WO2011027895A1 - Plc型復調器及び光伝送システム - Google Patents

Plc型復調器及び光伝送システム Download PDF

Info

Publication number
WO2011027895A1
WO2011027895A1 PCT/JP2010/065313 JP2010065313W WO2011027895A1 WO 2011027895 A1 WO2011027895 A1 WO 2011027895A1 JP 2010065313 W JP2010065313 W JP 2010065313W WO 2011027895 A1 WO2011027895 A1 WO 2011027895A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
beam splitter
polarization beam
polarization
signal
Prior art date
Application number
PCT/JP2010/065313
Other languages
English (en)
French (fr)
Inventor
井上 崇
奈良 一孝
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2011529976A priority Critical patent/JP5684131B2/ja
Publication of WO2011027895A1 publication Critical patent/WO2011027895A1/ja
Priority to US13/409,343 priority patent/US8526102B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/613Coherent receivers including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers

Definitions

  • the present invention relates to a PLC-type demodulator that receives a polarization multiplexed coherent modulation signal obtained by coherently modulating X-polarized light and Y-polarized light, respectively, and then multiplexing the polarization, and an optical transmission system using the same.
  • a polarization-multiplexed digital coherent transmission system which modulates and multiplexes each of X-polarized light and Y-polarized light and demodulates the digital coherent receiver, is promising as a modulation system for large-capacity signal transmission.
  • the coherent transmission method is such that the light phase, or even the amplitude in addition to the light phase is modulated on the transmitting side, and the local oscillation light (90 degree hybrid) is used on the receiving side using an interference circuit called a 90-degree hybrid. (LO light) and signal light after transmission are mixed, and further received by a balanced photodetector (B-PD) to separate and demodulate the real and imaginary parts when the electric field of the light is regarded as a complex number Modulation method.
  • B-PD balanced photodetector
  • the receiver optically performs polarization separation of the input polarization multiplexed signal, but the polarization state of the polarization beam splitter (PBS) used there and the polarization state of the polarization multiplexed signal light.
  • PBS polarization beam splitter
  • the two orthogonal polarization components output from the PBS do not become signal light obtained by demultiplexing polarization multiplexing.
  • polarization demultiplexing can be performed by performing digital signal processing on the electrical signal output from the B-PD for each component optically polarized and separated. Furthermore, processing such as estimation of the relative phase difference between the signal light and the LO light, dispersion compensation, and error correction can be performed by digital signal processing.
  • polarization multiplexed digital coherent transmission is a system that greatly simplifies optical processing and improves reception characteristics by performing digital signal processing on the polarization multiplexed coherent modulation signal at the receiver. It is called a method and is very promising.
  • Polarization multiplexed quaternary phase modulation schemes are DP-QPSK (Dual Polarization / Quadrature / Phase / Shift / Keying). This is known as a wave multiplexing quaternary phase modulation system).
  • DP-QPSK modulation method when the symbol rate is 10 GSymbol / s, the bit rate is 40 Gbit / s, and when the symbol rate is 25 GSymbol / s, the bit rate is 100 Gbit / s. Can do.
  • the DP-QPSK modulation scheme simply means that a digital coherent receiver is applied at the time of demodulation.
  • the DP-QPSK modulation demodulator (DP-QPSK demodulator) first converts a DP-QPSK signal, which is a QPSK signal with an X polarization and a QPSK signal with a Y polarization, into a polarization beam splitter (PBS: Polarization Beam). Splitter) separates the X-polarized QPSK signal and the Y-polarized QPSK signal. Further, the X-polarized 90-degree hybrid and the Y-polarized 90-degree hybrid mix the separated X-polarized QPSK signal, Y-polarized QPSK signal, and local oscillation light (LO light), respectively. .
  • PBS Polarization Beam
  • each polarization phase modulation signal (QPSK signal light) is converted into an intensity modulation signal, corresponding to the real and imaginary parts of the signal photoelectric field in each polarization
  • the components (I component and Q component) are taken out independently.
  • the 90-degree hybrid generally divides the input signal light and local oscillation light into two branches, gives the two-branched local oscillation light a phase difference of 90 degrees as the relative phase difference of the light wave, and then splits into two branches. It is known as a circuit that mixes one signal light and local oscillation light, and the other branched and split signal light and local oscillation light.
  • PBS and 90-degree hybrid are individually realized by a spatial optical system and a quartz-based planar lightwave circuit (PLC) (see Non-Patent Documents 1 to 6).
  • Non-Patent Documents 1 to 3 disclose a 90-degree hybrid configured by combining a coupler and a PBS on one PLC. By making the optical waveguide lengths between IQ components the same, the IQ components are separated. A technique for reducing the time difference (skew) is shown.
  • Documents 4, 5, and 6 disclose a structure in which PBS is configured on one PLC.
  • Reference 6 discloses a PLC in which a plurality of PBSs are connected in cascade to form a two-stage configuration.
  • a DP-QPSK signal is received by combining a PBS or 90-degree hybrid formed in individual devices as disclosed in Non-Patent Documents 1 to 6, and an I component and a Q component of each polarization component are received.
  • the following problem occurs when a DP-QPSK demodulator that independently takes out is configured.
  • the DP-QPSK demodulator is configured to include a PBS and a 90-degree hybrid formed separately from the PBS (ie, formed on different chips), one device on which the PBS is formed (for example, PLC) and another device (for example, PLC) in which a 90-degree hybrid is formed need to be optically connected. For this reason, connection loss occurs, and alignment work and joining work for the optical connection are required, which increases the number of processes and increases the manufacturing cost.
  • the present invention has been made paying attention to such conventional problems, and its purpose is to reduce the connection loss between the polarization beam splitter and the 90-degree hybrid circuit and to reduce the manufacturing cost.
  • Another object of the present invention is to provide a PLC demodulator and an optical transmission system using the same.
  • This time difference is preferably 1/100 or less of the symbol time interval defined by the reciprocal of the symbol rate, and is preferably 1 ps or less for a 10 GSymbol / s signal.
  • skew is necessary to make the optical path length difference about 300 mm in vacuum and about 200 mm or less in silica glass with a refractive index of about 1.5.
  • Another object of the present invention is to provide a high-performance PLC type demodulator with reduced skew between XY polarization components and an optical transmission system using the same.
  • a first aspect of the present invention is a PLC type demodulator that receives and demodulates a polarization-multiplexed coherent modulation signal, and is one PLC chip on which a planar lightwave circuit is formed.
  • the planar lightwave circuit Are input to the planar lightwave circuit, and the polarization multiplexed coherent modulation signal input from the first input port is converted into an X polarization coherent modulation signal and a Y polarization coherent modulation.
  • a first polarization beam splitter that separates the signal into a signal, a first coherent modulation signal of the X polarization, and a local oscillation light that is input from the second input port, and outputs the first signal.
  • a planar lightwave circuit comprising: a 0 degree hybrid circuit; and a second 90 degree hybrid circuit that mixes and outputs the coherent modulation signal of the Y polarization and the local oscillation light input from the second input port.
  • the at least one polarization beam splitter, the first 90-degree hybrid circuit, and the second 90-degree hybrid circuit are integrated therein.
  • the X-polarized local oscillation light and the Y-polarized local oscillation light are mixed, and the X-polarized local oscillation light and the Y-polarized light are mixed.
  • a second polarization beam splitter that separates the wave into local oscillation light, and the polarization beam splitter and the second polarization beam splitter include an input side coupler and an output side coupler, and the input The polarization beam splitter and the second beam splitter are provided so that the side coupler is located on the output end side of the PLC chip facing the input end, and the output side coupler is located on the input end side.
  • the hybrid circuits are arranged in this order, and the PLC demodulator is a waveguide that connects the first input port and the input-side coupler of the polarization beam splitter so that the propagating light is folded back. And a waveguide connecting the second input port and the input-side coupler of the second polarization beam splitter, and a region bent so as to fold back the propagating light.
  • a first 90-degree hybrid circuit for transmitting one of the X-polarized coherent modulation signal and the Y-polarized coherent modulation signal.
  • a first waveguide having a region bent so as to return propagating light, an output-side coupler of the polarization beam splitter, and the second waveguide A second waveguide for connecting the 0-degree hybrid circuit and transmitting the other of the X-polarized coherent modulated signal and the Y-polarized coherent modulated signal, bent so as to fold the propagating light.
  • a second waveguide having a curved region, an output-side coupler of the second polarization beam splitter, and the first 90-degree hybrid circuit, and the local oscillation light signal of the X polarization and the Y polarization A third waveguide for transmitting one of the local oscillation light waves, the third waveguide having a region bent so as to fold the propagating light, and the output of the second polarization beam splitter
  • the optical path length of the first waveguide, the optical path length of the second waveguide, the optical path length of the third waveguide, and the fourth The optical path lengths of the waveguides are the same, the second waveguide and the third waveguide intersect at an intersection angle 2 ⁇ , and the first waveguide is the output of the polarization beam splitter.
  • the second waveguide includes a third bending waveguide connected to the output-side coupler of the polarization beam splitter, and a second linear waveguide connected to the third bending waveguide.
  • a fourth bending waveguide connected to the second linear waveguide, wherein the third waveguide is the second polarization beam.
  • a fifth bending waveguide connected to the output-side coupler of the splitter; a third linear waveguide connected to the fifth bending waveguide; and a sixth bending waveguide connected to the third linear waveguide.
  • a fourth waveguide connected to the output-side coupler of the second polarization beam splitter, and the fourth waveguide is connected to the seventh bent waveguide.
  • a fourth linear waveguide and an eighth bending waveguide connected to the fourth linear waveguide, and the first, third, fifth, and seventh bending waveguides are:
  • the second, fourth, sixth, and eighth bending waveguides have the same shape as a fan-shaped arc having a bending radius r and a central angle ⁇
  • the second, fourth, sixth, and eighth bending waveguides have a bending radius r and a central angle of ⁇ 2 ⁇ (0 ⁇ ⁇ ⁇ / 2) having the same shape as the fan-shaped arc having an angle greater than ⁇ ⁇ / 2)
  • the length l of the first, second, third, and fourth straight waveguides is the output
  • the distance between two waveguides adjacent to the coupler is p
  • the second linear waveguide and the fourth bending waveguide are And the second waveguide and the third waveguide intersect each other at the boundary between the third straight waveguide and the fifth bent wave
  • the path through which the X-polarized coherent modulation signal propagates and the path through which the Y-polarized coherent modulation signal propagate are connected to the PLC chip from the input end.
  • the effective optical path lengths up to the output terminals are set to be the same.
  • X-polarized coherent modulated signals for example, QPSK signal (X signal)
  • Y-polarized coherent modulated signals for example, QPSK signal (Y signal)
  • the path through which the X signal propagates and the path through which the Y signal propagate are set so that the effective optical path lengths from the input end to the output end are all the same.
  • a high-performance PLC type receiver with reduced skew can be realized.
  • the first aspect there are two or more polarization beam splitters, and the polarization beam splitters and the first and second 90-degree hybrid circuits are close to each other. It is arranged.
  • a sixth aspect of the present invention is characterized in that, in the fifth aspect, the polarization beam splitter is cascade-connected in two or more stages.
  • the extinction ratio of the polarization beam splitter can be expanded.
  • the PLC chip is a rectangle that is substantially square, and a first-stage polarization beam splitter is formed at a central portion of the rectangular PLC chip.
  • a second-stage second and third polarization beam splitters are formed in parallel across the second polarization beam splitter, respectively, and the first-stage polarization beam of the second polarization beam splitter is formed.
  • One of the first and second 90-degree hybrid circuits is formed on the opposite side of the splitter, and the first and second of the third polarization beam splitter are on the opposite side of the first-stage polarization beam splitter. The other of the 90-degree hybrid circuit is formed.
  • the PLC chip can be miniaturized, and a small PLC demodulator can be realized.
  • the output end of the first-stage polarization beam splitter and the input end of the second polarization beam splitter are connected from the output end to the input end.
  • a bent waveguide whose total absolute value of rotation angles at which the sign is not reversed is greater than 180 degrees is connected as a folded waveguide, and the output end of the first-stage polarization beam splitter, 3 is connected to the input end of the polarization beam splitter 3 as a folded waveguide from the output end toward the input end. It is characterized by being.
  • two or more polarization beam splitters and two 90-degree hybrid circuits are provided in one PLC chip while ensuring a bending radius that does not cause a problem of loss due to leakage light in each bending waveguide. Can be placed in close proximity in parallel. Therefore, a small PLC demodulator can be realized without degrading the optical characteristics.
  • the output terminal of the second polarization beam splitter and one input terminal of the two 90-degree hybrid circuits are connected to the input terminal from the output terminal.
  • a bending waveguide whose total absolute value of rotation angles at which the sign is not reversed toward the end is larger than 180 degrees is connected as a folded waveguide, and the output end of the third polarization beam splitter is connected to the second end.
  • the other input end of each of the 90-degree hybrid circuits is connected from the output end toward the input end as a folded waveguide with a bending waveguide having a total absolute value of the rotation angle at which the sign is not inverted greater than 180 degrees. It is characterized by.
  • two or more polarization beam splitters and two 90-degree hybrid circuits are provided in one PLC chip while ensuring a bending radius that does not cause a problem of loss due to leakage light in each bending waveguide. In close proximity to each other. Therefore, a small PLC demodulator can be realized without degrading the optical characteristics.
  • the PLC-type DP-QPSK demodulator in the first aspect, is configured such that the polarization beam splitter is an input terminal of the polarization beam splitter.
  • the Mach-Zehnder interferometer includes an input-side coupler, an output-side coupler as an output end of the polarization beam splitter, and two arm waveguides connected between the couplers.
  • each of the polarization beam splitter, the second polarization beam splitter, and the third polarization beam splitter is an input terminal of the polarization beam splitter.
  • a Mach-Zehnder interferometer comprising: an input side coupler as an output side; an output side coupler as an output end of a polarization beam splitter; and two arm waveguides connected between the couplers; A cross port of the output-side coupler of the beam splitter and one input-side coupler of the first and second 90-degree hybrid circuits are connected by the first folded waveguide, and the third polarization The cross port of the output side coupler of the wave beam splitter and the other input side coupler of the first and second 90-degree hybrid circuits are connected to the second loopback. Characterized in that it is connected by waveguides.
  • the bend radius of the folded waveguide that connects the second polarization beam splitter and one 90-degree hybrid circuit, and the third polarization beam splitter and the other 90-degree hybrid circuit are connected.
  • the bending radii of the folded waveguides can be increased. Furthermore, it can be expected to increase the polarization extinction ratio of each polarization beam splitter.
  • the second input port is an input of X-polarized local oscillation light having the same polarization and the same wavelength as the X-polarized coherent modulation signal.
  • a Y-polarized local oscillation light input port having the same polarization and the same wavelength as the Y-polarized coherent modulation signal.
  • a thirteenth aspect of the present invention is the first path through which the X-polarized coherent modulation signal separated by the polarization beam splitter is propagated in the first aspect, A first path connecting the first 90-degree hybrid circuit; and a second path through which the Y-polarized coherent modulation signal separated by the polarization beam splitter propagates, the polarization beam A second path connecting the splitter and the second 90-degree hybrid circuit; and a half-wave plate inserted in the first path or the second path, the first and second The 90-degree hybrid circuit is configured such that signals are incident in the same polarization state.
  • Birefringence between an X-polarized coherent modulated signal (for example, a QPSK signal (X signal)) and a Y-polarized coherent modulated signal (for example, a QPSK signal (Y signal)) separated by a polarization beam splitter This causes a skew because there is an effective refractive index difference caused by.
  • the number of the second input ports is one, and local oscillation of X polarization or Y polarization input from the second input port. It further comprises a path configured to separate light in the planar lightwave circuit and enter the first and second 90-degree hybrid circuits, respectively.
  • LO light source since only one LO light source that outputs X-polarized or Y-polarized LO light is provided as a local oscillation light source (LO light source), the manufacturing cost of the receiver is further reduced. can do.
  • two inspection input ports for inputting light that passes only through the second and third polarization beam splitters;
  • Two inspection output ports for outputting light respectively passing through the three polarization beam splitters, and a heater is provided in at least one of the two arm waveguides of the first stage polarization beam splitter. It is characterized by being.
  • the polarization extinction ratios of the second and third polarization beam splitters corresponding to the respective output ports have desired values.
  • a voltage is applied to the heater to satisfy the phase trimming individually.
  • the polarization extinction ratio of the second and third polarization beam splitters can be adjusted to a desired value.
  • a sixteenth aspect of the present invention is an optical transmission system using a PLC-type demodulator, in which a transmitter that modulates a light wave and outputs a polarization multiplexed optical signal, and the transmitter output from the transmitter An optical transmission path for transmitting the polarization multiplexed optical signal; and a receiver for coherently receiving the polarization multiplexed optical signal transmitted through the transmission path, wherein the receiver outputs local oscillation light.
  • a light source, a PLC-type demodulator according to the first aspect an X-polarized I-channel and Q-channel photodetector, a Y-polarized I-channel and Q-channel photodetector, And a digital signal processing circuit.
  • the seventeenth aspect of the present invention is characterized in that, in the sixteenth aspect, the modulation method is quaternary phase modulation.
  • a PLC type demodulator that eliminates the connection loss between the polarization beam splitter and the 90-degree hybrid circuit and reduces the manufacturing cost, and an optical transmission system using the same. it can.
  • PBS polarization beam splitter
  • FIG. 10 is an enlarged view showing an input unit of the PLC type DP-QPSK demodulator shown in FIG. 9. It is explanatory drawing which shows the detail of one folding waveguide in the demodulator shown in FIG. It is an enlarged view of FIG.
  • FIG. 14 is an enlarged view of FIG. 13. It is explanatory drawing which shows the detail of another folding waveguide in the demodulator shown in FIG. It is explanatory drawing which shows the detail of another folding waveguide in the demodulator shown in FIG. It is explanatory drawing which shows the detail of another folding waveguide in the demodulator shown in FIG. It is explanatory drawing which shows the detail of another folding waveguide in the demodulator shown in FIG. It is explanatory drawing which shows the detail of another folding waveguide in the demodulator shown in FIG. It is a block diagram which shows the basic composition of the PLC type DP-QPSK demodulator concerning the 6th Embodiment of this invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical transmission system using a PLC type DP-QPSK demodulator according to an embodiment of the present invention. It is a block diagram which shows the basic composition of the PLC type DP-QPSK demodulator concerning the 7th Embodiment of this invention. It is a figure for demonstrating the structure of the 2nd return area
  • each embodiment of a DP-QPSK modulation type PLC-type DP-QPSK demodulator that receives a DP-QPSK signal will be described as an example of a PLC-type demodulator that receives a polarization multiplexed coherent modulation signal.
  • PLC DP-QPSK demodulator according to the first embodiment A PLC type DP-QPSK demodulator 1 according to the first embodiment will be described with reference to FIGS.
  • the PLC-type DP-QPSK demodulator 1 generates an X-polarized QPSK signal and a Y-polarized QPSK signal obtained by performing quaternary phase modulation on orthogonal X-polarized light and Y-polarized light from a transmitter (not shown).
  • This is a DP-QPSK modulation type demodulator that receives a multiplexed DP-QPSK signal 2.
  • the “DP-QPSK demodulator” used in the optical transmission system of the DP-QPSK modulation system is a DP-QPSK signal (polarized wave) obtained by multiplexing an X-polarized QPSK signal and a Y-polarized QPSK signal.
  • Multiplex quaternary phase modulation signal) is input and separated into two orthogonal polarization components by polarization beam splitter (PBS), then the signal light of each polarization component and local oscillation light (LO light) are hybrided 90 degrees
  • PBS polarization beam splitter
  • LO light local oscillation light
  • the “DP-QPSK demodulator” referred to in this specification is a receiver used in an optical transmission system that does not include B-PD and uses the DP-QPSK modulation method.
  • the demodulator of the present invention is a demodulator including at least a PBS and a 90-degree hybrid, and its application is not limited to a DP-QPSK modulation signal, but is applicable to QAM (Quadrature Amplitude Modulation) and OFDM (Quadrature Frequency Division
  • the present invention can also be applied to an optical transmission system using a general coherent modulation scheme (multiplexing). In the following description, it is assumed that the present invention is applied to DP-QPSK modulation.
  • the PLC type DP-QPSK demodulator (hereinafter referred to as demodulator) 1 includes a single PLC chip 3 in which a planar lightwave circuit is formed.
  • the PLC chip 3 includes a planar lightwave circuit including a plurality of optical waveguides each including a core and a clad by combining an optical fiber manufacturing technique and a semiconductor micromachining technique on a substrate (not shown) such as a quartz substrate or a silicon substrate. PLC) is formed.
  • the PLC is, for example, a quartz-based planar lightwave circuit.
  • the input end 4 of the PLC chip 3 is provided with an input port In1 for a DP-QPSK signal 2 as a polarization multiplexed coherent modulation signal, and input ports In2 and In3 for local oscillation light.
  • Local oscillation light (X-polarized LO light) having the same polarization and the same wavelength as the X-polarized QPSK signal is input to the input port In2.
  • the local oscillation light (Y-polarized LO light) having the same polarization and the same wavelength as the Y-polarized QPSK signal is input to the input port In3.
  • the output port 5 of the PLC chip 3 is provided with signal light output ports Out1 to Out8. From the output ports Out1 and 2, the signal light of the I channel component (real part: cos component on the complex plane) of the orthogonal components I and Q obtained by converting the X-polarized QPSK signal into an intensity modulated signal is output. From the ports Out3 and 4, the signal light of the Q channel component (imaginary part: sin component on the complex plane) of the orthogonal components I and Q obtained by converting the X-polarized QPSK signal into the intensity modulation signal is output.
