WO2011030440A1 - ヒータ及びこのヒータを搭載する像加熱装置 - Google Patents

ヒータ及びこのヒータを搭載する像加熱装置 Download PDF

Info

Publication number
WO2011030440A1
WO2011030440A1 PCT/JP2009/065903 JP2009065903W WO2011030440A1 WO 2011030440 A1 WO2011030440 A1 WO 2011030440A1 JP 2009065903 W JP2009065903 W JP 2009065903W WO 2011030440 A1 WO2011030440 A1 WO 2011030440A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heating
substrate
conductor
heating resistor
Prior art date
Application number
PCT/JP2009/065903
Other languages
English (en)
French (fr)
Inventor
榊原 啓之
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN200980161277.XA priority Critical patent/CN102484897B/zh
Priority to PCT/JP2009/065903 priority patent/WO2011030440A1/ja
Priority to KR1020127008613A priority patent/KR101382052B1/ko
Priority to JP2011530694A priority patent/JP5518080B2/ja
Priority to EP09849219.2A priority patent/EP2477453B1/en
Priority to US12/876,551 priority patent/US8552342B2/en
Publication of WO2011030440A1 publication Critical patent/WO2011030440A1/ja
Priority to US14/016,472 priority patent/US9095003B2/en
Priority to US14/745,200 priority patent/US9445457B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0241For photocopiers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0095Heating devices in the form of rollers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • G03G2215/2035Heating belt the fixing nip having a stationary belt support member opposing a pressure member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/019Heaters using heating elements having a negative temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base

