member. 2 diffusion layers 16 are formed.
  • the porous member before the formation of the gas flow path 21 is referred to as a porous member 15a.
  • the kneaded material is rolled with a roll press or a flat plate press to produce a sheet-like porous member, but the present invention is not limited to this.
  • the kneaded material can be put into an extruder and sheet-formed continuously from the die head of the extruder to produce a sheet-like porous member.
  • the kneaded product can be obtained without using the kneader by devising the shape of the screw provided in the extruder and giving the screw a kneading function. That is, stirring, kneading, and sheet forming of each carbon material can be performed integrally with a single machine.
  • step S2 as shown in FIGS. 4A and 4B, the low-porosity porous member 15a is disposed in a pair of molds 31 and 32 having protrusions 31a corresponding to the shape of the gas flow path 21.
  • the molds 31 and 32 are closed with a rolling machine and rolled.
  • the gas flow path 21 is formed in the porous member 15a having a low porosity, and the first diffusion layer 15 can be obtained.
  • dies 31 and 32 may be comprised integrally with a rolling machine, it is easier to handle the one comprised so that attachment or detachment to a rolling machine is possible.
  • a rolling machine a roll press machine or a flat plate press machine can be used.
  • die 31 and 32 which has the projection part 31a is directly formed in the surface of a roll.
  • the heating temperature is preferably 250 ° C. or lower.
  • the porous member 15a having a low porosity is softened and the formation of the gas flow path 21 is facilitated.
  • the heating temperature is higher than 250 ° C., the porous member 15a having a low porosity may be deteriorated.
  • the rolling force of the rolling machine is preferably less than 500 kgf / cm 2 . The higher the rolling force of the rolling machine, the easier the gas channel 21 can be formed. However, if a rolling force of 500 kgf / cm 2 or more is applied to the porous member 15a having a low porosity, there is a risk of cracking or material destruction. There is.
  • a mold release agent may be applied in advance in order to prevent the molds 31 and 32 and the porous member 15a having a low porosity from coming into close contact after rolling by a rolling machine.
  • the mold release agent can be selected as appropriate as long as it does not affect the power generation performance of the fuel cell, but it is preferable to use distilled water or surfactant-diluted distilled water.
  • a sheet made of PTFE resin may be used in place of the release agent.
  • the materials of the molds 31 and 32 can be selected from stainless steel, nickel chrome molybdenum steel, cemented carbide steel, SKD11, SKD12, tool steel such as Ni-P hardened chromium, ceramics, glass fiber reinforced plastic, and the like.
  • the surfaces of the dies 31 and 32 may be subjected to surface treatment such as hard Cr plating, PVD coating, TiC coating, TD treatment, Zr spraying treatment, PTFE coating, etc., in order to improve the corrosion resistance and release properties. .
  • surface treatment such as hard Cr plating, PVD coating, TiC coating, TD treatment, Zr spraying treatment, PTFE coating, etc.
  • step S3 as shown in FIG. 4C, the first diffusion layer 15 and the second diffusion layer 16 produced as described above are stacked and bonded together by the flat plate press 33. At this time, the second diffusion layer 16 is bonded to the main surface of the first diffusion layer 15 opposite to the gas flow path forming surface. Thereby, the gas diffusion layer 14 shown in FIG. 2 can be obtained.
  • the gas diffusion layer 14 is prevented from warping (waving) in the thickness direction. Can do.
  • the flat plate press machine 33 it is preferable to perform bonding by the flat plate press machine 33 with a surface pressure of 2 kg / cm 2 or less.
  • the surface pressure is larger than 2 kg / cm 2 , the rib portion 22 may be deformed and the gas flow path 21 may be narrowed.
  • first diffusion layer 15 and the second diffusion layer 16 may be performed using a conductive adhesive mainly composed of a conductive filler and a binder.
  • the first diffusion layer 15 and the second diffusion layer 16 are bonded to each other using a dispersion solution (for example, Nafion (registered trademark) manufactured by DuPont) containing a similar component to the polymer electrolyte membrane 11 or a small amount of distilled water. You may go.
  • a dispersion solution for example, Nafion (registered trademark) manufactured by DuPont
  • the gas diffusion layer 14 is manufactured by performing the steps S1 to S3.
  • the present invention is not limited to this. For example, other operations may be appropriately included between the steps.
  • step S3 the first diffusion layer 15 and the second diffusion layer 16 are stacked and bonded together by the flat plate press 33, but the present invention is not limited to this.
  • the second diffusion layer 16 may be disposed between the first diffusion layer 15 and the mold 32, and the molds 31 and 32 may be closed with a rolling machine and bonded together.
  • the molds 31 and 32 are closed with a rolling machine and rolled to obtain the first diffusion layer 15.
  • the second diffusion layer 16 is disposed between the main surface of the first diffusion layer 15 opposite to the gas flow path forming surface and the mold 32, and the first diffusion layer 15 and the second diffusion layer 15 are disposed.
  • the diffusion layer 16 may be laminated, and the molds 31 and 32 may be closed and bonded together using a rolling machine.
  • the step of removing the first diffusion layer 15 from the mold 31 after the step 2 by using the molds 31 and 32 for bonding the first diffusion layer 15 and the second diffusion layer 16. Can be omitted.
  • FIG. 5 is a flowchart showing another method of manufacturing the gas diffusion layer.
  • 6A to 6C are schematic explanatory views thereof.
  • step S11 two sheet-like porous members having different porosities are produced in the same manner as in step S1.
  • step S12 as shown in FIG. 6A, a porous member 15a having a low porosity and a second diffusion layer 16 that is a porous member having a high porosity are laminated.
  • step S13 the laminate of the porous member 15a having a low porosity and the second diffusion layer 16 is pressurized. Therefore, in step S12, the porous member 15a having a low porosity and the second diffusion layer 16 are pressed. Are simply laminated.
  • the porous member 15a having a low porosity and the second diffusion layer 16 may be bonded in advance using the flat plate press 33, the conductive adhesive, the dispersion solvent, distilled water, or the like as described above. .
  • step S13 the bonded porous member 15a having a low porosity and the second diffusion layer 16 are disposed in the dies 31, 32. At this time, it arrange
  • the flat plate press 33 is used to press the gas diffusion layer 14 with a surface pressure of 2 kg / cm 2 or less. do it.
  • the gas diffusion layer 14 has the two-layer structure including the first diffusion layer 15 and the second diffusion layer 16, and the first diffusion in which the gas flow path 21 is formed.
  • the porosity of the layer 15 is lower than that of the second diffusion layer 16. That is, the strength of the first diffusion layer 15 is higher than that of the second diffusion layer 16.
  • the ribs 22 separating the gas flow paths 21 adjacent to each other are deformed by the pressure applied when the plurality of cells 1 are stacked and fastened, and the gas flow paths 21 are blocked. Can be suppressed.
  • the reaction gas can be prevented from passing through the inside of the rib portion 22, and the reaction gas can flow at a constant flow rate along the shape of the gas flow channel 21 from the upstream portion to the downstream portion of the gas flow channel 21. it can.
  • the porosity of the second diffusion layer 16 is higher than that of the first diffusion layer 15, the reaction gas is diffused vertically below the rib portion 22 due to the gas diffusibility of the second diffusion layer 16. Variations in internal power distribution can be suppressed. Therefore, the power generation performance can be further improved.
  • the first and second diffusion layers 15 and 16 are made of a porous member mainly composed of conductive particles and a polymer resin, the cost can be reduced and a complicated shape can be achieved. This gas flow path can also be easily formed.
  • the gas diffusion layer 14 having a two-layer structure according to the present invention is disposed on both the anode side and the cathode side, but the present invention is not limited to this.
  • the gas diffusion layer 14 having a two-layer structure according to the present invention may be arranged on at least one of the anode side and the cathode side.
  • the power generation performance of the fuel cell tends to be higher when the oxidant gas flow path of the cathode electrode (air electrode) has a more complicated shape than the fuel gas flow path of the anode electrode (fuel electrode).
  • the 1st diffusion layer concerning the present invention comprises a substrate less gas diffusion layer, formation of a gas channel is easy. Therefore, for example, as shown in FIG. 7, an anode gas diffusion layer 214A having a normal single layer structure and a normal separator 220A provided with a fuel gas flow path 221A are arranged on the anode side, and only on the cathode side.
  • the cathode gas diffusion layer 14C having a two-layer structure having the oxidant gas flow path 21C and the current collector plate 21C may be disposed. Also with such a configuration, the power generation performance of the fuel cell can be further improved as compared with the conventional configuration.
  • the porosity of the anode gas diffusion layer 214A is preferably lower than the porosity of the second cathode gas diffusion layer 16C of the cathode gas diffusion layer 14C.
  • the water retention of the anode gas diffusion layer 214A can be made higher than that of the second cathode gas diffusion layer 16C.
  • the gas diffusivity of the second cathode gas diffusion layer 16C can be made higher than the gas diffusivity of the anode gas diffusion layer 214A.
  • the fuel cell gas diffusion layer and the manufacturing method thereof, and the fuel cell according to the present invention can further improve the power generation performance in the gas diffusion layer in which the gas flow path is formed on one main surface. It is useful for a fuel cell used as a driving source for a moving body such as an automobile, a distributed power generation system, and a cogeneration system for home use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の目的は、一方の主面にガス流路が形成されたガス拡散層において、発電性能を一層向上させることができるガス拡散層を提供することにある。本発明の燃料電池用ガス拡散層(14A,14C)は、一方の主面にガス流路(21A,21C)を有する第1拡散層(15A,15C)と、第1拡散層の他方の主面側に配置される第2拡散層(16A,16C)と、を有する複数構造で構成され、第1拡散層及び第2拡散層は導電性粒子及び高分子樹脂を主成分とした多孔質部材で構成され、第1拡散層の多孔度は第2拡散層の多孔度より低く構成される。