  • the output ports Out1 and 2 From the output ports Out1 and 2, the signal light of the I channel component (real part: cos component on the complex plane) of the orthogonal components I and Q obtained by converting the X-polarized QPSK signal into an intensity modulated signal is output. From the ports Out3 and 4, the signal light of the Q channel component (imaginary part: sin component on the complex plane) of the orthogonal components I and Q obtained by converting the X
  • the I-channel component signal light obtained by converting the Y-polarized QPSK signal into the intensity-modulated signal is output.
  • the Y-polarized QPSK signal is the intensity-modulated signal.
  • the signal light of the Q channel component converted into is output respectively.
  • a polarization beam splitter (PBS) 30 that separates the DP-QPSK signal 2 into an X-polarized QPSK signal (X signal) and a Y-polarized QPSK signal (Y signal).
  • PBS polarization beam splitter
  • the PBS 30 includes a Mach-Zehnder interferometer (MZI) 35 having two couplers 31 and 32 and two arm waveguides 33 and 34 connected between the couplers 31 and 32, as shown in FIG. .
  • the input-side coupler 31 and the output-side coupler 32 are 3 dB couplers each composed of a directional coupler (DC).
  • the input optical waveguide 7 is connected to one of the two input ports of the input-side coupler 31 (see FIGS. 1 and 2). That is, the PBS 30 is configured to separate the DP-QPSK signal 2 as a polarization multiplexed coherent modulation signal into an X polarization component and a Y polarization component.
  • the 90-degree hybrid circuit 41 mixes the X-polarized QPSK signal as the X-polarized signal separated by the PBS 30 and the local oscillation light, and separates the X-polarized QPSK signal into orthogonal components I and Q. And output. That is, the 90-degree hybrid 41 mixes and outputs the X polarization signal separated by the PBS 30 and the local oscillation light.
  • the 90-degree hybrid circuit 41 includes two input-side couplers 20 and 21, two output-side couplers 22 and 23, input-side couplers 20 and 21, and output-side couplers 22 and 23. Arm waveguides 24 to 27 connected to each other.
  • Y-branch couplers are used for the input-side couplers 20 and 21, respectively, and wavelength-independent directional couplers (WINC) are used for the output-side couplers 22 and 23, respectively.
  • the arm waveguides 24 to 27 may be referred to as a route 0 to a route 3.
  • X signal (X-polarized QPSK signal) is input to the input port 41a of the 90-degree hybrid circuit 41, and X-polarized LO light is input to the input port 41b (see FIGS. 1 and 3).
  • the 90-degree hybrid circuit 41 is configured so that the X signal is branched into two by the input-side coupler 20 and then enters one of the input ports of the couplers 22 and 23 through the paths 0 and 2, respectively.
  • the 90-degree hybrid circuit 41 is configured such that the LO light is branched into two by the input-side coupler 21 and then enters the other input port of the couplers 22 and 23 through the paths 1 and 3, respectively. .
  • the optical path lengths of the paths 0 and 2 are the same length L, and the optical path lengths of the paths 1 and 3 are set so that the optical path difference of the paths 1 and 3 is 90 degrees in terms of phase.
  • the optical path length of the path 1 is longer than the optical path lengths of the paths 0 and 2 by an amount corresponding to ⁇ / 4 radians in terms of phase
  • the optical path length of the path 3 is ⁇ / in terms of phase than the optical path lengths of the paths 0 and 2.
  • the amount corresponding to 4 radians may be shortened.
  • the path 0 (arm waveguide 24) includes a bending waveguide 24a having a rotation angle + ⁇ 1 , a straight waveguide 24b having a length l 1 , a bending waveguide 24c having a rotation angle ⁇ 1 and a length.
  • a linear waveguide 24d having an angle h
  • a bending waveguide 24e having a rotation angle ⁇ 2
  • a linear waveguide 24f having a length l 2
  • a bending waveguide 24g having a rotation angle + ⁇ 2 .
  • the bending radius r of each bending waveguide is an optimum value, for example, 2000 ⁇ m.
  • reference numeral 24 h is a section in which the phase trimming heater 28 is disposed.
  • the rotation angle ⁇ is an angle (center angle) formed by two bending radii forming an arc when the bending waveguide (bent waveguide) coincides with an arc having a bending radius r (curvature radius r). ) Therefore, a fan-shaped arc having a bending radius r and a central angle (that is, a rotation angle) ⁇ is the shape of the bending waveguide having the rotation angle ⁇ .
  • the 90-degree hybrid circuit 41 four parameters ⁇ 1 , ⁇ 2 , l 1 , and l 2 are adjusted under the condition that the bending radii of the bending waveguides 24a, 24c, 24e, and 24g are fixed, and the path 0
  • the optical path length can be adjusted to an arbitrary optical path length.
  • the other paths 1 to 3 (arm waveguides 25 to 27) have the same structure.
  • the pitch between the input ports 41a and 41b is an angle (intersection angle) ⁇ between the path 1 and the path 2 and the bending radius of the bending waveguide 24a.
  • the bending waveguides of the arm waveguides 24 to 27 have the same bending radius r.
  • the 90 degree hybrid circuit 42 has the same structure as the 90 degree hybrid circuit 41.
  • the DP-QPSK signal 2 input from the input port In1 first enters the PBS 30 through the input optical waveguide 7, and the PBS 30 causes the X-polarized QPSK signal (X signal) and Y Polarization is separated into a polarized QPSK signal (Y signal).
  • the X signal passes through the optical waveguide 8 and enters the input port 41a of the 90-degree hybrid circuit 41, and the Y signal enters the input port 42a of the 90-degree hybrid circuit 42 through the optical waveguide 9.
  • the X-polarized LO light incident through the optical waveguide 10 from the input port In2 and the X signal incident through the optical waveguide 8 are mixed. That is, the X signal passing through the path 0 and the LO light passing through the path 1 are mixed by the output-side coupler 22, and the X signal passing through the path 2 and the LO light passing through the path 3 are mixed by the output-side coupler 23. Is done.
  • the signal light of the I channel component and the signal light of the Q channel component obtained by converting the X signal, which is an X-polarized QPSK signal, into an intensity modulation signal are extracted independently.
  • the signal light of the I channel component in the X polarization is output from the output ports Out 1 and 2 through the output optical waveguides 11 and 12.
  • the Q-channel component signal light is output from the output ports Out 3 and 4 through the output optical waveguides 13 and 14, respectively.
  • the signal light of the I channel component and the Q channel component in the X polarization is, for example, balanced photodiodes (B-PD) 61 and 62 via an optical fiber or not via an optical fiber. Respectively.
  • B-PD balanced photodiodes
  • the 90-degree hybrid circuit 42 Y-polarized LO light incident through the optical waveguide 19 from the input port In3 and Y-polarized QPSK signal incident through the optical waveguide 9 (in PBS 30) And the separated Y-polarized signal). That is, the 90-degree hybrid 42 mixes and outputs the Y-polarized signal separated by the PBS 30 and the local oscillation light. As a result, the signal light of the I channel component and the signal light of the Q channel component obtained by converting the Y signal into the intensity modulation signal are extracted independently. The signal light of the I channel component in the Y polarization is output from the output ports Out 5 and 6 through the output optical waveguides 15 and 16.
  • the signal light of the Q channel component passes through the output optical waveguides 17 and 18, and is output from the output ports Out7 and 8, respectively.
  • the signal light of the I channel component and the Q channel component in the Y polarization is input to the B-PD (not shown) via the optical fiber or not via the optical fiber.
  • the demodulator 1 is a demodulator of a coherent optical transmission system in which the X signal and the X polarized LO light, and the Y signal and the Y polarized LO light are mixed by the 90-degree hybrid circuits 41 and 42, respectively. is there.
  • the I and Q channels of the X signal are output from the output ports Out1 to 4, and the I and Q channels of the Y signal are output from the output ports Out5 to 8.
  • the effective optical path length from the input end 4 to the output end 5 is set to be the same for a plurality of signal light paths, that is, the X signal light path and the Y signal light path. ing.
  • the difference in effective optical path length from the input terminal 4 to the output terminal 5 is set to be equal to or less than a desired value for the X signal path and the Y signal path.
  • the desired value when the optical path length difference is converted into the signal arrival time difference is preferably 5 ps or less as an example.
  • the effective optical path length of the four paths from the output part of the PBS 30 to the output ports Out1 to 4 and the path of the Y signal separated by the PBS 30 are set to be the same.
  • PBS 30 that separates the DP-QPSK signal 2 into an X-polarized QPSK signal (X signal) and a Y-polarized QPSK signal (Y signal) in the PLC of the PLC chip 3;
  • Two 90 degree hybrid circuits 41 and 42 for polarization are integrated.
  • the effective optical path length of the four paths from the output section of the PBS 30 to the output ports Out1 to 4 in the path of the X signal and the output path Out5 from the output section of the PBS 30 in the path of the Y signal are set to be the same.
  • the skew between XY polarization components can be reduced to 5 ps or less.
  • FIG. 6 shows a basic configuration of a PLC type DP-QPSK demodulator 1A according to the second embodiment.
  • the number of LO light input ports is one in the PLC type DP-QPSK demodulator 1 according to the first embodiment.
  • the number of LO light input ports is one in the PLC type DP-QPSK demodulator 1 according to the first embodiment.
  • only an input port In2 to which X polarized LO light is input is provided as an LO light input port.
  • the X-polarized LO light is branched into two in the PLC, and the branched X-polarized LO light is incident on the 90-degree hybrid circuits 41 and 42, respectively.
  • the X-polarized LO light passes through the optical waveguide 10, is branched into two optical waveguides 10a and 10b, and then enters the 90-degree hybrid circuits 41 and 42, respectively.
  • the DP-QPSK signal 2 is modulated by independent polarization information (X polarization and Y polarization), which is polarization-separated by the PBS 30, respectively.
  • a half-wave plate ( ⁇ / 2 plate) 40 is inserted in a path through which one of the signals propagates.
  • the wave plate 40 has a main axis that forms an angle of 45 degrees with an axis that is perpendicular to the light guiding direction and parallel to the plane of the PLC.
  • the Y polarization component is converted into the X polarization.
  • the X signal and the Y signal are incident on the 90-degree hybrid circuits 41 and 42 in the same polarization state.
  • the 90-degree hybrid circuits 41 and 42 receive the X signal and the Y signal, respectively. Both are incident in the state of X polarization. Since there is an effective refractive index difference caused by birefringence between the signals of each polarization separated by the PBS 30, this causes a skew. However, this configuration can be reduced.
  • Other configurations of the demodulator 1A are the same as those of the demodulator 1 according to the first embodiment.
  • the demodulator 1 requires two light sources, an LO light source that outputs X-polarized LO light and an LO light source that outputs Y-polarized LO light.
  • an LO light source that outputs X-polarized LO light
  • an LO light source that outputs X-polarized LO light
  • an optical transmission system configured using the demodulator 1A. The manufacturing cost can be further reduced.
  • the half-wave plate 40 is inserted into the optical waveguide 9 through which the Y signal polarized by the PBS 30 propagates, but the half of the optical waveguide 8 through which the X signal polarized by the PBS 30 propagates.
  • a wave plate 40 may be inserted.
  • both the X signal and the Y signal are incident on the respective 90-degree hybrid circuits 41 and 42 in a Y-polarized state.
  • the QPSK separated by the PBS 30 is provided.
  • the polarization state of the signal can be unified to X polarization or Y polarization. Further, the two QPSK signals after unifying the polarizations, that is, the QPSK signal incident on the 90-degree hybrid 41 and the QPSK signal incident on the 90-degree hybrid 42 are both propagated through the same effective refractive index path. be able to.
  • the DP-QPSK signal obtained by multiplexing two QPSK signals ie, an X-polarized QPSK signal and a Y-polarized QPSK signal
  • the DP-QPSK signal obtained by multiplexing two QPSK signals, ie, an X-polarized QPSK signal and a Y-polarized QPSK signal. Therefore, it is possible to demodulate only with one polarization of LO light, and to reduce skew due to birefringence.
  • FIG. 7 shows a basic configuration of a PLC type DP-QPSK demodulator 1B according to the third embodiment.
  • the PLC type DP-QPSK demodulator 1B three PBSs 30, 36, and 37 are provided in the PLC of the PLC chip 3 in the PLC type DP-QPSK demodulator 1 according to the first embodiment.
  • Each of the second PBS (X) 36 and the second PBS (Y) 37 is cascaded with the first PBS 30.
  • the spatial arrangements of the PBSs 36 and 37 and the two 90-degree hybrid circuits 41 and 42 are close to each other in order to reduce the size of the PLC chip 3.
  • the PBSs 36 and 37 are MZIs having two couplers and two arm waveguides 33 and 34 connected between both couplers, like the PBS 30 of the demodulator 1 according to the first embodiment. 2).
  • the DP-QPSK signal 2 input from the input port In1 first enters the first PBS 30 through the input optical waveguide 7, and the first PBS 30 causes the X-polarized QPSK signal (X signal). And polarized QPSK signal (Y signal).
  • the X signal and the Y signal enter the second PBS (X) 36 and the second PBS (Y) 37 through the optical waveguides 38 and 39, respectively.
  • the second PBS (X) 36 cuts the Y polarization component included in the X signal output from the first PBS 30. As a result, an X signal having a high extinction ratio is output from the second PBS (X) 36 to the 90-degree hybrid circuit (X) 41 for X polarization via the optical waveguide 8.
  • the second PBS (Y) 37 cuts the X polarization component included in the Y signal output from the first PBS 30. As a result, a Y signal having a high extinction ratio is output from the second PBS (Y) 37 to the 90-degree hybrid circuit (Y) 42 for Y polarization via the optical waveguide 9.
  • the 90-degree hybrid circuit (X) 41 and the 90-degree hybrid circuit (X-polarized LO light and Y-polarized LO light are the same as the demodulator 1 according to the first embodiment).
  • Y Each is incident on 42.
  • Other configurations of the demodulator 1B are the same as those of the demodulator 1.
  • the polarization extinction ratio when entering the 90-degree hybrid (X) 41 can be increased by adopting a two-stage configuration of the first PBS 30 and the second PBS (X) 36 for the X signal.
  • the two-stage configuration of the first PBS 30 and the second PBS (Y) 37 can increase the polarization extinction ratio when entering the 90-degree hybrid (Y) 42.
  • the PLC chip 3 can be reduced in size, and a small PLC type DP-QPSK demodulation can be achieved. Can be realized.
  • FIG. 8 shows a basic configuration of a PLC-type DP-QPSK demodulator 1C according to the fourth embodiment.
  • the PLC type DP-QPSK demodulator 1C three PBSs 30, 36, and 37 are provided in the PLC of the PLC chip 3.
  • the first PBS 30 in the first stage, the second PBS (X) 36 and the third PBS (Y) 37 in the second stage formed in parallel with the first PBS 30 in between.
  • 90-degree hybrid circuits 41 and 42 formed in parallel with the second and third PBSs 36 and 37 interposed therebetween.
  • the first PBS 30 and the second and third PBSs 36 and 37 are connected via folded waveguides 43 and 44, respectively, and the second PBS 36 and 37 and the 90-degree hybrid circuits 41 and 42 are folded waveguides 45, respectively. , 46 are connected.
  • each folded waveguide is composed of, for example, a curved waveguide having a constant curvature radius and a rotation angle of 180 degrees on the PLC substrate surface.
  • this demodulator 1C in order to reduce the size of the PLC chip 3, a configuration is adopted in which all circuits are arranged in a narrow area of the rectangular PLC chip 3 that is nearly square.
  • the other configuration of the demodulator 1C is the same as that of the demodulator 1.
  • the PLC-type DP-QPSK demodulator 1B according to the third embodiment can be further reduced in size.
  • FIG. 9 shows a basic configuration of a PLC type DP-QPSK demodulator 1D according to the fifth embodiment. 11 to 18, + ⁇ indicates that the rotation angle ⁇ of the bending waveguide is a positive value, and ⁇ indicates that the rotation angle ⁇ of the bending waveguide is a negative value.
  • This PLC type DP-QPSK demodulator 1D has the following configuration. (1) As shown in FIG. 9, in the demodulator 1D, a first long PBS 30 is formed at the center of a rectangular PLC chip 3 that is nearly square, and the second stage in parallel across the PBS 30. Long PBSs 36 and 37 are formed. Further, a 90-degree hybrid circuit 41 is located above the second-stage PBS (second polarization beam splitter) 36 in FIG. 9, and a second-stage PBS (32nd polarization beam splitter) 37 is located below FIG. The 90-degree hybrid circuits 42 are respectively located on the side.
  • the X-polarized LO light input to the input port In2 is bifurcated by the Y-branch coupler 75 and passes through the optical waveguides 76 and 77 to the 90-degree hybrid circuit 41.
  • the light enters the input-side coupler 21 and the input-side coupler 21 of the 90-degree hybrid circuit 42, respectively.
  • the optical waveguides 76 and 77 propagate the X-polarized LO light bifurcated by the Y-branch coupler 75 in the vertical direction in the drawing from the vicinity of the Y-branch coupler 75, and then rightward in FIG. 9. So as to be incident on the couplers 21 and 21 on the input side of the 90-degree hybrid circuits 41 and 42, respectively.
  • the DP-QPSK signal 2 input to the input port In1 is input to the coupler 31 on the input side of the PBS 30 through the optical waveguide 73 bypassing the Y branch coupler 75. .
  • the output-side coupler 32 of the first-stage PBS 30 and the input-side coupler 36a of the second-stage PBS 36 formed on the upper side include an optical function on the front-stage side. From the output end of the portion (coupler 32) to the input end of the optical function portion (coupler 36a) on the rear stage side, the absolute value of the total rotation angle at which the sign is not inverted is greater than 180 degrees, that is, the total rotation angle ⁇ . Are connected by a folded waveguide 43 formed of a bent waveguide greater than +180 degrees.
  • the direction in which light is incident on the input port is referred to as the x direction (left and right direction in FIG. 9), and the vertical direction perpendicular to the x direction is referred to as the y direction.
  • the rotation angle ⁇ of the folded waveguide 43 which is a combination of the + ⁇ bending waveguide and the ⁇ bending waveguide, is expressed by the sign from the output end of the optical function portion on the front side to the input end of the optical function portion on the rear side.
  • the rotation angle ⁇ is less than 180, the amount of the folded waveguide 43 traveling in the negative x direction (leftward in FIG. 9) from the output end 5 side toward the input end side is not preferable. Further, when the rotation angle ⁇ exceeds 270 °, the end point of the folded waveguide 43 does not go upward in the figure, that is, the side opposite to the optical function part on the rear stage side arranged in parallel (negative from the start point). This is not preferable because it proceeds in the y direction).
  • the folded waveguide 43 includes a + 90 ° bent waveguide 43a, a + 90 ° bent waveguide 43b, and a bent waveguide 43c of several degrees in order from the coupler 32 on the output side.
  • the bending waveguide 43c has a bending waveguide 43c1 of + several degrees and a bending waveguide 43c2 of ⁇ several degrees, and the bending waveguide 43c2 passes through the straight waveguide 43c3.
  • the input side coupler 36a of the PBS 36 is connected.
  • the second-stage PBS 30 is sandwiched between the first-stage PBS 30 on the PLC chip 3 while ensuring the bending radii to the respective bending waveguides 43a, 43b, and 43c so that the loss due to leakage light does not become a problem.
  • PBSs 36 can be placed close together in parallel.
  • the output-side coupler 32 of the first-stage PBS 30 and the input-side coupler 37a of the second-stage PBS 37 formed in parallel on the lower side in the figure are provided.
  • the absolute value of the total rotation angle at which the sign is not inverted that is, the total rotation angle ⁇
  • the total rotation angle ⁇ Are connected by a folded waveguide 44 formed of a bent waveguide such that is smaller than ⁇ 180 degrees. In this case, bending having a negative rotation angle ( ⁇ ) continues, and the total absolute value of the rotation angles is greater than 180 degrees.
  • the folded waveguide 44 includes, in order from the output-side coupler 32 side, a ⁇ 90 ° bent waveguide 44a, a ⁇ 90 ° bent waveguide 44b, and a bent waveguide 44c of several degrees.
  • the bending waveguide 44c includes a ⁇ several bending waveguide 44c1 and a + several bending waveguide 44c2, and the bending waveguide 44c2 is connected to the PBS 37 through the straight waveguide 44c3. Are connected to the coupler 37a on the input side.
  • the second waveguide stage 44a, 44b, 44c has a second radius so that the first PBS 30 is sandwiched on the PLC chip 3 while ensuring a bending radius that does not cause a problem of loss due to leakage light.
  • PBSs 37 can be placed in close proximity in parallel.
  • the output-side coupler 36b of the second-stage PBS 36, and a 90-degree hybrid circuit formed on the upper side (in the positive y direction (upward in FIG. 9)) 41 the coupler 20 on the input side is combined with a bending waveguide having a positive rotation angle (+ ⁇ ) and a bending waveguide having a negative rotation angle ( ⁇ ), so that the optical function portion (coupler 36b) on the front stage side is combined.
  • the folded waveguide 45 is connected so that the absolute value of the total rotation angle at which the sign is not inverted is greater than 180 degrees.
  • the rotation angle ⁇ of the folded waveguide 45 which is a combination of the + ⁇ bent waveguide and the ⁇ bent waveguide, is also preferably set in the above-mentioned range in the same manner as the folded waveguide 43.
  • the folded waveguide 45 includes, in order from the output-side coupler 36b side, a bent waveguide 45a of + several tens of degrees, a bent waveguide 45b of ⁇ several tens of degrees, a bent waveguide 45c of ⁇ 90 °, a straight waveguide 45d, It has a ⁇ 90 ° bent waveguide 45e, a substantially ⁇ 45 ° bent waveguide 45f, and a substantially + 45 ° bent waveguide 45g.
  • the second-stage PBS 36 and the 90-degree hybrid circuit 41 are secured to the bending waveguides 45a, 45b, 45c, 45e, 45f, and 45g while ensuring a bending radius that does not cause a loss due to leakage light.
  • the rotation angle of the straight waveguide 45d is zero, the sign of the angle ⁇ is not reversed.
  • the outgoing light from the PBS 36 configured as a Mach-Zehnder interferometer is configured to enter the folded waveguide 45 through the cross port when viewed from the folded waveguide 43 of the output side coupler 36b. .
  • the extinction ratio of the PBS can be increased, and at the same time, the bending radius of the folded waveguide 45 can be increased.
  • the coupler 20 on the input side of the circuit 42 combines a bending waveguide with a positive rotation angle (+ ⁇ ) and a bending waveguide with a negative rotation angle ( ⁇ ), so that the optical function portion (output side on the output side) is combined.
  • the rotation angle ⁇ of the folded waveguide 46 which is a combination of the + ⁇ bent waveguide and the ⁇ bent waveguide, is also preferably set in the above-mentioned range in the same manner as the folded waveguide 43.
  • the folded waveguide 46 includes, in order from the output-side coupler 37b side, a ⁇ several bending waveguide 46a, a + several bending waveguide 46b, a + 90 ° bending waveguide 46c, a straight waveguide 46d, and + 90 °.
  • a bent waveguide 46e, a bent waveguide 46f of approximately + 45 °, and a bent waveguide 46g of approximately ⁇ 45 ° are included.
  • the light emitted from the PBS 37 configured as a Mach-Zehnder interferometer is configured to enter the folded waveguide 46 through the cross port of the output side coupler 37b when viewed from the folded waveguide 44. .
  • the extinction ratio of the PBS can be increased, and at the same time, the bending radius of the folded waveguide 46 can be increased.
  • both the X signal and the Y signal are X polarized waves. In this state, the light is incident on each of the hybrids 41 and 42 at 90 degrees.
  • the width of each bending waveguide is increased to, for example, 7 ⁇ m in order to set the radius of the bending waveguide to an optimum value, for example, from 2000 ⁇ m to 1800 ⁇ m. Yes.
  • the width of the waveguide is converted to 6 ⁇ m again by the taper, and the bending diameter of the subsequent waveguide is also set to 2000 ⁇ m.
  • the inspection input port P1 is connected to one input port of the coupler 36a on the input side of the PBS 36.
  • a bent waveguide having a positive rotation angle (+ ⁇ ) is formed by connecting the through port of the coupler 36b on the output side of the PBS 36 and the optical waveguide 71 connected to the inspection output port P2.
  • a bending waveguide having a negative rotation angle ( ⁇ ), and a rotation angle at which the sign does not reverse from the output end of the optical function portion (coupler 36b) on the front stage side to the optical waveguide 71 (positive rotation angle ⁇ ) ) Are connected by a folded waveguide 47 made of a bent waveguide having a total of more than +180 degrees.
  • the folded waveguide 47 includes, in order from the coupler 36b side, a bent waveguide 47a of + several tens of degrees, a bent waveguide 47b of + 90 °, a bent waveguide 47c of + 90 °, and approximately ⁇ 45 °.