Definitions

  • the present invention relates to a heater suitable for use in a heat fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer, and an image heating apparatus including the heater.
  • a fixing device mounted on a copying machine or a printer there is an apparatus having an endless belt, a ceramic heater that contacts an inner surface of the endless belt, and a pressure roller that forms a fixing nip portion with the ceramic heater via the endless belt.
  • a phenomenon temperature increase of the non-sheet passing portion
  • the toner may be offset at a high temperature in a region corresponding to.
  • the heating resistor As one method for suppressing the temperature rise of the non-sheet passing portion, it is considered to form the heating resistor on the ceramic substrate with a material having a negative resistance temperature characteristic. Since the resistance value of the heating resistor in the non-sheet-passing portion decreases even when the temperature of the non-sheet-passing portion rises, the idea that heat generation in the non-sheet-passing portion can be suppressed even if current flows through the heating resistor in the non-sheet-passing portion It is.
  • the negative resistance temperature characteristic is a characteristic in which the resistance decreases as the temperature rises, and is hereinafter referred to as NTC (Negative Temperature Coefficient).
  • NTC Negative Temperature Coefficient
  • the positive resistance temperature characteristic is a characteristic in which the resistance increases as the temperature rises, and is hereinafter referred to as PTC (Positive Temperature Coefficient).
  • the NTC material has a very high volume resistance, and it is very difficult to set the total resistance of the heating resistor formed in one heater within a range that can be used with a commercial power source.
  • the material of PTC has a very low volume resistance, and it is very difficult to set the total resistance of the heating resistor of one heater within a range that can be used with a commercial power source, as in the case of NTC.
  • the heating resistor formed on the ceramic substrate is divided into a plurality of blocks in the longitudinal direction of the heater, and each block has two electrodes so that current flows in the short direction of the heater (recording paper transport direction). It arrange
  • Patent Document 1 discloses a configuration in which a plurality of blocks are electrically connected in series. With such a shape, when the material of the heating resistor is NTC, the resistance value of each block is low, and the total resistance of the entire heater can be kept low compared with the case where current flows in the longitudinal direction of the heater. it can. Further, when the material of the heating resistor is PTC, the total resistance of the entire heater can be increased as compared with the case where a current is passed in the short direction of the heater without being divided into a plurality of blocks.
  • the heating resistor is divided into a plurality of heating blocks, gaps are formed between adjacent heating blocks, resulting in uneven heat generation distribution. Therefore, in Patent Document 1, the shape of the heat generation block is a parallelogram so that no region that does not generate heat in the longitudinal direction of the heater does not occur.
  • FIG. 12 shows a part of this heater.
  • 22a is an elongated substrate, and conductive patterns 29q (22q1, 22q2%) And conductive patterns 29r (22r1, 22r2...) Are provided on the substrate along the longitudinal direction of the substrate.
  • the conductive patterns 22q and 22r are both divided at a plurality of positions in the longitudinal direction of the substrate, and a heating resistor 29b (29b1, 29b2,...) Is connected between the conductive pattern 22q and the conductive pattern 22r.
  • 22e1 is an electrode for connecting a power feeding connector (illustration of the electrode on the other end side is omitted).
  • the heat generation resistor 29b is overrun in the longitudinal direction of the heater.
  • the current does not flow so much in the wrapping region B. This is because the shortest current path exists in a region other than the overlapping region B as shown in FIG. 12, and most of the current flows through this shortest current path. Since the heat generation amount is proportional to the square of the current, the heat generation amount in the region where the flowing current amount is small decreases, and the effect of suppressing the heat generation unevenness in the heater longitudinal direction becomes small. Thus, if the heat generation distribution unevenness is large, uneven heating of the image occurs. In addition, if a region where current easily flows and a region where current does not flow easily exist in one heat generating block, a problem of uneven heat generation occurs as described above.
  • the present invention is directed to a substrate, a first conductor provided on the substrate along a longitudinal direction of the substrate, and the first conductor on the substrate is in a lateral direction of the substrate. And a heating resistor connected between the first conductor and the second conductor, the heater resistor having a second conductor provided at a different position along the longitudinal direction.
  • a plurality of bodies are electrically connected in parallel between the first conductor and the second conductor, and the shortest current path of each heating resistor is the shortest current path of the adjacent heating resistor. It is characterized by overlapping in the longitudinal direction.
  • the present invention provides a substrate, a first conductor provided on the substrate along a longitudinal direction of the substrate, and the first conductor on the substrate at a position different from the first conductor in the lateral direction of the substrate.
  • a heater having a second conductor provided along a direction, and a heating resistor connected between the first conductor and the second conductor, the first conductor and the second conductor
  • a plurality of heating blocks in which a plurality of the heating resistors are electrically connected in parallel between conductors are provided in different positions in the short direction of the substrate, and one row in the short direction is provided.
  • the shortest current path of each heat generating resistor in the heat generating block overlaps with the shortest current path of each heat generating resistor in the heat generating block of the other row in the longitudinal direction.
  • FIG. 3 is a diagram showing a shortest current path (FIG. 3A) and a diagram showing a shape of a heating resistor (FIG. 3B) of the heater of Example 1; It is a top view of a heater.
  • FIG. 5A is a diagram showing the shortest current path of the heater of Example 2 (FIG. 5A) and FIG. 5B is a diagram showing the shape of a heating resistor (FIG. 5B). It is a figure for demonstrating the shape of the conductive pattern of the heater of Example 2.
  • FIG. It is a top view of a heater.
  • Example 3 FIG.
  • FIG. 8 is a diagram showing the shortest current path (FIG. 8A) and a diagram showing the shape of the heating resistor of the heater of Example 3 (FIG. 8B). It is a top view of a heater.
  • FIG. 10A is a diagram showing the shortest current path of the heater of Example 4 (FIG. 10A)
  • FIG. 10B is a diagram showing the shape of a heating resistor (FIG. 10B). It is a top view of a heater. (Example 5) It is a top view of a heater. (Background technology)
  • FIG. 1 is a sectional view of a fixing device 6 as an image heating device.
  • the fixing device 6 includes a cylindrical film (endless belt) 23, a heater 22 that contacts the inner surface of the film 23, and a pressure roller (nip portion forming member) that forms a fixing nip portion N together with the heater 22 via the film 23. 24).
  • the material of the base layer of the film is a heat resistant resin such as polyimide, or a metal such as stainless steel.
  • the pressure roller 24 includes a cored bar 24a made of iron or aluminum, an elastic layer 24b made of silicone rubber or the like, and a release layer 24c made of PFA or the like.
  • the heater 22 is held by a holding member 21 made of heat resistant resin.
  • the holding member 21 also has a guide function for guiding the rotation of the film 23.
  • the pressure roller 24 receives power from the motor M and rotates in the arrow b direction. As the pressure roller 24 rotates, the film 23 follows and rotates.
  • the heater 22 is a ceramic heater substrate 22a, a heating resistor 22b formed on the substrate 22a, conductive patterns (conductors) 22c and 22d, and an insulating material that covers the heating resistor 22b and the conductive patterns 22c and 22d. It has a surface protective layer 22f (glass in this embodiment).
  • a temperature detection element 22g such as a thermistor is in contact with the back side of the heater substrate 22a. The power supplied from the commercial AC power source to the heating resistor 22b is controlled according to the temperature detected by the temperature detecting element 22g.
  • the recording material carrying the unfixed toner image is heated and fixed while being nipped and conveyed at the fixing nip N.
  • the heating resistor 22b (22b1 to 22b13) is a heating resistor having a characteristic of NTC, in which ruthenium oxide (RuO 2 ) and silver / palladium (Ag ⁇ Pd) are the main conductive components.
  • the heater 22 includes a first conductive pattern (first conductor) 22c (22c1 to 22c6) provided on the substrate 22a along the longitudinal direction of the substrate, and the first conductive pattern 22c on the substrate 22a.
  • Second conductive patterns (second conductors) 22d (22d1 to 22d6) are provided along the longitudinal direction of the substrate at different positions in the short direction.
  • the heating resistor 22b is connected between the first conductive pattern 22c and the second conductive pattern 22d.
  • 22e1 and 22e2 are electrodes to which connectors for supplying power are connected. S indicates the conveyance direction of the recording material.
  • each of the first conductive pattern 22c and the second conductive pattern 22d is divided into a plurality of pieces in the substrate longitudinal direction.
  • a plurality of heating resistors 22b are connected in parallel between the first conductive pattern 22c and the second conductive pattern 22d.
  • each of the first conductive pattern 22c and the second conductive pattern 22d is divided into six. Thirteen heating resistors 22b1 to 22b13 are electrically in parallel between the first conductive pattern 22c1 which is a part of the first conductive pattern 22c and the second conductive pattern 22d1 which is a part of the second conductive pattern 22d.
  • the first heat generation block H1 is formed.
  • heating resistors 22b1 to 22b13 are also electrically connected in parallel between the second conductive pattern 22d1 and the first conductive pattern 22c2 to form a second heating block H2.
  • a total of 11 heat generating blocks (H1 to H11) are formed, and the 11 heat generating blocks (H1 to H11) are electrically connected in series.
  • the heater 22 has a plurality of heat generating blocks.
  • the 13 heating resistors 22b1 to 22b13 in each heating block are all parallelograms.
  • the shortest current paths in the respective heating resistors are inclined with respect to the recording material transport direction S, and the shortest current paths of the respective heating resistors are adjacent to each other. It overlaps in the substrate longitudinal direction with respect to the shortest current path of the heating resistor.
  • W1 indicates a region in the substrate longitudinal direction of the shortest current path of the heating resistor 22b2
  • W2 indicates a region in the substrate longitudinal direction of the shortest current path of the heating resistor 22b3 adjacent to the heating resistor 22b2. Is shown.
  • the region W1 and the region W2 overlap in the substrate longitudinal direction.
  • the shape of the heating resistor 22b is designed in this way, when the heater is viewed in parallel to the recording material conveyance direction S, the shortest current path exists without a gap in the longitudinal direction of the heater. Therefore, when the recording material passes through the fixing nip portion N, an arbitrary point on the recording material always passes through a region where current flows and generates heat, so that the toner image on the recording material is partially underheated. The phenomenon can be suppressed.
  • the shape of the heating resistor when the heater is viewed in parallel with the recording material conveyance direction S and the shortest current path exists in the longitudinal direction of the heater with no gap will be described in detail. It should be noted that the range in which the shortest current path exists in the longitudinal direction of the heater without any gap may be provided by the width of the standard recording material set as the maximum size that can be used in the image heating apparatus or the image forming apparatus.
  • the long side length of the parallelogram heating resistor 22b is g1
  • the short side length is c1
  • E1 and the inclination angle of the heating resistor 22b is ⁇ 1.
  • the shape of the heating resistor 22b and the gap e1 are set to the relationship represented by (Equation 1)