Description

ガス拡散層及びその製造方法、並びに燃料電池
 本発明は、燃料ガスとして、純水素、メタノールなどの液体燃料、あるいは、化石燃料などからの改質水素などの還元剤を用い、酸化剤ガスとして、空気(酸素)などを用いる燃料電池に関し、より詳しくは、当該燃料電池が備えるガス拡散層及びその製造方法に関する。
 燃料電池、例えば高分子電解質形燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含有する酸化剤ガスとを、白金などの触媒層を有するガス拡散層で電気化学的に反応させることにより、電力と熱とを同時に発生させる装置である。
 図8は、従来の高分子電解質形燃料電池の基本構成を示す模式図である。高分子電解質形燃料電池の単電池(セルともいう)100は、膜電極接合体110(以下、MEA:Membrane-Electrode-Assemblyという)と、MEA110の両面に配置された一対の板状の導電性のセパレータ120とを有している。
 MEA110は、水素イオンを選択的に輸送する高分子電解質膜(イオン交換樹脂膜)111と、当該高分子電解質膜111の両面に形成された一対の電極層112とを備えている。一対の電極層112は、高分子電解質膜111の両面に形成され、白金属触媒を坦持したカーボン粉末を主成分とする触媒層113と、当該触媒層113上に形成され、集電作用とガス透過性と撥水性とを併せ持つガス拡散層114とを有している。ガス拡散層114は、炭素繊維からなる多孔質な基材115と、カーボンと撥水材からなるコーティング層(撥水カーボン層)116とで構成されている。
 前記一対のセパレータ120には、ガス拡散層114と当接する主面に、燃料ガスを流すための燃料ガス流路121と、酸化剤ガスを流すための酸化剤ガス流路122とが設けられている。また、前記一対のセパレータ120には、冷却水などが通る冷却水流路123が設けられている。当該各ガス流路121,122を通じて前記一対の電極層112にそれぞれ燃料ガス及び酸化剤ガスが供給されることで、電気化学反応が起こり、電力と熱とが発生する。
 前記のように構成されるセル100は、図8に示すように1つ以上積層され、互いに隣接するセル100を電気的に直列に接続されて使用されるのが一般的である。なお、このとき、互いに積層されたセル100は、反応ガスである燃料ガス及び酸化剤ガスがリークしないように且つ接触抵抗を減らすために、ボルトなどの締結部材130により所定の締結圧にて加圧締結される。従って、MEA110とセパレータ120とは所定の圧力で面接触することになる。このとき、セパレータ120は、互いに隣接するMEA110,110同士を電気的に直列に接続するための集電性を有する。また、電気化学反応に必要なガスが外部に漏れるのを防ぐために、一対のセパレータ120,120の間には、触媒層113とガス拡散層114の側面を覆うようにシール材(ガスケット)117が配置されている。
 近年、燃料電池の分野においては、より一層の低コスト化が求められており、各構成部材の単価の低減、部品点数の削減などの観点から、様々な低コスト化の技術が提案されている。その1つとして、ガス流路を、セパレータに設けるのではなく、ガス拡散層に設ける技術が提案されている。
 図8に示す従来の燃料電池においては、セパレータにガス流路を設けている。この構成を実現する方法としては、例えば、セパレータの材料としてカーボンと樹脂とを用い、これらを、ガス流路の形状に対応する凹凸を有する金型を用いて射出成形する方法がある。しかしながら、この場合、製造コストが高いという課題がある。また、前記構成を実現する別の方法として、セパレータの材料として金属を用い、ガス流路の形状に対応する凹凸を有する金型を用いて当該金属を圧延する方法がある。しかしながら、この場合、前記射出成形法に比べて低コスト化を実現することができる一方で、セパレータが腐食しやすく、燃料電池としての発電性能が低下するという課題がある。
 一方、ガス拡散層は、ガス拡散性を備えるようにするために、多孔質部材で構成される。このため、ガス流路をガス拡散層に形成することの方がセパレータに形成することに比べて容易であり、低コスト化及び高発電性能化を図るのに有利である。このような構成を有するガス拡散層としては、例えば、特許文献1~3に記載されたものがある。
 特許文献1には、直方体状に伸長された複数の流路型を備えた成型治具を用いて炭素繊維を基材とした多孔質部材を抄紙法によって成型し、当該成型後に前記成型治具を抜き取ることによって、ガス拡散層の内部にガス流路を形成する技術が記載されている。
 特許文献2には、ガス流路を形成する樹脂又は金属からなる隔壁をセパレータ上にパターン形成した後、当該隔壁を覆うように炭素繊維を基材とした多孔質部材を形成することによって、ガス拡散層にガス流路を形成する技術が記載されている。
 特許文献3には、炭素繊維を基材とした多孔質部材と平板状のセパレータとの間に、打ち抜きなどによりガス流路構造を形成したカーボンペーパーよりなる流路構成部材を配設することにより、ガス拡散層にガス流路を形成する技術が記載されている。
 また、ガス拡散層は、前記特許文献1~3のように炭素繊維を基材とした多孔質部材で構成されるのが一般的である。しかしながら、炭素繊維を基材とした多孔質部材は、製造工程が複雑であり製造コストがかかるため、高価である。そこで、炭素繊維を基材とした多孔質部材を用いずにガス拡散層を構成することで、燃料電池の低コスト化を図る技術が提案されている。このような構成を有するガス拡散層としては、例えば、特許文献4に記載されたものがある。
 特許文献4には、炭素繊維を基材として用いずに、グラファイトとカーボンブラックと未焼成PTFE(ポリテトラフルオロエチレン)と焼成PTFEとを混合してガス拡散層を構成する技術が記載されている。
特開2006-339089号公報 特開2005-294121号公報 特開2000-123850号公報 特開2003-187809号公報
 前記特許文献1~3のように炭素繊維を基材とした多孔質部材でガス拡散層を構成した場合、その多孔度は通常80%以上と高くなる。このため、このガス拡散層にガス流路を形成した場合、互いに隣接するガス流路を隔てるリブ部の内部を反応ガスが透過(ショートカット)してしまうおそれがある。すなわち、燃料ガス又は酸化剤ガスが、ガス流路の上流部から下流部までガス流路の形状に沿って流れずにガス拡散性が低下し、それにより発電性能が低下するおそれがある。
 また、特許文献2の構成によれば、前記隔壁により、反応ガスがリブ部の内部を透過することを抑えられる。しかしながら、前記隔壁を樹脂で形成した場合には、導電性が低下することとなり、それによりIR損失が増大する。一方、前記隔壁を金属で形成した場合には、副反応が起こり易くなって高分子電解質膜の耐久性が低下する。すなわち、結果として、発電性能が低下するおそれがある。
 一方、特許文献4のように炭素繊維を基材として用いずにガス拡散層を構成した場合、その多孔度は80%より低くすることができる。従って、反応ガスがリブ部の内部を透過することを抑えることができる。しかしながら、炭素繊維を基材として用いずに構成したガス拡散層(以下、基材レスガス拡散層という)は、強度が弱いという課題がある。このため、基材レスガス拡散層に圧延などによりガス流路を形成した場合、例えば、セルの組立時に加わる圧力などにより、互いに隣接するガス流路を隔てるリブ部が変形して、ガス流路の断面積が過剰に小さくなってしまうおそれがある。
 基材レスガス拡散層の強度を強くするには、低多孔度化(高密度化)すればよい。しかしながら、この場合、ガス拡散性が阻害されて、特にリブ部の鉛直下方の触媒層に反応ガスが届かず、面内発電分布にバラツキが生じ、電圧が低下する。すなわち、結果として発電性能が低下することとなる。
 従って、本発明の目的は、前記課題を解決することにあって、一方の主面にガス流路が形成されたガス拡散層において、発電性能を一層向上させることができるガス拡散層及びその製造方法、並びに当該ガス拡散層を備えた燃料電池を提供することにある。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の第1態様によれば、燃料電池に用いるガス拡散層において、
 前記ガス拡散層は、
 一方の主面にガス流路が形成された第1拡散層と、
 前記第1拡散層の他方の主面上に積層された第2拡散層と、
 を有する複層構造で構成され、
 前記第1及び第2拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成され、
 前記第1拡散層の多孔度は、前記第2拡散層の多孔度よりも低い、
 燃料電池用ガス拡散層を提供する。
 ここで、「導電性粒子と高分子樹脂とを主成分とした多孔質部材」とは、炭素繊維を基材として使用することなく、導電性粒子と高分子樹脂とで支持される構造(いわゆる自己支持体構造)を持つ多孔質部材を意味する。導電性粒子と高分子樹脂とで多孔質部材を構成する場合、例えば、後述するように界面活性剤と分散溶媒とを用いる。この場合、製造工程中に、焼成により界面活性剤と分散溶媒とを除去するが、十分に除去できずにそれらが多孔質部材中に残留することが有り得る。従って、炭素繊維を基材として使用しない自己支持体構造である限り、そのようにして残留した界面活性剤と分散溶媒が多孔質部材に含まれてもよいことを意味する。また、炭素繊維を基材として使用しない自己支持体構造である限り、他の材料が多孔質部材に含まれても良いことも意味する。
 本発明の第2態様によれば、前記第1及び第2拡散層は、導電性粒子と高分子樹脂とを主成分とし、前記高分子樹脂よりも少ない重量の炭素繊維が添加された多孔質部材で構成されている、第1態様に記載の燃料電池用ガス拡散層を提供する。
 本発明の第3態様によれば、前記炭素繊維は、気相成長法炭素繊維、ミルドファイバー、チョップファイバーのうちのいずれか1つである、第2態様に記載の燃料電池用ガス拡散層を提供する。
 本発明の第4態様によれば、前記第2拡散層よりも前記第1拡散層の方が、前記炭素繊維の組成比率が高い、第2又は3態様に記載の燃料電池用ガス拡散層を提供する。
 本発明の第5態様によれば、前記第1拡散層に含まれる前記導電性粒子は、平均粒子径が異なる2種類以上のカーボン材料で構成されている、第1~4態様のいずれか1つに記載の燃料電池用ガス拡散層を提供する。
 本発明の第6態様によれば、前記第2拡散層よりも前記第1拡散層の方が、前記高分子樹脂の組成比率が低い、第1~5態様のいずれか1つに記載の燃料電池用ガス拡散層を提供する。
 本発明の第7態様によれば、前記第1拡散層の多孔度は、20%以上50%未満である、第1~6態様のいずれか1つに記載の燃料電池用ガス拡散層を提供する。
 本発明の第8態様によれば、前記第2拡散層の多孔度は、65%以上80%未満である、第1~7態様のいずれか1つに記載の燃料電池用ガス拡散層を提供する。
 本発明の第9態様によれば、高分子電解質膜と、
 前記高分子電解質膜を挟んで互いに対向する一対の触媒層と、
 前記高分子電解質膜及び前記一対の触媒層を挟んで互いに対向する一対のガス拡散層と、
 前記高分子電解質膜、前記一対の触媒層、及び一対のガス拡散層を挟んで互いに対向する一対の集電板と、
 を備える燃料電池において、
 前記一対のガス拡散層の少なくとも一方は、第1~8態様のいずれか1つに記載のガス拡散層であり、
 前記第1拡散層が前記集電板に接し、前記第2拡散層が前記触媒層に接している、
 燃料電池を提供する。
 本発明の第10態様によれば、高分子電解質膜と、
 前記高分子電解質膜の一方の主面上に形成されたアノード触媒層と、
 前記アノード触媒層上に積層されたアノードガス拡散層と、
 前記アノードガス拡散層上に積層され、前記アノードガス拡散層に接する主面にガス流路が形成されたセパレータと、
 前記高分子電解質膜の他方の主面上に形成されたカソード触媒層と、
 前記カソード触媒層上に積層されたカソードガス拡散層と、
 前記カソードガス拡散層上に積層された集電板と、
 を備え、
 前記カソードガス拡散層は、第1~8態様のいずれか1つに記載のガス拡散層であり、
 前記第1拡散層が前記集電板に接し、前記第2拡散層が前記触媒層に接している、
 燃料電池を提供する。
 本発明の第11態様によれば、燃料電池に用いるガス拡散層の製造方法において、