  • the PBS 36 and the optical waveguide 71 are connected in parallel to each of the bending waveguides 47a, 47b, 47c, 47d and 47e while ensuring a bending radius that does not cause a loss due to leakage light. can do.
  • the inspection input port P4 is connected to one input port of the coupler 37a on the input side of the PBS 37.
  • the through-port of the coupler 37b on the output side of the PBS 37 and the optical waveguide 72 connected to the inspection output port P3 are bent waveguides having a positive rotation angle (+ ⁇ ).
  • a bending waveguide having a negative rotation angle ( ⁇ ) and the absolute value of the total rotation angle ⁇ at which the sign is not reversed from the output end of the optical function portion (coupler 37b) on the front stage toward the optical waveguide 72 are connected by a folded waveguide 48 formed of a bent waveguide greater than 180 degrees.
  • the optical waveguide 72 is bent and extended in the same manner as the optical waveguide 71 at a position close to the optical waveguide 71.
  • the folded waveguide 48 includes, in order from the coupler 37b side, a bent waveguide 48a of several degrees, a bent waveguide 48b of -90 °, a bent waveguide 48c of -90 °, and a substantially + 45 °. It has a bending waveguide 48d and a bending waveguide 48e of approximately ⁇ 45 °.
  • the PBS 37 and the optical waveguide 72 are connected to each of the bending waveguides 48a, 48b, 48c, 48d, and 48e at positions close to each other in parallel while ensuring a bending radius that does not cause a loss due to leakage light. can do.
  • a heater is disposed on at least one of the upper and lower arms.
  • the polarization extinction ratio as the PBS can be adjusted to a desired value.
  • the PBS 36 can be adjusted by measuring the light incident from P1 and output from P2.
  • the PBS 37 can be adjusted by measuring the light incident from P4 and output from P3.
  • P1 and P2 may be switched in input / output
  • P3 and P4 may be switched in input / output.
  • the PBS 30 can be adjusted by measuring the light output from In1 or In2 by entering light from P2.
  • the PBS 30 can be adjusted by measuring the light output from In1 or In2 by entering light from P3.
  • demodulator 1D Other configurations of the demodulator 1D are the same as those of the demodulator 1 according to the first embodiment. According to the fifth embodiment having the above configuration, the following operational effects can be obtained in addition to the operational effects exhibited by the first embodiment.
  • the PLC chip 3 can be reduced in size, and a small PLC type DP-QPSK demodulator can be realized.
  • the PBSs 36 and 37 and the two 90-degree hybrid circuits 41 and 42 are connected to the PLC while securing a bending radius that does not cause a loss due to leakage light in each bending waveguide.
  • the chips 3 can be arranged close to each other in parallel. Therefore, a small PLC type DP-QPSK demodulator can be realized without deteriorating the optical characteristics.
  • the configuration (11) it is possible to independently adjust a plurality of PBSs integrated on one PLC.
  • the characteristics of the waveguide for example, operation as an interferometer
  • the characteristics of the waveguide are close, adjustment work can be saved. That is, when there are a plurality of Mach-Zehnder interferometers on the PLC chip 3, if the refractive index values are the same, the interferometers having the same optical path difference between arms (physical length) have the same interference condition. (FSR value, wavelength that gives the peak value of the transfer function, etc.) are shown, so that adjustment work can be saved.
  • the output side couplers 36b and 37b of the PBSs 36 and 37 are configured to pass through the crossports when viewed from the input side waveguides 43 and 44 and enter the folded waveguides 45 and 46, respectively.
  • the extinction ratio of the PBS can be increased, and at the same time, the bending radii of the folded waveguides 45 and 46 can be increased.
  • a plurality of polarization beam splitters and two 90-degree hybrid circuits are placed close to each other in parallel on the PLC chip while ensuring a bending radius that does not cause a problem of loss due to leakage light in each bending waveguide. Can be arranged. Therefore, a small PLC type DP-QPSK demodulator can be realized without deteriorating the optical characteristics.
  • FIG. 19 shows a basic configuration of a PLC type DP-QPSK demodulator 1E according to the sixth embodiment.
  • the main difference between the demodulator 1E and the demodulator 1D shown in FIG. 9 is in the following configuration.
  • a bent taper is used to make a part of the folded waveguides 45 and 46 into wide waveguides 45a and 46a for wave plate slits, respectively.
  • the bent taper is a vertically bent portion in the drawing of the wide waveguides 45a and 46a.
  • “bend taper” means a waveguide that changes its width while bending, that is, its width changes.
  • the eight output ports Out1 to Out4 and Out5 to 8 are collectively arranged at the output end 5.
  • the light incident from the inspection port P1 passes through the PBS 36, and then passes through the folded waveguide 47 and the optical waveguide 71 and is output from the inspection port P2.
  • the light incident from the inspection port P4 passes through the PBS 37, and then is output from the inspection port P3 through the folded waveguide 48 and the optical waveguide 72.
  • one of the optical waveguides 71 and 72 is above the PBS 30 (in the positive y direction (upward in FIG. 19)), and the other is below the PBS 30 (in the negative y direction ( In FIG. 19, it is formed in the downward direction)).
  • the optical function part (coupler) on the rear stage side from the output end of the optical function part (coupler) on the front stage side.
  • a curved waveguide whose total absolute value of rotation angles at which the sign is not reversed is larger than 180 degrees is used.
  • the bent waveguide is extended back to the optical function part side of the front stage side and / or the rear stage side and then partially returned, so that the optical function parts of the front stage and the rear stage side integrated in parallel are arranged.
  • the degree of freedom in the arrangement of the intervals and the longitudinal direction of each optical functional part is improved, and the miniaturization of the optical integrated circuit can be realized.
  • the optical integrated circuit can be more effectively downsized.
  • bent waveguide used in the present invention has a constant radius of curvature that does not cause excessive loss due to bending.
  • FIG. 21 shows a basic configuration of a PLC type DP-QPSK demodulator according to the seventh embodiment.
  • the path through which the input QPSK signal and LO light are incident on the 90-degree hybrid circuit is folded twice, and the first folding region (input light (QPSK signal and LO light) is input).
  • the first folding region input light (QPSK signal and LO light)
  • the second folding area the area where the light traveling on the opposite side is changed again in the input direction
  • Each PBS is provided.
  • the optical path length from the PBS to the 90-degree hybrid circuit for the X signal (X-polarized QPSK signal)
  • the optical path length from the PBS to the 90-degree hybrid circuit for the Y signal Y-polarized QPSK signal
  • the structure of the second folded region is devised so as to be at least the same.
  • the input port 4 of the DP-QPSK signal as a polarization multiplexed coherent modulation signal and both X-polarized LO light and Y-polarized LO light are input to the input terminal 4 of the demodulator 1E.
  • An input port In4 is provided.
  • a PBS 30 for separating the DP-QPSK signal into an X signal and a Y signal separated from the input terminal 4 by a predetermined distance, and multiple LO lights of X polarization and Y polarization (LO of X polarization) PBS 30a is provided for separating the light (mixed light and Y-polarized LO light) into X-polarized LO light and Y-polarized LO light.
  • the PBS 30 and the PBS 30a are arranged in parallel at a distance from the input end 4 by the same distance.
  • the PBS 30a has the same structure as the PBS 30 shown in FIG. 2, and has Mach-Zehnder interference having two couplers 31a and 32a and two arm waveguides connected between the couplers 31a and 32a. Total (MZI).
  • a waveguide 101 that has a first folded region 101a and connects the input port In1 and the coupler 31 of the PBS 30 (the input side coupler of the PBS 30).
  • a waveguide 102 having a first folded region 102a and connecting the input port In4 and the coupler 31a of the PBS 30a (input side coupler of the PBS 30a) is provided.
  • a 90 degree hybrid circuit 41 is provided on the downstream side of the propagation direction of the QPSK signal (X signal) of the PBS 30 and a 90 degree hybrid circuit 42 is provided on the downstream side of the propagation direction of the QPSK signal (Y signal) of the PBS 30a. It has been.
  • the coupler 30 of the PBS 30 (the output side coupler of the PBS 30) and the Y branch coupler 20 of the 90-degree hybrid circuit 41 are connected by the waveguide 103 having the second folded region 103a.
  • the hybrid circuit 42 is connected to the Y branch coupler 20 by a waveguide 104 having a second folded region 104a.
  • the coupler 32a of the PBS 30a (the output side coupler of the PBS 30a) and the Y branch coupler 21 of the 90-degree hybrid circuit 41 are connected by the waveguide 105 having the second folded region 105a, and the coupler 32a of the PBS 30a.
  • the 90-degree hybrid circuit 42 is connected to the Y branch coupler 21 by a waveguide 106 having a second folded region 106a.
  • a 90-degree hybrid circuit 41, PBS 30, PBS 30 a, and 90-degree hybrid circuit 42 are arranged along an arrow direction Q orthogonal to the arrow direction P from the input end 4 toward the output end 5 facing the input end 4. They are arranged in this order. Therefore, the waveguide 103 for propagating the X signal intersects the waveguide 105 for propagating the X-polarized LO light, and the waveguide 104 for propagating the Y signal is coupled to the waveguide 105 and the Y-polarized wave. Crosses the waveguide for propagating the LO light.
  • the PBS 30 for signal light is composed of one stage of MZI.
  • the PBS 30a for LO light is also composed of one stage of MZI and is integrated on the PLC chip 3.
  • the arrangement of the signal light and LO light input waveguides and the folded waveguides, and the PBS is symmetrical with respect to the arrow direction P (lateral direction) from the input end 4 toward the output end 5 facing the input end 4.
  • the four waveguides 103 to 106 after the PBSs 30 and 30a are output are configured as shown in FIG.
  • the path for the X signal (waveguide 103) between the PBS 30 and the 90-degree hybrid circuit 41 and the PBS 30 and the 90-degree hybrid circuit 42
  • the Y signal path (waveguide 104) between them has the same optical path length.
  • an X-polarized LO light path (waveguide 105) between the PBS 30a and the 90-degree hybrid circuit 41, and a Y-polarized LO light path between the PBS 30a and the 90-degree hybrid circuit 42 (waveguide 105).
  • the same optical path length is set for the waveguide 106).
  • this embodiment is characterized by the structure of the second folded region as shown in FIG.
  • FIG. 22 is a diagram for explaining the configuration of the second folded region of the waveguides 103 to 106.
  • a waveguide 103 includes a bending waveguide 103b having a bending radius r and the same shape as a fan-shaped arc having a central angle ⁇ (bending waveguide having a rotation angle + ⁇ ), a straight waveguide 103c having a predetermined length l, It has a bending waveguide 103d (bending waveguide of rotation angle + ( ⁇ -2 ⁇ )) having the same shape as a fan-shaped arc having a bending radius r and a central angle ( ⁇ -2 ⁇ ), and the remaining waveguide 103e. .
  • the waveguide 104 includes a bending waveguide 104b having a bending radius r and the same shape as a fan-shaped arc having a central angle ⁇ (bending waveguide having a rotation angle ⁇ ), a straight waveguide 104c having a predetermined length l, and a bending radius r. And a bending waveguide 104d having the same shape as a sector-shaped arc with a central angle ( ⁇ -2 ⁇ ) (bending waveguide with a rotation angle of ⁇ ( ⁇ -2 ⁇ )) 104d, and the remaining waveguide 104e.
  • the waveguide 105 includes a bending waveguide 105b having a rotation angle + ⁇ , a straight waveguide 105c having a predetermined length l, a bending waveguide 103d having a rotation angle + ( ⁇ 2 ⁇ ), and the remaining waveguide 105e.
  • the waveguide 106 includes a bending waveguide 106b having a rotation angle ⁇ , a straight waveguide 106c having a predetermined length l, a bending waveguide 106d having a rotation angle ⁇ ( ⁇ 2 ⁇ ), and the remaining waveguide 106e. is doing.
  • the shape of the waveguide 103 from the bending waveguide 103b to the bending waveguide 103d is the same as the shape of the waveguide 105 from the bending waveguide 105b to the bending waveguide 103d, and the bending waveguide of the waveguide 104 is the same.
  • the shape from 104b to the bent waveguide 104d and the shape from the bent waveguide 106b to the bent waveguide 106d of the waveguide 106 are the same.
  • the shape of the waveguide 103 from the bending waveguide 103b to the bending waveguide 103d and the shape of the waveguide 104 from the bending waveguide 104b to the bending waveguide 104d are line symmetric with respect to the arrow direction P. .
  • a waveguide 104 that is a path from the PBS 30 to the 90-degree hybrid circuit 42, and a waveguide 105 that is a path from the PBS 30a to the 90-degree hybrid circuit 41 are a linear waveguide 104c and a bending waveguide 104d. And at the boundary between the straight waveguide 105c and the bent waveguide 105d, the intersection angle is set to 2 ⁇ . Further, suppose that the distance (DC pitch) between two waveguides arranged close to each other in the couplers 32 and 32a is p.
  • the four waveguides 103, 104, 105, 106 have the same shape as described above, and the waveguide 103, the waveguide 105, the waveguide waveguide 105, The crossing angle when the waveguide 104 and the waveguide 104 and the waveguide 106 intersect can be all 2 ⁇ .
  • the length l of the straight waveguides 103c, 104c, 105c, 106c can be uniquely determined by determining the bending radius r and the angle ⁇ . That is, the bending waveguides 103b, 104b, 105b, and 106b positioned in front of the straight waveguides 103c, 104c, 105c, and 106c correspond to the same-shaped fan-side arcs, and the straight waveguides 103c, 104c, 105c, The bending waveguides 103d, 104d, 105d, and 106d located at the subsequent stage of 106c also correspond to the same arc-shaped arc on the fan side.
  • the optical path lengths of the straight waveguides 103c, 104c, 105c, and 106c can be made the same.
  • the region where the waveguide is folded back (waveguide 103; bending waveguide 103b, linear waveguide 103c, bending waveguide 103d, waveguide 104; bending waveguide 104b, linear waveguide 104c, bending waveguide.
  • waveguide 104d, waveguide 105; bent waveguide 105b, straight waveguide 105c, bent waveguide 105d, waveguide 106; bent waveguide 106b, straight waveguide 106c, bent waveguide 106d) are at least the same or symmetrical with each other. can do. Therefore, the regions of the waveguides 103 to 106 where the waveguides are folded back can have the same optical path length.
  • the optical path lengths of the waveguides 103 to 106 can be made the same, and the occurrence of skew can be reduced.
  • the curvature radii r of the bending waveguides 103b, 104b, 105b, 106b and the bending waveguides 103d, 104d, 105d, 106d are determined according to the specifications of the demodulator, and the DC pitch p of the couplers 32, 32a is determined.
  • the bending radii of the bending waveguides 103b, 104b, 105b, and 106b and the bending waveguides 103d, 104d, 105d, and 106d have the same value.
  • an intersection angle 2 ⁇ between the waveguide 104 and the waveguide 105 is determined. For example, when it is desired to minimize the loss due to the intersection of the waveguides 104 and 105, the intersection angle 2 ⁇ may be set to 90 degrees.
  • the crossing angle 2 ⁇ is determined in this way, the bending radii r of the respective bending waveguides are determined, so that the bending waveguides 103b, 104b, 105b, 106b (rotation angle ⁇ ) and the bending waveguides 103d, 104d, 105d are determined.
  • 106d (rotation angle ( ⁇ -2 ⁇ )) is determined.
  • the length l of the straight waveguides 103c, 104c, 105c, 106c can be determined, and the straight waveguide 103c.
  • 104c, 105c, 106c are determined.
  • the crossing angle is included in the design parameters of the linear waveguide and the bending waveguides at the front stage and the rear stage of the linear waveguide.
  • a structure in which the optical path lengths of the waveguide portions for realizing the folding are made equal can be easily designed according to the crossing angle.
  • the absolute value of the rotation angle of the bending waveguides 103d, 104d, 105d, and 106d is limited to ( ⁇ 2 ⁇ ). The reason for this is that if the absolute value of the rotation angle exceeds ( ⁇ 2 ⁇ ), the portion exceeding each of the rotation angles may be considered to be included in the remaining waveguides 103e, 104e, 105e, and 106e.
  • the crossing angle at which the bending waveguide 105d and the bending waveguide 103d intersect (or the bending waveguide 105d and the straight waveguide 103c intersect) cannot be 2 ⁇ .
  • the crossing angle at which the bending waveguide 104d and the bending waveguide 106d intersect (or the bending waveguide 104d and the straight waveguide 106c intersect) cannot be 2 ⁇ .
  • FIG. 23 shows a basic configuration of a PLC type DP-QPSK demodulator according to the eighth embodiment.
  • the demodulator 1F shown in FIG. 23 has the same basic structure as the demodulator 1E according to the seventh embodiment shown in FIGS. 21 and 22, but the relative refractive index difference between the core and the clad of the waveguide is an example of the demodulator. In the case of 1E, it is 1.2%, but in the demodulator 1F shown in FIG. 23, it is 1.8%. Thereby, the bending radius of the bending waveguide can be reduced from 2 mm to 1.2 mm. As a result, the horizontal length of the demodulator 1E (the length in the direction of the arrow P in FIG. 21) was 25 mm, and the vertical length (the length in the direction of the arrow Q in FIG. 21) was 16 mm. Thus, the demodulator 1F of this embodiment can be downsized to a horizontal length of 15 mm and a vertical length of 13 mm.
  • FIG. 24 shows a demodulator 1G that further reduces the size of the demodulator 1F without the linear heaters 110 and 110a.
  • the chip size can be further reduced by omitting the linear heaters 110 and 110a, and a size of 12 mm can be realized both vertically and horizontally.
  • An optical transmission system 50 as an example, the PLC type DP-QPSK demodulator 1A according to the third embodiment shown in FIG. 6 is used.
  • An optical transmission system 50 shown in FIG. 20 includes a transmitter 51 that modulates a phase of a transmission signal and outputs a DP-QPSK signal, an optical transmission line 52 that includes an optical fiber, and an erbium-doped optical fiber amplifier (EDFA: Erbium). -Doped Fiber Amplifier) 53, AWG 54, and receiver 55.
  • EDFA Erbium-doped optical fiber amplifier
  • the transmitter 51 wavelength-multiplexes the X-polarized QPSK signal and the Y-polarized QPSK signal obtained by quaternary phase modulation of each X-polarized light and each Y-polarized light of a plurality of wavelengths ( ⁇ 1 to ⁇ n )
  • the DP-QPSK signal 2 is output. That is, an n-wave DP-QPSK signal in which DP-QPSK signals 2 of light having a plurality of wavelengths are multiplexed is output from the transmitter 51 to the optical transmission path 52.
  • the receiver 55 includes an LO light source 56 that outputs X-polarized LO light, a PLC-type DP-QPSK demodulator 1A, and four balanced photodiodes (B-PD) 61 to 64 having a pair of photodiodes. And a digital signal processing circuit (DSP) 65.
  • LO light source 56 that outputs X-polarized LO light
  • PLC-type DP-QPSK demodulator 1A and four balanced photodiodes (B-PD) 61 to 64 having a pair of photodiodes.
  • DSP digital signal processing circuit
  • B-PDs 61 and 63 are photodetectors for the I channel
  • B-PDs 62 and 64 are photodetectors for the Q channel.
  • the digital signal processing circuit 65 also includes a clock extraction circuit that regenerates a synchronous clock having the same speed as the demodulated signal obtained by demodulating each of the QPSK signals of X polarization and Y polarization, and for the I channel and Q that are sampled by this clock.
  • a channel sampling circuit, an A / D converter for converting each sampling signal into a digital signal, and the like are provided.
  • the DP-QPSK signal for n waves output from the transmitter 51 propagates through the optical transmission path 52, is amplified by the EDFA 53, enters the AWG 54, and is transmitted by the AWG 54. It is demultiplexed. Of the light of a plurality of wavelengths ( ⁇ 1 to ⁇ n ) demultiplexed by the AWG 54, for example, a DP-QPSK signal of wavelength ⁇ i is input to the input port In1 of the demodulator 1A.
  • the DP-QPSK signal 2 having the wavelength ⁇ i input from the input port In1 is polarized and separated into an X-polarized QPSK signal (X signal) and a Y-polarized QPSK signal (Y signal) by the PBS 30. Since the half-wave plate 40 is inserted into the optical waveguide 9 through which the Y signal polarized by the PBS 30 propagates, each of the 90-degree hybrid circuits 41 and 42 has both the X signal and the Y signal as X polarization. Incident.
  • the X polarized LO light and the X signal are mixed and separated into I and Q channel components of the X signal.
  • the 90-degree hybrid circuit 41 outputs the signal light of the I channel component in the X signal to the B-PD 61, and the 90-degree hybrid circuit 41 outputs the signal light of the Q channel component in the X signal to the B-PD 62, respectively.
  • the X polarized LO light and the Y signal converted to the X polarized wave are mixed and separated into the I and Q channel components of the Y signal.
  • the 90-degree hybrid circuit 42 outputs the signal light of the I channel component in the Y signal to the B-PD 63, and the 90-degree hybrid circuit 42 outputs the signal light of the Q channel component in the Y signal to the B-PD 64, respectively.
  • a signal having a current value (balanced received I channel demodulated signal) corresponding to the intensity difference between the signal light of the I channel component (two signal lights having opposite phases) in the X signal is output.
  • the B-PD 62 outputs to the DSP 65 a signal having a current value (balanced received Q channel demodulated signal) corresponding to the intensity difference of the Q channel component signal light (two signal lights having opposite phases) in the X signal.
  • the B-PD 63 outputs to the DSP 65 a signal having a current value (balanced received I channel demodulated signal) corresponding to the intensity difference between the signal light of the I channel component (two signal lights having opposite phases) in the Y signal.
  • the B-PD 64 outputs to the DSP 65 a signal having a current value (balanced received Q channel demodulated signal) corresponding to the intensity difference of the Q channel component signal light (two signal lights having opposite phases) in the Y signal. Is done.
  • the DSP 65 reproduces a clock synchronized with the demodulated signal output from each of the B-PDs 61 to 64 by the clock extraction circuit, and samples the demodulated signal by the clock in the sampling circuit for the I channel and the Q channel. Generate a sampling signal. Each sampling signal is converted into a digital signal by an A / D converter, and a received signal is output from the DSP 65.
  • the demodulator 1A in which the PBS 30 and the two 90 degree hybrid circuits 41 and 42 are integrated in the PLC of the PLC chip 3 is used, the PBS and the two 90 degree hybrid circuits are optically connected. Alignment work and joining work are not required. As a result, there is no connection loss between the PBS and the two 90-degree hybrid circuits, and the low-cost optical transmission system 50 can be manufactured.
  • the demodulator 1A is used in which the effective optical path length of the path from the PBS 30 to the output port is the same in the path of the signal light incident on each of the 90-degree hybrid circuits 41 and 42. Therefore, it is possible to realize a high-performance optical transmission system in which the skew between the X signal light and the Y signal light having the same X polarization is reduced.
  • the skew between signal lights having the same X polarization can be reduced to 5 ps or less.
  • the current value of the signal (demodulated signal) output from each B-PD 61 to 64 is proportional to the product of the amplitude of the DP-QPSK signal and the amplitude of the LO light. Therefore, when the power of the LO light output from the LO light source 56 is increased, the signal current from each of the B-PDs 61 to 64 increases in proportion to the square root of the power. Thereby, a high-performance optical transmission system can be realized. Such an advantage can be obtained in an optical transmission system using a coherent optical transmission type demodulator that mixes signal light and LO light.
  • this invention can also be changed and embodied as follows.
  • a set of receiving circuits including at least one PBS, two 90-degree hybrid circuits, and an optical waveguide connecting them is formed on the PLC 3.
  • the present invention is also applicable to a PLC-type DP-QPSK demodulator in which a plurality of sets of receiving circuits are formed on the PLC 3.
  • an optimal one receiving circuit among a plurality of sets of receiving circuits can be selected, yield can be improved, and cost can be further reduced.
  • At least one of the folded waveguides 43, 44, 45, 46, 47 is folded twice and returned to the original direction. May be.
  • the demodulator of the present invention is applied to the DP-QPSK modulation method.
  • the present invention is not limited to this, and can be applied to other coherent modulation schemes such as QAM (Quadrature Amplitude Modulation) and OFDM (Orthogonal Frequency Division Multiplex Modulation).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本発明は、偏波ビームスプリッタと90度ハイブリッド回路との接続損失を低減し、かつ、製造コストの低減を図ったPLC型DP-QPSK復調器及びこれを用いた光伝送システムを提供する。本発明の一実施形態では、DP-QPSK信号を受信するPLC型DP-QPSK復調器(1)は、平面光波回路が形成された一つのPLCチップ(3)を備える。PLCチップ(3)の入力端(4)に入力ポート(In1~3)が、出力端(5)に信号光の出力ポート(Out1~8)が設けられている。平面光波回路内に、DP-QPSK信号をX偏波のQPSK信号とY偏波のQPSK信号に分離する偏波ビームスプリッタ(30)と、X偏波のQPSK信号と局所発振光および、Y偏波のQPSK信号と局所発振光をそれぞれ混合して、各QPSK信号を直交成分I、Qに分離して出力する二つの90度ハイブリッド回路(41,42)とが集積されている。