  • the shortest current path of each heating resistor is a substrate with respect to the shortest current path of the adjacent heating resistor.
  • a relationship that overlaps in the longitudinal direction can be formed.
  • part in the heater of a present Example is as follows.
  • the width a1 in the short side direction of the heater substrate is 12 mm
  • the width b1 in the short side direction of the heating resistor 22b is 5 mm
  • the long side g1 of the heating resistor 22b is 6.28 mm
  • the short side c1 is 1.4 mm.
  • the inclination angle ⁇ 1 is about 52.8 °
  • the distance d1 between adjacent conductive patterns 22d (the distance between adjacent conductive patterns 22c is also d1) is 0.5 mm
  • between adjacent heating resistors in one heating block The distance e1 is 0.5 mm
  • the width f1 of the conductive patterns 22c and 22d in the lateral direction of the substrate is 1.5 mm.
  • the total width in the heater longitudinal direction of the region where the heating resistor 22b is provided is 237 mm.
  • a paste material having a temperature resistance coefficient (TCR: Temperature Coefficient Of Resistance) of the heating resistor 22b of ⁇ 455 ppm / ° C., that is, NTC is used, and the conductive pattern and the resistance of the heater are 20 ⁇ .
  • the shape of the heating resistor was set.
  • the TCR described here is a numerical value between 25 ° C. and 125 ° C. that is generally used as a TCR value on the high temperature side.
  • the shape of the heating resistor in one heating block is not widened in the longitudinal direction of the substrate, but is elongated in the lateral direction of the substrate and connected in parallel, thereby making the shortest current path in the lateral direction S. Can be tilted.
  • the heat generation distribution of the heater in the substrate longitudinal direction Unevenness can be reduced.
  • the shape of the heating resistor 25b is not the parallelogram shape shown in the first embodiment but a rectangle, and the shapes of the conductive patterns 25c and 25d are also different from the first embodiment. ing.
  • the substrate 22a and the power feeding electrodes 22e1 and 22e2 other than the heating resistor 25b and the conductive patterns 25c and 25d were formed of the same material and shape as in Example 1, respectively.
  • the total width in the heater longitudinal direction of the region where the heating resistor 25b is provided is 237 mm.
  • the heating resistor 25b was formed by adjusting the materials and the mixing ratio so that the total resistance value was the same 20 ⁇ as in Example 1, and the TCR at 25 ° C. to 125 ° C. was ⁇ 430 ppm / ° C.
  • the heating resistor 25b is divided into eleven heating blocks. Further, in order to make the shortest current path of one heating resistor obliquely incline with respect to the recording material conveyance direction, it is divided into 13 heating resistors in one heating block as in the first embodiment. The same.
  • the heat generating resistors 25b (25b1 to 25b13) divided into 13 rectangles are electrically connected in parallel to form one heat generating block. Further, there are 11 groups of 13 heating resistors 25b, that is, 11 heating blocks, and 11 heating blocks (H1 to H11) are electrically connected in series.
  • the shortest current path existing in each heat generating resistor 25b is not a single line but the entire surface of the heat generating resistors. Also in this embodiment, as in the first embodiment, the shortest current path is formed obliquely with respect to the recording material conveyance direction S.
  • FIG. 5A shows the direction of the shortest current path. Since the shortest current path in one heating resistor is wider than that of the heater of the first embodiment, two arrows are drawn for each heating resistor. Further, as shown in FIG. 6, in order to make each heating resistor have a rectangular shape, the conductive patterns 25c and 25d have a ⁇ (delta) shape region. The ⁇ shape region of the conductive pattern may have another shape as long as the heating resistor is rectangular, and does not specify the shape as ⁇ .
  • the shortest current path existing in each heating resistor 25b is not a single line as in the first embodiment but a plane, so that the film 23 and the recording material are compared with the configuration of the first embodiment.
  • W3 in FIG. 5A indicates a region in the substrate longitudinal direction of the shortest current path of the heating resistor 25b1
  • W4 is a substrate longitudinal direction of the shortest current path of the heating resistor 25b2 adjacent to the heating resistor 25b1. The area
  • the region W3 and the region W4 overlap in the substrate longitudinal direction.
  • the shape of the heating resistor 25b is designed in this way, when the heater is viewed in parallel to the recording material conveyance direction S, the shortest current path exists without a gap along the longitudinal direction of the heater. Therefore, when the recording material passes through the fixing nip portion N, an arbitrary point on the recording material always passes through a region where current flows and generates heat, so that the toner image on the recording material is partially underheated. The phenomenon can be suppressed.
  • each part in the heater of a present Example is as follows.
  • the width a2 in the short direction of the heater substrate is 12 mm
  • the long side g2 of the heating resistor 26b is 7.0 mm
  • the short side h2 is 1.0 mm
  • the inclination angle ⁇ 2 is about 52.8 °
  • d2 were set to 0.5 mm.
  • the heating resistor 26b is divided into 32 heating blocks (H1 to H32), and the shortest current path is inclined with respect to the recording material conveyance direction in each heating block. In this way, it is divided into five heating resistors (26b1 to 26b5). The heating resistors 26b divided into the five rectangles are electrically connected in parallel. Further, the group of 32 heat generating resistors 26b, that is, the heat generating blocks H1 to H32 are electrically connected in series. As shown in FIG. 7, in the present embodiment, the conductive patterns 26h1 to 26h33 are not parallel to the substrate longitudinal direction but are inclined, but are provided along the substrate longitudinal direction.
  • the conductive pattern 26h1 corresponds to the first conductor
  • the conductive pattern 26h2 corresponds to the second conductor
  • the conductive pattern 26h3 corresponds to the second conductor.
  • the total width in the heater longitudinal direction forming the heating resistor 26b is 224.2 mm.
  • the heating resistor 26b was formed by adjusting the materials and mixing ratio so that the total resistance value was the same 20 ⁇ as in Examples 1 and 2, and the TCR at 25 ° C. to 125 ° C. was ⁇ 435 ppm / ° C.
  • the shortest current path existing in each heating resistor 26b is not the single line but the entire heating resistor. Since a plurality of heat generating resistors are connected in parallel in each heat generating block, the shortest current path is configured obliquely with respect to the recording material conveyance direction S in this embodiment as in Examples 1 and 2. (FIG. 8A).
  • the heating resistor is formed so that the shortest current path of each heating resistor overlaps the shortest current path of the adjacent heating resistor in the longitudinal direction of the substrate, and uneven heat generation distribution in the longitudinal direction of the heater is caused. It is designed to be kept small. As shown in FIG.
  • each part in the heater of this example is as follows.
  • the width a3 in the short direction of the heater substrate is 12 mm
  • the short side g3 of the heating resistor 26b is 1.3 mm
  • the long side h3 is 2.5 mm
  • the interval e3 between adjacent heating blocks is 2.6 mm
  • the adjacent heating resistance The interval e31 between the bodies 26b was 0.5 mm
  • the inclination angle ⁇ 3 was 35 °.
  • FIG. 8A visually shows the point where the shortest current paths overlap.
  • W5 represents a region in the substrate longitudinal direction of the shortest current path of the heating resistor 26b1
  • W6 represents a region in the substrate longitudinal direction of the heating resistor 26b2 adjacent to the heating resistor 26b1.
  • the relationship between the two heat generating resistors (for example, the heat generating resistor 26b5 of the heat generating block H1 and the heat generating resistor 26b1 of the heat generating block H2) forming the boundary between two adjacent heat generating blocks is also the shortest current between them.
  • the route is in an overlapping relationship.
  • the shape of the heating resistor 27b is rectangular similarly to the shape shown in the second embodiment, and the length of the long side is the same as that of the heating resistor 25b of the second embodiment. It is half.
  • the current supplied from the power supply electrode 22e1 reaches the heater end opposite to the end where the electrode 22e1 is provided in the longitudinal direction of the heater, and then turns back to reach the power supply electrode 22e2.
  • a so-called reciprocating heat generation pattern is provided in which a plurality of heating resistors are provided. For this reason, four rows (27i, 27j, 27m, 27k) of conductive patterns are provided in the short direction of the substrate.
  • the substrate 22a was formed with the same material and shape as in Example 1.
  • the total width in the heater longitudinal direction of the region where the heating resistor 27b divided into a plurality of parts is formed is 237 mm.
  • the heating resistor 27b was formed by adjusting the materials and the mixing ratio so that the total resistance value was 20 ⁇ , which was the same as in Example 1, and the TCR at 25 ° C. to 125 ° C. was set to ⁇ 230 ppm / ° C.
  • the heating resistor 27b is divided into 22 heating blocks in the longitudinal direction of the heater 22 (11 heating blocks ⁇ 1 reciprocation), and one heating block so that the shortest current path is inclined with respect to the recording material conveyance direction. Among them, the heating resistor is divided into seven pieces (27b1 to 27b7). The heat generating resistors 27b divided into the seven rectangles are electrically connected in parallel, and the 22 heat generating blocks H1 to H22 are electrically connected in series. Also in this embodiment, since each heating resistor is formed in a rectangular shape, the shortest current path existing in each heating resistor 27b is the entire heating resistor.
  • the heat generating blocks are provided in a plurality of rows (two rows in this embodiment) at different positions in the short direction of the substrate.
  • the shortest current path of each heating resistor in the heating block of one row in the short direction overlaps the shortest current path of each heating resistor in the heating block of the other row in the longitudinal direction.
  • the shortest current path of two adjacent heating resistors for example, the heating resistor 27b1 and the heating resistor 27b2 in the heating block H1
  • the shortest current path of two heating resistors (for example, the heating resistor 27b5 (region W7) in the heating block H1 and the heating resistor 27b5 in the heating block H22) adjacent in the longitudinal direction between the heating blocks in different columns is , Overlapping in the longitudinal direction of the substrate. Even with such a shape, it is possible to reduce the uneven heat generation distribution in the longitudinal direction of the heater.
  • part in the heater of a present Example is as follows.
  • the width a4 of the heater substrate 22a in the lateral direction of the substrate is 12 mm
  • the long side g4 of the heating resistor 27b is 3.5 mm
  • the short side h4 is 1.0 mm
  • the inclination angle ⁇ 4 is about 52.8 °, and is divided into seven pieces.
  • the distance e41 between the heating resistors was set to 2.3 mm.
  • the distance e4 between the heat generating blocks was also 2.3 mm.
  • the heater of Example 5 will be described with reference to FIG.
  • the shape of this heater is a modification of the heater of Example 1, and as shown in FIG. 11, the two conductive patterns 28n and 28p are not divided in the substrate longitudinal direction. Therefore, there is only one heat generating block.
  • the heating resistor is not PTC but PTC.
  • the PTC material has a very low volume resistance, and it is effective to divide the heat generating block into a plurality of pieces as in the first embodiment. However, if the PTC material having a relatively high volume resistance can be used as the heat generating resistor, The shape of this embodiment may be used.
  • NTC was used as an example of the heating resistor.
  • the shape is configured to overlap the shortest current path as in the first to fourth embodiments, the uneven heat generation distribution in the longitudinal direction of the substrate can be suppressed.
  • the present invention provides not only a fixing device that fixes an unfixed toner image on a recording material, but also an image heating device such as a gloss applying device that improves the glossiness of an image by reheating the toner image that has been fixed on the recording material. It can also be applied to devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • Resistance Heating (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