 多孔度が異なる2つのシート状の多孔質部材をそれぞれ作製し、
 前記作製した2つの多孔質部材のうち多孔度が低い多孔質部材を、ガス流路の形状に対応する突起部を有する金型内に配置した後、圧延して、当該多孔度が低い多孔質部材の一方の主面にガス流路を形成し、
 前記ガス流路を形成した多孔度が低い多孔質部材の他方の主面に、前記多孔度が高い多孔質部材を積層して貼り合わせる、
 ことを含む、燃料電池用ガス拡散層の製造方法を提供する。
 本発明の第12態様によれば、燃料電池に用いるガス拡散層の製造方法において、
 多孔度が異なる2つのシート状の多孔質部材をそれぞれ作製し、
 前記作製した2つの多孔質部材を積層し、
 前記積層した2つの多孔質部材を、ガス流路の形状に対応する突起部を有する金型内に、多孔度が低い多孔質部材側が前記突起部に対向するように配置した後、圧延して、当該多孔度が低い多孔質部材の一方の主面にガス流路を形成する、
 ことを含む、燃料電池用ガス拡散層の製造方法を提供する。
 本発明の燃料電池用ガス拡散層によれば、ガス拡散層を第1拡散層と第2拡散層とを有する複層構造とし、ガス流路が形成された第1拡散層の多孔度を第2拡散層より低くしている。すなわち、第1拡散層の強度を第2拡散層より高くしている。これにより、複数のセルを積層して加圧締結する際などに加わる圧力により、互いに隣接するガス流路を隔てるリブ部が変形して、ガス流路が閉塞してしまうことを抑えることができる。また、反応ガスがリブ部の内部を透過することを抑えることができ、ガス流路の上流部から下流部までガス流路の形状に沿って反応ガスが一定の流速で流れることができる。また、第2拡散層の多孔度は第1拡散層よりも高いので、第2拡散層のガス拡散性によりリブ部の鉛直下方にも反応ガスが拡散されることになり、面内発電分布のバラツキを抑えることができる。従って、発電性能を一層向上させることができる。また、第1及び第2拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されているので、低コスト化を図ることができるとともに、複雑な形状のガス流路も容易に形成することができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の実施形態にかかる燃料電池の基本構成を示す模式断面図であり、 図2は、本発明の実施形態にかかるガス拡散層単体の構成を示す模式断面図であり、 図3は、本発明の実施形態にかかるガス拡散層の製造方法を示すフローチャートであり、 図4Aは、本発明の実施形態にかかるガス拡散層の製造方法を示す模式説明図であり、 図4Bは、図4Aに続く工程を示す模式説明図であり、 図4Cは、図4Bに続く工程を示す模式説明図であり、 図5は、本発明の実施形態にかかるガス拡散層の別の製造方法を示すフローチャートであり、 図6Aは、本発明の実施形態にかかるガス拡散層の別の製造方法を示す模式説明図であり、 図6Bは、図6Aに続く工程を示す模式説明図であり、 図6Cは、図6Bに続く工程を示す模式説明図であり、 図7は、本発明の実施形態にかかる燃料電池の基本構成の変形例を示す模式断面図であり、 図8は、従来の燃料電池の構成を示す模式断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の全ての図において、同一又は相当部分には同一符号を付し、重複する説明は省略する。
 《実施形態》
 図1は、本発明の実施形態にかかる燃料電池の基本構成を示す模式断面図である。本実施形態にかかる燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる高分子電解質形燃料電池である。なお、本発明は高分子電解質形燃料電池に限定されるものではなく、種々の燃料電池に適用可能である。
 図1において、本実施形態にかかる燃料電池は、膜電極接合体10(以下、MEAという)と、MEA10の両面に配置された導電性を有する一対の平板状の集電板20A,20Cとを有するセル(単電池)1を備えている。なお、本実施形態にかかる燃料電池は、このセル1を複数個積層して構成されてもよい。この場合、互いに積層されたセル1は、燃料ガス及び酸化剤ガスがリークしないように且つ接触抵抗を減らすために、ボルトなどの締結部材(図示せず)により所定の締結圧にて加圧締結されることが好ましい。
 MEA10は、水素イオンを選択的に輸送する高分子電解質膜11と、当該高分子電解質膜11の両面に形成された一対の電極層とを備えている。一対の電極層の一方はアノード電極(燃料極ともいう)12Aであり、他方はカソード電極(空気極ともいう)12Cである。アノード電極12Aは、高分子電解質膜11の一方の面上に形成され、白金属触媒を坦持したカーボン粉末を主成分とする一対のアノード触媒層13Aと、このアノード触媒層13A上に形成され、集電作用とガス透過性と撥水性とを併せ持つアノードガス拡散層14Aとを有している。カソード電極12Cは、高分子電解質膜11の他方の面上に形成され、白金属触媒を坦持したカーボン粉末を主成分とする一対のカソード触媒層13Cと、このカソード触媒層13C上に形成され、集電作用とガス透過性と撥水性とを併せ持つカソードガス拡散層14Cとを有している。
 アノードガス拡散層14Aは、第1拡散層の一例である第1アノード拡散層15Aと第2拡散層の一例である第2アノード拡散層16Aとを有する複層構造で構成されている。第1及び第2アノード拡散層15A,16Aは、炭素繊維を基材として用いない基材レスガス拡散層で構成されている。具体的には、第1及び第2アノード拡散層15A,16Aは、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている。第1アノード拡散層15Aの一方の主面には、燃料ガスを流すための燃料ガス流路21Aが設けられている。互いに隣接する燃料ガス流路21A,21Aを隔てるリブ部22Aの先端は、所定の圧力で集電板20Aに接している。これにより、燃料ガス流路21A外に燃料ガスが流れること(外部リーク)が防止されている。第1アノード拡散層15Aの他方の主面は第2アノード拡散層16Aと接している。第1アノード拡散層15Aは、第2アノード拡散層16Aよりも多孔度が低く構成されている。第2アノード拡散層16Aはアノード触媒層13Aと接している。
 カソードガス拡散層14Cは、第1拡散層の一例である第1カソード拡散層15Cと第2拡散層の一例である第2カソード拡散層16Cとを有する複層構造で構成されている。第1及び第2カソード拡散層15C,16Cは、炭素繊維を基材として用いない基材レスガス拡散層で構成されている。具体的には、第1及び第2カソード拡散層15C,16Cは、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されている。第1カソード拡散層15Cの一方の主面には、酸化剤ガスを流すための酸化剤ガス流路21Cが設けられている。互いに隣接する酸化剤ガス流路21C,21Cを隔てるリブ部22Cの先端は、所定の圧力で集電板20Cに接している。これにより、酸化剤ガス流路21C外に酸化剤ガスが流れること(外部リーク)が防止されている。第1カソード拡散層15Cの他方の主面は第2カソード拡散層16Cと接している。第1カソード拡散層15Cは、第2カソード拡散層16Cよりも多孔度が低く構成されている。第2カソード拡散層16Cはカソード触媒層13Cと接している。
 燃料ガス流路21Aを通じてアノード電極12Aに燃料ガスが供給されるとともに、酸化剤ガス流路21Cを通じてカソード電極12Cに酸化剤ガスが供給されることで、電気化学反応が起こり、電力と熱とが発生する。
 なお、反応ガスがリークしないように且つ接触抵抗を減らすために、ボルトなどの締結部材(図示せず)によりセル1を加圧締結するとき、締結圧は、2~10kgf/cmであることが好ましい。締結圧が10kgf/cmより大きい場合には、リブ部22A,22Cが変形し易くなる。一方、締結圧が2kgf/cmでより小さい場合には、部材間の接触抵抗が急増したり、燃料ガス流路21A又は酸化剤ガス流路21Cに沿って燃料ガス又は酸化剤ガスが流れ難くなる。
 集電板20A,20Cは、ガス透過性が低い金属などの材料で構成されている。好ましくは、集電板20A,20Cは、耐食性、導電性、ガス不透過性、平坦性に優れたカーボン、金属などの材料で構成される。なお、集電板20A,20Cには、冷却水などが通る冷却水流路(図示せず)が設けられていてもよい。
 集電板20Aと高分子電解質膜11との間には、燃料ガスが外部に漏れるのを防ぐために、アノード触媒層13A及びアノードガス拡散層14Aの側面を覆うようにシール材としてアノードガスケット17Aが配置されている。また、集電板20Cと高分子電解質膜11との間には、酸化剤ガスが外部に漏れることを防ぐために、カソード触媒層13C及びカソードガス拡散層14Cの側面を覆うようにシール材としてカソードガスケット17Cが配置されている。
 アノードガスケット17A及びカソードガスケット17Cの材料としては、一般的な熱可塑性樹脂、熱硬化性樹脂などを用いることができる。例えば、アノードガスケット17A及びカソードガスケット17Cの材料として、シリコン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、アクリル樹脂、ABS樹脂、ポリプロピレン、液晶性ポリマー、ポリフェニレンサルファイド樹脂、ポリスルホン、ガラス繊維強化樹脂などを用いることができる。
 なお、アノードガスケット17A及びカソードガスケット17Cは、それらの一部がアノードガス拡散層14A又はカソードガス拡散層14Cの周縁部に含浸しているほうが好ましい。これにより、発電耐久性及び強度を向上させることができる。
 また、アノードガスケット17A及びカソードガスケット17Cに代えて、集電板20Aと集電板20Cとの間に、高分子電解質膜11、アノード電極12A、及びカソード電極12Cの側面を覆うように、ガスケットを配置してもよい。これにより、高分子電解質膜11の劣化を抑制し、MEA10のハンドリング性、量産時の作業性を向上させることができる。
 次に、本実施形態にかかるアノードガス拡散層14A及びカソードガス拡散層14Cの構成についてさらに詳細に説明する。ここで、アノードガス拡散層14Aとカソードガス拡散層14Cとは、特に断りが無い限り同じ構成を有している。このため、これらに共通する事項について説明する場合には、これらを単にガス拡散層14という。また、第1アノード拡散層15A及び第1カソード拡散層15Cは、第1拡散層15といい、第2アノード拡散層16A及び第2カソード拡散層16Cは、第2拡散層16という。さらに、燃料ガス流路21A及び酸化剤ガス流路21Cはガス流路21といい、リブ部22A,22Cはリブ部22という。図2は、ガス拡散層単体の構成を示す模式断面図である。
 ガス拡散層14は、以下の3つの機能を有している。1つ目は、ガス流路21から流れる反応ガスをガス流路21の鉛直下方だけでなく、リブ部22の鉛直下方にまで拡散させるガス拡散性機能である。2つ目は、触媒層内を適度に湿潤させつつ、過剰水を排出する水マネジメント機能である。3つ目は、電子移動パスを形成する集電性機能である。
 ガス拡散層14は、第1拡散層15と第2拡散層16との2層構造で構成されている。第1及び第2拡散層15,16は、それぞれ、導電性粒子と高分子樹脂とを主成分としたシート状で且つゴム状の多孔質部材で構成されている。第1拡散層15の多孔度は、第2拡散層16の多孔度より低く設定されている。第1及び第2拡散層15,16の多孔度は、後述するように、使用する材料の組成、製造時に加える圧延力、圧延回数などを異ならせることにより変化させることができる。
 第1拡散層15の多孔度は、20%以上50%未満であることが好ましい。第1拡散層15の多孔度が20%未満である場合には、ガス透過性が低下して、リブ部22の鉛直下方だけでなくガス流路21の鉛直下方にも反応ガスが到達しなくなり、発電性能が著しく低下する。一方、第1拡散層15の多孔度が50%以上である場合には、強度が低下して、リブ部22が変形し易くなる。