Description

PLC型復調器及び光伝送システム
 本発明は、X偏波光およびY偏波光についてそれぞれコヒーレント変調した上で偏波多重した、偏波多重コヒーレント変調信号を受信するPLC型復調器及びこれを用いた光伝送システムに関する。
 X偏波光およびY偏波光についてそれぞれ変調して偏波多重し、デジタルコヒーレント受信機によって復調を行う、偏波多重デジタルコヒーレント伝送方式が大容量信号伝送の変調方式として有望である。ここでコヒーレント伝送方式とは、送信側で光の位相、あるいは光の位相に加えて振幅までもが変調されており、受信側においては、90度ハイブリッドと呼ばれる干渉回路を用いて局所発振光(LO光)と伝送後の信号光を混合し、さらにバランスドフォトディテクター(B-PD)により受光することで、光の電場を複素数とみなした時の実数部と虚数部を分離して復調する変調方式である。ただし、受信機では入力された偏波多重信号の偏波分離を光学的に行うが、そこで用いられる偏波ビームスプリッタ(PBS)の基底偏波状態と、偏波多重信号光の基底偏波状態は一般には一致しないため、PBSより出力される二つの直交偏波成分は、偏波多重が逆多重された信号光とはならない。
 ところが、光学的に偏波分離されたそれぞれの成分について、B-PDより出力された電気信号に対してデジタル信号処理を行うことにより、偏波逆多重を行うことができる。さらには、デジタル信号処理によって、信号光とLO光との相対位相差の推定や、分散補償、誤り訂正等の処理も行うことが可能である。
 このように、偏波多重コヒーレント変調信号に対して、受信機でデジタル信号処理を行うことで、光学的な処理を極めて簡略化し、さらには受信特性をも向上させる方式を偏波多重デジタルコヒーレント伝送方式と呼び、非常に有望視されている。
 コヒーレント変調方式の中で代表的かつ実用的な方法として、四値位相変調方式の普及が進んでおり、偏波多重した四値位相変調方式は、DP-QPSK(Dual Polarization Quadrature Phase Shift Keying;偏波多重四値位相変調方式)として知られている。このDP-QPSK変調方式では、シンボルレートが10GSymbol/sの場合、ビットレートは40Gbit/sとなり、シンボルレートが25GSymbol/sの場合、ビットレートは100Gbit/sとなるので、周波数利用効率を高めることができる。なお、単にDP-QPSK変調方式とは、復調時にデジタルコヒーレント受信機を適用した方式であることを意味する。
 DP-QPSK変調方式の復調器(DP-QPSK復調器)では、まずX偏波のQPSK信号とY偏波のQPSK信号とを多重したDP-QPSK信号を、偏波ビームスプリッタ(PBS:Polarization Beam Splitter)によってX偏波のQPSK信号とY偏波のQPSK信号とに分離する。さらに、X偏波用の90度ハイブリッドおよびY偏波用の90度ハイブリッドにより、分離されたX偏波のQPSK信号およびY偏波のQPSK信号と局所発振光(LO光)とをそれぞれ混合する。これにB-PDを組み合わせて受光することにより、各偏波の位相変調信号(QPSK信号光)を強度変調信号にそれぞれ変換し、各偏波における信号光電場の実部と虚部に対応した成分(I成分とQ成分)を独立に取り出す。なお90度ハイブリッドとは一般に、入力された信号光と局所発振光をそれぞれ二分岐し、二分岐された局所発振光に光波の相対位相差として90度の位相差を与えた後、二分岐された一方の信号光と局所発振光、および二分岐されたもう一方の信号光と局所発振光をそれぞれ混合する回路として知られている。
 従来技術として、PBSや90度ハイブリッドはそれぞれ個別に、空間光学系や石英系平面光波回路(PLC: Planar Lightwave Circuit)PLCで実現されている(非特許文献1~6参照)。
 非特許文献1~3では、一つのPLC上で、カプラとPBSの組み合わせによる構成の90度ハイブリッドが開示されており、それぞれIQ成分間の光導波路長を同一とすることで、IQ成分間の時間差(スキュー)を低減する技術が示されている。
 文献4、5、6には、PBSが一つのPLC上に構成されたものが開示されている。また、文献6には、複数のPBSが縦列接続され、2段構成としたPLCが開示されている。
井上靖之他、「石英系PLCを用いた光90度ハイブリッド」1994年電子情報通信学会秋季大会、C-259 細矢正風他、「PLCを用いた90°ハイブリッド・バランス型光受信モジュールの構成技術」、電子情報通信学会技術研究報告.光通信システムOCS-95 pp.49-54 S. Norimatsu et al.,"An Optical 90-Hybrid Balanced Receiver Module Using a Planar Lightwave Circuit," IEEE Photon. Technol. Lett., Vol.6, No.6, pp.737-740 (1994) M. Okuno et al.,"Birefringence Control of Silica Waveguides on Si and Its Application to a Polarization-Beam Splitter/Switch,"J. Lightwave Technol., Vol.12, No.4, pp.625-633 Y. Hashizume et al."Integrated polarisation beam splitter using waveguide birefringence dependence on waveguide core width,"Electron. Lett., Vol.37, No.25, pp.1517-1518 (2001) N. Matsubara et al.,"SILICA-BASED PLC-TYPE POLARIZATION BEAM SPLITTER WITH >30dB HIGH EXTINCTION RATIO OVER 75nm BAND WIDTH,"MOC2005, C2 (2005)
 ところで、上記非特許文献1~6に開示されているような個別のデバイスに形成されたPBSや90度ハイブリッドを組み合わせて、DP-QPSK信号を受信し、各偏波成分のI成分とQ成分を独立に取り出すDP-QPSK復調器を構成する場合には、次のような問題が発生する。
 DP-QPSK復調器は、PBSと、該PBSと別個に形成された(すなわち、異なるチップ上に形成された)90度ハイブリッドとを備える構成であるので、PBSが形成された一つのデバイス(例えばPLC)と90度ハイブリッドが形成された別のデバイス(例えばPLC)とを光接続する必要がある。そのため、接続損失が生じると共に、その光接続のための調芯作業や接合作業が必要になり、工程が増え、製造コストが増大する。
 本発明は、このような従来の問題点に着目して為されたもので、その目的は、偏波ビームスプリッタと90度ハイブリッド回路との接続損失を低減し、かつ、製造コストの低減を図ったPLC型復調器及びこれを用いた光伝送システムを提供することにある。
 また、本発明者らは、鋭意研究の結果、PBSと90度ハイブリッドとを一つのPLC上に構成した場合、XY偏波成分間のスキューが大きくなってしまうという問題を発見し、これを改善する構成を発明した。
 PBSで分離されたX偏波のQPSK信号とY偏波のQPSK信号とがそれぞれ二段目のPBS或いは、X偏波およびY偏波用の90度ハイブリッド回路をそれぞれ伝搬する際、経路長に差があると、それらの信号が出力される時間に差が発生してしまう。この時間差(スキュー)は、例えば、シンボルレートの逆数で規定される、シンボル時間間隔の100分の1以下が望ましく、10GSymbol/sの信号に対しては、1ps以下であることが望ましい。スキューを1ps以下にするには、光路長差を真空中で約300mm、屈折率が約1.5のシリカガラス中では約200mm以下にする必要があり、空間光学系を用いた場合や、要素部品を光ファイバで接続する場合には、調整に困難を伴う精度である。
 そこで、本発明の別の目的は、XY偏波成分間のスキューを低減した高性能なPLC型復調器及びこれを用いた光伝送システムを提供することにある。
 上記課題を解決するために、本発明の第1の態様は、 偏波多重されたコヒーレント変調信号を受信して復調するPLC型復調器であって、平面光波回路が形成された一つのPLCチップと、前記PLCチップの入力端に設けられ、前記偏波多重されたコヒーレント変調信号を前記平面光波回路内に入力する第1の入力ポートと、前記PLCチップの入力端に設けられ、局所発振光を前記平面光波回路内に入力する第2の入力ポートと、前記第1の入力ポートから入力された前記偏波多重されたコヒーレント変調信号をX偏波のコヒーレント変調信号とY偏波のコヒーレント変調信号とに分離する少なくとも一つの偏波ビームスプリッタと、前記X偏波のコヒーレント変調信号と前記第2の入力ポートから入力された局所発振光とを混合して出力する第1の90度ハイブリッド回路と、前記Y偏波のコヒーレント変調信号と前記第2の入力ポートから入力された局所発振光とを混合して出力する第2の90度ハイブリッド回路とを備え、前記平面光波回路内に、前記少なくとも1つの偏波ビームスプリッタと、前記第1の90度ハイブリッド回路と、前記第2の90度ハイブリッド回路とが集積されていることを特徴とする。
 この構成によれば、偏波ビームスプリッタと二つの90度ハイブリッド回路とを光接続のための調芯作業や接合作業が不要になるので、偏波ビームスプリッタと二つの90度ハイブリッド回路との間の接続損失が無く、製造コストを低減することができる。
 本発明の第2の態様は、上記第1の態様において、X偏波の局所発振光とY偏波の局所発振光とが混合した光を、該X偏波の局所発振光と該Y偏波の局所発振光とに分離する第2の偏波ビームスプリッタをさらに備え、前記偏波ビームスプリッタおよび前記第2の偏波ビームスプリッタは、入力側カプラと出力側カプラとを有し、前記入力側カプラが前記入力端に対向する前記PLCチップの出力端側に位置し、かつ前記出力側カプラが前記入力端側に位置するように、前記偏波ビームスプリッタおよび前記第2のビームスプリッタは設けられており、前記入力端から前記出力端に向う方向と直交する方向に沿って、前記第1の90度ハイブリッド回路、前記偏波ビームスプリッタ、前記第2の偏波ビームスプリッタ、および前記第2の90度ハイブリッド回路がこの順番で配置されており、前記PLC型復調器は、前記第1の入力ポートと前記偏波ビームスプリッタの入力側カプラとを接続する導波路であって、伝搬する光を折り返すように曲がった領域を有する導波路と、前記第2の入力ポートと前記第2の偏波ビームスプリッタの入力側カプラとを接続する導波路であって、伝搬する光を折り返すように曲がった領域を有する導波路と、前記偏波ビームスプリッタの出力側カプラと前記第1の90度ハイブリッド回路とを接続し、前記X偏波のコヒーレント変調信号および前記Y偏波のコヒーレント変調信号の一方を伝送するための第1の導波路であって、伝搬する光を折り返すように曲がった領域を有する第1の導波路と、前記偏波ビームスプリッタの出力側カプラと前記第2の90度ハイブリッド回路とを接続し、前記X偏波のコヒーレント変調信号および前記Y偏波のコヒーレント変調信号の他方を伝送するための第2の導波路であって、伝搬する光を折り返すように曲がった領域を有する第2の導波路と、前記第2の偏波ビームスプリッタの出力側カプラと前記第1の90度ハイブリッド回路とを接続し、前記X偏波の局所発振光号および前記Y偏波の局所発振光の一方を伝送するための第3の導波路であって、伝搬する光を折り返すように曲がった領域を有する第3の導波路と、前記第2の偏波ビームスプリッタの出力側カプラと前記第2の90度ハイブリッド回路とを接続し、前記X偏波の局所発振光および前記Y偏波の局所発振光の他方を伝送するための第4の導波路であって、伝搬する光を折り返すように曲がった領域を有する第4の導波路とをさらに備え、前記第1の導波路の光路長と前記第2の導波路の光路長とは同一であることを特徴とする。
 本発明の第3の態様は、上記第2の態様において、前記第1の導波路の光路長、前記第2の導波路の光路長、前記第3の導波路の光路長、および前記第4の導波路の光路長は同一であり、前記第2の導波路と前記第3の導波路とが交差角2θで交差しており、前記第1の導波路は、前記偏波ビームスプリッタの出力側カプラに接続された第1の曲げ導波路と、該第1の曲げ導波路に接続された第1の直線導波路と、該第1の直線導波路に接続された第2の曲げ導波路とを有し、前記第2の導波路は、前記偏波ビームスプリッタの出力側カプラに接続された第3の曲げ導波路と、該第3の曲げ導波路に接続された第2の直線導波路と、該第2の直線導波路に接続された第4の曲げ導波路とを有し、前記第3の導波路は、前記第2の偏波ビームスプリッタの出力側カプラに接続された第5の曲げ導波路と、該第5の曲げ導波路に接続された第3の直線導波路と、該第3の直線導波路に接続された第6の曲げ導波路とを有し、前記第4の導波路は、前記第2の偏波ビームスプリッタの出力側カプラに接続された第7の曲げ導波路と、該第7の曲げ導波路に接続された第4の直線導波路と、該第4の直線導波路に接続された第8の曲げ導波路とを有し、前記第1、第3、第5、および第7の曲げ導波路は、曲げ半径r、中心角θの扇形の円弧と同一の形状であり、前記第2、第4、第6、および第8の曲げ導波路は、曲げ半径r、中心角がπ-2θ(0<θ<π/2)よりも大きい角度の扇形の円弧と同一の形状であり、前記第1、第2、第3、および第4の直線導波路の長さlは、前記出力側カプラの近接する2本の導波路の間隔をpとすると、l=(2rcosθ-r-p/2)/sinθの関係を満たし、前記第2の直線導波路と前記第4の曲げ導波路との境界、および前記第3の直線導波路と前記第5の曲げ導波路との境界において、前記第2の導波路と前記第3の導波路とは交差していることを特徴とする。
 本発明の第4の態様は、上記第1の態様において、前記X偏波のコヒーレント変調信号が伝搬する経路と前記Y偏波のコヒーレント変調信号が伝搬する経路は、前記入力端から前記PLCチップの出力端までの実効光路長が全て同じになるように設定されていることを特徴とする。
 偏波ビームスプリッタで分離されたX偏波のコヒーレント変調信号(例えば、QPSK信号(X信号))とY偏波のコヒーレント変調信号(例えば、QPSK信号(Y信号))がそれぞれ伝搬する光導波路の経路長に差があると、それらの信号が出力される時間に差が発生してしまう。上記第4の態様では、X信号が伝搬する経路とY信号が伝搬する経路が、入力端から出力端までの実効光路長が全て同じになるように設定されているので、XY偏波成分間のスキューを低減した高性能なPLC型受信器を実現することができる。
 本発明の第5の態様は、上記第1の態様において、前記偏波ビームスプリッタは二つ以上あり、前記偏波ビームスプリッタ同士および前記第1および第2の90度ハイブリッド回路同士が近接して配置されていることを特徴とする。
 この構成によれば、偏波ビームスプリッタどうしおよび二つの90度ハイブリッド回路どうしを近接して配置することで、複数ある経路を伝搬する信号光の実効光路長に差が生じるのが抑制されるので、異なる経路を通る信号光間のスキューが低減される。
 本発明の第6の態様は、上記第5の態様において、前記偏波ビームスプリッタが二段以上カスケード接続されていることを特徴とする。
 この構成によれば、偏波ビームスプリッタの消光比を拡大することができる。
 本発明の第7の態様は、上記第1の態様において、前記PLCチップは略正方形に近い矩形であり、該矩形のPLCチップの中央部に一段目の偏波ビームスプリッタが形成され、該一段目の偏波ビームスプリッタを挟んで並列的に二段目の第2および第3の偏波ビームスプリッタがそれぞれ形成されており、前記第2の偏波ビームスプリッタの、前記一段目の偏波ビームスプリッタと反対側に前記第1および第2の90度ハイブリッド回路の一方が形成され、前記第3の偏波ビームスプリッタの、前記一段目の偏波ビームスプリッタと反対側に前記第1および第2の90度ハイブリッド回路の他方が形成されていることを特徴とする。
 この構成によれば、PLCチップの小型化を図ることができ、小型のPLC型復調器を実現することができる。
 本発明の第8の態様は、上記第7の態様において、前記一段目の偏波ビームスプリッタの出力端と、前記第2の偏波ビームスプリッタの入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されており、かつ、前記一段目の偏波ビームスプリッタの出力端と、前記第3の偏波ビームスプリッタの入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されていることを特徴とする。
 この構成によれば、各曲げ導波路に、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、二つ以上の偏波ビームスプリッタおよび二つの90度ハイブリッド回路を、1つのPLCチップ内に並列的に近接して配置することができる。従って、光学的特性を劣化させずに、小型のPLC型復調器を実現することができる。
 本発明の第9の態様は、上記第7の態様において、前記第2の偏波ビームスプリッタの出力端と、前記二つの90度ハイブリッド回路の一方の入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されており、かつ、前記第3の偏波ビームスプリッタの出力端と前記二つの90度ハイブリッド回路の他方の入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されていることを特徴とする。
 この構成によれば、各曲げ導波路に、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、二つ以上の偏波ビームスプリッタおよび二つの90度ハイブリッド回路を、1つのPLCチップに並列的に近接して配置することができる。従って、光学的特性を劣化させずに、小型のPLC型復調器を実現することができる。
 本発明の第10の態様は、上記第1の態様において、請求項8に記載の発明に係るPLC型DP-QPSK復調器は、前記偏波ビームスプリッタが、前記偏波ビームスプリッタの入力端としての入力側カプラおよび前記偏波ビームスプリッタの出力端としての出力側カプラと、該両カプラ間に接続された二つのアーム導波路とを備えたマッハツェンダー干渉計であることを特徴とする。
 本発明の第11の態様は、上記第9の態様において、前記偏波ビームスプリッタ、前記第2の偏波ビームスプリッタ、および前記第3の偏波ビームスプリッタがそれぞれ、偏波ビームスプリッタの入力端としての入力側カプラおよび偏波ビームスプリッタの出力端としての出力側カプラと、該両カプラ間に接続された二つのアーム導波路とを備えたマッハツェンダー干渉計であり、前記第2の偏波ビームスプリッタの出力側カプラのクロスポートと、前記第1および第2の90度ハイブリッド回路の一方の入力側カプラとが前記第1の折り返し導波路で接続されており、かつ、前記第3の偏波ビームスプリッタの出力側カプラのクロスポートと、前記第1および第2の90度ハイブリッド回路の他方の入力側カプラとが前記第2の折り返し導波路で接続されていることを特徴とする。
 この構成によれば、第2の偏波ビームスプリッタと一方の90度ハイブリッド回路とを接続する折り返し導波路の曲げ半径、および、第3の偏波ビームスプリッタと他方の90度ハイブリッド回路とを接続する折り返し導波路の曲げ半径をそれぞれ大きくすることができる。さらに、それぞれの偏波ビームスプリッタの偏波消光比を高めることが期待できる。
 本発明の第12の態様は、上記第1の態様において、前記第2の入力ポートは、前記X偏波のコヒーレント変調信号と同じ偏波でかつ同じ波長のX偏波の局所発振光の入力ポートと、前記Y偏波のコヒーレント変調信号と同じ偏波でかつ同じ波長のY偏波の局所発振光の入力ポートとを有することを特徴とする。
 この構成によれば、二つの90度ハイブリッド回路にそれぞれ入射する同じ偏波状態の二つの信号間のスキューを低減した高性能なPLC型受信器を実現することができる。
 本発明の第13の態様は、上記第1の態様において、前記偏波ビームスプリッタで分離された前記X偏波のコヒーレント変調信号が伝搬する第1の経路であって、前記偏波ビームスプリッタと前記第1の90度ハイブリッド回路とを接続する第1の経路と、前記偏波ビームスプリッタで分離された前記Y偏波のコヒーレント変調信号が伝搬する第2の経路であって、前記偏波ビームスプリッタと前記第2の90度ハイブリッド回路とを接続する第2の経路と、前記第1の経路または前記第2の経路に挿入された半波長板とをさらに備え、前記第1および第2の90度ハイブリッド回路には、信号が同じ偏波状態でそれぞれ入射するように構成されていることを特徴とする。
 偏波ビームスプリッタで分離されたX偏波のコヒーレント変調信号(例えば、QPSK信号(X信号))とY偏波のコヒーレント変調信号(例えば、QPSK信号(Y信号))との間には複屈折によって生じる実効屈折率差が存在するため、これがスキューの要因となる。
 この構成によれば、二つの90度ハイブリッド回路にX信号とY信号が同じ偏波状態でそれぞれ入射するので、各90度ハイブリッド回路に入射する信号間に複屈折に起因する実効屈折率差により発生するスキュー(時間差)を低減することができる。これにより、二つの信号間のスキューを低減した高性能なPLC型復調器を実現することができる。
 本発明の第14の態様は、上記第13の態様において、前記第2の入力ポートの数は一つであり、前記第2の入力ポートから入力されるX偏波或いはY偏波の局所発振光を前記平面光波回路内で分離して前記第1および第2の90度ハイブリッド回路にそれぞれ入射するように構成された経路をさらに備えることを特徴とする。
 この構成によれば、局所発振光の光源(LO光源)として、X偏波或いはY偏波のLO光を出力する一つのLO光源のみを設ければよいので、受信器の製造コストを更に低減することができる。
 本発明の第15の態様は、上記第7の態様において、前記第2および第3の偏波ビームスプリッタのみを通過させる光を入力するための二つの検査用入力ポートと、前記第2および第3の偏波ビームスプリッタをそれぞれ通過した光を出力するための二つの検査用出力ポートとをさらに備え、前記一段目の偏波ビームスプリッタの二つのアーム導波路の少なくとも一方にヒータが設けられていることを特徴とする。
 この構成によれば、二つの検査用出力ポートから出力される光を測定しながら、それぞれの出力ポートに対応した前記第2および第3の偏波ビームスプリッタの偏波消光比が所望の値を満たすように、電圧をヒータに印加して個別に位相トリミングを行う。これにより、第2および第3の偏波ビームスプリッタの偏波消光比を所望の値に調整することができる。
 本発明の第16の態様は、PLC型復調器を用いた光伝送システムであって、光波を変調して偏波多重された光信号を出力する送信機と、前記送信機から出力された前記偏波多重された光信号を伝送する光伝送路と、前記伝送路を伝送した前記偏波多重された光信号をコヒーレント受信する受信機とを備え、前記受信機は、局所発振光を出力する光源と、上記第1の態様に係るPLC型復調器と、X偏波のIチャンネル用およびQチャンネル用の光検出器と、Y偏波のIチャンネル用およびQチャンネル用の光検出器と、デジタル信号処理回路とを備えることを特徴とする。
 本発明の第17の態様は、上記第16の態様において、前記変調の方法は、四値位相変調であることを特徴とする。
 本発明の一態様によれば、偏波ビームスプリッタと90度ハイブリッド回路の接続損失をなくし、かつ、製造コストの低減を図ったPLC型復調器及びこれを用いた光伝送システムを実現することができる。
 また、本発明の別の態様によれば、XY偏波成分間のスキューを低減した高性能なPLC型復調器及びこれを用いた光伝送システムを実現することができる。
本発明の第1の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 図1のPLC型DP-QPSK復調器で用いる偏波ビームスプリッタ(PBS)を示す概略構成図である。 図1のDP-QPSK復調器で用いる90度ハイブリッド回路を示す概略構成図である。 図3の90度ハイブリッド回路の詳細を示す説明図である。 図3の90度ハイブリッド回路で用いるY分岐カプラにおける出力導波路間ピッチの説明図である。 本発明の第2の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 本発明の第3の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 本発明の第4の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 本発明の第5の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 図9に示すPLC型DP-QPSK復調器の入力部を示す拡大図である。 図9に示す復調器における一つの折り返し導波路の詳細を示す説明図である。 図11の拡大図である。 図9に示す復調器における別の折り返し導波路の詳細を示す説明図である。 図13の拡大図である。 図9に示す復調器における別の折り返し導波路の詳細を示す説明図である。 図9に示す復調器における別の折り返し導波路の詳細を示す説明図である。 図9に示す復調器における別の折り返し導波路の詳細を示す説明図である。 図9に示す復調器における別の折り返し導波路の詳細を示す説明図である。 本発明の第6の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 本発明の一実施形態に係るPLC型DP-QPSK復調器を用いた光伝送システムの概略構成を示すブロック図である。 本発明の第7の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 図21に示すPLC型DP-QPSK復調器の第2の折り返し領域の構成を説明するための図である。 本発明の第8の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。 本発明の第8の実施形態に係るPLC型DP-QPSK復調器の基本構成を示すブロック図である。
 以下、本発明を具体化した実施の形態を図面に基づいて説明する。なお、各実施形態の説明において同様の部位には同一の符号を付して重複した説明を省略する。
 <PLC型DP-QPSK復調器> 
 まず、偏波多重コヒーレント変調信号を受信するPLC型復調器の一例としての、DP-QPSK信号を受信するDP-QPSK変調方式のPLC型DP-QPSK復調器の各実施形態について説明する。 
(第1の実施形態に係るPLC型DP-QPSK復調器) 
 第1の実施形態に係るPLC型DP-QPSK復調器1を図1乃至図5に基づいて説明する。
 このPLC型DP-QPSK復調器1は、図示を省略した送信機から、直交するX偏波光およびY偏波光についてそれぞれ4値位相変調したX偏波のQPSK信号とY偏波のQPSK信号とを多重したDP-QPSK信号2を受信するDP-QPSK変調方式の復調器である。
 なお、本明細書ではDP-QPSK変調方式の光伝送システムに用いる「DP-QPSK復調器」は、X偏波のQPSK信号とY偏波のQPSK信号とを多重したDP-QPSK信号(偏波多重四値位相変調信号)が入力され、偏波ビームスプリッタ(PBS)によって直交する二つの偏波成分に分離した後、各偏波成分の信号光と局所発振光(LO光)を90度ハイブリッドと呼ばれる干渉回路によって混合し、バランストフォトダイオード(B-PD)へ出力するデバイスを意味する。つまり、本明細書で言う「DP-QPSK復調器」は、B-PDを含まない、DP-QPSK変調方式の光伝送システムに用いる受信器である。
 また本発明の復調器は、PBSと90度ハイブリッドとを少なくとも含む復調器であって、その適用はDP-QPSK変調信号に限定されることなく、QAM(直交振幅変調)やOFDM(直交周波数分割多重)といった一般のコヒーレント変調方式を用いた光伝送システムにも適用することができる。以下では、本発明をDP-QPSK変調に適用することを想定して記述を行う。
 PLC型DP-QPSK復調器(以下、復調器という。)1は、平面光波回路が形成された一つのPLCチップ3を備える。このPLCチップ3には、石英基板或いはシリコン基板などの図示を省略した基板上に、光ファイバ製造技術と半導体微細加工技術を組み合わせてコアとクラッドとを備える複数の光導波路を含む平面光波回路(PLC) が形成されている。このPLCは、例えば、石英系平面光波回路である。
 PLCチップ3の入力端4には、偏波多重コヒーレント変調信号としてのDP-QPSK信号2の入力ポートIn1と、局所発振光の入力ポートIn2,In3とが設けられている。入力ポートIn2には、X偏波のQPSK信号と同じ偏波でかつ同じ波長の局所発振光(X偏波のLO光)が入力される。入力ポートIn3には、Y偏波のQPSK信号と同じ偏波でかつ同じ波長の局所発振光(Y偏波のLO光)が入力される。
 PLCチップ3の出力端5には、信号光の出力ポートOut1~Out8がそれぞれ設けられている。出力ポートOut1、2からは、X偏波のQPSK信号が強度変調信号に変換された直交成分I、QのうちのIチャネル成分(複素平面上における実部:cos成分)の信号光が、出力ポートOut3、4からは、X偏波のQPSK信号が強度変調信号に変換された直交成分I、QのうちのQチャネル成分(複素平面上における虚部:sin成分)の信号光がそれぞれ出力される。