 非通紙部昇温を抑制しつつ、通紙部における定着不良を抑えられるヒータ及びこのヒータを搭載する定着装置を提供する。 ヒータ基板上に基板長手方向に沿って設けた2本の導電パターン間に、発熱抵抗体を電気的に並列に接続し、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路と基板長手方向でオーバーラップするように発熱抵抗体を配置する。

Description

ヒータ及びこのヒータを搭載する像加熱装置
 本発明は、電子写真複写機、電子写真プリンタなどの画像形成装置に搭載される加熱定着装置に利用すれば好適なヒータ、及びこのヒータを搭載する像加熱装置に関する。
 複写機やプリンタに搭載する定着装置として、エンドレスベルトと、エンドレスベルトの内面に接触するセラミックヒータと、エンドレスベルトを介してセラミックヒータと定着ニップ部を形成する加圧ローラと、を有する装置がある。この定着装置を搭載する画像形成装置で小サイズ紙を連続プリントすると、定着ニップ部長手方向において紙が通過しない領域の温度が徐々に上昇するという現象(非通紙部昇温)が発生する。非通紙部の温度が高くなり過ぎると、装置内の各パーツへダメージを与えたり、非通紙部昇温が生じている状態で大サイズ紙にプリントすると、小サイズ紙の非通紙部に相当する領域でトナーが高温オフセットすることもある。
 この非通紙部昇温を抑制する手法の一つとして、セラミック基板上の発熱抵抗体を負の抵抗温度特性を有する材質で形成することが考えられている。非通紙部が昇温しても非通紙部の発熱抵抗体の抵抗値は下がるので、非通紙部の発熱抵抗体に電流が流れても非通紙部の発熱が抑えられるという発想である。負の抵抗温度特性は、温度が上がると抵抗が下がる特性であり、以後NTC(Negative Temperature Coefficient)と称する。逆に、発熱抵抗体を正の抵抗温度特性を有する材質で形成することも考えられている。非通紙部が昇温すると非通紙部の発熱抵抗体の抵抗値が昇温し、非通紙部の発熱抵抗体に流れる電流が抑制されることにより非通紙部の発熱を抑制するという発想である。正の抵抗温度特性は、温度が上がると抵抗が上がる特性であり、以後PTC(Positive Temperature Coefficient)と称する。
 しかしながら、一般的にNTCの材質は体積抵抗が非常に高く、一本のヒータに形成する発熱抵抗体の総抵抗を、商用電源で使用できる範囲内に設定するのは非常に難しい。逆にPTCの材質は体積抵抗が非常に低く、NTCの場合と同様、一本のヒータの発熱抵抗体の総抵抗を、商用電源で使用できる範囲内に設定するのは非常に難しい。
 そこで、セラミック基板上に形成する発熱抵抗体をヒータの長手方向で複数のブロックに分割し、各ブロックではヒータの短手方向(記録紙の搬送方向)に電流が流れるように二本の電極を基板の短手方向の両端に配置する。更に複数のブロックを電気的に直列に繋ぐ構成が特許文献1に開示されている。このような形状にすれば、発熱抵抗体の材質がNTCの場合、各ブロックの抵抗値が低くなり、ヒータの長手方向に電流を流す場合と比較してヒータ全体の総抵抗を低く抑えることができる。また、発熱抵抗体の材質がPTCの場合、複数のブロックに分割せずにヒータの短手方向に電流を流す場合と比較してヒータ全体の総抵抗を高くすることができる。
 ただし、発熱抵抗体を複数の発熱ブロックに分割すると、隣り合う発熱ブロック間に隙間ができてしまい、発熱分布ムラができてしまう。そこで、特許文献1では、発熱ブロックの形状を平行四辺形にすることで、ヒータ長手方向で発熱しない領域が生じないようにしている。
特開2007-025474号公報
 しかしながら、特許文献1に開示されている発熱ブロックの形状では、発熱分布ムラを抑制する効果として不十分であることがその後の検討で判明した。図12はこのヒータの一部を示している。22aは細長い基板であり、この基板上に導電パターン29q(22q1、22q2・・・)と導電パターン29r(22r1、22r2・・・)を基板長手方向に沿って設けてある。導電パターン22qと22rは、共に基板長手方向の複数個所で分断されており、導電パターン22qと導電パターン22rの間には発熱抵抗体29b(29b1、29b2・・・)が接続されている。22e1は給電用コネクタを接続する電極である(他端側の電極の図示は省略してある)。
 図12に示すように発熱ブロックの形状を平行四辺形にして、記録紙上の任意の点が必ず発熱抵抗体29bの存在する領域を通過するようにしても、ヒータ長手方向で発熱抵抗体がオーバーラップしている領域Bには電流があまり流れない。なぜなら、オーバーラップしている領域B以外の領域に図12に示すように最短電流経路が存在し、電流の多くはこの最短電流経路を流れてしまうからである。発熱量は電流の二乗に比例するので、流れる電流量が少ない領域の発熱量は低下してしまい、ヒータ長手方向における発熱分布ムラを抑制する効果は小さくなってしまう。このように発熱分布ムラが大きいと画像の加熱ムラが生じてしまう。また、一つの発熱ブロック内においても、電流が流れやすい領域と流れにくい領域が存在してしまうと、上述と同様に発熱分布ムラの課題が生じる。
 上述の課題を解決するための本発明は、基板と、前記基板上に基板長手方向に沿って設けられている第1導電体と、前記基板上に前記第1導電体とは基板短手方向で異なる位置に前記長手方向に沿って設けられている第2導電体と、前記第1導電体と前記第2導電体間に接続されている発熱抵抗体と、を有するヒータにおいて、前記発熱抵抗体は前記第1導電体と前記第2導電体間に電気的に並列に複数本接続されており、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して前記長手方向においてオーバーラップしていることを特徴とする。
 また、本発明は、基板と、前記基板上に基板長手方向に沿って設けられている第1導電体と、前記基板上に前記第1導電体とは基板短手方向で異なる位置に前記長手方向に沿って設けられている第2導電体と、前記第1導電体と前記第2導電体間に接続されている発熱抵抗体と、を有するヒータにおいて、前記第1導電体と前記第2導電体間に複数本の前記発熱抵抗体が電気的に並列接続されている発熱ブロックが、前記基板の短手方向において異なる位置に複数列設けられており、前記短手方向における一方の列の前記発熱ブロック内の各発熱抵抗体の最短電流経路が、他方の列の発熱ブロック内の各発熱抵抗体の最短電流経路に対して前記長手方向においてオーバーラップしていることを特徴とする。
 本発明によれば、ヒータ長手方向における発熱分布ムラを抑えることができる。
像加熱装置の断面図である。 ヒータの平面図である。(実施例1) 実施例1のヒータの、最短電流経路を示した図(図3(a))、及び発熱抵抗体の形状を示した図(図3(b))である。 ヒータの平面図である。(実施例2) 実施例2のヒータの、最短電流経路を示した図(図5(a))、及び発熱抵抗体の形状を示した図(図5(b))である。 実施例2のヒータの導電パターンの形状を説明するための図である。 ヒータの平面図である。(実施例3) 実施例3のヒータの、最短電流経路を示した図(図8(a))、及び発熱抵抗体の形状を示した図(図8(b))である。 ヒータの平面図である。(実施例4) 実施例4のヒータの、最短電流経路を示した図(図10(a))、及び発熱抵抗体の形状を示した図(図10(b))である。 ヒータの平面図である。(実施例5) ヒータの平面図である。(背景技術)
 図1は像加熱装置としての定着装置6の断面図である。定着装置6は、筒状のフィルム(エンドレスベルト)23と、フィルム23の内面に接触するヒータ22と、フィルム23を介してヒータ22と共に定着ニップ部Nを形成する加圧ローラ(ニップ部形成部材)24と、を有する。フィルムのベース層の材質は、ポリイミド等の耐熱樹脂、またはステンレス等の金属である。加圧ローラ24は、鉄やアルミニウム等の材質の芯金24aと、シリコーンゴム等の材質の弾性層24b、PFA等の材質の離型層24cを有する。ヒータ22は耐熱樹脂製の保持部材21に保持されている。保持部材21はフィルム23の回転を案内するガイド機能も有している。加圧ローラ24はモータMから動力を受けて矢印b方向に回転する。加圧ローラ24が回転することによってフィルム23が従動して回転する。
 ヒータ22は、セラミック製のヒータ基板22aと、基板22a上に形成された発熱抵抗体22bと、導電パターン(導電体)22c及び22dと、発熱抵抗体22b及び導電パターン22c及び22dを覆う絶縁性(本実施例ではガラス)の表面保護層22fを有する。ヒータ基板22aの裏面側にはサーミスタ等の温度検知素子22gが当接している。温度検知素子22gの検知温度に応じて商用交流電源から発熱抵抗体22bへ供給する電力が制御される。未定着トナー画像を担持する記録材は、定着ニップ部Nで挟持搬送されつつ加熱されて定着処理される。