 第2拡散層16の多孔度は、65%以上80%未満であることが好ましい。第2拡散層16の多孔度が65%未満である場合には、ガス透過性が低下して、厚み方向に反応ガスが流れにくくなり、リブ部22の鉛直下方での発電が困難になる。一方、炭素繊維を基材として用いずにガス拡散層の多孔度を80%以上とすることは、製造プロセス上、困難である。仮に、多孔度80%以上のガス拡散層を製造することができたとしても、強度が著しく低下し、ガス拡散層としての機能を果すことができない。
 第1及び第2拡散層15,16を構成する導電性粒子の材料としては、例えば、グラファイト、カーボンブラック、活性炭などのカーボン材料が挙げられる。カーボンブラックとしては、アセチレンブラック(AB)、ファーネスブラック、ケッチェンブラック、バルカンなどが挙げられる。なお、それらの中でもカーボンブラックの主成分としてアセチレンブラックが用いられることが、不純物含有量が少なく、電気伝導性が高いという観点から好ましい。また、グラファイトの主成分としては、天然黒鉛、人造黒鉛などが挙げられる。これらの中でもグラファイトの主成分として人造黒鉛が用いられることが、不純物量が少ないという観点から好ましい。また、カーボン材料の原料形態としては、例えば、粉末状、繊維状、粒状などが挙げられる。それらの中でも粉末状がカーボン材料の原料形態として採用されることが、分散性、取り扱い性の観点から好ましい。
 第1拡散層15に含まれる導電性粒子は、平均粒子径が異なる2種類のカーボン材料を混合して構成されることが好ましい。これにより、平均粒子径が大きな粒子同士の隙間に平均粒子径が小さな粒子が入り込むことができるので、第1拡散層15の全体の多孔度を低多孔度化(例えば、60%以下に)することが容易になる。一方のカーボン材料としてアセチレンブラックを用いた場合において、充填構造を作成し易い他方のカーボン材料としては、人造黒鉛が挙げられる。なお、アセチレンブラックの平均粒子径D50(相対粒子量が50%の時の粒子径:メディアン径ともいう)は、D50=5μmであり、人造黒鉛の平均粒子径D50は、D50=15~20μmである(レーザ回折式粒度測定装置マイクロトラックHRAを使用して測定)。
 なお、前記導電性粒子を3種類以上のカーボン材料を混合して構成した場合にも、充填構造を構成することが容易である。しかしながら、この場合、分散、混錬、圧延条件などの材料の取り扱い(最適化)が複雑化するので、前記導電性粒子は2種類のカーボン材料を混合して構成されることがより好ましい。
 また、前記導電性粒子をアセチレンブラックと人造黒鉛を混合して構成した場合、それらの配合比率(重量比)は、アセチレンブラックが1に対して人造黒鉛は0.3以上であることが好ましい。人造黒鉛の配合比率を0.3以上とすることで、多孔度を効果的に低くすることができる。
 第2拡散層16は、第1拡散層15とは逆に、多孔度を高くする必要があるので、第2拡散層16に含まれる導電性粒子は、1種類のカーボン材料で構成されることが好ましい。また、当該1種類のカーボン材料は、粒子径のバラツキが少ないことが好ましい。また、第2拡散層16に含まれる導電性粒子は、第1拡散層15と同様に、平均粒子径が異なる2種類以上のカーボン材料で構成されてもよい。しかしながら、この場合、充填構造が形成されないように、各カーボン材料の配合比率を調整することが好ましい。例えば、前記導電性粒子をアセチレンブラックと人造黒鉛を混合して構成した場合、それらの配合比率(重量比)は、アセチレンブラックが1に対して人造黒鉛は0.3未満であることが好ましい。
 第1及び第2拡散層15,16を構成する高分子樹脂は、前記導電性粒子同士を結着するバインダーとしての機能を有する。また、前記高分子樹脂は、撥水性を有するため、燃料電池の内部にて水を系内に閉じ込める機能(保水性)も有する。前記高分子樹脂の組成比率が低くなる程、ガス拡散層自体の親水性が高くなる。ガス流路21近傍の親水性が高いと、結露水を系外に排出し易くなる。このため、第2拡散層16よりも第1拡散層15の方が、前記高分子樹脂の配合比率が低いことが好ましい。また、高分子樹脂は非導電性であるので、第1拡散層15の高分子樹脂の配合比率を低くすることで、リブ部22と集電板20A,20Cとの接触抵抗を低減することができる。
 前記高分子樹脂の材料としては、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリビニリデンフルオライド)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などが挙げられる。これらの中でも前記高分子樹脂の材料としてPTFEが使用されることが、耐熱性、撥水性、耐薬品性の観点から好ましい。PTFEの原料形態としては、ディスパージョン、粉末状などがあげられる。それらの中でもディスパージョンがPTFEの原料形態として採用されることが、作業性の観点から好ましい。
 第1拡散層15に形成されるガス流路21の形状(パターン)は、特に限定されるものではなく、従来のセパレータに形成されていたガス流路の形状と同様に形成することができる。このようなガス流路の形状としては、例えばストレート型、サーペンタイン型等が挙げられる。
 ガス流路21の幅は、電極面積、ガス流量、電流密度、加湿条件、セル温度などにより最適値は大きく異なるが、0.1mm~3.0mmの範囲内、特に0.2mm~1.5mmの範囲内であることが好ましい。ガス流路21の幅が0.1mm未満である場合には、燃料電池において通常流される反応ガスの量に対してガス流路21の幅が十分でない可能性がある。一方、ガス流路21の幅が3.0mmより大きい場合には、反応ガスがガス流路21の全体に流れなくなり、反応ガスの滞留が生じてフラッディングが起こる可能性がある。
 ガス流路21の深さは、電極面積、ガス流量、電流密度、加湿条件、セル温度などにより大きく異なるが、0.015mm~2.0mmの範囲内、特に0.03mm~0.8mmの範囲内であることが好ましい。ガス流路21の深さが0.015mm未満である場合には、燃料電池において通常流される反応ガスの量に対してガス流路21の深さが十分でない可能性がある。一方、ガス流路21の深さが2,0mmより大きい場合には、反応ガスがガス流路21の全体に流れなくなり、反応ガスの滞留が生じてフラッディングが起こる可能性がある。
 第1拡散層15に形成されるリブ部22の幅は、0.1mm~3.0mmの範囲内、特に0.2mm~2.0mmの範囲内であることが好ましい。リブ部22の幅が0.1mm未満である場合は、強度が低下してガス流路21が変形し易くなる。一方、リブ部22の幅が2.0mmより大きい場合には、リブ部22の鉛直下方の面積が大きくなるため、反応ガスが第1拡散層15内で均一に拡散されず、面内発電分布にバラツキが生じるおそれがある。
 第2拡散層16の厚さは、ガス利用率、電流密度、加湿条件、セル温度などにより最適値は大きく異なるが、0.05mm~1.0mmの範囲内、特に0.1mm~0.4mmの範囲内であることが好ましい。
 第1拡散層15に対する第2拡散層16の厚さの比は、0.3~2.0の範囲内であることが好ましい。第1拡散層15に対する第2拡散層16の厚さの比が0.3未満である場合には、厚み方向のガス拡散性が低下して、リブ部22の鉛直下方に反応ガスが到達しなくなる。これにより、面内発電分布にバラツキが生じ、発電性能が低下することになる。一方、第1拡散層15に対する第2拡散層16の厚さの比が2.0よりも大きい場合には、ガス拡散層14全体の厚さが厚くなり過ぎるため、反応ガスが触媒層13A,13Cに到達しなくなるとともに電気抵抗が増加して、発電性能が低下することになる。
 なお、第1及び第2拡散層15,16は、炭素繊維を基材として用いることなく、導電性粒子と高分子樹脂とで支持される構造(いわゆる自己支持体構造)であればよい。従って、第1及び第2拡散層15,16には、導電性粒子及び高分子樹脂以外に、ガス拡散層の製造時に使用する界面活性剤及び分散溶媒などが微量含まれていてもよい。分散溶媒としては、例えば、水、メタノール、及びエタノールなどのアルコール類、エチレングリコールなどのグリコール類が挙げられる。界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテルなどのノニオン系、アルキルアミンオキシドなどの両性イオン系が挙げられる。製造時に使用する分散溶媒の量及び界面活性剤の量は、導電性粒子の種類、高分子樹脂の種類、それらの配合比率などに応じて適宜設定すればよい。なお、一般的には、分散溶媒の量及び界面活性剤の量が多いほど、導電性粒子と高分子樹脂とが均一に分散しやすい傾向がある一方で、流動性が高くなり、ガス拡散層のシート化が難しくなる傾向がある。
 また、第1及び第2拡散層15,16には、基材としては成立しない重量(例えば、導電性粒子及び高分子樹脂よりも少ない重量)の炭素繊維が含まれていてもよい。炭素繊維には、補強効果があるので、炭素繊維の配合比率を高くすることによって、強度の高いガス拡散層を製造することができる。また、リブ部22の変形を抑えるため、第2拡散層16よりも第1拡散層15の方が高い強度が必要である。このため、第2拡散層16よりも第1拡散層15の方が炭素繊維の配合比率が高いことが好ましい。第1拡散層15の炭素繊維の配合比率を高くすることで、第1拡散層15は高導電性になるので、リブ部22と集電板20A,20Cとの接触抵抗を低減することもできる。
 前記炭素繊維の材料としては、例えば、気相成長法炭素繊維(以下、VGCFという)、ミルドファイバー、カットファイバー、チョップファイバーなどが挙げられる。前記炭素繊維としてVGCFを使用する場合、例えば、繊維径0.15μm、繊維長15μmのものを使用すればよい。また、前記炭素繊維としてミルドファイバー、カットファイバー、又はチョップファイバーを使用する場合、例えば、繊維径5~20μm、繊維長20μm~100μmであるものを使用すればよい。
 前記ミルドファイバー、カットファイバー、又はチョップファイバーの原料は、PAN系、ピッチ系、レイヨン系のいずれでもよい。また、前記ファイバーは、原糸(長繊維フィラメント又は短繊維ステーブル)を切断、裁断することにより作製された短繊維の束を分散させて使用することが好ましい。
 前記炭素繊維の配合量は、高分子樹脂よりも少ない重量であることが好ましい。基材レスガス拡散層の高強度化には炭素繊維を少量配合することでも十分に効果がある。前記炭素繊維の配合量を高分子樹脂よりも多くすると、炭素繊維が膜を突き刺し、膜劣化が生じて性能低下する懸念が生じやすくなる。また、コストが高くなる要因になる。また、第1及び第2拡散層15,16は、炭素繊維を基材として用いなければよく、導電性粒子と高分子樹脂と炭素繊維とで支持される自己支持体構造であってもよい。
 アノードガス拡散層14Aの第2アノードガス拡散層16Aの多孔度は、カソードガス拡散層14Cの第2カソードガス拡散層16Cの多孔度より低いことが好ましい。これにより、第2アノードガス拡散層16Aの保水性を第2カソードガス拡散層16Cの保水性に比べて高くすることができる。また、第2カソードガス拡散層16Cのガス拡散性を第2アノードガス拡散層16Aのガス拡散性に比べて高くすることができる。
 次に、図3、図4A~図4Cを参照しつつ、本発明の実施形態にかかるガス拡散層14の製造方法の一例について説明する。図3は、本発明の実施形態にかかるガス拡散層の製造方法を示すフローチャートである。図4A~図4Cは、その模式説明図である。
 まず、ステップS1では、多孔度の異なる2つのシート状の多孔質部材を作製する。
 シート状の多孔質部材は、例えば、以下のようにして作製することができる。
 まず、導電性粒子と界面活性剤と分散溶媒とを混錬機に投入し混錬した後、それらの混錬物の中に高分子樹脂材料を添加して分散させる。なお、カーボン材料と高分子樹脂材料とを別々に混錬機に投入せず、全ての材料を同時に混錬機に投入してもよい。次いで、混錬して得た混錬物をロールプレス機又は平板プレス機などで圧延してシート状に成形する。次いで、シート状に成形した混錬物を焼成して、前記混錬物中から界面活性剤と分散溶媒とを除去する。ここで、焼成温度及び焼成時間は、界面活性剤と分散溶媒とが蒸発又は分解する温度及び時間とすることが好ましい。次いで、界面活性剤と分散溶媒とを除去した混錬物を再圧延して厚さを調整する。これにより、シート状の多孔質部材を作製することができる。