 また、出力ポートOut5、6からは、Y偏波のQPSK信号が強度変調信号に変換されたIチャネル成分の信号光が、出力ポートOut7、8からは、Y偏波のQPSK信号が強度変調信号に変換されたQチャネル成分の信号光がそれぞれ出力される。
 PLCチップ3のPLC内には、DP-QPSK信号2をX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とに偏波分離する偏波ビームスプリッタ(PBS)30と、X偏波用およびY偏波用の二つの90度ハイブリッド回路41,42とが集積されている。
 PBS30は、図2に示すように、二つのカプラ31、32と、両カプラ31,32間に接続された2本のアーム導波路33、34とを有するマッハツェンダー干渉計(MZI)35を備える。入力側のカプラ31と出力側のカプラ32は、それぞれ方向性結合器(DC)で構成された3dBカプラである。入力側のカプラ31の二つの入力ポートの一方に入力光導波路7が接続されている(図1、図2参照)。すなわち、PBS30は、偏波多重コヒーレント変調信号としてのDP-QPSK信号2をX偏波の成分とY偏波の成分とに分離するように構成されている。
 次に、90度ハイブリッド回路41,42について説明する。
 90度ハイブリッド回路41は、PBS30にて分離されたX偏波の信号としてのX偏波のQPSK信号と局所発振光とを混合して、X偏波のQPSK信号を直交成分I、Qに分離して出力する。すなわち、90度ハイブリッド41は、PBS30にて分離されたX偏波の信号と局所発振光とを混合して出力する。この90度ハイブリッド回路41は、図3に示すように、二つの入力側カプラ20,21と、二つの出力側カプラ22,23と、入力側のカプラ20,21と出力側のカプラ22,23との間に接続されたアーム導波路24乃至27とを備える。入力側のカプラ20,21にはY分岐カプラがそれぞれ使用され、出力側のカプラ22,23には波長無依存型方向性結合器(WINC)がそれぞれ使用されている。なお、以下の説明で、アーム導波路24乃至27を経路0~経路3と呼ぶこともある。
 90度ハイブリッド回路41の入力ポート41aにはX信号(X偏波のQPSK信号)が、入力ポート41bにはX偏波のLO光がそれぞれ入射される(図1、図3参照)。この90度ハイブリッド回路41では、X信号が入力側のカプラ20で二分岐された後、経路0,2をそれぞれ通ってカプラ22、23の一方の入力ポートに入射するように構成されている。また、90度ハイブリッド回路41では、LO光が入力側のカプラ21で二分岐された後、経路1,3をそれぞれ通ってカプラ22、23の他方の入力ポートに入射するように構成されている。
 経路0,2の光路長は同じ長さLであり、経路1,3の光路長は、経路1,3の光路差が位相換算で90度となるように設定されている。例えば、経路1の光路長は経路0および2の光路長より位相換算でπ/4ラジアンに相当する量を長くし、経路3の光路長は経路0および2の光路長より位相換算でπ/4ラジアンに相当する量を短くしてもよい。
 経路0(アーム導波路24)は、図4に示すように、回転角+θの曲げ導波路24a、長さlの直線導波路24b、回転角-θの曲げ導波路24c、長さhの直線導波路24d、回転角-θの曲げ導波路24e、長さlの直線導波路24f、および回転角+θの曲げ導波路24gと、を備える。各曲げ導波路の曲げ半径rは最適な値、例えば2000μmになっている。図4で、符号24hは、位相トリミング用のヒータ28を配置する区間である。
 なお、曲げ導波路の回転角θの値を論ずるにあたって、その符号は光の進行方向に沿って反時計回りに回転する場合を正、光の進行方向に沿って時計回りに回転する場合を負と定義する。また、回転角θとは、曲げ導波路(屈曲した導波路)が、曲げ半径r(曲率半径r)の円弧と一致するときの該円弧を形成する2本の曲げ半径のなす角度(中心角)を言う。よって、曲げ半径r、中心角(すなわち回転角)θである扇形の円弧が該回転角θの曲げ導波路の形状となる。
 90度ハイブリッド回路41では、各曲げ導波路24a,24c,24e,24gの曲げ半径を固定にした条件で、四つのパラメータθ、θ、l、lを調整して、経路0の光路長を任意の光路長に調整できる構造になっている。他の経路1乃至3(アーム導波路25乃至27)も同様の構造になっている。
 また、90度ハイブリッド回路41では、入力ポート41a,41b間のピッチ(入力ポート間ピッチ)Piは、経路1と経路2とが交差する角度(交差角)αと、曲げ導波路24aの曲げ半径r、Y分岐カプラ20,21の出力導波路間ピッチPy(図5参照)の値により、下記の式で一意に決定される。
 Pi = 2r(1-cosα) +Py
 なお、ここではアーム導波路24~27の曲げ導波路は同一の曲げ半径rを有する。
 90度ハイブリッド回路42も、90度ハイブリッド回路41と同様の構造を有する。以上の構成を有する復調器1では、まず入力ポートIn1から入力されるDP-QPSK信号2が入力光導波路7を通ってPBS30に入射し、PBS30によってX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とに偏波分離される。X信号は光導波路8を通って90度ハイブリッド回路41の入力ポート41aに、Y信号は光導波路9を通って90度ハイブリッド回路42の入力ポート42aにそれぞれ入射する。
 90度ハイブリッド回路41では、入力ポートIn2から光導波路10を通って入射するX偏波のLO光と光導波路8を通って入射するX信号とが混合される。すなわち、経路0を通るX信号と経路1を通るLO光とが出力側のカプラ22で混合されると共に、経路2を通るX信号と経路3を通るLO光とが出力側のカプラ23で混合される。
 これにより、X偏波のQPSK信号であるX信号が強度変調信号に変換されたIチャネル成分の信号光とQチャネル成分の信号光とが独立に取り出される。X偏波におけるIチャネル成分の信号光は、出力光導波路11,12を通って出力ポートOut1,2から出力される。一方、Qチャネル成分の信号光は、出力光導波路13,14を通って出力ポートOut3,4からそれぞれ出力される。なお、X偏波におけるIチャネル成分およびQチャネル成分の信号光は、図3に示すように、例えば光ファイバを介して或いは光ファイバを介さずにバランストフォトダイオード(B-PD)61および62にそれぞれ入力される。
 一方、90度ハイブリッド回路42では、入力ポートIn3から光導波路19を通って入射するY偏波のLO光と光導波路9を通って入射するY偏波のQPSK信号であるY信号(PBS30にて分離されたY偏波の信号)とが混合される。すなわち、90度ハイブリッド42は、PBS30にて分離されたY偏波の信号と局所発振光とを混合して出力する。これにより、Y信号が強度変調信号に変換されたIチャネル成分の信号光とQチャネル成分の信号光とが独立に取り出される。Y偏波におけるIチャネル成分の信号光は、出力光導波路15,16を通って出力ポートOut5,6から出力される。一方、Qチャネル成分の信号光は、出力光導波路17,18を通って出力ポートOut7,8からそれぞれ出力される。Y偏波におけるIチャネル成分およびQチャネル成分の信号光は、光ファイバを介して或いは光ファイバを介さずに、図示を省略したB-PDにそれぞれ入力される。
 このように、復調器1は、90度ハイブリッド回路41,42により、X信号とX偏波のLO光、Y信号とY偏波のLO光とをそれぞれ混合するコヒーレント光伝送方式の復調器である。
 また、復調器1では、出力ポートOut1~4からは、X信号のIチャネルおよびQチャネルが出力され、出力ポートOut5~8からは、Y信号のIチャネルおよびQチャネルが出力される。
 そして、復調器1では、複数ある信号光の経路、つまり、X信号光の経路とY信号光の経路について、入力端4から出力端5までの実効光路長が全て同じになるように設定されている。
 例えば、復調器1では、X信号の経路とY信号の経路について、入力端4から出力端5までの実効光路長の差が所望の値以下となるように設定されている。ここで、光路長差を信号の到着時間差に変換した場合の所望の値は、一例として5ps以下であるのが好ましい。
 具体的には、PBS30によって分離されたX信号の経路で、PBS30の出力部から出力ポートOut1~4に達するまでの4つの経路の実効光路長と、PBS30によって分離されたY信号の経路で、PBS30の出力部から出力ポートOut5~8に達するまでの4つの経路の実効光路長とがそれぞれ同じになるように設定されている。
 以上の構成を有する第1の実施形態によれば、以下の作用効果を奏する。 
 (1)PLCチップ3のPLC内に、DP-QPSK信号2をX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とに分離するPBS30と、X偏波およびY偏波用の二つの90度ハイブリッド回路41,42とが集積されている。これにより、PBSと二つの90度ハイブリッド回路とを用いてDP-QPSK復調器を構成する場合、PBSと二つの90度ハイブリッド回路とを光接続のための調芯作業や接合作業が不要になる。その結果、PBSと二つの90度ハイブリッド回路との間の接続損失が無く、製造コストを低減することができる。
 (2)本発明者らは、PBSと90度ハイブリッド回路を一つのPLC上に構成した場合、XY偏波成分間のスキューが大きくなってしまうという問題を発見し、これを改善する構成を発明した。
 PBSで分離されたX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とがそれぞれ伝搬する光導波路の経路長に差があると、それらの信号が出力される時間に差が発生してしまう。
 そこで、本実施形態では、X信号の経路で、PBS30の出力部から出力ポートOut1~4に達するまでの4つの経路の実効光路長と、Y信号の経路で、PBS30の出力部から出力ポートOut5~8に達するまでの4つの経路の実効光路長とがそれぞれ同じになるように設定されている。これにより、XY偏波成分間のスキューを低減した高性能なPLC型DP-QPSK復調器を実現することができる。
 例えば、シンボルレートが25GSymbol/sでビットレートが100Gbit/sのDP-QPSK変調方式のPLC型DP-QPSK復調器において、XY偏波成分間のスキューを5ps以下にすることが可能になる。
 (第2の実施形態に係るPLC型DP-QPSK復調器) 
 図6は、第2の実施形態に係るPLC型DP-QPSK復調器1Aの基本構成を示している。
 このPLC型DP-QPSK復調器1Aでは、上記第1の実施形態に係るPLC型DP-QPSK復調器1において、LO光の入力ポートの数を一つとしている。本例では、一例として、LO光の入力ポートとして、X偏波のLO光が入力される入力ポートIn2のみが設けられている。
 また、この復調器1Aでは、X偏波のLO光をPLC内で2分岐し、分岐された各X偏波のLO光が90度ハイブリッド回路41,42にそれぞれ入射するようになっている。X偏波のLO光は、光導波路10を通り、光導波路10a、10bに2分岐された後、90度ハイブリッド回路41,42にそれぞれ入射する。
 また、復調器1Aでは、DP-QPSK信号2がPBS30で偏波分離された各偏波(X偏波およびY偏波)の信号(それぞれ独立した情報により変調されており、以下ではX信号およびY信号という)のうちの片方が伝搬する経路中に半波長板(λ/2板)40が挿入されている。この波長板40はその主軸が、光の導波方向に対して垂直かつPLCの面に平行な軸と45度の角をなしており、これを通過した光のX偏波成分はY偏波に、Y偏波成分はX偏波にそれぞれ変換される。これにより、各90度ハイブリッド回路41,42には、X信号とY信号が同じ偏波状態で入射するようになっている。本例では、一例として、PBS30で偏波分離されたY信号が伝搬する光導波路9に半波長板40が挿入されているので、各90度ハイブリッド回路41,42に、X信号とY信号がともにX偏波の状態で、それぞれ入射するようになっている。PBS30で偏波分離された各偏波の信号間には複屈折によって生ずる実効屈折率差が存在するため、これがスキューの要因となるが、上記構成とすることでこれを低減することができる。
 復調器1Aにおけるその他の構成は、上記第1の実施形態に係る復調器1と同じである。
 以上の構成を有する第2の実施形態によれば、上記第1の実施形態の奏する作用効果に加えて以下の作用効果を奏する。
 第1の実施形態に係る復調器1では、X偏波のLO光を出力するLO光源と、Y偏波のLO光を出力するLO光源の二つの光源が必要である。これに対して、本実施形態に係る復調器1Aでは、LO光源として、X偏波のLO光を出力するLO光源のみを設ければよいので、復調器1Aを用いて構成される光伝送システムの製造コストを更に低減することができる。
 なお、復調器1Aでは、PBS30で偏波分離されたY信号が伝搬する光導波路9に半波長板40が挿入されているが、PBS30で偏波分離されたX信号が伝搬する光導波路8半波長板40を挿入しても良い。この構成では、各90度ハイブリッド回路41,42に、X信号とY信号がともにY偏波の状態で、それぞれ入射する。このように、PBS30とX信号用である90度ハイブリッド41との間、またはPBS30とY信号用である90度ハイブリッド42との間に半波長板40を設けることによって、PBS30により分離されたQPSK信号の偏光状態を、X偏波またはY偏波に統一することができる。また、偏波を統一した後の2つのQPSK信号である、90度ハイブリッド41に入射されるQPSK信号、および90度ハイブリッド42に入射されるQPSK信号を、共に同じ実効屈折率の経路を伝搬させることができる。
 このように、本実施形態では、上記半波長板40を設けることによって、X偏波のQPSK信号およびY偏波のQPSK信号という2つのQPSK信号を多重したDP-QPSK信号を復調するにも関わらず一方の偏波のLO光のみで復調でき、かつ複屈折起因のスキューを低減することができる。
 (第3の実施形態に係るPLC型DP-QPSK復調器)
 図7は、第3の実施形態に係るPLC型DP-QPSK復調器1Bの基本構成を示している。
 このPLC型DP-QPSK復調器1Bでは、上記第1の実施形態に係るPLC型DP-QPSK復調器1において、PLCチップ3のPLC内に三つのPBS30,36,37が設けられている。第2のPBS(X)36および第2のPBS(Y)37はそれぞれ、第1のPBS30とカスケード接続されている。また、この復調器1Bでは、PLCチップ3の小型化を図るために、PBS36,37同士および二つの90度ハイブリッド回路41,42同士の空間的な配置をそれぞれ近接させている。
 PBS36,37は、上記第1の実施形態に係る復調器1のPBS30と同様に、二つのカプラと、両カプラ間に接続された2本のアーム導波路33、34とを有するMZIである図2参照)。
 この復調器1Bでは、まず入力ポートIn1から入力されるDP-QPSK信号2が入力光導波路7を通って第1のPBS30に入射し、第1のPBS30によってX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とに偏波分離される。X信号およびY信号は光導波路38,39を通って第2のPBS(X)36および第2のPBS(Y)37にそれぞれ入射する。
 第2のPBS(X)36は、第1のPBS30から出力されるX信号に含まれるY偏波成分をカットする。これにより、第2のPBS(X)36からは消光比の高いX信号が光導波路8を介してX偏波用の90度ハイブリッド回路(X)41へ出力される。一方、第2のPBS(Y)37は、第1のPBS30から出力されるY信号に含まれるX偏波成分をカットする。これにより、第2のPBS(Y)37からは消光比の高いY信号が光導波路9を介してY偏波用の90度ハイブリッド回路(Y)42へ出力される。
 なお、図7では、X偏波のLO光およびY偏波のLO光が、上記第1の実施形態に係る復調器1と同様に、90度ハイブリッド回路(X)41および90度ハイブリッド回路(Y)42へそれぞれ入射するようになっている。復調器1Bのその他の構成は、復調器1と同様である。
 以上の構成を有する第3の実施形態によれば、上記第1の実施形態の奏する作用効果に加えて以下の作用効果を奏する。
 X信号に対しては第1のPBS30および第2のPBS(X)36の二段構成とすることで、90度ハイブリッド(X)41に入射する際の偏波消光比を高めることができる。またY信号に対しては第1のPBS30および第2のPBS(Y)37の二段構成とすることで、90度ハイブリッド(Y)42に入射する際の偏波消光比を高めることができる。さらに、PBS36,37どうしおよび二つの90度ハイブリッド回路41,42どうしの空間的な配置をそれぞれ近接させているので、PLCチップ3の小型化を図ることができ、小型のPLC型DP-QPSK復調器を実現することができる。
 (第4の実施形態に係るPLC型DP-QPSK復調器) 
 図8は、第4の実施形態に係るPLC型DP-QPSK復調器1Cの基本構成を示している。このPLC型DP-QPSK復調器1Cでは、PLCチップ3のPLC内に、三つのPBS30,36,37が設けられている。また、復調器1Cでは、一段目の第1のPBS30と、第1のPBS30を挟んで並列的に形成された二段目の第2のPBS(X)36および第3のPBS(Y)37と、第2,第3のPBS36,37を挟んで並列的に形成された90度ハイブリッド回路41,42とが設けられている。
 第1のPBS30と第2,第3のPBS36,37とがそれぞれ折り返し導波路43,44を介して接続され、第2のPBS36,37と90度ハイブリッド回路41,42とがそれぞれ折り返し導波路45,46を介して接続されている。
 ここで、各折り返し導波路は例えば、PLC基板表面上において一定の曲率半径で180度の回転角度を有する曲がり導波路で構成されている。
 この復調器1Cでは、PLCチップ3の小型化を図るために、略正方形に近い矩形のPLCチップ3の狭い領域内に、すべての回路を配置する構成を採用している。復調器1Cのその他の構成は、復調器1と同様である。
 以上の構成を有する第4の実施形態によれば、上記第3の実施形態に係るPLC型DP-QPSK復調器1Bを更に小型化することができる。
 (第5の実施形態に係るPLC型DP-QPSK復調器) 
 次に、第5の実施形態に係るPLC型DP-QPSK復調器1Dを、図9乃至図18に基づいて説明する。図9は、第5の実施形態に係るPLC型DP-QPSK復調器1Dの基本構成を示している。なお、図11乃至図18において、+θは曲げ導波路の回転角度θが正の値であることを、-θは曲げ導波路の回転角度θが負の値であることをそれぞれ示している。
 このPLC型DP-QPSK復調器1Dは、以下の構成を有する。 
 (1)図9に示すように、上記復調器1Dにおいて、略正方形に近い矩形のPLCチップ3の中央部に一段目の長いPBS30が形成され、このPBS30を挟んで並列的に二段目の長いPBS36,37が形成されている。さらに、二段目のPBS(第2の偏波ビームスプリッタ)36の図9の上側に90度ハイブリッド回路41が、二段目のPBS(第32の偏波ビームスプリッタ)37の図9の下側に90度ハイブリッド回路42がそれぞれ位置されている。
 (2)PLCチップ3の小型化を図るために、矩形のPLCチップ3の狭い領域内に、PBS30、36、37および90度ハイブリッド回路41,42のすべての回路を配置する構成を採用している。
 (3)図9および図10に示すように、入力ポートIn2に入力するX偏波のLO光は、Y分岐カプラ75により2分岐され、光導波路76,77を通って90度ハイブリッド回路41の入力側のカプラ21,および90度ハイブリッド回路42の入力側のカプラ21にそれぞれ入射するようになっている。ここで、光導波路76,77は、Y分岐カプラ75により2分岐されたX偏波のLO光を、Y分岐カプラ75の近傍から図中において上下方向に伝搬させた後、図9で右方向に伝搬させて90度ハイブリッド回路41,42の入力側のカプラ21,21にそれぞれ入射させるように形成されている。
 (4)図9および図10に示すように、入力ポートIn1に入力するDP-QPSK信号2は、Y分岐カプラ75を迂回する光導波路73を通ってPBS30の入力側のカプラ31に入力される。
 (5)図9および図11に示すように、一段目のPBS30の出力側のカプラ32と、その上側に形成された二段目のPBS36の入力側のカプラ36aとが、前段側の光機能部分(カプラ32)の出力端から後段側の光機能部分(カプラ36a)の入力端に向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい、すなわち、回転角度θの合計が+180度より大きい曲げ導波路からなる折り返し導波路43で接続されている。
 なお、本明細書で、矩形のPLCチップ3において、入力ポートに光が入射する方向をx方向(図9で左右方向)とし、このx方向に垂直な上下方向をy方向という。
 +θの曲げ導波路と-θの曲げ導波路を組み合わせた折り返し導波路43の回転角度θを、前段側の光機能部分の出力端から後段側の光機能部分の入力端に向かって、符号が反転しない回転角度の合計の絶対値が以下の範囲となるように設定することで、PLCチップ3の上記y方向の増分を抑制することができる。つまり、図9におけるPLCチップ3の上下方向、つまりPLC上に各光機能部分を並列的に集積する場合、該光機能部分が並べられる方向のサイズを小さくすることができる。
 180°≦θ≦270°
 その回転角度θが180未満であると、折り返し導波路43が出力端5側から入力端側に向けて負のx方向に(図9で左方向に)進む量が少ないので、好ましくない。また、その回転角度θが270°を越えると、折り返し導波路43の終点が図中上方向に行かない、すなわち並列的に配置される後段側の光機能部分とは反対側(始点から負のy方向)に進んでしまうので、好ましくない。
 折り返し導波路43は、出力側のカプラ32側から順に、+90°の曲げ導波路43a、+90°の曲げ導波路43b、および数度の曲げ導波路43cからなる。
 この曲げ導波路43cは、図12に示すように、+数度の曲げ導波路43c1と-数度の曲げ導波路43c2とを有し、この曲げ導波路43c2は、直線導波路43c3を介してPBS36の入力側のカプラ36aに接続されている。
 これにより、各曲げ導波路43a,43b,43cに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、PLCチップ3上において、一段目のPBS30を挟むように、二段目のPBS36を並列的に近接して配置することができる。
 (6)図9および図13に示すように、一段目のPBS30の出力側のカプラ32と、その図中下側に並列的に形成された二段目のPBS37の入力側のカプラ37aとが、前段側の光機能部分(カプラ32)の出力端から後段側の光機能部分(カプラ37a)の入力端に向かって、符号が反転しない回転角度の合計の絶対値、つまり回転角度θの合計が-180度より小さくなるような曲げ導波路からなる折り返し導波路44で接続されている。なお、この場合は、負の回転角度(-θ)を有する曲げが連続して、その回転角度の合計の絶対値が180度より大きくなっている。
 -θの曲げ導波路と+θの曲げ導波路を組み合わせた折り返し導波路44の回転角度θは、折り返し導波路43と同様に上記の範囲に設定するのが好ましい。折り返し導波路44は、出力側のカプラ32側から順に、-90°の曲げ導波路44a、-90°の曲げ導波路44b、および数度の曲げ導波路44cからなる。
 曲げ導波路44cは、図14に示すように、-数度の曲げ導波路44c1と+数度の曲げ導波路44c2とを有し、この曲げ導波路44c2は、直線導波路44c3を介してPBS37の入力側のカプラ37aに接続されている。
 これにより、各曲げ導波路44a,44b,44cに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、PLCチップ3上において、一段目のPBS30を挟むように、二段目のPBS37を並列的に近接して配置することができる。
 (7)図9および図15に示すように、二段目のPBS36の出力側のカプラ36bと、その上側(正のy方向に(図9で上方向))に形成された90度ハイブリッド回路41の入力側のカプラ20とが、正の回転角度(+θ)の曲げ導波路と負の回転角度(-θ)の曲げ導波路とを組み合わせて、前段側の光機能部分(カプラ36b)の出力端から後段側の光機能部分(カプラ20)の入力端に向かって、符号が反転しない回転角度の合計の絶対値が180度より大きくなるような折り返し導波路45で接続されている。
 +θの曲げ導波路と-θの曲げ導波路を組み合わせた折り返し導波路45の回転角度θについても、折り返し導波路43と同様に上記の範囲に設定するのが好ましい。この折り返し導波路45は、出力側のカプラ36b側から順に、+数10°の曲げ導波路45a、-数10°の曲げ導波路45b、-90°の曲げ導波路45c、直線導波路45d、-90°の曲げ導波路45e、略-45°の曲げ導波路45f、および略+45°の曲げ導波路45gを有する。これにより、各曲げ導波路45a,45b,45c、45e、45f、および45gに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、二段目のPBS36と90度ハイブリッド回路41とをPLCチップ3上において並列的に近接して配置することができる。補足すると、折り返し導波路45の中ほどには直線導波路45dがあるが、この直線導波路45dの回転角度はゼロであるため、角度θの符号は反転しない。
 また、マッハツェンダー干渉計として構成されるPBS36からの出射光は、出力側カプラ36bの、折り返し導波路43から見た場合のクロスポートを通過して折り返し導波路45に入射する構成になっている。これにより、PBSの消光比を拡大すると同時に、折り返し導波路45の曲げ半径をそれぞれ大きくすることができる。
 (8)図9および図16に示すように、二段目のPBS37の出力側のカプラ37bと、その下側(負のy方向に(図9で下方向))に形成された90度ハイブリッド回路42の入力側のカプラ20とが、正の回転角度(+θ)の曲げ導波路と負の回転角度(-θ)の曲げ導波路とを組み合わせて、前段側の光機能部分(出力側のカプラ37b)の出力端から後段側の光機能部分の入力端(入力側のカプラ20)へ向かう方向の回転角度(正の回転角度θ)の合計が+180度より大きい曲げ導波路からなる折り返し導波路46で接続されている。
 +θの曲げ導波路と-θの曲げ導波路を組み合わせた折り返し導波路46の回転角度θについても、折り返し導波路43と同様に上記の範囲に設定するのが好ましい。この折り返し導波路46は、出力側のカプラ37b側から順に、-数度の曲げ導波路46a、+数度の曲げ導波路46b、+90°の曲げ導波路46c、直線導波路46d、+90°の曲げ導波路46e、略+45°の曲げ導波路46f、および略-45°の曲げ導波路46gを有する。これにより、各曲げ導波路46a,46b,46c、46e、46f、および46gに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、二段目のPBS37と90度ハイブリッド回路42とをPLCチップ3上において並列的に近接して配置することができる。補足すると、折り返し導波路46の中ほどには直線導波路46dがあるが、この直線導波路46dの回転角度はゼロであるため、角度θの符号は反転しない。
 また、マッハツェンダー干渉計として構成されるPBS37からの出射光は、出力側カプラ37bの、折り返し導波路44から見た場合のクロスポートを通過して折り返し導波路46に入射する構成になっている。これにより、PBSの消光比を拡大すると同時に、折り返し導波路46の曲げ半径をそれぞれ大きくすることができる。
 (9)DP-QPSK信号2がPBS30で偏波分離された各偏波成分(X偏波およびY偏波)の信号光(それぞれ独立した情報により変調されており、以下ではX信号およびY信号という)のうちの片方が伝搬する経路中に半波長板(λ/2板)40が挿入されている。これにより、各90度ハイブリッド回路41,42には、X信号とY信号が同じ偏波状態で入射するようになっている。本例では、一例として、PBS30で偏波分離されたY信号が通る折り返し導波路46の直線導波路46dに半波長板40が挿入されているので、X信号とY信号がともにX偏波の状態で、それぞれ各90度ハイブリッド41,42に入射するようになっている。
 (10)各折り返し導波路43,44,47,48については、曲げ導波路の半径を最適な値、例えば2000μmから1800μmにするために、各曲げ導波路の幅を、例えば7μmにそれぞれ広げている。各折り返し導波路の終点では、導波路の幅はテーパーにより再び6μmに変換され、以降の導波路の曲げ径も2000μmとする。
 このようにした理由は、限られたPLCチップ3のサイズの中で、出力ポートOut1,2と出力ポートOut3,4の間隔、出力ポートOut3,4と出力ポートOut5,6の間隔、および出力ポートOut5,6と出力ポートOut7,8の間隔をそれぞれ等しく(例えば6mm間隔に)するという要求を満たすためである。
 (11)PBS36,37の検査・調整のために、二段目のPBS36,37の検査用入力ポートP1,P4に光をそれぞれ入力し、PBS36,37だけをそれぞれ通過させて検査用出力ポートP2,P3から出力させることができるようになっている。