 次に、本実施例1のヒータ22の形状及び特性について図2及び図3に基づき説明する。本実施例のヒータでは、基板22aとして幅12mm、長さ280mm、厚さ0.6mmの窒化アルミニウム基板を使用した。発熱抵抗体22b(22b1~22b13)は、酸化ルテニウム(RuO2)、銀・パラジウム(Ag・Pd)を主たる導電成分とする、特性がNTCの発熱抵抗体である。また、ヒータ22は、基板22a上に基板長手方向に沿って設けられている第1導電パターン(第1導電体)22c(22c1~22c6)と、基板22a上に第1導電パターン22cとは基板短手方向で異なる位置に基板長手方向に沿って設けられている第2導電パターン(第2導電体)22d(22d1~22d6)を有する。発熱抵抗体22bは第1導電パターン22cと第2導電パターン22dの間に接続されている。22e1、22e2は電力を供給するためのコネクタが接続される電極である。Sは記録材の搬送方向を示している。
 図3に示すように、第1導電パターン22cと第2導電パターン22dは、いずれも基板長手方向に複数本に分割されている。また、発熱抵抗体22bは第1導電パターン22cと第2導電パターン22dの間に並列に複数本接続されている。本実施例では第1導電パターン22cと第2導電パターン22dは、いずれも6本に分割されている。第1導電パターン22cの一部である第1導電パターン22c1と、第2導電パターン22dの一部である第2導電パターン22d1の間には13本の発熱抵抗体22b1~22b13が電気的に並列に接続されており、第1の発熱ブロックH1を形成している。また、第2導電パターン22d1と第1導電パターン22c2の間にも13本の発熱抵抗体22b1~22b13が電気的に並列に接続されており、第2の発熱ブロックH2を形成している。本実施例のヒータでは、同様にして発熱ブロックが合計11個(H1~H11)形成されており、11個の発熱ブロック(H1~H11)は電気的に直列に接続されている。このようにヒータ22は発熱ブロックを複数有する構成となっている。
 次に、発熱抵抗体22bの形状について説明する。図3に示すように各発熱ブロック中の13本の発熱抵抗体22b1~22b13の形状は、いずれも平行四辺形である。そして、図3(a)に示すように、各発熱抵抗体中の最短電流経路は記録材搬送方向Sに対して斜めに傾いており、且つ、各発熱抵抗体の最短電流経路は、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向でオーバーラップしている。図3(a)のW1が発熱抵抗体22b2の最短電流経路の基板長手方向における領域を示しており、W2が発熱抵抗体22b2の隣の発熱抵抗体22b3の最短電流経路の基板長手方向における領域を示している。領域W1と領域W2が基板長手方向においてオーバーラップしていることが判る。発熱抵抗体22bの形状をこのように設計すると、記録材搬送方向Sに対して平行にヒータを見たときに、ヒータの長手方向に亘って最短電流経路が隙間無く存在する。よって、記録材が定着ニップ部Nを通過する時、記録材上の任意の点は、電流が流れて発熱する領域を必ず通過するので、記録材上のトナー像が部分的に加熱不足となる現象を抑えることができる。
 次に、記録材搬送方向Sに対して平行にヒータを見たときに、ヒータの長手方向に亘って最短電流経路が隙間無く存在する場合の発熱抵抗体の形状に関して詳しく説明する。なお、ヒータ長手方向において最短電流経路が隙間無く存在する範囲は、像加熱装置或いは画像形成装置で使用可能な最大サイズとして設定されている定型の記録材の幅設けてあればよい。
 図3(b)に示すヒータの部分的平面図において、平行四辺形の発熱抵抗体22bの長辺長さをg1、短辺長さをc1、一つの発熱ブロック中の隣り合う発熱抵抗体22bの間隔をe1、発熱抵抗体22bの傾斜角度をβ1とする。この場合、発熱抵抗体22bの形状及び隙間e1を(式1)で表される関係に設定すれば、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向でオーバーラップする関係を形成できる。
  g1×cos(β1)≧c1+e1 (式1)
 また、隣り合う二つの発熱ブロックの境界を形成している2本の発熱抵抗体(例えば発熱ブロックH1の発熱抵抗体22b13と、発熱ブロックH2の発熱抵抗体22b1)の関係も(式2)を満たすように設定すればよい。
  g1×cos(β1)≧c1+d1 (式2)
 本実施例のヒータは、e1=d1に設定してある。なお、本実施例のヒータにおける各部位の寸法は以下の通りである。ヒータ基板の短手方向の幅a1は12mm、発熱抵抗体22bの基板短手方向の幅b1は5mm、発熱抵抗体22bの長辺g1は6.28mm、短辺c1は1.4mmである。傾斜角度β1は約52.8°、隣り合う導電パターン22d間の距離d1(隣り合う導電パターン22c間の距離もd1である)は0.5mm、一つの発熱ブロック内の隣り合う発熱抵抗体間の距離e1は0.5mm、導電パターン22c及び22dの基板短手方向の幅f1は1.5mmである。なお、発熱抵抗体22bを設けた領域のヒータ長手方向の総幅は237mmである。これらの値を(式1)に当てはめると、g1×cos(β1)≒3.8、c1+e1=1.9となり、(式1)が成り立つ。また、c1+d1=1.9なので(式2)も成り立つ。
 本実施例では、発熱抵抗体22bの温度抵抗係数(TCR:Temperature Coefficient of Resistance)が-455ppm/℃、即ちNTCとなるペースト材料を用い、ヒータの総抵抗値が20Ωとなるように導電パターンや発熱抵抗体の形状を設定した。ここで述べるTCRは、一般的に高温側のTCR値として用いられる25℃~125℃間の数値である。
 以上のように、一つの発熱ブロック中の発熱抵抗体の形状を、基板長手方向において幅広くするのではなく基板短手方向に細長くして並列接続することによって、最短電流経路を短手方向Sに対して傾けることができる。この構成に加えて、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向においてオーバーラップするように配置することで、基板長手方向におけるヒータの発熱分布ムラを小さく抑えることが出来る。
 図4~図6を用いて実施例2のヒータを説明する。図4に示すように実施例2のヒータ22は、発熱抵抗体25bの形状が実施例1で示した平行四辺形形状ではなく長方形であり、導電パターン25c及び25dの形状も実施例1と異なっている。発熱抵抗体25b、導電パターン25c及び25d以外の、基板22a、給電用電極22e1及び22e2は、それぞれ実施例1と同様の材料、形状にて形成した。なお、発熱抵抗体25bを設けた領域のヒータ長手方向の総幅は237mmである。また、総抵抗値が実施例1と同じ20Ωになるように材料や混合比を調整して発熱抵抗体25bを形成し、25℃~125℃におけるTCRは-430ppm/℃であった。
 実施例2のヒータも実施例1のヒータ同様、発熱抵抗体25bを11個の発熱ブロックに分けている。また、一つの発熱抵抗体の最短電流経路が記録材搬送方向に対して斜めに傾くようにするため、一つの発熱ブロック中で13個の発熱抵抗体に分割している点も実施例1と同じである。この13個の長方形に分割された発熱抵抗体25b(25b1~25b13)は電気的に並列に接続されて一つの発熱ブロックを構成している。また、13個の発熱抵抗体25bの群、つまり発熱ブロックは11個あり、11個の発熱ブロック(H1~H11)は電気的に直列に接続されている。
 本実施例では、発熱抵抗体が長方形で形成されているため、個々の発熱抵抗体25bに存在する最短電流経路は単一線ではなく発熱抵抗体の全面になる。本実施例においても実施例1と同様に記録材搬送方向Sに対して最短電流経路が斜めに構成されている。図5(a)には最短電流経路の方向を示してある。実施例1のヒータよりも一つの発熱抵抗体中の最短電流経路が広いので個々の発熱抵抗体に対して2本の矢印を引いてある。また、図6に示すように、各発熱抵抗体の形状を長方形とするため、導電パターン25c及び25dはΔ(デルタ)形状領域を有している。導電パターンのΔ形状領域は、発熱抵抗体を長方形にするためであれば他の形状でもよく、形状をΔに特定するものではない。
 本実施例のように、個々の発熱抵抗体25bに存在する最短電流経路を実施例1のような単一線でなく平面にすることで、実施例1の構成に比べて、フィルム23及び記録材への伝熱効率が向上するメリットがある。また、本実施例においても、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向においてオーバーラップしているので、ヒータの発熱分布ムラを小さく抑えることができる。なお、図5(a)のW3が発熱抵抗体25b1の最短電流経路の基板長手方向における領域を示しており、W4が発熱抵抗体25b1の隣の発熱抵抗体25b2の最短電流経路の基板長手方向における領域を示している。領域W3と領域W4が基板長手方向においてオーバーラップしていることが判る。発熱抵抗体25bの形状をこのように設計すると、記録材搬送方向Sに対して平行にヒータを見たときに、ヒータの長手方向に亘って最短電流経路が隙間無く存在する。よって、記録材が定着ニップ部Nを通過する時、記録材上の任意の点は、電流が流れて発熱する領域を必ず通過するので、記録材上のトナー像が部分的に加熱不足となる現象を抑えることができる。