 多孔度の異なる2つのシート状の多孔質部材は、前記作製工程において、使用する導電性粒子、プレス機による圧延力、圧延回数などを変えることで製造することができる。例えば、多孔度の高い多孔質部材を作製する場合には、1種類のカーボン材料を用い、多孔度の低い多孔質部材を作製する場合には、平均粒子径が異なる2種類のカーボン材料を用いればよい。これにより、多孔度の異なる2つの多孔質部材を得ることができる。また、多孔度の低い多孔質部材を作製する際、多孔度の高い多孔質部材の作製する際よりも、プレス機による圧延力又は圧延回数を多くすることで、2つの多孔質部材の多孔度の差を大きくすることができる。このようにして作製した2つのシート状の多孔質部材のうち、多孔度の低い多孔質部材にガス流路21を形成したものが第1拡散層15となり、多孔度の高い多孔質部材が第2拡散層16となる。ここでは、ガス流路21の形成前の多孔質部材を、多孔質部材15aという。
 なお、前記では、前記混錬物をロールプレス機又は平板プレス機などで圧延してシート状の多孔質部材を作製したが、本発明はこれに限定されない。例えば、前記混錬物を押し出し機に投入し、押し出し機のダイヘッドから連続的にシート成形して、シート状の多孔質部材を作製することもできる。また、押し出し機が備えるスクリューの形状を工夫して、当該スクリューに混練機能を持たせることにより、前記混練機を使用せずに前記混錬物を得ることができる。すなわち、前記各カーボン材料の攪拌、混練、シート成形を一台の機械で一体的に行うことができる。
 次いで、ステップS2では、図4A及び図4Bに示すように、多孔度の低い多孔質部材15aをガス流路21の形状に対応する突起部31aを有する一組の金型31,32内に配置した後、圧延機械にて金型31,32を型閉じして圧延する。これにより、図4Cに示すように、多孔度の低い多孔質部材15aにガス流路21が形成され、第1拡散層15を得ることができる。
 なお、金型31,32は、圧延機械と一体に構成されていても良いが、圧延機械に着脱可能に構成されている方が取り扱いやすい。また、圧延機械としては、ロールプレス機又は平板プレス機を用いることができる。これらのうち圧延機械として、面精度が高いロールプレス機を用いる方が、第1拡散層15の厚さバラツキを低減することができるので好ましい。このとき、一般的なグラビアロール機と同様に、ロールの表面に直接、突起部31aを有する金型31,32が形成されていることが好ましい。
 また、圧延機械による圧延時には、適宜、多孔度の低い多孔質部材15aを加温するようにしても良い。この場合、加温温度は、250℃以下であることが好ましい。加温温度が250℃以下であるとき、多孔度の低い多孔質部材15aが軟化して、ガス流路21の形成が容易になる。一方、加温温度が250℃より高くなると、多孔度の低い多孔質部材15aが劣化するおそれがある。圧延機械の圧延力は、500kgf/cm未満であることが好ましい。圧延機械の圧延力は、高いほど、ガス流路21の形成が容易になるが、多孔度の低い多孔質部材15aに500kgf/cm以上の圧延力が加わると、割れや材料破壊が生じるおそれがある。
 また、圧延機械による圧延後に金型31,32と多孔度の低い多孔質部材15aとが密着することを防止するために、離型剤をあらかじめ塗布しておいても良い。この離型剤としては、燃料電池の発電性能に影響を及ぼさない範囲で適宜選択可能であるが、蒸留水又は界面活性剤希釈蒸留水を用いることが好ましい。また、離型剤に代えて、PTFE樹脂製のシートを使用しても良い。金型31,32の材質は、ステンレス鋼、ニッケルクロムモリブデン鋼、超硬合金鋼、SKD11、SKD12、Ni-P硬化クロムなどの工具鋼、セラミックス、ガラス繊維強化プラスチックなどから選択可能である。さらに、金型31,32の表面には、耐食性及び離型性を高めるために、硬質Crメッキ、PVD皮膜、TiC皮膜、TD処理、Zr溶射処理、PTFEコーティングなどの表面処理を施してもよい。前記ロールの表面に直接、突起部31aを有する金型31,32が形成されている場合も同様である。
 次いで、ステップS3では、図4Cに示すように、前記のようにして作製した第1拡散層15と第2拡散層16とを積層して、平板プレス機33にて貼り合わせる。このとき、第2拡散層16は、第1拡散層15のガス流路形成面とは反対側の主面に貼り合わせる。これにより、図2に示すガス拡散層14を得ることができる。
 前記のように、第1拡散層15と第2拡散層16との貼り合わせに平板プレス機33を使用することにより、ガス拡散層14が厚み方向に反る(波打ちする)ことを防止することができる。
 なお、平板プレス機33による貼り合わせは、2kg/cm以下の面圧で行うことが好ましい。面圧が2kg/cmより大きい場合には、リブ部22が変形してガス流路21が狭くなるおそれがある。
 また、第1拡散層15と第2拡散層16との貼り合わせは、導電フィラーとバインダーを主成分とする導電性接着剤を用いて行っても良い。また、第1拡散層15と第2拡散層16との貼り合わせは、高分子電解質膜11と類似成分を含む分散溶液(例えば、デュポン社製ナフィオン:登録商標)、又は少量の蒸留水を用いて行ってもよい。
 なお、本実施形態においては、前記ステップS1~S3を行うことによりガス拡散層14を製造したが、本発明はこれに限定されない。例えば、各ステップの間に適宜、他の作業が含まれていても良い。
 また、前記ステップS3においては、第1拡散層15と第2拡散層16とを積層して、平板プレス機33にて貼り合わせるとしたが、本発明はこれに限定されない。例えば、ステップS3において、第1拡散層15と金型32との間に第2拡散層16を配置し、圧延機械にて金型31,32を型閉じして貼り合わせてもよい。具体的には、前記ステップS2において、圧延機械にて金型31,32を型閉じして圧延し、第1拡散層15を得る。次いで、ステップS3において、第1拡散層15のガス流路形成面とは反対側の主面と金型32との間に、第2拡散層16を配置し、第1拡散層15と第2拡散層16とを積層して、圧延機械にて金型31,32を型閉じして貼り合わせればよい。
 前記のように、第1拡散層15と第2拡散層16との貼り合わせに金型31,32を使用することにより、前記ステップ2の後に金型31から第1拡散層15を取り外す工程を省略することができる。
 また、ガス拡散層14の別の製造方法としては、図5、図6A~図6Cに示すような方法がある。図5は、ガス拡散層の別の製造方法を示すフローチャートである。図6A~図6Cは、その模式説明図である。
 まず、ステップS11では、前記ステップS1と同様にして、多孔度の異なる2つのシート状の多孔質部材を作製する。
 次いで、ステップS12では、図6Aに示すように、多孔度の低い多孔質部材15aと、多孔度の高い多孔質部材である第2拡散層16とを積層する。
 なお、後続のステップS13にて、多孔度の低い多孔質部材15aと第2拡散層16との積層体を加圧するので、ステップS12では、多孔度の低い多孔質部材15aと第2拡散層16とを、単に積層するだけでよい。また、もちろん、前述したような平板プレス機33、導電性接着剤、分散溶媒、蒸留水などを用いて、多孔度の低い多孔質部材15aと第2拡散層16とをあらかじめ貼り合わせてもよい。
 次いで、ステップS13では、図6B及び図6Cに示すように、前記貼り合わせた多孔度の低い多孔質部材15aと第2拡散層16とを金型31,32内に配置する。このとき、多孔度の低い多孔質部材15aが突起部31aを設けた金型31と対向するように配置する。この後、金型31,32内に配置した多孔度の低い多孔質部材15aと第2拡散層16とを、圧延機械にて金型31,32を型閉じして圧延する。これにより、図2に示すガス拡散層14を得ることができる。なお、ガス拡散層14に厚み方向に反り(波打ち)が生じている場合には、例えば、平板プレス機33を用いて、2kg/cm以下の面圧でガス拡散層14を加圧するようにすればよい。
 以上、本発明の実施形態にかかる燃料電池によれば、ガス拡散層14を第1拡散層15と第2拡散層16とを有する2層構造とし、ガス流路21が形成された第1拡散層15の多孔度を第2拡散層16より低くしている。すなわち、第1拡散層15の強度を第2拡散層16より高くしている。これにより、複数のセル1を積層して加圧締結する際などに加わる圧力により、互いに隣接するガス流路21を隔てるリブ部22が変形して、ガス流路21が閉塞してしまうことを抑えることができる。また、反応ガスがリブ部22の内部を透過することを抑えることができ、ガス流路21の上流部から下流部までガス流路21の形状に沿って反応ガスが一定の流速で流れることができる。また、第2拡散層16の多孔度は第1拡散層15よりも高いので、第2拡散層16のガス拡散性によりリブ部22の鉛直下方にも反応ガスが拡散されることになり、面内発電分布のバラツキを抑えることができる。従って、発電性能を一層向上させることができる。また、第1及び第2拡散層15,16は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成されているので、低コスト化を図ることができるとともに、複雑な形状のガス流路も容易に形成することができる。
 なお、本発明において、多孔度は、次のようにして測定することができる。
 まず、ガス拡散層を構成する各材料の真密度と組成比率から、製造したガス拡散層の見かけ真密度を算出する。
 次いで、製造したガス拡散層の重量、厚さ、縦横寸法を測定して、製造したガス拡散層の密度を算出する。
 次いで、多孔度=(ガス拡散層の密度)/(見かけ真密度)×100の式に、前記算出したガス拡散層の密度及び見かけ真密度を代入し、多孔度を算出する。
 以上のようにして、製造したガス拡散層の多孔度を測定することができる。
 なお、製造したガス拡散層の細孔径分布を、水銀ポロシメータを用いて測定したところ、累積細孔量から算出できる多孔度と、前記のようにして算出した多孔度とが一致していることを確認している。
 なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、アノード側及びカソード側の両方に、本発明にかかる2層構造のガス拡散層14を配置したが、本発明はこれに限定されない。アノード側及びカソード側の少なくとも一方に、本発明にかかる2層構造のガス拡散層14を配置した構造としてもよい。
 カソード電極(空気極)の酸化剤ガス流路は、アノード電極(燃料極)の燃料ガス流路に比べて複雑な形状である方が、燃料電池の発電性能は高くなりやすい。しかしながら、金属、あるいはカーボンと樹脂とで構成された従来のセパレータに複雑な形状のガス流路を設けることは困難である。これに対して、本発明にかかる第1拡散層は、基材レスガス拡散層で構成されているので、ガス流路の形成が容易である。従って、例えば、図7に示すように、アノード側には、通常の単層構造のアノードガス拡散層214Aと、燃料ガス流路221Aを設けた通常のセパレータ220Aとを配置し、カソード側にのみ、酸化剤ガス流路21Cを有する2層構造のカソードガス拡散層14Cと集電板21Cとを配置するようにしてもよい。このような構成によっても、従来の構成に比べて、燃料電池の発電性能を一層向上させることができる。
 この場合、アノードガス拡散層214Aの多孔度は、カソードガス拡散層14Cの第2カソードガス拡散層16Cの多孔度より低いことが好ましい。これにより、アノードガス拡散層214Aの保水性を第2カソードガス拡散層16Cの保水性に比べて高くすることができる。また、第2カソードガス拡散層16Cのガス拡散性をアノードガス拡散層214Aのガス拡散性に比べて高くすることができる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明にかかる燃料電池用ガス拡散層及びその製造方法、並びに燃料電池は、一方の主面にガス流路が形成されたガス拡散層において、発電性能を一層向上させることができるので、例えば、自動車などの移動体、分散発電システム、家庭用のコージェネレーションシステムなどの駆動源として使用される燃料電池に有用である。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2009年9月10日に出願された日本国特許出願No.2009-209033号の明細書、図面、および特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。