 具体的には、図9に示すように、検査用入力ポートP1はPBS36の入力側のカプラ36aの一方の入力ポートに接続されている。また、図9および図17に示すように、PBS36の出力側のカプラ36bのスルーポートと、検査用出力ポートP2に接続された光導波路71とが、正の回転角度(+θ)の曲げ導波路と負の回転角度(-θ)の曲げ導波路を組み合わせて、前段側の光機能部分(カプラ36b)の出力端から光導波路71へ向かって、符号が反転しない回転角度(正の回転角度θ)の合計が+180度より大きい曲がり導波路からなる折り返し導波路47で接続されている。
 その折り返し導波路47は、図17に示すように、カプラ36b側から順に、+数10°の曲げ導波路47a、+90°の曲げ導波路47b、+90°の曲げ導波路47c、略-45°の曲げ導波路47d、および略+45°の曲げ導波路47eを有する。これにより、各曲げ導波路47a,47b,47c、47dおよび47eに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、PBS36と光導波路71とを並列的に近接した位置で接続することができる。
 一方、検査用入力ポートP4はPBS37の入力側のカプラ37aの一方の入力ポートに接続されている。また、図9および図18に示すように、PBS37の出力側のカプラ37bのスルーポートと、検査用出力ポートP3に接続された光導波路72とが、正の回転角度(+θ)の曲げ導波路と負の回転角度(-θ)の曲げ導波路を組み合わせて、前段側の光機能部分(カプラ37b)の出力端から光導波路72へ向かって、符号が反転しない回転角度θの合計の絶対値が180度より大きい曲がり導波路からなる折り返し導波路48で接続されている。光導波路72は、光導波路71に近接した位置で、光導波路71と同様に屈曲して延びている。
 その折り返し導波路48は、図18に示すように、カプラ37b側から順に、数度の曲げ導波路48a、-90°の曲げ導波路48b、-90°の曲げ導波路48c、略+45°の曲げ導波路48d、および略-45°の曲げ導波路48eを有する。これにより、各曲げ導波路48a,48b,48c、48dおよび48eに、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、PBS37と光導波路72とを並列的に近接した位置で接続することができる。
 PBS30,36,37を構成するマッハツェンダー干渉計のそれぞれについて、上下各アームの少なくとも一方にはヒータが配置されている。ヒータに加える電圧を調整し、導波路の屈折率および複屈折の量を独立して制御することで、PBSとしての偏波消光比が所望の値となるように調整することが可能となる。その際、P1から光を入射してP2から出力される光を測定することで、PBS36だけを調整することができる。また、P4から光を入射してP3から出力される光を測定することで、PBS37だけを調整することができる。なお、P1とP2は入出力を入れ替えてもよく、またP3とP4についても入出力を入れ替えてもよい。PBS36の調整が終了した後、P2から光を入射してIn1あるいはIn2から出力される光を測定することで、PBS30の調整が可能となる。あるいは、PBS37の調整が終了した後、P3から光を入射してIn1あるいはIn2から出力される光を測定することでも、PBS30の調整が可能となる。
 復調器1Dにおけるその他の構成は、上記第1の実施形態に係る復調器1と同じである。 
 以上の構成を有する第5の実施形態によれば、上記第1の実施形態の奏する作用効果に加えて以下の作用効果を奏する。
 上記構成(1)、(2)により、PLCチップ3の小型化を図ることができ、小型のPLC型DP-QPSK復調器を実現することができる。
 上記構成(5)乃至(8)により、各曲げ導波路に、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、PBS36,37および二つの90度ハイブリッド回路41,42を、PLCチップ3において並列的に近接して配置することができる。従って、光学的特性を劣化させずに、小型のPLC型DP-QPSK復調器を実現することができる。上記構成(11)により、ひとつのPLC上に集積した複数のPBSを独立に調整することができる。
 PBS30と長いPBS36,37とをPLCチップ3上で近い位置に配置させることで、X信号とY信号との間のスキューを低減した高性能なPLC型DP-QPSK復調器を実現することができる。
 また、導波路の特性(例えば干渉計としての動作)が近くなるので、調整の手間が省ける。つまり、PLCチップ3上で複数のマッハツェンダー干渉計が存在するとき、それらの屈折率の値が同じであれば、アーム間光路差(物理的な長さ)の等しい干渉計は、同じ干渉条件(FSRの値や、伝達関数のピーク値を与える波長など)を示すので、調整の手間が省ける。
 また、PBS36,37の出力側カプラ36b,37bの、入力側導波路43および44から見た場合のクロスポートをそれぞれ通過して折り返し導波路45,46に入射する構成になっている。これにより、PBSの消光比を拡大すると同時に、折り返し導波路45,46の曲げ半径をそれぞれ大きくすることができる。
 このように本実施形態によれば、矩形のPLCチップ上にそれぞれ並列的に形成された偏波ビームスプリッタと90度ハイブリッド回路、および一段目と二段目の偏波ビームスプリッタを、前段側の光機能部分の出力端から後段側の光機能部分の入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されている。これにより、各曲げ導波路に、漏れ光による損失が問題とならない程度の曲げ半径を確保しながら、複数の偏波ビームスプリッタおよび二つの90度ハイブリッド回路を、PLCチップ上に並列的に近接して配置することができる。従って、光学的特性を劣化させずに、小型のPLC型DP-QPSK復調器を実現することができる。
 (第6の実施形態に係るPLC型DP-QPSK復調器) 
 図19は第6の実施形態に係るPLC型DP-QPSK復調器1Eの基本構成を示している。この復調器1Eと図9に示す復調器1Dとの主な相違点は、以下の構成にある。
 (1)折り返し導波路45,46の一部をそれぞれ波長板スリット用の幅広導波路45a,46aにするため、曲がりテーパーを使用している。この曲がりテーパーは、各幅広導波路45a,46aの図中において上下の曲がっている部分になる。ここでの「曲がりテーパー」は、曲がりつつ、幅を変換する、すなわち幅が変化している導波路を意味する。
 (2)PLCチップ3の縦サイズを小型化するために、出力端5において、八つの出力ポートOut1~4およびOut5~8をそれぞれまとめて配置している。
 (3)検査ポートP1から入射した光は、PBS36を通った後、折り返し導波路47および光導波路71を通って検査ポートP2から出力される。一方、検査ポートP4から入射した光は、PBS37を通った後、折り返し導波路48および光導波路72を通って検査ポートP3から出力される。このように、本実施形態では、光導波路71,72の一方はPBS30の上側(正のy方向に(図19で上方向))に、その他方はPBS30の下側(負のy方向に(図19で下方向))に形成されている。
 以上のように、本発明は、複数の光機能部分を並列的に1つのPLC上に集積する場合において、前段側の光機能部分(カプラ)の出力端から後段側の光機能部分(カプラ)へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲がり導波路を用いることを特徴とする。これによって、曲がり導波路を前段側および/あるいは後段側の光機能部分側に余分に張り出させた後に一部戻す構成とするため、並列的に集積された前段および後段側の光機能部分の間隔や各光機能部分の長手方向の配置の自由度が向上し、光集積回路の小型化を実現することができる。
 また、当該曲がり導波路を連続して一方向に曲げた回転角度の合計の絶対値を180度より大きくすることにより、さらに効果的に光集積回路の小型化を実現することができる。
 なお、本発明で用いられる曲がり導波路は、曲げによる過剰損失が問題とならない程度の一定の曲率半径とするのが望ましい。
 但し、本発明における「符号が反転しない」、「一方向に曲げ」等については、光集積回路の小型化に影響のない程度の微小な違いを排除するものではなく、本発明の主旨に基づいて適切に許容されるべきものである。
 (第7の実施形態に係るPLC型DP-QPSK復調器) 
 図21は、第7の実施形態に係るPLC型DP-QPSK復調器の基本構成を示している。
 本実施形態に係る復調器1Eでは、入力されたQPSK信号およびLO光を90度ハイブリッド回路に入射する経路を2回折り返し、かつ1回目の折り返し領域(入力された光(QPSK信号およびLO光)を入力方向と反対側に変化させる領域)と2回目の折り返し領域(上記反対側に進行している光を再び上記入力方向に変化させる領域)との間に、QPSK信号用およびLO光用のPBSをそれぞれ設けている。そして、X信号(X偏波のQPSK信号)に対する該PBSから90度ハイブリッド回路までの光路長と、Y信号(Y偏波のQPSK信号)に対する該PBSから90度ハイブリッド回路までの光路長とが少なくとも同一になるように、上記2回目の折り返し領域の構造を工夫している。
 図21において、復調器1Eの入力端4には、偏波多重コヒーレント変調信号としてのDP-QPSK信号の入力ポートIn1と、X偏波のLO光およびY偏波のLO光の双方を入力するための入力ポートIn4が設けられている。また、入力端4から所定の距離だけ離間して、DP-QPSK信号をX信号とY信号とに分離するためのPBS30、およびX偏波およびY偏波の多重LO光(X偏波のLO光とY偏波のLO光とが混合した光)をX偏波のLO光とY偏波のLO光に分離するためのPBS30aが設けられている。すなわち、PBS30およびPBS30aはそれぞれ入力端4から同一の距離だけ離間して、並列的に配置されている。なお、PBS30aは、図2に示すPBS30と同一の構造を有しており、二つのカプラ31a、32aと、両カプラ31a,32a間に接続された2本のアーム導波路とを有するマッハツェンダー干渉計(MZI)である。
 入力ポートIn1の後段には、第1の折り返し領域101aを有し、入力ポートIn1とPBS30のカプラ31(PBS30の入力側カプラ)とを接続する導波路101が設けられており、入力ポートIn4の後段には、第1の折り返し領域102aを有し、入力ポートIn4とPBS30aのカプラ31a(PBS30aの入力側カプラ)とを接続する導波路102が設けられている。PBS30のQPSK信号(X信号)の伝搬方向の後段側には90度ハイブリッド回路41が設けられており、PBS30aのQPSK信号(Y信号)の伝搬方向の後段側には90度ハイブリッド回路42が設けられている。
 PBS30のカプラ32(PBS30の出力側カプラ)と、90度ハイブリッド回路41のY分岐カプラ20とは、第2の折り返し領域103aを有する導波路103により接続されており、PBS30のカプラ32と、90度ハイブリッド回路42のY分岐カプラ20とは、第2の折り返し領域104aを有する導波路104により接続されている。また、PBS30aのカプラ32a(PBS30aの出力側カプラ)と、90度ハイブリッド回路41のY分岐カプラ21とは、第2の折り返し領域105aを有する導波路105により接続されており、PBS30aのカプラ32aと、90度ハイブリッド回路42のY分岐カプラ21とは、第2の折り返し領域106aを有する導波路106により接続されている。
 図21において、入力端4から該入力端4に対向する出力端5に向う矢印方向Pと直交する矢印方向Qに沿って、90度ハイブリッド回路41、PBS30、PBS30a、および90度ハイブリッド回路42がこの順番で配置されている。従って、X信号を伝搬するための導波路103はX偏波のLO光を伝搬するための導波路105と交差し、Y信号を伝搬するための導波路104は該導波路105とY偏波のLO光を伝搬するための導波路と交差する。
 この復調器1Eと図9に示す復調器1Dとの主な相違点は、以下の構成にある。まず、復調器1Eにおいて、信号光用のPBS30は一段のMZIで構成されている。さらに、LO光用のPBS30aも一段のMZIで構成され、PLCチップ3上に集積されている。信号光とLO光の入力導波路および折り返し導波路、そしてPBSの配置は入力端4から該入力端4に対向する出力端5に向う矢印方向P(横方向)に対して線対称な構成を有する。さらに、PBS30、30aを出力した後の4本の導波路103~106を図22の構成(詳細は後述する)にすることで、信号光(QPSK信号)のX偏波成分(X信号)とY偏波成分(Y信号)、そしてLO光のX偏波成分とY偏波成分のそれぞれが伝搬する4つの導波路が、対称な形状で折り返される。従って、スキューの発生を低減して、それぞれの偏波成分に対応した二つの90度ハイブリッドの入力ポートへとそれぞれ導くことができる。本構成によって、スキューの発生を低減した折り返し構成が可能となる上、チップサイズの小型化(特に横方向)に大きく寄与することになる。
 本実施形態では、上述のようにスキューの発生を低減するために、PBS30と90度ハイブリッド回路41との間のX信号用の経路(導波路103)、およびPBS30と90度ハイブリッド回路42との間のY信号用の経路(導波路104)を同一の光路長にする。さらに、PBS30aと90度ハイブリッド回路41との間のX偏波のLO光用の経路(導波路105)、およびPBS30aと90度ハイブリッド回路42との間のY偏波のLO光用の経路(導波路106)についても同一の光路長にする。これらを実現するために、本実施形態では、図22に示すように第2の折り返し領域の構造に特徴がある。
 図22は、導波路103~106第2の折り返し領域の構成を説明するための図である。図22において、導波路103は、曲げ半径rで中心角θの扇形の円弧と同一の形状の曲げ導波路(回転角+θの曲げ導波路)103b、所定の長さlの直線導波路103c、曲げ半径rで中心角(π-2θ)の扇形の円弧と同一の形状の曲げ導波路(回転角+(π-2θ)の曲げ導波路)103d、および残りの導波路103eを有している。導波路104は、曲げ半径rで中心角θの扇形の円弧と同一の形状の曲げ導波路(回転角-θの曲げ導波路)104b、所定の長さlの直線導波路104c、曲げ半径rで中心角(π-2θ)の扇形の円弧と同一の形状の曲げ導波路(回転角-(π-2θ)の曲げ導波路)104d、および残りの導波路104eを有している。導波路105は、回転角+θの曲げ導波路105b、所定の長さlの直線導波路105c、回転角+(π-2θ)の曲げ導波路103d、および残りの導波路105eを有している。さらに、導波路106は、回転角-θの曲げ導波路106b、所定の長さlの直線導波路106c、回転角-(π-2θ)の曲げ導波路106d、および残りの導波路106eを有している。
 このように、導波路103の曲げ導波路103b~曲げ導波路103dまでの形状と導波路105の曲げ導波路105b~曲げ導波路103dまでの形状とが同一であり、導波路104の曲げ導波路104b~曲げ導波路104dまでの形状と導波路106の曲げ導波路106b~曲げ導波路106dまでの形状とが同一である。さらには、導波路103の曲げ導波路103b~曲げ導波路103dまでの形状と、導波路104の曲げ導波路104b~曲げ導波路104dまでの形状とは、矢印方向Pに対して線対称である。
 本実施形態では、PBS30から90度ハイブリッド回路42に向う経路である導波路104と、PBS30aから90度ハイブリッド回路41に向う経路である導波路105とが、直線導波路104cと曲げ導波路104dとの境界および直線導波路105cと曲げ導波路105dとの境界において交差しており、該交差角を2θに設定する。また、カプラ32、32aにおける近接して配置された2本の導波路間の距離(DCピッチ)をpとすると。このとき、以下のように直線長lを決めれば、上述のように四つの導波路103,104,105,106を同一の形状とし、さらに導波路103と導波路105、導波路導波路105と導波路104、導波路104と導波路106が交差する際の交差角をすべて2θとすることができる。
 まず、PBS30の中心線すなわちカプラ32の中心線(ともに図21で矢印pに平行な線)から、直線導波路104cと直線導波路105cとが交差する点までの、矢印Qの方向にそった距離は、p/2+r(1-cosθ)+lsinθである。この長さを、回転角が-(π-2θ)である曲げ導波路105dの前半部、すなわち回転角が-(π/2-θ)である曲げ導波路の矢印Qの方向にそった距離である、rsin(π/2-θ)=rcosθに一致させればよい。これから、 
 p/2+r(1-cosθ)+lsinθ=rcosθ    (1) 
が成り立ち、該式(1)から
Figure JPOXMLDOC01-appb-M000001
が得られる。 
 このように、直線導波路103c、104c、105c、106cの長さlについても、曲げ半径r、角度θを決めると、一意に決定することができる。すなわち、直線導波路103c、104c、105c、106cの前段に位置する曲げ導波路103b、104b、105b、106bはそれぞれ同一の形状の扇側の円弧に相当し、直線導波路103c、104c、105c、106cの後段に位置する曲げ導波路103d、104d、105d、106dもそれぞれ同一の形状の扇側の円弧に相当する。よって、式(2)に従って直線導波路103c、104c、105c、106cの各々について長さlを求めれば、直線導波路103c、104c、105c、106cの光路長を同一にすることができ、その結果、導波路103~106の、導波路が折り返す領域(導波路103;曲げ導波路103b、直線導波路103c、曲げ導波路103d、導波路104;曲げ導波路104b、直線導波路104c、曲げ導波路104d、導波路105;曲げ導波路105b、直線導波路105c、曲げ導波路105d、導波路106;曲げ導波路106b、直線導波路106c、曲げ導波路106d)までは少なくとも同一または線対称な形状にすることができる。よって、導波路103~106の、導波路が折り返す領域を同一の光路長にすることができる。
 なお、導波路が折り返した後の経路である、残りの導波路103e、104e、105e、106eについては形状を統一する必要は無いが、90度ハイブリッド回路(対応するY分岐カプラ)までの光路長は同一に設定されている。
 従って、導波路103~106の光路長を同一にすることができ、スキューの発生を低減することができる。
 本実施形態の導波路103~106の設計方法の一例を説明する。復調器の仕様に応じて曲げ導波路103b、104b、105b、106b、および曲げ導波路103d、104d、105d、106dの曲率半径rを決定し、カプラ32、32aのDCピッチpを決定する。なお、曲げ導波路103b、104b、105b、106b、および曲げ導波路103d、104d、105d、106dの曲げ半径は同一の値である。次に、導波路104と導波路105との交差角2θを決定する。例えば、導波路104、105の交差による損失を最小限にしたい場合は、交差角2θ=90度に設定すれば良い。
 このように交差角2θが決まると、それぞれの曲げ導波路の曲げ半径rが決まっているので、曲げ導波路103b、104b、105b、106b(回転角度θ)、および曲げ導波路103d、104d、105d、106d(回転角度(π-2θ))の形状が決まる。また、上記曲げ半径r、DCピッチp、および角度θを式(2)に代入することにより、直線導波路103c、104c、105c、106cの長さlを決定することができ、直線導波路103c、104c、105c、106cの形状が決まる。
 このように、本実施形態では、上記交差角を、上記直線導波路、ならびに該直線導波路の前段および後段の曲げ導波路の設計パラメータに含めているので、導波路の折り返しを実現しつつ、該折り返しを実現する導波路部分の光路長を同一にする構造を、上記交差角に応じて容易に設計することができる。
 なお、曲げ導波路103d、104d、105d、106dの回転角の絶対値は(π-2θ)に限定される。その理由は、回転角の絶対値が(π-2θ)を上回る場合、それぞれの上回った部分は残りの導波路103e、104e、105e、106eに含まれるとみなしてよく、逆に回転角の絶対値が(π-2θ)を下回る場合は、曲げ導波路105dと曲げ導波路103dとが交差(あるいは曲げ導波路105dと直線導波路103cとが交差)する交差角を2θとすることができず、同様に曲げ導波路104dと曲げ導波路106dとが交差(あるいは曲げ導波路104dと直線導波路106cとが交差)する交差角を2θとすることができないためである。
 (第8の実施形態に係るPLC型DP-QPSK復調器) 
 図23は第8の実施形態に係るPLC型DP-QPSK復調器の基本構成を示している。
 図23に示す復調器1Fは、図21、22に示す第7の実施形態に係る復調器1Eと基本構造は同一であるが、導波路のコアとクラッドの比屈折率差は一例として復調器1Eの場合は1.2%としているが、図23に示す復調器1Fでは1.8%とする。これにより、曲げ導波路の曲げ半径を2mmから1.2mmに減少させることができる。その結果、復調器1Eの横の長さ(図21の矢印Pの方向の長さ)が25mm、縦の長さ(図21の矢印Qの方向の長さ)が16mmであったのに対して、本実施形態の復調器1Fの横の長さを15mm、縦の長さを13mmに小型化することができる。
 さて、本実施形態では、PBS30、30aに屈曲部を設けているので、形成されるヒータも屈曲することになる。よって、図23に示すように、PBS30のアーム導波路上には、直線形状のヒータ110と、屈曲した形状のヒータ111とが形成されており、PBS30aのアーム導波路上には、直線形状のヒータ110aと、屈曲した形状のヒータ111aとが形成されている。ヒータを屈曲させることにより、同じ長さで屈曲させない場合と比較して、横方向のサイズを縮小することができる。この復調器1Fの直線形状のヒータ110、110aを省いた、さらなる小型を図った復調器1Gを図24に示す。図24に示す復調器1Gでは、上記直線形状のヒータ110、110aを省くことでチップサイズをさらに小型化でき、縦横ともに12mmのサイズを実現することができる。
 <光伝送システム> 
 次に、上記各実施形態で説明したPLC型DP-QPSK復調器を用いた光伝送システム50の一実施形態を、図20に基づいて説明する。
 この光伝送システム50では、一例として、図6に示す上記第3の実施形態に係るPLC型DP-QPSK復調器1Aを用いている。図20に示す光伝送システム50は、送信信号を位相変調してDP-QPSK信号を出力する送信機51と、光ファイバで構成される光伝送路52と、エルビウムドープ光ファイバ増幅器(EDFA: Erbium-Doped Fiber Amplifier)53と、AWG54と、受信機55とを備える。
 送信機51は、複数の波長(λ~λ)の光の各X偏波光および各Y偏波光を4値位相変調したX偏波のQPSK信号とY偏波のQPSK信号とを波長多重したDP-QPSK信号2を出力する。つまり、送信機51から光伝送路52へは、複数の波長の光のDP-QPSK信号2が多重されたn波分のDP-QPSK信号が出力される。
 受信機55は、X偏波のLO光を出力するLO光源56と、PLC型DP-QPSK復調器1Aと、一対のフォトダイオードを有する四つのバランストフォトダイオード(B-PD)61~64と、デジタル信号処理回路(DSP)65とを備える。
 B-PD61,63はそれぞれIチャンネル用の光検出器であり、B-PD62,64はそれぞれQチャンネル用の光検出器である。また、デジタル信号処理回路65は、X偏波とY偏波の各QPSK信号を復調した復調信号と同速度の同期したクロックを再生するクロック抽出回路や、このクロックによりサンプリングするIチャンネル用及びQチャンネル用のサンプリング回路や、各サンプリング信号をデジタル信号に変換するA/D変換器などを備える。
 以上の構成を有する光伝送システム50では、送信機51から出力されるn波分のDP-QPSK信号は、光伝送路52を伝搬し、EDFA53で増幅された後、AWG54に入射し、AWG54により分波される。AWG54により分波された複数の波長(λ~λ)の光のうち、例えば波長λのDP-QPSK信号が、復調器1Aの入力ポートIn1に入力される。
 入力ポートIn1から入力された波長λのDP-QPSK信号2は、PBS30によってX偏波のQPSK信号(X信号)とY偏波のQPSK信号(Y信号)とに偏波分離される。PBS30で偏波分離されたY信号が伝搬する光導波路9に半波長板40が挿入されているので、各90度ハイブリッド回路41,42には、それぞれX信号とY信号がともにX偏波で入射するようになっている。
 90度ハイブリッド回路41では、X偏波のLO光とX信号とが混合され、X信号のI、Qチャネル成分に分離される。90度ハイブリッド回路41からB-PD61にX信号におけるIチャネル成分の信号光が出力され、90度ハイブリッド回路41からB-PD62にX信号におけるQチャネル成分の信号光がそれぞれ出力される。
 一方、90度ハイブリッド回路42では、X偏波のLO光と、X偏波に変換されたY信号とが混合され、Y信号のI、Qチャネル成分に分離される。90度ハイブリッド回路42からB-PD63にY信号におけるIチャネル成分の信号光が出力され、90度ハイブリッド回路42からB-PD64にY信号におけるQチャネル成分の信号光がそれぞれ出力される。
 B-PD61からDSP65には、X信号におけるIチャネル成分の信号光(逆位相の二つの信号光)の強度差に応じた電流値の信号(バランス受信されたIチャネル復調信号)が出力される。B-PD62からDSP65には、X信号におけるQチャネル成分の信号光(逆位相の二つの信号光)の強度差に応じた電流値の信号(バランス受信されたQチャネル復調信号)が出力される。B-PD63からDSP65には、Y信号におけるIチャネル成分の信号光(逆位相の二つの信号光)の強度差に応じた電流値の信号(バランス受信されたIチャネル復調信号)が出力される。そして、B-PD64からDSP65には、Y信号におけるQチャネル成分の信号光(逆位相の二つの信号光)の強度差に応じた電流値の信号(バランス受信されたQチャネル復調信号)が出力される。
 DSP65は、B-PD61~64からそれぞれ出力される復調信号と同速度の同期したクロックをクロック抽出回路により再生し、Iチャンネル用及びQチャンネル用のサンプリング回路ではそのクロックにより復調信号をサンプリングしてサンプリング信号を生成する。各サンプリング信号はA/D変換器によりデジタル信号に変換され、DSP65から受信信号が出力される。
 以上の構成を有する光伝送システムによれば、以下の作用効果を奏する。
 (1)PLCチップ3のPLC内に、PBS30と二つの90度ハイブリッド回路41,42とが集積されている復調器1Aを用いているので、PBSと二つの90度ハイブリッド回路とを光接続のための調芯作業や接合作業が不要になる。その結果、PBSと二つの90度ハイブリッド回路との間の接続損失が無く、低コストの光伝送システム50を製造することができる。
 (2)各90度ハイブリッド回路41,42にそれぞれ入射する信号光の経路で、PBS30から出力ポートまでの経路の実効光路長がそれぞれ同じになるように設定された復調器1Aを用いている。このため、同じX偏波であるX信号光およびY信号光間のスキューを低減した高性能な光伝送システムを実現することができる。
 例えば、シンボルレートが25GSymbol/sでビットレートが100Gbit/sのDP-QPSK変調方式の光伝送システムにおいて、同じX偏波である信号光間のスキューを5ps以下にすることが可能になる。
 (3)高密度波長分割多重(DWDM: Dense Wavelength Division Multiplexing)伝送方式の光ファイバ通信に特に有効な光伝送システムを実現することができる。
 (4)各B-PD61~64から出力される信号(復調信号)の電流値は、DP-QPSK信号の振幅とLO光の振幅の積に比例する。このため、LO光源56から出力されるLO光のパワーを増大させると、そのパワーの平方根に比例して各B-PD61~64からの信号電流が増す。これにより、高性能な光伝送システムを実現することができる。このような利点が、信号光とLO光を混合するコヒーレント光伝送方式の復調器を用いた光伝送システムで得られる。
 なお、この発明は以下のように変更して具体化することもできる。 
 上記各実施の形態で説明した復調器では、PLC3上に、少なくとも一つのPBSと、二つの90度ハイブリッド回路と、これらを接続する光導波路とを含む一組の受信回路を形成しているが、PLC3上に複数組の受信回路を形成したPLC型DP-QPSK復調器にも本発明は適用可能である。このように構成したPLC型DP-QPSK復調器では、複数組の受信回路のうちの最適な一つの受信回路を選択でき、歩留まりが向上し、更なるコストの低減を図ることができる。
 図9で説明した復調器上記各実施の形態で説明した復調器1Dにおいて、折り返し導波路43,44,45,46,47の少なくとも一つを、2回折り返して、元の向きに戻すようにしても良い。
 なお、上記の説明では偏波多重コヒーレント変調方式の中で、主にDP-QPSK変調信号の復調を行うことを想定して記述したが、本発明の復調器の適用は、DP-QPSK変調方式に限るものではなく、QAM(直交振幅変調)やOFDM(直交周波数分割多重変調)など、他のコヒーレント変調方式にも適用可能である。