 各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向においてオーバーラップ関係にするには、(式3)のように設定すればよい。
  g2×cos(β2)-h2×cos(β2)/tan(β2)≧e2 (式3)
 ここで、図5(b)に示すように、長方形の発熱抵抗体25bの長辺長さをg2、短辺長さをh2、隣り合う発熱抵抗体25b同士の間隔をe2、発熱抵抗体25bの傾斜角度β2とする。また、隣り合う二つの発熱ブロックの境界を形成している2本の発熱抵抗体(例えば発熱ブロックH1の発熱抵抗体25b13と、発熱ブロックH2の発熱抵抗体25b1)の関係も(式3)のe2をd2に置き換えた(式4)を満たすように設定すればよい。
  g2×cos(β2)-h2×cos(β2)/tan(β2)≧d2 (式4)
 本実施例のヒータにおける各部位の寸法は以下の通りである。ヒータ基板の短手方向の幅a2は12mm、発熱抵抗体26bの長辺g2は7.0mm、短辺h2は1.0mm、傾斜角度β2は約52.8°、発熱抵抗体間の距離e2及びd2は0.5mmとした。この数値を当てはめると、g2×cos(β2)-h2×cos(β2)/tan(β2)≒3.8、e2=0.5となり(式2)が成り立つ。同様に(式4)も成り立つ。
 図7及び図8を用いて実施例3のヒータを説明する。図7に示すように実施例3のヒータ22は発熱抵抗体26bを32個の発熱ブロック(H1~H32)に分け、各発熱ブロック中では最短電流経路が記録材搬送方向に対して斜めになるように5本の発熱抵抗体(26b1~26b5)に分割している。この5本の長方形に分割された発熱抵抗体26bは電気的に並列に接続されている。また、32個の発熱抵抗体26bの群、つまり発熱ブロックH1~H32は電気的に直列に接続されている。図7に示すように、本実施例では、導電パターン26h1~26h33が基板長手方向に対して平行ではなく傾いているが、基板長手方向に沿って設けられている。発熱ブロックH1においては、導電パターン26h1が第1の導電体に相当し、導電パターン26h2が第2の導電体に相当する。また、発熱ブロックH2においては、導電パターン26h2が第1の導電体に相当し、導電パターン26h3が第2の導電体に相当する。なお、発熱抵抗体26bを形成しているヒータ長手方向の総幅は224.2mmである。発熱抵抗体26bは総抵抗値が実施例1、2と同じ20Ωになるように、材料や混合比を調整して形成し、25℃~125℃におけるTCRを-435ppm/℃とした。
 本実施例においても発熱抵抗体が長方形で形成されているため個々の発熱抵抗体26bに存在する最短電流経路は単一線ではなく発熱抵抗体全面となる。各発熱ブロック中で複数本の発熱抵抗体を並列に接続しているので、本実施の形態においても実施例1、2と同様に記録材搬送方向Sに対して最短電流経路が斜めに構成されている(図8(a))。また、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して基板長手方向においてオーバーラップするように発熱抵抗体が形成されており、ヒータ長手方向における発熱分布ムラが小さく抑えられるようになっている。図8(b)に示すように、本実施例のヒータにおける各部位の寸法は以下の通りである。ヒータ基板の短手方向の幅a3は12mm、発熱抵抗体26bの短辺g3は1.3mm、長辺h3は2.5mm、隣り合う発熱ブロック同士の間隔e3は2.6mm、隣り合う発熱抵抗体26b同士の間隔e31は0.5mm、傾斜角度β3は35°とした。
 また、最短電流経路がオーバーラップしている点を視覚的に現したのが図8(a)である。W5は発熱抵抗体26b1の最短電流経路の基板長手方向における領域、同様にW6は発熱抵抗体26b1の隣の発熱抵抗体26b2の基板長手方向における領域を示している。図8(a)より明らかなように、隣り合う発熱抵抗体の最短電流経路が基板長手方向でオーバーラップしているので、記録材搬送方向Sに対して平行にヒータを見たときに、ヒータの長手方向に亘って最短電流経路が必ず存在する構成となっている。また、隣り合う二つの発熱ブロックの境界を形成している2本の発熱抵抗体(例えば発熱ブロックH1の発熱抵抗体26b5と、発熱ブロックH2の発熱抵抗体26b1)の関係も、互いの最短電流経路がオーバーラップする関係になっている。
 図9及び図10を用いて実施例4のヒータを説明する。図9に示すように実施例4のヒータ22は、発熱抵抗体27bの形状が実施例2で示した形状と同様に長方形であり、長辺の長さが実施例2の発熱抵抗体25bの半分である。また、給電用電極22e1から供給される電流が、ヒータ長手方向で電極22e1が設けられた端部とは反対側のヒータ端部まで達した後に、折り返して給電用電極22e2に達するよう構成されており、発熱抵抗体が複数列設けられている所謂往復発熱パターンとなっている。このため導電パターンが基板短手方向において4列(27i、27j、27m、27k)設けられている。実施例1~3のヒータは、二つの給電用電極がヒータ長手方向両端部に1つずつ配置されていた。これに対して本実施例の構成は、二つの給電用電極22e1及び22e2が両方ともヒータの長手方向において片側の端部にあるので、電極に接続するコネクタを1つにすることが出来るというメリットがある。
 基板22aは実施例1と同様の材料、形状にて形成した。なお、複数に分割された発熱抵抗体27bが形成されている領域のヒータ長手方向の総幅は237mmである。また、総抵抗値が実施例1と同じ20Ωになるように、材料や混合比を調整して発熱抵抗体27bを形成し、25℃~125℃におけるTCRを-230ppm/℃に設定した。
 なお、発熱抵抗体27bをヒータ22の長手方向に22個の発熱ブロックに分け(11個の発熱ブロック×1往復)、最短電流経路が記録材搬送方向に対して斜めになるよう一つの発熱ブロック中で発熱抵抗体は7個に分割(27b1~27b7)されている。この7個の長方形に分割された発熱抵抗体27bは電気的に並列に接続され、22個の発熱ブロックH1~H22は電気的に直列に接続されている。本実施例においても、個々の発熱抵抗体が長方形で形成されているため、個々の発熱抵抗体27bに存在する最短電流経路は発熱抵抗体全面になる。
 ところで、本実施例では、上述のように、発熱ブロックが基板の短手方向において異なる位置に複数列(本実施例では二列)設けられている。そして、短手方向における一方の列の発熱ブロック内の各発熱抵抗体の最短電流経路が、他方の列の発熱ブロック内の各発熱抵抗体の最短電流経路に対して、長手方向においてオーバーラップしている。具体的には、図10(a)に示すように、一つの発熱ブロック内の隣り合う二つの発熱抵抗体(例えば発熱ブロックH1内の発熱抵抗体27b1と発熱抵抗体27b2)の最短電流経路は基板長手方向でオーバーラップしていない。しかしながら、列が異なる発熱ブロック間で長手方向に隣り合う二つの発熱抵抗体(例えば発熱ブロックH1内の発熱抵抗体27b5(領域W7)と発熱ブロックH22内の発熱抵抗体27b5)の最短電流経路は、基板長手方向でオーバーラップしている。このような形状でも、ヒータの長手方向における発熱分布ムラを小さく抑えることができる。
 なお、図10(b)に示すように、本実施例のヒータにおける各部位の寸法は以下の通りである。ヒータ基板22aの基板短手方向の幅a4は12mm、発熱抵抗体27bの長辺g4は3.5mm、短辺h4は1.0mm、傾斜角度β4は約52.8°、7個に分割された発熱抵抗体間の距離e41は2.3mmとした。発熱ブロック間の距離e4も2.3mmとした。
 図11を用いて実施例5のヒータを説明する。このヒータの形状は実施例1のヒータの変形例であり、図11に示すように、二本の導電パターン28n及び28pが基板長手方向において分割されていない。したがって発熱ブロックが1つしかない形態である。導電パターン28nと導電パターン28pの間に並列に接続される発熱抵抗体は143本(28b1~28b143)である。隣り合う発熱抵抗体同士の最短電流経路が基板長手方向でオーバーラップしている点は実施例1と同様である。ただし、発熱抵抗体がNTCではなくPTCである。PTCの材質は体積抵抗が非常に低く、実施例1のように発熱ブロックを複数個に分割する構成が有効であるが、発熱抵抗体として体積抵抗が比較的高いPTCの材質を用いることができれば、本実施例の形状でも構わない。
 なお、上述した実施例1~4は、発熱抵抗体としてNTCのものを例に示した。しかしながら、PTCの発熱抵抗体の場合でも、その形状を実施例1~4のように、最短電流経路をオーバーラップさせる構成にすれば基板長手方向における発熱分布ムラを小さく抑えることが出来る。
 本発明は、未定着トナー像を記録材に定着する定着装置だけでなく、記録材上に定着済みのトナー像を再度加熱することによって、画像の光沢度を向上させる光沢付与装置などの像加熱装置にも適用できる。
 22 ヒータ
 22a ヒータ基板
 22b 発熱抵抗体
 22c、22d 導電パターン
 22e1、22e2 電極
 23 フィルム
 24 加圧ローラ
 P 記録材
 N 定着ニップ部