Claims (12)

  1.  燃料電池に用いるガス拡散層において、
     前記ガス拡散層は、
     一方の主面にガス流路が形成された第1拡散層と、
     前記第1拡散層の他方の主面上に積層された第2拡散層と、
     を有する複層構造で構成され、
     前記第1及び第2拡散層は、導電性粒子と高分子樹脂とを主成分とした多孔質部材で構成され、
     前記第1拡散層の多孔度は、前記第2拡散層の多孔度よりも低い、
     燃料電池用ガス拡散層。
  2.  前記第1及び第2拡散層は、導電性粒子と高分子樹脂とを主成分とし、前記高分子樹脂よりも少ない重量の炭素繊維が添加された多孔質部材で構成されている、請求項1に記載の燃料電池用ガス拡散層。
  3.  前記炭素繊維は、気相成長法炭素繊維、ミルドファイバー、チョップファイバーのうちのいずれか1つである、請求項2に記載の燃料電池用ガス拡散層。
  4.  前記第2拡散層よりも前記第1拡散層の方が、前記炭素繊維の組成比率が高い、請求項2又は3に記載の燃料電池用ガス拡散層。
  5.  前記第1拡散層に含まれる前記導電性粒子は、平均粒子径が異なる2種類以上のカーボン材料で構成されている、請求項1~4のいずれか1つに記載の燃料電池用ガス拡散層。
  6.  前記第2拡散層よりも前記第1拡散層の方が、前記高分子樹脂の組成比率が低い、請求項1~5のいずれか1つに記載の燃料電池用ガス拡散層。
  7.  前記第1拡散層の多孔度は、20%以上50%未満である、請求項1~6のいずれか1つに記載の燃料電池用ガス拡散層。
  8.  前記第2拡散層の多孔度は、65%以上80%未満である、請求項1~7のいずれか1つに記載の燃料電池用ガス拡散層。
  9.  高分子電解質膜と、
     前記高分子電解質膜を挟んで互いに対向する一対の触媒層と、
     前記高分子電解質膜及び前記一対の触媒層を挟んで互いに対向する一対のガス拡散層と、
     前記高分子電解質膜、前記一対の触媒層、及び一対のガス拡散層を挟んで互いに対向する一対の集電板と、
     を備える燃料電池において、
     前記一対のガス拡散層の少なくとも一方は、請求項1~8のいずれか1つに記載のガス拡散層であり、
     前記第1拡散層が前記集電板に接し、前記第2拡散層が前記触媒層に接している、
     燃料電池。
  10.  高分子電解質膜と、
     前記高分子電解質膜の一方の主面上に形成されたアノード触媒層と、
     前記アノード触媒層上に積層されたアノードガス拡散層と、
     前記アノードガス拡散層上に積層され、前記アノードガス拡散層に接する主面にガス流路が形成されたセパレータと、
     前記高分子電解質膜の他方の主面上に形成されたカソード触媒層と、
     前記カソード触媒層上に積層されたカソードガス拡散層と、
     前記カソードガス拡散層上に積層された集電板と、
     を備え、
     前記カソードガス拡散層は、請求項1~8のいずれか1つに記載のガス拡散層であり、
     前記第1拡散層が前記集電板に接し、前記第2拡散層が前記触媒層に接している、
     燃料電池。
  11.  燃料電池に用いるガス拡散層の製造方法において、
     多孔度が異なる2つのシート状の多孔質部材をそれぞれ作製し、
     前記作製した2つの多孔質部材のうち多孔度が低い多孔質部材を、ガス流路の形状に対応する突起部を有する金型内に配置した後、圧延して、当該多孔度が低い多孔質部材の一方の主面にガス流路を形成し、
     前記ガス流路を形成した多孔度が低い多孔質部材の他方の主面に、前記多孔度が高い多孔質部材を積層して貼り合わせる、
     ことを含む、燃料電池用ガス拡散層の製造方法。
  12.  燃料電池に用いるガス拡散層の製造方法において、
     多孔度が異なる2つのシート状の多孔質部材をそれぞれ作製し、
     前記作製した2つの多孔質部材を積層し、
     前記積層した2つの多孔質部材を、ガス流路の形状に対応する突起部を有する金型内に、多孔度が低い多孔質部材側が前記突起部に対向するように配置した後、圧延して、当該多孔度が低い多孔質部材の一方の主面にガス流路を形成する、
     ことを含む、燃料電池用ガス拡散層の製造方法。
PCT/JP2010/004350 2009-09-10 2010-07-02 ガス拡散層及びその製造方法、並びに燃料電池 WO2011030489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10815092.1A EP2477262A4 (en) 2009-09-10 2010-07-02 Gas diffusion layer and process for production thereof, and fuel cell
US13/139,022 US8790846B2 (en) 2009-09-10 2010-07-02 Gas diffusion layer and process for production thereof, and fuel cell
CN201080003671.3A CN102257661B (zh) 2009-09-10 2010-07-02 气体扩散层及其制造方法以及燃料电池
JP2011516599A JP4818486B2 (ja) 2009-09-10 2010-07-02 ガス拡散層及びその製造方法、並びに燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009209033 2009-09-10
JP2009-209033 2009-09-10