Claims (17)

  1.  偏波多重されたコヒーレント変調信号を受信して復調するPLC型復調器であって、
     平面光波回路が形成された一つのPLCチップと、
     前記PLCチップの入力端に設けられ、前記偏波多重されたコヒーレント変調信号を前記平面光波回路内に入力する第1の入力ポートと、
     前記PLCチップの入力端に設けられ、局所発振光を前記平面光波回路内に入力する第2の入力ポートと、
     前記第1の入力ポートから入力された前記偏波多重されたコヒーレント変調信号をX偏波のコヒーレント変調信号とY偏波のコヒーレント変調信号とに分離する少なくとも一つの偏波ビームスプリッタと、
     前記X偏波のコヒーレント変調信号と前記第2の入力ポートから入力された局所発振光とを混合して出力する第1の90度ハイブリッド回路と、
     前記Y偏波のコヒーレント変調信号と前記第2の入力ポートから入力された局所発振光とを混合して出力する第2の90度ハイブリッド回路とを備え、
     前記平面光波回路内に、前記少なくとも1つの偏波ビームスプリッタと、前記第1の90度ハイブリッド回路と、前記第2の90度ハイブリッド回路とが集積されていることを特徴とするPLC型復調器。
  2.  X偏波の局所発振光とY偏波の局所発振光とが混合した光を、該X偏波の局所発振光と該Y偏波の局所発振光とに分離する第2の偏波ビームスプリッタをさらに備え、
     前記偏波ビームスプリッタおよび前記第2の偏波ビームスプリッタは、入力側カプラと出力側カプラとを有し、
     前記入力側カプラが前記入力端に対向する前記PLCチップの出力端側に位置し、かつ前記出力側カプラが前記入力端側に位置するように、前記偏波ビームスプリッタおよび前記第2のビームスプリッタは設けられており、
     前記入力端から前記出力端に向う方向と直交する方向に沿って、前記第1の90度ハイブリッド回路、前記偏波ビームスプリッタ、前記第2の偏波ビームスプリッタ、および前記第2の90度ハイブリッド回路がこの順番で配置されており、
     前記PLC型復調器は、
     前記第1の入力ポートと前記偏波ビームスプリッタの入力側カプラとを接続する導波路であって、伝搬する光を折り返すように曲がった領域を有する導波路と、
     前記第2の入力ポートと前記第2の偏波ビームスプリッタの入力側カプラとを接続する導波路であって、伝搬する光を折り返すように曲がった領域を有する導波路と、
     前記偏波ビームスプリッタの出力側カプラと前記第1の90度ハイブリッド回路とを接続し、前記X偏波のコヒーレント変調信号および前記Y偏波のコヒーレント変調信号の一方を伝送するための第1の導波路であって、伝搬する光を折り返すように曲がった領域を有する第1の導波路と、
     前記偏波ビームスプリッタの出力側カプラと前記第2の90度ハイブリッド回路とを接続し、前記X偏波のコヒーレント変調信号および前記Y偏波のコヒーレント変調信号の他方を伝送するための第2の導波路であって、伝搬する光を折り返すように曲がった領域を有する第2の導波路と、
     前記第2の偏波ビームスプリッタの出力側カプラと前記第1の90度ハイブリッド回路とを接続し、前記X偏波の局所発振光号および前記Y偏波の局所発振光の一方を伝送するための第3の導波路であって、伝搬する光を折り返すように曲がった領域を有する第3の導波路と、
     前記第2の偏波ビームスプリッタの出力側カプラと前記第2の90度ハイブリッド回路とを接続し、前記X偏波の局所発振光および前記Y偏波の局所発振光の他方を伝送するための第4の導波路であって、伝搬する光を折り返すように曲がった領域を有する第4の導波路とをさらに備え、
     前記第1の導波路の光路長と前記第2の導波路の光路長とは同一であることを特徴とする請求項1に記載のPLC型復調器。
  3.  前記第1の導波路の光路長、前記第2の導波路の光路長、前記第3の導波路の光路長、および前記第4の導波路の光路長は同一であり、
     前記第2の導波路と前記第3の導波路とが交差角2θで交差しており、
     前記第1の導波路は、前記偏波ビームスプリッタの出力側カプラに接続された第1の曲げ導波路と、該第1の曲げ導波路に接続された第1の直線導波路と、該第1の直線導波路に接続された第2の曲げ導波路とを有し、
     前記第2の導波路は、前記偏波ビームスプリッタの出力側カプラに接続された第3の曲げ導波路と、該第3の曲げ導波路に接続された第2の直線導波路と、該第2の直線導波路に接続された第4の曲げ導波路とを有し、
     前記第3の導波路は、前記第2の偏波ビームスプリッタの出力側カプラに接続された第5の曲げ導波路と、該第5の曲げ導波路に接続された第3の直線導波路と、該第3の直線導波路に接続された第6の曲げ導波路とを有し、
     前記第4の導波路は、前記第2の偏波ビームスプリッタの出力側カプラに接続された第7の曲げ導波路と、該第7の曲げ導波路に接続された第4の直線導波路と、該第4の直線導波路に接続された第8の曲げ導波路とを有し、
     前記第1、第3、第5、および第7の曲げ導波路は、曲げ半径r、中心角θの扇形の円弧と同一の形状であり、
     前記第2、第4、第6、および第8の曲げ導波路は、曲げ半径r、中心角がπ-2θ(0<θ<π/2)よりも大きい角度の扇形の円弧と同一の形状であり、
     前記第1、第2、第3、および第4の直線導波路の長さlは、前記出力側カプラの近接する2本の導波路の間隔をpとすると、l=(2rcosθ-r-p/2)/sinθの関係を満たし、
     前記第2の直線導波路と前記第4の曲げ導波路との境界、および前記第3の直線導波路と前記第5の曲げ導波路との境界において、前記第2の導波路と前記第3の導波路とは交差していることを特徴とする請求項2に記載のPLC型復調器。
  4.  前記X偏波のコヒーレント変調信号が伝搬する経路と前記Y偏波のコヒーレント変調信号が伝搬する経路は、前記入力端から前記PLCチップの出力端までの実効光路長が全て同じになるように設定されていることを特徴とする請求項1に記載のPLC型復調器。
  5.  前記偏波ビームスプリッタは二つ以上あり、
     前記偏波ビームスプリッタ同士および前記第1および第2の90度ハイブリッド回路同士が近接して配置されていることを特徴とする請求項1に記載のPLC型復調器。
  6.  前記偏波ビームスプリッタが二段以上カスケード接続されていることを特徴とする請求項5に記載のPLC型復調器。
  7.  前記PLCチップは略正方形に近い矩形であり、
     該矩形のPLCチップの中央部に一段目の偏波ビームスプリッタが形成され、該一段目の偏波ビームスプリッタを挟んで並列的に二段目の第2および第3の偏波ビームスプリッタがそれぞれ形成されており、
     前記第2の偏波ビームスプリッタの、前記一段目の偏波ビームスプリッタと反対側に前記第1および第2の90度ハイブリッド回路の一方が形成され、前記第3の偏波ビームスプリッタの、前記一段目の偏波ビームスプリッタと反対側に前記第1および第2の90度ハイブリッド回路の他方が形成されていることを特徴とする請求項1に記載のPLC型復調器。
  8.  前記一段目の偏波ビームスプリッタの出力端と、前記第2の偏波ビームスプリッタの入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されており、
     かつ、前記一段目の偏波ビームスプリッタの出力端と、前記第3の偏波ビームスプリッタの入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を折り返し導波路として接続されていることを特徴とする請求項7に記載のPLC型復調器。
  9.  前記第2の偏波ビームスプリッタの出力端と、前記第1および第2の90度ハイブリッド回路の一方の入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を第1の折り返し導波路として接続されており、かつ、
     前記第3の偏波ビームスプリッタの出力端と前記第1および第2の90度ハイブリッド回路の他方の入力端とが、当該出力端から当該入力端へ向かって、符号が反転しない回転角度の合計の絶対値が180度より大きい曲げ導波路を第2の折り返し導波路として接続されていることを特徴とする請求項7に記載のPLC型復調器。
  10.  前記偏波ビームスプリッタが、前記偏波ビームスプリッタの入力端としての入力側カプラおよび前記偏波ビームスプリッタの出力端としての出力側カプラと、該両カプラ間に接続された二つのアーム導波路とを備えたマッハツェンダー干渉計であることを特徴とする請求項1に記載のPLC型復調器。
  11.  前記偏波ビームスプリッタ、前記第2の偏波ビームスプリッタ、および前記第3の偏波ビームスプリッタがそれぞれ、偏波ビームスプリッタの入力端としての入力側カプラおよび偏波ビームスプリッタの出力端としての出力側カプラと、該両カプラ間に接続された二つのアーム導波路とを備えたマッハツェンダー干渉計であり、
     前記第2の偏波ビームスプリッタの出力側カプラのクロスポートと、前記第1および第2の90度ハイブリッド回路の一方の入力側カプラとが前記第1の折り返し導波路で接続されており、
     かつ、前記第3の偏波ビームスプリッタの出力側カプラのクロスポートと、前記第1および第2の90度ハイブリッド回路の他方の入力側カプラとが前記第2の折り返し導波路で接続されていることを特徴とする請求項9に記載のPLC型復調器。
  12.  前記第2の入力ポートは、前記X偏波のコヒーレント変調信号と同じ偏波でかつ同じ波長のX偏波の局所発振光の入力ポートと、前記Y偏波のコヒーレント変調信号と同じ偏波でかつ同じ波長のY偏波の局所発振光の入力ポートとを有することを特徴とする請求項1に記載のPLC型復調器。
  13.  前記偏波ビームスプリッタで分離された前記X偏波のコヒーレント変調信号が伝搬する第1の経路であって、前記偏波ビームスプリッタと前記第1の90度ハイブリッド回路とを接続する第1の経路と、
     前記偏波ビームスプリッタで分離された前記Y偏波のコヒーレント変調信号が伝搬する第2の経路であって、前記偏波ビームスプリッタと前記第2の90度ハイブリッド回路とを接続する第2の経路と、
     前記第1の経路または前記第2の経路に挿入された半波長板とをさらに備え、
     前記第1および第2の90度ハイブリッド回路には、信号が同じ偏波状態でそれぞれ入射するように構成されていることを特徴とする請求項1に記載のPLC型復調器。
  14.  前記第2の入力ポートの数は一つであり、
     前記第2の入力ポートから入力されるX偏波或いはY偏波の局所発振光を前記平面光波回路内で分離して前記第1および第2の90度ハイブリッド回路にそれぞれ入射するように構成された経路をさらに備えることを特徴とする請求項13に記載のPLC型復調器。
  15.  前記第2および第3の偏波ビームスプリッタのみを通過させる光を入力するための二つの検査用入力ポートと、
     前記第2および第3の偏波ビームスプリッタをそれぞれ通過した光を出力するための二つの検査用出力ポートとをさらに備え、
     前記一段目の偏波ビームスプリッタの二つのアーム導波路の少なくとも一方にヒータが設けられていることを特徴とする請求項7に記載のPLC型復調器。
  16.  PLC型復調器を用いた光伝送システムであって、
     光波を変調して偏波多重された光信号を出力する送信機と、
     前記送信機から出力された前記偏波多重された光信号を伝送する光伝送路と、
     前記伝送路を伝送した前記偏波多重された光信号をコヒーレント受信する受信機とを備え、
     前記受信機は、
      局所発振光を出力する光源と、
      請求項1に記載のPLC型復調器と、
     X偏波のIチャンネル用およびQチャンネル用の光検出器と、
     Y偏波のIチャンネル用およびQチャンネル用の光検出器と、
     デジタル信号処理回路と
     を備えることを特徴とする光伝送システム。
  17.  前記変調の方法は、四値位相変調であることを特徴とする請求項16に記載の光伝送システム。
PCT/JP2010/065313 2009-09-07 2010-09-07 Plc型復調器及び光伝送システム WO2011027895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011529976A JP5684131B2 (ja) 2009-09-07 2010-09-07 Plc型復調器及び光伝送システム
US13/409,343 US8526102B2 (en) 2009-09-07 2012-03-01 PLC-type demodulator and optical transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-206115 2009-09-07
JP2009206115 2009-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/409,343 Continuation US8526102B2 (en) 2009-09-07 2012-03-01 PLC-type demodulator and optical transmission system