Claims (8)

  1.  基板と、前記基板上に基板長手方向に沿って設けられている第1導電体と、前記基板上に前記第1導電体とは基板短手方向で異なる位置に前記長手方向に沿って設けられている第2導電体と、前記第1導電体と前記第2導電体間に接続されている発熱抵抗体と、を有するヒータにおいて、
     前記発熱抵抗体は前記第1導電体と前記第2導電体間に電気的に並列に複数本接続されており、各発熱抵抗体の最短電流経路が、隣り合う発熱抵抗体の最短電流経路に対して前記長手方向においてオーバーラップしていることを特徴とするヒータ。
  2.  前記ヒータは、並列接続された複数の前記発熱抵抗体を有する発熱ブロックを複数有し、各発熱ブロックは電気的に直列に接続されていることを特徴とする請求項1に記載のヒータ。
  3.  前記発熱抵抗体の形状は長方形であり、前記発熱抵抗体の形状が長方形となるように前記第1導電体と前記第2導電体にはΔ形状領域が設けられていることを特徴とする請求項1に記載のヒータ。
  4.  エンドレスベルトと、前記エンドレスベルトの内面に接触するヒータと、前記エンドレスベルトを介して前記ヒータと共にニップ部を形成するニップ部形成部材と、を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ加熱する像加熱装置において、
     前記ヒータが請求項1~3いずれか1項に記載のヒータであることを特徴とする像加熱装置。
  5.  基板と、前記基板上に基板長手方向に沿って設けられている第1導電体と、前記基板上に前記第1導電体とは基板短手方向で異なる位置に前記長手方向に沿って設けられている第2導電体と、前記第1導電体と前記第2導電体間に接続されている発熱抵抗体と、を有するヒータにおいて、
     前記第1導電体と前記第2導電体間に複数本の前記発熱抵抗体が電気的に並列接続されている発熱ブロックが、前記基板の短手方向において異なる位置に複数列設けられており、前記短手方向における一方の列の前記発熱ブロック内の各発熱抵抗体の最短電流経路が、他方の列の発熱ブロック内の各発熱抵抗体の最短電流経路に対して前記長手方向においてオーバーラップしていることを特徴とするヒータ。
  6.  前記ヒータは、一つの列の中に複数の前記発熱ブロックを有し、一つの列の中の各発熱ブロックは電気的に直列に接続されていることを特徴とする請求項5に記載のヒータ。
  7.  前記発熱抵抗体の形状は長方形であり、前記発熱抵抗体の形状が長方形となるように前記第1導電体と前記第2導電体にはΔ形状領域が設けられていることを特徴とする請求項5に記載のヒータ。
  8.  エンドレスベルトと、前記エンドレスベルトの内面に接触するヒータと、前記エンドレスベルトを介して前記ヒータと共にニップ部を形成するニップ部形成部材と、を有し、前記ニップ部で画像を担持する記録材を挟持搬送しつつ加熱する像加熱装置において、
     前記ヒータが請求項5~7いずれか1項に記載のヒータであることを特徴とする像加熱装置。
PCT/JP2009/065903 2009-09-11 2009-09-11 ヒータ及びこのヒータを搭載する像加熱装置 WO2011030440A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200980161277.XA CN102484897B (zh) 2009-09-11 2009-09-11 加热器和包括该加热器的图像加热装置
PCT/JP2009/065903 WO2011030440A1 (ja) 2009-09-11 2009-09-11 ヒータ及びこのヒータを搭載する像加熱装置
KR1020127008613A KR101382052B1 (ko) 2009-09-11 2009-09-11 히터 및 이 히터를 탑재하는 상 가열 장치
JP2011530694A JP5518080B2 (ja) 2009-09-11 2009-09-11 ヒータ及びこのヒータを搭載する像加熱装置
EP09849219.2A EP2477453B1 (en) 2009-09-11 2009-09-11 Heater and image heating device equipped with heater
US12/876,551 US8552342B2 (en) 2009-09-11 2010-09-07 Heater and image heating apparatus including the same
US14/016,472 US9095003B2 (en) 2009-09-11 2013-09-03 Heater and image heating apparatus including the same
US14/745,200 US9445457B2 (en) 2009-09-11 2015-06-19 Heater and image heating apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065903 WO2011030440A1 (ja) 2009-09-11 2009-09-11 ヒータ及びこのヒータを搭載する像加熱装置

Publications (1)

Publication Number Publication Date
WO2011030440A1 true WO2011030440A1 (ja) 2011-03-17

Family

ID=43729472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065903 WO2011030440A1 (ja) 2009-09-11 2009-09-11 ヒータ及びこのヒータを搭載する像加熱装置

Country Status (6)