Publications (1)

Publication Number Publication Date
WO2011030489A1 true WO2011030489A1 (ja) 2011-03-17

Family

ID=43732172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004350 WO2011030489A1 (ja) 2009-09-10 2010-07-02 ガス拡散層及びその製造方法、並びに燃料電池

Country Status (5)

Country Link
US (1) US8790846B2 (ja)
EP (1) EP2477262A4 (ja)
JP (2) JP4818486B2 (ja)
CN (1) CN102257661B (ja)
WO (1) WO2011030489A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201139A (ja) * 2013-05-31 2013-10-03 Dainippon Printing Co Ltd 電池用導電性多孔質層及びその製造方法
US9406940B2 (en) 2011-03-25 2016-08-02 Dai Nippon Printing Co., Ltd. Conductive porous layer for batteries and fabrication method for same
KR20160134322A (ko) * 2015-05-15 2016-11-23 삼성전자주식회사 금속 공기 전지 및 이에 구비된 기체 확산층
US20170162878A1 (en) * 2014-09-29 2017-06-08 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel cell, fuel cell, and formation method for gas diffusion layer for fuel cell
WO2020203021A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
US10903507B2 (en) * 2015-12-28 2021-01-26 Robert Bosch Gmbh Method for producing a flow plate for a fuel cell

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790846B2 (en) * 2009-09-10 2014-07-29 Panasonic Corporation Gas diffusion layer and process for production thereof, and fuel cell
US9825315B2 (en) 2012-01-27 2017-11-21 University Of Kansas Hydrophobized gas diffusion layers and method of making the same
MX2014015168A (es) 2012-06-12 2015-08-14 Univ Monash Estructura de electrodo respirable y metodo y sistema para su uso en division de agua.
JP2016531391A (ja) 2013-07-31 2016-10-06 アクアハイドレックス プロプライエタリー リミテッドAquahydrex Pty Ltd モジュール式電気化学セル
KR101620155B1 (ko) 2014-01-22 2016-05-12 현대자동차주식회사 연료전지 셀 및 그 제조 방법
DE102014213555A1 (de) * 2014-07-11 2016-01-14 Sgl Carbon Se Membran-Elektroden-Einheit
EP3188293B1 (en) * 2014-08-26 2020-08-05 Panasonic Intellectual Property Management Co., Ltd. Fuel cell module, fuel cell stack, and method for producing fuel cell module
EP3208874B1 (en) 2014-10-17 2020-03-18 Toray Industries, Inc. Carbon sheet, gas diffusion electrode base material, and fuel cell
WO2016157714A1 (ja) 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 燃料電池、及び燃料電池の製造方法
WO2017085901A1 (ja) * 2015-11-19 2017-05-26 パナソニックIpマネジメント株式会社 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池
CN106935883B (zh) * 2015-12-31 2020-06-09 上海恒劲动力科技有限公司 燃料电池系统
KR101966096B1 (ko) * 2016-09-28 2019-04-05 현대자동차 주식회사 연료 전지 및 기체 확산층의 제조 방법
CN107706436B (zh) * 2017-10-13 2019-04-09 吉林大学 一种仿鱼鳃表面微纳结构的空气阴极
JP2019084585A (ja) * 2017-11-01 2019-06-06 木内 学 微細な3次元表面形状を有する薄板状成形部材及び燃料電池用セパレータ並びにその製造方法と製造設備
EP3790088A4 (en) * 2018-04-28 2021-12-15 Enomoto Co., Ltd. DIFFUSION LAYER FOR FUEL CELL GAS FLOW, FUEL CELL SEPARATOR AND FUEL CELL STACK
WO2020006697A1 (zh) * 2018-07-04 2020-01-09 上海旭济动力科技有限公司 具备流体引导流路的燃料电池及其制造方法
CN110854402A (zh) * 2018-08-21 2020-02-28 上海汽车集团股份有限公司 一种气体扩散层前驱体及其制备方法以及气体扩散层和燃料电池
JP2022519575A (ja) 2019-02-01 2022-03-24 アクアハイドレックス, インコーポレイテッド 閉じ込められた電解質を有する電気化学システム
FR3098356B1 (fr) * 2019-07-01 2021-09-24 Commissariat Energie Atomique Dispositif de diffusion gazeuse pour réduire les pertes de charge
GB201912062D0 (en) * 2019-08-22 2019-10-09 Johnson Matthey Fuel Cells Ltd Catalysed membrane
WO2021171793A1 (ja) * 2020-02-25 2021-09-02 国立大学法人山梨大学 ガス拡散部材、ガス拡散ユニット、燃料電池
DE102021209217A1 (de) * 2021-08-23 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Gasdiffusionsschicht
CN113957470B (zh) * 2021-10-13 2023-04-18 清华大学 多孔扩散层及其制备方法和质子交换膜电解水制氢装置
KR20230102484A (ko) * 2021-12-30 2023-07-07 주식회사 솔룸신소재 연료전지용 분리판 제조 장치 및 제조 방법
CN114824312B (zh) * 2022-04-14 2024-06-07 广东氢发新材料科技有限公司 一种具有流道的气体扩散层及其制备方法
CN114824302B (zh) * 2022-04-26 2024-07-05 电堆科技(合肥)有限公司 一种集流体及制备方法
WO2024207147A1 (zh) * 2023-04-03 2024-10-10 舍弗勒技术股份两合公司 电堆装置、水电解电堆和燃料电池
CN118223054B (zh) * 2024-05-22 2024-09-13 上海治臻新能源股份有限公司 一种电解槽