Publications (1)

Publication Number Publication Date
WO2011027895A1 true WO2011027895A1 (ja) 2011-03-10

Family

ID=43649429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065313 WO2011027895A1 (ja) 2009-09-07 2010-09-07 Plc型復調器及び光伝送システム

Country Status (3)

Country Link
US (1) US8526102B2 (ja)
JP (1) JP5684131B2 (ja)
WO (1) WO2011027895A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197433A (ja) * 2010-03-19 2011-10-06 Nec Corp 90度光ハイブリッド干渉計及び90度光ハイブリッド干渉計の製造方法
WO2012132907A1 (ja) * 2011-03-28 2012-10-04 古河電気工業株式会社 光導波路回路
JP2013070210A (ja) * 2011-09-22 2013-04-18 Nippon Telegr & Teleph Corp <Ntt> フォトミキサおよび光電子集積回路
WO2013125016A1 (ja) * 2012-02-23 2013-08-29 富士通オプティカルコンポーネンツ株式会社 光受信器、及び光受信方法
JP2013168440A (ja) * 2012-02-14 2013-08-29 Japan Oclaro Inc 半導体光変調素子及び光モジュール
WO2013132759A1 (ja) * 2012-03-06 2013-09-12 日本電気株式会社 平面光波回路および光受信器
WO2013136393A1 (ja) * 2012-03-16 2013-09-19 日本電気株式会社 偏光合成分離器、偏光合成分離構造、光ミキサ、光変調器モジュール、及び偏光合成分離器の製造方法
WO2014013640A1 (ja) * 2012-07-17 2014-01-23 日本電気株式会社 偏光分離器、偏光分離構造、光ミキサ、及び偏光分離器の製造方法
JP2014514596A (ja) * 2011-03-15 2014-06-19 アルカテル−ルーセント モノリシック光集積回路
CN104487891A (zh) * 2012-07-30 2015-04-01 富士通光器件株式会社 光接收回路
JP2017133969A (ja) * 2016-01-28 2017-08-03 国立研究開発法人情報通信研究機構 光信号処理装置および光信号処理方法
US9989755B2 (en) 2015-08-03 2018-06-05 Sumitomo Electric Industries, Ltd. Method of producing optical module and optical module
JP2019115003A (ja) * 2017-12-26 2019-07-11 住友電気工業株式会社 光90度ハイブリッド集積回路
JP2020036229A (ja) * 2018-08-30 2020-03-05 日本電信電話株式会社 光干渉回路
JP2020134601A (ja) * 2019-02-14 2020-08-31 古河電気工業株式会社 光導波路回路
JP2021061508A (ja) * 2019-10-04 2021-04-15 Kddi株式会社 光受信装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614126B2 (ja) * 2010-06-28 2014-10-29 富士通株式会社 伝送装置及び伝送システム
US8351788B2 (en) * 2010-07-14 2013-01-08 At&T Intellectual Property I, L.P. Digital light path labeling system with dual polarization quaternary phase-shift keying modulation
WO2012102041A1 (ja) 2011-01-26 2012-08-02 日本電信電話株式会社 導波路型偏波ビームスプリッタ
EP2669722B1 (en) * 2011-01-26 2015-01-14 Nippon Telegraph And Telephone Corporation Waveguide-type polarization beam splitter
WO2013047333A1 (ja) * 2011-09-29 2013-04-04 日本電気株式会社 平面光波回路および光受信器
DE102011114642B4 (de) * 2011-09-30 2015-07-30 Epcos Ag Modul und Chip
US9444553B2 (en) 2012-07-05 2016-09-13 Lumentum Operations Llc Tunable coherent optical receiver and method
US9477134B2 (en) 2012-12-28 2016-10-25 Futurewei Technologies, Inc. Hybrid integration using folded Mach-Zehnder modulator array block
US9075200B2 (en) 2012-12-28 2015-07-07 Futurewei Technologies, Inc. Birefringent crystal polarization beam splitter assembly
US9025958B1 (en) 2013-09-03 2015-05-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Planar lightwave circuit optical multiplexer for non-sequential wavelength channels
GB2522082B (en) 2014-03-14 2016-02-24 Oclaro Technology Ltd Optical component
JP6346803B2 (ja) * 2014-06-23 2018-06-20 株式会社フジクラ 光受信回路およびその調整方法
US10110318B2 (en) * 2015-02-19 2018-10-23 Elenion Technologies, Llc Optical delay lines for electrical skew compensation
WO2016162904A1 (en) * 2015-04-10 2016-10-13 National Institute Of Information And Communications Technology Polarization insensitive self-homodyne detection receiver for spatial-division multiplexing systems
JP6652969B2 (ja) * 2015-05-29 2020-02-26 日本電信電話株式会社 光コヒーレントミキサ回路
US9829632B2 (en) * 2015-06-29 2017-11-28 Elenion Technologies, Llc Bent and tapered optical waveguide for mode converter and polarization rotator
JP6623106B2 (ja) 2016-03-31 2019-12-18 古河電気工業株式会社 光導波路構造および光導波路回路
US10887022B2 (en) * 2017-06-15 2021-01-05 Nokia Of America Corporation Backward propagation with compensation of some nonlinear effects of polarization mode dispersion
JP6915412B2 (ja) * 2017-07-04 2021-08-04 住友電気工業株式会社 半導体光変調器
US10651947B2 (en) * 2018-02-20 2020-05-12 Futurewei Technologies, Inc. Coherent detection with remotely delivered local oscillators
JP7037958B2 (ja) * 2018-02-27 2022-03-17 住友電気工業株式会社 半導体光集積デバイス
JP2021012334A (ja) * 2019-07-09 2021-02-04 住友電気工業株式会社 光変調器および光学測定装置
DE102020210290B3 (de) * 2020-08-13 2021-11-18 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Betreiben eines Biegebalkens in einer geschlossenen Regelschleife
US11333831B2 (en) * 2020-09-21 2022-05-17 Ii-Vi Delaware, Inc. Optical couplers and hybrids
CN112580811B (zh) * 2020-11-06 2024-04-16 南京邮电大学 一种极化混合纠缠态生成方法
US20230163854A1 (en) * 2021-11-23 2023-05-25 Google Llc Dual-Output Coherent Optical Technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715386A (ja) * 1990-03-05 1995-01-17 At & T Corp 光ハイブリッド装置と偏光独立コヒーレント光波検出装置
JP2005164820A (ja) * 2003-12-01 2005-06-23 Fujikura Ltd 導波路型光部品の光学特性調整方法、導波路型光部品及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
WO2011027883A1 (ja) * 2009-09-04 2011-03-10 古河電気工業株式会社 90度ハイブリッド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715386A (ja) * 1990-03-05 1995-01-17 At & T Corp 光ハイブリッド装置と偏光独立コヒーレント光波検出装置
JP2005164820A (ja) * 2003-12-01 2005-06-23 Fujikura Ltd 導波路型光部品の光学特性調整方法、導波路型光部品及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INOUE ET AL.: "Double-pass PBS-integrated coherent mixer using silica-based PLC", OFC/NFOEC 2010, March 2010 (2010-03-01) *
LAPERLE ET AL.: "WDM Performance and PMD Tolerance of a Coherent 40-Gbit/s Dual- Polarization QPSK Transceiver", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 26, no. 1, 1 January 2008 (2008-01-01), pages 168 - 175, XP011204216 *
SAKAMAKI ET AL.: "Dual polarisation optical hybrid using silica-based planar lightwave circuit technology for digital coherent receiver", ELECTRONICS LETTERS, vol. 46, no. 1, 7 January 2010 (2010-01-07), XP006034424, DOI: doi:10.1049/EL:20102248 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197433A (ja) * 2010-03-19 2011-10-06 Nec Corp 90度光ハイブリッド干渉計及び90度光ハイブリッド干渉計の製造方法
JP2014514596A (ja) * 2011-03-15 2014-06-19 アルカテル−ルーセント モノリシック光集積回路
US10386576B2 (en) 2011-03-28 2019-08-20 Furukawa Electric Co., Ltd Optical waveguide circuit having identical polarization-cancelling S-shaped curves
WO2012132907A1 (ja) * 2011-03-28 2012-10-04 古河電気工業株式会社 光導波路回路
JP5959505B2 (ja) * 2011-03-28 2016-08-02 古河電気工業株式会社 光導波路回路
JPWO2012132907A1 (ja) * 2011-03-28 2014-07-28 古河電気工業株式会社 光導波路回路
JP2013070210A (ja) * 2011-09-22 2013-04-18 Nippon Telegr & Teleph Corp <Ntt> フォトミキサおよび光電子集積回路
JP2013168440A (ja) * 2012-02-14 2013-08-29 Japan Oclaro Inc 半導体光変調素子及び光モジュール
US9164349B2 (en) 2012-02-14 2015-10-20 Oclaro Japan, Inc. Optical semiconductor modulator device and optical module
WO2013125016A1 (ja) * 2012-02-23 2013-08-29 富士通オプティカルコンポーネンツ株式会社 光受信器、及び光受信方法
US9344199B2 (en) 2012-02-23 2016-05-17 Fujitsu Optical Components Limited Optical receiver and light receiving method
US9281901B2 (en) 2012-03-06 2016-03-08 Nec Corporation Planar lightwave circuit and optical receiver
JPWO2013132759A1 (ja) * 2012-03-06 2015-07-30 日本電気株式会社 平面光波回路および光受信器
WO2013132759A1 (ja) * 2012-03-06 2013-09-12 日本電気株式会社 平面光波回路および光受信器
JPWO2013136393A1 (ja) * 2012-03-16 2015-07-30 日本電気株式会社 偏光合成分離器、偏光合成分離構造、光ミキサ、光変調器モジュール、及び偏光合成分離器の製造方法
CN104169762A (zh) * 2012-03-16 2014-11-26 日本电气株式会社 偏振束合成/分离器、偏振束合成/分离结构、光混合器、光学调制器模块和制造偏振束合成/分离器的方法
US9442248B2 (en) 2012-03-16 2016-09-13 Nec Corporation Polarization beam combiner/splitter, polarization beam combining/splitting structure, light mixer, optical modulator module, and method for manufacturing polarization beam combiner/splitter
WO2013136393A1 (ja) * 2012-03-16 2013-09-19 日本電気株式会社 偏光合成分離器、偏光合成分離構造、光ミキサ、光変調器モジュール、及び偏光合成分離器の製造方法
WO2014013640A1 (ja) * 2012-07-17 2014-01-23 日本電気株式会社 偏光分離器、偏光分離構造、光ミキサ、及び偏光分離器の製造方法
JPWO2014013640A1 (ja) * 2012-07-17 2016-06-30 日本電気株式会社 偏光分離器、偏光分離構造、光ミキサ、及び偏光分離器の製造方法
EP2881787A4 (en) * 2012-07-30 2016-04-27 Fujitsu Optical Components Ltd LIGHT RECEIVING CIRCUIT
US9461753B2 (en) 2012-07-30 2016-10-04 Fujitsu Optical Components Limited Optical receiver circuit
CN104487891A (zh) * 2012-07-30 2015-04-01 富士通光器件株式会社 光接收回路
US9989755B2 (en) 2015-08-03 2018-06-05 Sumitomo Electric Industries, Ltd. Method of producing optical module and optical module
JP2017133969A (ja) * 2016-01-28 2017-08-03 国立研究開発法人情報通信研究機構 光信号処理装置および光信号処理方法
WO2017130941A1 (ja) * 2016-01-28 2017-08-03 国立研究開発法人情報通信研究機構 光信号処理装置および光信号処理方法
JP2019115003A (ja) * 2017-12-26 2019-07-11 住友電気工業株式会社 光90度ハイブリッド集積回路
US10476602B2 (en) 2017-12-26 2019-11-12 Sumitomo Electric Industries, Ltd. Optical circuit
JP2020036229A (ja) * 2018-08-30 2020-03-05 日本電信電話株式会社 光干渉回路
JP2020134601A (ja) * 2019-02-14 2020-08-31 古河電気工業株式会社 光導波路回路
JP7042763B2 (ja) 2019-02-14 2022-03-28 古河電気工業株式会社 光導波路回路
JP2021061508A (ja) * 2019-10-04 2021-04-15 Kddi株式会社 光受信装置
JP7318886B2 (ja) 2019-10-04 2023-08-01 Kddi株式会社 光受信装置

Also Published As

Publication number Publication date
US8526102B2 (en) 2013-09-03
JPWO2011027895A1 (ja) 2013-02-04
US20120207474A1 (en) 2012-08-16
JP5684131B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5684131B2 (ja) Plc型復調器及び光伝送システム
JP5619750B2 (ja) 90度ハイブリッド
CN107925484B (zh) 一种单片集成相干光接收器芯片
JP4710387B2 (ja) 差分m位相偏移変調方式に対応した光受信器および光受信方法
US8509628B2 (en) Differential multilevel modulated optical signal receiver apparatus
JP5737874B2 (ja) 復調器及び光送受信機
JP4934566B2 (ja) 遅延復調デバイス
WO2011001679A1 (ja) 光90度ハイブリッド回路
US8588560B2 (en) Optical 90-degree hybrid circuit
US10944482B2 (en) Coherent optical receiver
US20120002971A1 (en) Polarization-tracking device having a waveguide-grating coupler
US8649640B2 (en) Optical 90-degree hybrid circuit
JP2006211538A (ja) 差分4位相偏移変調方式に対応した光受信器および光受信方法
CN103270440A (zh) 光波导装置和光波导装置的制造方法
JP2009244483A (ja) 遅延復調デバイス
JP2009182888A (ja) Dqpsk偏波多重方式に対応した光受信装置
JP5640829B2 (ja) 光ハイブリッド回路、光受信機及び光受信方法
US8478090B2 (en) Optical waveguide device and manufacturing method of optical waveguide device
JP2011257513A (ja) 光90度ハイブリッド
WO2011152202A1 (ja) Plc型復調用遅延回路及びplc型光干渉計
WO2011122538A1 (ja) Plc型復調用遅延回路
JP2016045256A (ja) 偏波合波器及びそれを用いた光送信器
JP5158859B2 (ja) 遅延復調デバイスおよびその位相調整方法
JP2008193555A (ja) 復調器
Inoue et al. Development of PBS-integrated coherent mixer using silica-based planar lightwave circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529976

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813841

Country of ref document: EP

Kind code of ref document: A1