Country Link
US (3) US8552342B2 (ja)
EP (1) EP2477453B1 (ja)
JP (1) JP5518080B2 (ja)
KR (1) KR101382052B1 (ja)
CN (1) CN102484897B (ja)
WO (1) WO2011030440A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128567A (ja) * 2009-12-21 2011-06-30 Canon Inc 画像形成装置
JP2012252190A (ja) * 2011-06-03 2012-12-20 Ist Corp 定着装置
JP2014164878A (ja) * 2013-02-22 2014-09-08 Sekisui Plastics Co Ltd 長尺ptcヒーターおよびその使用方法
JPWO2013073276A1 (ja) * 2011-11-15 2015-04-02 株式会社美鈴工業 ヒータ並びにそれを備える定着装置及び乾燥装置
US9235166B2 (en) 2012-09-19 2016-01-12 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
JP2016164826A (ja) * 2015-03-06 2016-09-08 東芝ライテック株式会社 ヒータおよび画像形成装置
JP2017058415A (ja) * 2015-09-14 2017-03-23 キヤノン株式会社 画像形成装置
JP2017212206A (ja) * 2015-12-18 2017-11-30 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー 加熱装置
JP2020060799A (ja) * 2020-01-09 2020-04-16 株式会社東芝 定着装置、画像形成装置および定着装置の定着温度制御プログラム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064759A (ja) * 2007-09-10 2009-03-26 Rohm Co Ltd ヒータ
JP5253240B2 (ja) * 2008-03-14 2013-07-31 キヤノン株式会社 像加熱装置及びこの像加熱装置に用いられるヒータ
KR101031226B1 (ko) * 2009-08-21 2011-04-29 에이피시스템 주식회사 급속열처리 장치의 히터블록
JP5518080B2 (ja) * 2009-09-11 2014-06-11 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
JP5875460B2 (ja) * 2012-05-14 2016-03-02 キヤノン株式会社 加熱体、及びその加熱体を備える画像加熱装置
KR20140082483A (ko) * 2012-12-24 2014-07-02 삼성전자주식회사 가열 유닛, 가열 유닛의 제조 방법, 정착 장치 및 이를 채용한 전자사진방식 화상형성장치
JP6121358B2 (ja) * 2014-03-31 2017-04-26 京セラドキュメントソリューションズ株式会社 ヒーター及び画像形成装置
JP2016018181A (ja) * 2014-07-11 2016-02-01 富士ゼロックス株式会社 加熱装置、定着装置及び画像形成装置
JP2017021118A (ja) * 2015-07-08 2017-01-26 富士ゼロックス株式会社 加熱装置、定着装置、画像形成装置、加熱装置用の基材
JP2017044879A (ja) * 2015-08-27 2017-03-02 キヤノン株式会社 加熱体、定着装置および画像形成装置
US10444681B2 (en) 2015-09-11 2019-10-15 Canon Kabushiki Kaisha Image heating device and heater used for image heating device
JP6635731B2 (ja) 2015-09-11 2020-01-29 キヤノン株式会社 像加熱装置
JP6779602B2 (ja) * 2015-09-14 2020-11-04 キヤノン株式会社 ヒータ、像加熱装置
JP6779603B2 (ja) * 2015-09-14 2020-11-04 キヤノン株式会社 ヒータ及びこのヒータを搭載した像加熱装置
DE102015223493A1 (de) * 2015-11-26 2017-06-01 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung
JP2017157322A (ja) * 2016-02-29 2017-09-07 東芝ライテック株式会社 ヒータおよび定着装置
US20170347399A1 (en) * 2016-05-24 2017-11-30 E.G.O. Elektro-Geraetebau Gmbh Heating device
CN107526268B (zh) * 2016-06-20 2020-10-30 东芝泰格有限公司 加热器及加热装置
CN109407490B (zh) * 2017-08-18 2022-03-29 京瓷办公信息系统株式会社 加热器、定影装置和图像形成装置
CN110573967B (zh) * 2017-12-08 2020-10-27 株式会社美铃工业 加热器、定影装置、图像形成装置以及加热装置
US11971674B2 (en) * 2021-03-10 2024-04-30 Ricoh Company, Ltd. Heating device, fixing device, and image forming apparatus
JP2022142622A (ja) * 2021-03-16 2022-09-30 キヤノン株式会社 ヒータ及び像加熱装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57501308A (ja) * 1980-08-28 1982-07-22
JPH11282302A (ja) * 1998-03-31 1999-10-15 Brother Ind Ltd 定着器
JP2005209493A (ja) * 2004-01-23 2005-08-04 Canon Inc 加熱装置および画像形成装置
JP2006120600A (ja) * 2004-09-22 2006-05-11 Murakami Corp ヒータミラーの製造方法及びヒータミラー
JP2007025474A (ja) 2005-07-20 2007-02-01 Canon Inc 加熱装置及び画像形成装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821302A (ja) 1981-07-29 1983-02-08 横河電機株式会社 薄膜抵抗分圧器
IT1257082B (it) * 1992-08-31 1996-01-05 Olivetti Canon Ind Spa Dispositivo riscaldante per il fissaggio di informazioni su un supporto d'informazione di formati differenti.
JP3298982B2 (ja) * 1993-06-10 2002-07-08 キヤノン株式会社 画像形成装置
JP3311111B2 (ja) 1993-10-18 2002-08-05 キヤノン株式会社 像加熱装置及び像加熱用回転体
US6096995A (en) * 1997-05-30 2000-08-01 Kyocera Corporation Heating roller for fixing
JP3634679B2 (ja) * 1999-07-30 2005-03-30 キヤノン株式会社 加熱装置
JP2003287970A (ja) * 2002-03-28 2003-10-10 Minolta Co Ltd ベルト式定着装置
JP4636870B2 (ja) 2003-12-26 2011-02-23 キヤノン株式会社 像加熱装置
JP4208772B2 (ja) * 2004-06-21 2009-01-14 キヤノン株式会社 定着装置、及びその定着装置に用いられるヒータ
JP2008166096A (ja) * 2006-12-28 2008-07-17 Harison Toshiba Lighting Corp 平板ヒータ、定着装置、画像処理装置
JP5010365B2 (ja) * 2007-06-26 2012-08-29 ハリソン東芝ライティング株式会社 板状ヒータ、加熱装置、画像形成装置
JP5253240B2 (ja) * 2008-03-14 2013-07-31 キヤノン株式会社 像加熱装置及びこの像加熱装置に用いられるヒータ
JP4610629B2 (ja) * 2008-03-31 2011-01-12 シャープ株式会社 定着装置、及びこれを備えた画像形成装置
JP2009259714A (ja) * 2008-04-18 2009-11-05 Sharp Corp 面状発熱体およびそれを備えた定着装置ならびに画像形成装置
JP5317550B2 (ja) * 2008-06-23 2013-10-16 キヤノン株式会社 定着装置
US7853165B2 (en) * 2008-12-04 2010-12-14 Xerox Corporation Apparatus and method for a multi-tap series resistance heating element in a belt fuser
JP5518080B2 (ja) * 2009-09-11 2014-06-11 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
EP2476027B1 (en) * 2009-09-11 2014-06-25 Canon Kabushiki Kaisha Heater, image heating device with the heater and image forming apparatus therein
JP5263131B2 (ja) * 2009-11-30 2013-08-14 ブラザー工業株式会社 定着装置
JP5791264B2 (ja) * 2009-12-21 2015-10-07 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
JP5495772B2 (ja) * 2009-12-21 2014-05-21 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
JP2012189722A (ja) * 2011-03-09 2012-10-04 Ricoh Co Ltd 定着装置、画像形成装置及び画像形成方法
JP5832149B2 (ja) * 2011-06-02 2015-12-16 キヤノン株式会社 画像加熱装置及びこの装置に用いられるヒータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57501308A (ja) * 1980-08-28 1982-07-22
JPH11282302A (ja) * 1998-03-31 1999-10-15 Brother Ind Ltd 定着器
JP2005209493A (ja) * 2004-01-23 2005-08-04 Canon Inc 加熱装置および画像形成装置
JP2006120600A (ja) * 2004-09-22 2006-05-11 Murakami Corp ヒータミラーの製造方法及びヒータミラー
JP2007025474A (ja) 2005-07-20 2007-02-01 Canon Inc 加熱装置及び画像形成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128567A (ja) * 2009-12-21 2011-06-30 Canon Inc 画像形成装置
JP2012252190A (ja) * 2011-06-03 2012-12-20 Ist Corp 定着装置
JPWO2013073276A1 (ja) * 2011-11-15 2015-04-02 株式会社美鈴工業 ヒータ並びにそれを備える定着装置及び乾燥装置
US9235166B2 (en) 2012-09-19 2016-01-12 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
JP2014164878A (ja) * 2013-02-22 2014-09-08 Sekisui Plastics Co Ltd 長尺ptcヒーターおよびその使用方法
JP2016164826A (ja) * 2015-03-06 2016-09-08 東芝ライテック株式会社 ヒータおよび画像形成装置
JP2017058415A (ja) * 2015-09-14 2017-03-23 キヤノン株式会社 画像形成装置
JP2017212206A (ja) * 2015-12-18 2017-11-30 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー 加熱装置
JP2020060799A (ja) * 2020-01-09 2020-04-16 株式会社東芝 定着装置、画像形成装置および定着装置の定着温度制御プログラム

Also Published As

Publication number Publication date
CN102484897A (zh) 2012-05-30
EP2477453B1 (en) 2020-07-15
CN102484897B (zh) 2014-04-02
US9445457B2 (en) 2016-09-13
EP2477453A4 (en) 2017-12-27
US9095003B2 (en) 2015-07-28
JP5518080B2 (ja) 2014-06-11
KR20120043147A (ko) 2012-05-03
JPWO2011030440A1 (ja) 2013-02-04
US20150289317A1 (en) 2015-10-08
KR101382052B1 (ko) 2014-04-04
US20140003848A1 (en) 2014-01-02
US20110062140A1 (en) 2011-03-17
EP2477453A1 (en) 2012-07-18
US8552342B2 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
JP5518080B2 (ja) ヒータ及びこのヒータを搭載する像加熱装置
US8884192B2 (en) Heater and image heating apparatus having the heater installed therein
JP5762060B2 (ja) ヒータ及びこのヒータを有する像加熱装置
US8698046B2 (en) Heater and image heating apparatus including same
JP5424786B2 (ja) ヒータ及びこのヒータを搭載する像加熱装置
JP6172360B1 (ja) 加熱装置、定着装置および画像形成装置
JP5777764B2 (ja) ヒータ及びこのヒータを搭載する像加熱装置
JP5479075B2 (ja) 画像形成装置
JP6129248B2 (ja) ヒータ及びこのヒータを搭載する像加熱装置
JP2017017016A (ja) ヒータ
JP6561609B2 (ja) ヒータおよび画像形成装置
JP6589434B2 (ja) ヒータおよび画像形成装置
CN103826335B (zh) 加热器和包括该加热器的图像加热装置
JP5777758B2 (ja) ヒータ及びこのヒータを搭載する像加熱装置
JP2015230349A (ja) ヒータ及びヒータを備える像加熱装置
JP2014089330A (ja) 画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161277.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530694

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009849219

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008613

Country of ref document: KR

Kind code of ref document: A