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297133A (en) * 1976-02-12 1977-08-15 Toray Industries Gas diffusion electrode
JPS5730270A (en) * 1980-07-30 1982-02-18 Junkosha Co Ltd Material for gas diffusion electrode
JPH02226663A (ja) * 1989-02-23 1990-09-10 Toray Ind Inc 燃料電池用基材の端部のガスシール方法
JP2000123850A (ja) 1998-10-15 2000-04-28 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2002164056A (ja) * 2000-11-22 2002-06-07 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池及び電極、及びその電極の製造方法
JP2003187809A (ja) 2001-12-17 2003-07-04 Nippon Valqua Ind Ltd 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
JP2005294121A (ja) 2004-04-01 2005-10-20 Toyota Motor Corp ガス拡散層およびそれを用いた燃料電池
JP2005302675A (ja) * 2004-04-16 2005-10-27 Toyota Motor Corp 燃料電池
JP2006004879A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd ガス拡散電極及び固体高分子電解質型燃料電池
JP2006172871A (ja) * 2004-12-15 2006-06-29 Toyota Motor Corp 燃料電池
JP2006286494A (ja) * 2005-04-04 2006-10-19 Toshiba Fuel Cell Power Systems Corp 固体高分子形燃料電池
JP2006339089A (ja) 2005-06-06 2006-12-14 Toyota Motor Corp 燃料電池
WO2008093802A1 (ja) * 2007-02-02 2008-08-07 Asahi Glass Company, Limited 固体高分子形燃料電池用膜電極接合体の製造方法および固体高分子形燃料電池の製造方法
JP2009209033A (ja) 2008-03-05 2009-09-17 Semes Co Ltd スクライブ装置並びにこれを利用した基板切断装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927466A (ja) * 1982-08-06 1984-02-13 Tokyo Electric Power Co Inc:The 燃料電池
JPS6059663A (ja) * 1983-09-12 1985-04-06 Hitachi Ltd 燃料電池用電極板及びその製造方法
CN1210825C (zh) * 2000-10-31 2005-07-13 松下电器产业株式会社 高分子电解质型燃料电池
JP4942362B2 (ja) * 2006-02-21 2012-05-30 三菱レイヨン株式会社 膜−電極接合体及びそれを用いた固体高分子型燃料電池
JP2007250432A (ja) * 2006-03-17 2007-09-27 Toyota Motor Corp 燃料電池
CN101034746A (zh) * 2007-04-12 2007-09-12 上海交通大学 一种质子交换膜燃料电池用膜电极及其制备方法
US8790846B2 (en) * 2009-09-10 2014-07-29 Panasonic Corporation Gas diffusion layer and process for production thereof, and fuel cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297133A (en) * 1976-02-12 1977-08-15 Toray Industries Gas diffusion electrode
JPS5730270A (en) * 1980-07-30 1982-02-18 Junkosha Co Ltd Material for gas diffusion electrode
JPH02226663A (ja) * 1989-02-23 1990-09-10 Toray Ind Inc 燃料電池用基材の端部のガスシール方法
JP2000123850A (ja) 1998-10-15 2000-04-28 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2002164056A (ja) * 2000-11-22 2002-06-07 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池及び電極、及びその電極の製造方法
JP2003187809A (ja) 2001-12-17 2003-07-04 Nippon Valqua Ind Ltd 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
JP2005294121A (ja) 2004-04-01 2005-10-20 Toyota Motor Corp ガス拡散層およびそれを用いた燃料電池
JP2005302675A (ja) * 2004-04-16 2005-10-27 Toyota Motor Corp 燃料電池
JP2006004879A (ja) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd ガス拡散電極及び固体高分子電解質型燃料電池
JP2006172871A (ja) * 2004-12-15 2006-06-29 Toyota Motor Corp 燃料電池
JP2006286494A (ja) * 2005-04-04 2006-10-19 Toshiba Fuel Cell Power Systems Corp 固体高分子形燃料電池
JP2006339089A (ja) 2005-06-06 2006-12-14 Toyota Motor Corp 燃料電池
WO2008093802A1 (ja) * 2007-02-02 2008-08-07 Asahi Glass Company, Limited 固体高分子形燃料電池用膜電極接合体の製造方法および固体高分子形燃料電池の製造方法
JP2009209033A (ja) 2008-03-05 2009-09-17 Semes Co Ltd スクライブ装置並びにこれを利用した基板切断装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477262A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406940B2 (en) 2011-03-25 2016-08-02 Dai Nippon Printing Co., Ltd. Conductive porous layer for batteries and fabrication method for same
US9666872B2 (en) 2011-03-25 2017-05-30 Dai Nippon Printing Co., Ltd. Conductive porous layer for batteries and fabrication method for same
JP2013201139A (ja) * 2013-05-31 2013-10-03 Dainippon Printing Co Ltd 電池用導電性多孔質層及びその製造方法
US20170162878A1 (en) * 2014-09-29 2017-06-08 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel cell, fuel cell, and formation method for gas diffusion layer for fuel cell
JPWO2016051633A1 (ja) * 2014-09-29 2017-07-13 パナソニックIpマネジメント株式会社 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の形成方法
KR20160134322A (ko) * 2015-05-15 2016-11-23 삼성전자주식회사 금속 공기 전지 및 이에 구비된 기체 확산층
KR102364847B1 (ko) * 2015-05-15 2022-02-18 삼성전자주식회사 금속 공기 전지 및 이에 구비된 기체 확산층
US10903507B2 (en) * 2015-12-28 2021-01-26 Robert Bosch Gmbh Method for producing a flow plate for a fuel cell
WO2020203021A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP2020167059A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
JP7213453B2 (ja) 2019-03-29 2023-01-27 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池

Also Published As

Publication number Publication date
JP2011233537A (ja) 2011-11-17
EP2477262A4 (en) 2017-07-12
JP5584177B2 (ja) 2014-09-03
US8790846B2 (en) 2014-07-29
CN102257661B (zh) 2014-05-28
JPWO2011030489A1 (ja) 2013-02-04
JP4818486B2 (ja) 2011-11-16
EP2477262A1 (en) 2012-07-18
US20110244358A1 (en) 2011-10-06
CN102257661A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
JP4818486B2 (ja) ガス拡散層及びその製造方法、並びに燃料電池
JP4790873B2 (ja) 膜電極接合体及びその製造方法、並びに燃料電池
JP5558474B2 (ja) 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池
CN102265439B (zh) 燃料电池及其制造方法
JP4938912B2 (ja) 高分子電解質形燃料電池及びそれを備える燃料電池スタック
JP6650625B2 (ja) 燃料電池用ガス拡散層、燃料電池
US20110076592A1 (en) Membrane-electrode-assembly and fuel cell
JP5079146B2 (ja) 高分子電解質形燃料電池
US20120141914A1 (en) Gas Diffusion Layer Member For Solid Polymer Fuel Cells, and Solid Polymer Fuel Cell
JP5429357B2 (ja) 燃料電池
US10826097B2 (en) Fuel cell
JP2002170581A (ja) 高分子電解質型燃料電池
JP2014002923A (ja) 燃料電池用ガス拡散層及びその製造方法
JP2014175285A (ja) ガス拡散層、膜電極接合体、燃料電池、及びガス拡散層の製造方法
JP2013037932A (ja) 電極−膜−枠接合体の製造方法及び燃料電池の製造方法
JP7466095B2 (ja) 燃料電池セル、燃料電池、および燃料電池セルの製造方法
JP2011258428A (ja) 高分子電解質形燃料電池及びそれを備える燃料電池スタック
JP2017162750A (ja) 燃料電池用ガス拡散層および燃料電池
JP2014035797A (ja) 膜電極接合体及び燃料電池、及びその製造方法
JP2011129303A (ja) 膜電極接合体、燃料電池、及び燃料電池用ガス拡散層の製造方法
JP2014175286A (ja) 燃料電池及びその製造方法
CN114830389A (zh) 膜电极接合体以及燃料电池
JP2013016411A (ja) 高分子電解質形燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003671.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516599

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139022

Country of ref document: US

Ref document number: 2010815092

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE