WO2017130941A1 - 光信号処理装置および光信号処理方法 - Google Patents
光信号処理装置および光信号処理方法 Download PDFInfo
- Publication number
- WO2017130941A1 WO2017130941A1 PCT/JP2017/002291 JP2017002291W WO2017130941A1 WO 2017130941 A1 WO2017130941 A1 WO 2017130941A1 JP 2017002291 W JP2017002291 W JP 2017002291W WO 2017130941 A1 WO2017130941 A1 WO 2017130941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- wavelength
- complex
- reference light
- polarization
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 71
- 238000012545 processing Methods 0.000 title claims abstract description 14
- 238000003672 processing method Methods 0.000 title claims description 5
- 230000010287 polarization Effects 0.000 claims abstract description 99
- 230000001427 coherent effect Effects 0.000 claims abstract description 40
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000002452 interceptive effect Effects 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 230000008901 benefit Effects 0.000 claims description 4
- 108091006146 Channels Proteins 0.000 description 22
- 238000004891 communication Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J4/00—Measuring polarisation of light
- G01J4/04—Polarimeters using electric detection means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B14/00—Transmission systems not characterised by the medium used for transmission
- H04B14/02—Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
Definitions
- Embodiments of the present invention relate to an optical signal processing device and an optical signal processing method used for optical communication, for example.
- the technology applying optical coherence is expected to be used in various fields such as communication, measurement, and observation.
- coherent technology in the field of optical communication entered the 2000s AD, and the usefulness of optical coherent detection technology was recognized again by applying digital signal processing technology.
- 2012 AD the world's first 100 Gb / s
- DSP digital signal processors for transmission
- the transmission capacity of information can be significantly increased by transmitting signals of different wavelengths to one transmission line (for example, one optical fiber cable). Future utilization is expected more and more.
- Conventional techniques for analyzing the polarization state of light include, for example, the intensity of linearly polarized light observed on two orthogonal axes and an axis inclined 45 degrees, and an optical hybrid coupler or the like between two orthogonal axes.
- There is a technique based on an optical technique that analyzes the polarization state of received light using the intensity of linearly polarized light observed on an axis inclined by 45 degrees with a phase difference see, for example, Non-Patent Document 1).
- Cybernet “6th: 3-1 Stokes parameters for calculating polarization", Internet ⁇ URL: http: //www.cybernet.co.jp/codev/lecture/optics/opt06/opt06.html#0>
- the conventional technique has the following problems because the polarization state is analyzed by an optical method.
- optical signal reception conditions such as requiring a part or all of the received light to measure the polarization state of the received light, and changing the polarization state on the path to the optical detector for generating interference waves
- the polarization state changes with a slight change, and a correct analysis result cannot be obtained, and it is difficult to measure the polarization state with weak received light received by a receiver such as a communication device.
- the problem to be solved by the present invention is to provide an optical signal processing apparatus and an optical signal processing method capable of analyzing the polarization state of each of multiple wavelength signals received via an optical transmission line such as an optical fiber. It is in.
- the optical signal processing apparatus includes a first polarization separator that divides received light transmitted by multiplexing a large number of modulation signals into different wavelengths into an electrical transverse wave component and a magnetic transverse wave component; A reference light generator for generating multi-wavelength reference light corresponding to each of the plurality of modulation signals, a second polarization separator for branching the reference light into an electrical transverse wave component and a magnetic transverse wave component, and a branched reception A first optical coherent detector that generates an in-phase component and a quadrature component in the polarization axis of each wavelength from an interference component obtained by combining and interfering the electrical shear wave components of the light and the reference light, and the branched received light and the reference A second optical coherent detector that generates an in-phase component and a quadrature component in the polarization axis of each wavelength from the interference component obtained by combining and interfering the magnetic transverse wave components of light, and the first optical coherent detector.
- Each A first converter for converting in-phase and quadrature components on the long polarization axis into digital data; and in-phase and quadrature components on the polarization axes of the respective wavelengths generated by the second optical coherent detector.
- a second conversion unit a separation unit for separating the converted digital data for each component of each polarization axis into first and second complex signals of a plurality of channels, and a number of channels separated by the separation unit
- a multi-channel analysis unit that generates information indicating the polarization state of the modulation signal of each channel from each of the first and second complex signals.
- received light transmitted by multiplexing a large number of modulated signals at different wavelengths is branched into an electrical transverse wave component and a magnetic transverse wave component, and each of the plurality of modulated signals of the received light Multi-wavelength reference light corresponding to the reference light is generated, the reference light is branched into an electrical transverse wave component and a magnetic transverse wave component, and the branched received light and the electrical transverse wave component of the reference light are combined to interfere with each other.
- the in-phase component and the quadrature component at the polarization axis of each wavelength are generated from the interference components obtained, and the interference component obtained by combining the magnetic shear wave components of the branched received light and the reference light to interfere with each other at the polarization axis of each wavelength.
- In-phase and quadrature components are generated, the in-phase and quadrature components of each wavelength of the generated electrical shear wave component and magnetic shear wave component are converted into digital data, and the converted polarization axis of each wavelength is converted.
- In-phase components and Information indicating the polarization state of the modulation signal of each channel from the first and second complex signals of each of the separated multiple channels by separating the digital data of the cross component into the first and second complex signals of each of the multiple channels. Is generated.
- FIG. 1 is a diagram showing a multi-coherent polarization analyzer according to one embodiment.
- the multi-coherent polarization analyzer of the first embodiment includes a polarizing beam splitter 1, 3, a reference light generator 2, an optical coherent detector 4e, 4m, and analog / digital conversion units 7e, 7m (hereinafter “ A / D converters 7e, 7m “), a demultiplexer 8, a multi-channel analyzer 9, and the like.
- This multi-coherent polarization analyzer receives light transmitted by multiplexing (wavelength division multiplexing) modulated signals at different wavelengths in a wavelength range that can be transmitted by an optical fiber cable (for example, wavelengths of 1200 nm to 1700 nm). This light is called received light Ss.
- WDM wavelength division multiplexing
- a QPSK method, a BPSK method, or the like is used as a modulation method.
- the received light Ss is a multiwavelength signal whose polarization state (SOP) is unknown.
- the wavelength may be paraphrased as a frequency having a one-to-one relationship. Moreover, when applying to applications other than optical fiber communication, it is possible to apply beyond the above wavelength range.
- the received light Ss includes a large number of modulation signals ch1, ch2, ch3... Chn.
- the center frequency of the modulation signal ch1 is f cs1
- the center frequency of the modulation signal ch2 is f cs2
- the center frequency of the modulation signal ch3 is f cs3
- the center frequency of the modulation signal chn is f csn .
- the polarization beam splitter 1 is a first polarization separator that splits the received light Ss into an electrical transverse wave component (TE component) TEs and a magnetic transverse wave component (TM component) TMs.
- TE component electrical transverse wave component
- TM component magnetic transverse wave component
- the reference light generator 2 is a multi-tone reference light generator that generates multi-wavelength reference light (multi-tone reference light MTlo) corresponding to each modulation signal of the received light Ss.
- the multitone reference light MTlo is also referred to as local light or local oscillation light.
- the reference light generator 2 generates a number of reference lights corresponding to the wavelengths of a number of modulation signals of the received light Ss.
- the multi-tone reference light MTlo has a wavelength component that is offset by a predetermined wavelength for each modulation signal, and each wavelength component has high coherence.
- the multi-tone reference light MTlo is a multi-wavelength carrier having a polarization state (SOP) aligned at all wavelengths, that is, a line spectrum P1... Pn.
- SOP polarization state
- Line spectrum P1 ... Pn is the intensity is constant, the signal having a center frequency f cs1 ... f csn frequency (corresponding to the center wavelength) at a predetermined wave frequency component ⁇ f1 ... ⁇ fn a position offset f cl1 ... f cln every line spectrum It is.
- That multitone reference light MT each frequency f cl1 ⁇ f cln, the intermediate frequency f if1 ⁇ f component for each ifn after detection output is set to be offset so that do not interfere with each other.
- a technique for generating a large number of line spectra (optical frequency combs) with constant intensity as described above is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-248660 and the like, using an optical modulator having a flat spectral characteristic.
- the technology of the optical frequency comb generator for generating the signal is disclosed, and this technology is used.
- the multi-tone reference light MTlo is basically linearly polarized in its polarization state (SOP), and is subjected to an electric transverse wave component (TE component) TElo and a magnetic transverse wave component (TM component) TMlo by the polarizing beam splitter 3 at the next stage. Power is equally divided.
- SOP polarization state
- TE component electric transverse wave component
- TM component magnetic transverse wave component
- the optical processing as described above is performed on the polarization beam at the next stage.
- the processing may be performed before the splitter 3 or the processing using known information may be performed by the multi-channel analyzer 9 described later.
- the polarization beam splitter 3 is a second polarization separator that splits the multi-tone reference light MT input from the reference light generator 2 into an electrical transverse wave component TElo and a magnetic transverse wave component TMlo.
- the polarization beam splitter 3 separates the polarized light by the optical element, separates the power in the same polarized light, and polarizes the separated multi-tone reference light MT into the electric transverse wave component TElo and the magnetic transverse wave component TMlo by the polarization controller. You may adjust.
- the optical coherent detector 4e is a first optical coherent detector, and includes a 90 ° optical hybrid coupler and two photodetectors.
- the 90 ° optical hybrid coupler is an Ich component that is an in-phase component in the polarization axis of each wavelength from an interference component obtained by combining the received light Ss for each wavelength and the TE components TEs and TElo of the reference light that are interfered with each other.
- a Qch component which is an orthogonal component orthogonal thereto.
- the photo detector includes a normal single photo detector and also a balanced photo detector (a combination of two differential type photo detectors).
- One of the two photodetectors converts the Ich component into an electric signal Ichea and outputs it to the conversion unit 7e.
- Another photo detector converts the Qch component into an analog electrical signal (hereinafter referred to as “analog signal”) Qchea and outputs it to the converter 7e.
- FIG. 5 shows an example of the Ich component generated by the 90 ° optical hybrid coupler of the optical coherent detector 4e.
- Component for each intermediate frequency f if1 ⁇ f ifn of the detection wave output is set multitone reference light MT each frequency f cl1 ⁇ f cln that do not interfere with each other. This enables separation and polarization analysis for each frequency channel (f if1 to f ifn ).
- the optical coherent detector 4m is a second optical coherent detector, and includes a 90 ° optical hybrid coupler and two photodetectors.
- the 90 ° optical hybrid coupler is an Ich component that is an in-phase component in the polarization axis of each wavelength from an interference component that is obtained by combining the received light Ss for each wavelength and the TM components TMs and TMlo of the reference light. And a Qch component which is an orthogonal component orthogonal thereto.
- the photo detector includes a normal single photo detector and a balanced photo detector (a combination of two differential photo detectors).
- One of the two photodetectors converts the Ich component into an electrical signal Ichma and outputs it to the conversion unit 7m.
- Another photo detector converts the Qch component into an analog electrical signal (hereinafter referred to as “analog signal”) Qchma and outputs it to the converter 7m.
- FIG. 6 shows an example of the Ich component generated by the 90 ° optical hybrid coupler of the optical coherent detector 4m.
- the A / D converter 7e converts the polarization axis component analog signals (in-phase component Ichea and quadrature component Qchea) of each wavelength generated by the optical coherent detector 4e into digital signals, and demultiplexes them as digital data Iched and Qched. 8 is output.
- the A / D converter 7e converts the input analog signals Ichea and Qchea into digital data Iched and Qched and outputs them to the demultiplexer 8.
- Digital data Iched and Qched are digital data of the polarization axis component of the interference component between the TE components.
- the A / D converter 7e is a first converter that converts the in-phase component and the quadrature component on the polarization axis of each wavelength generated by the optical coherent detector 4e into digital data.
- the A / D converter 7m converts the analog electrical signals (in-phase component Ichma and quadrature component Qchma) of the polarization axis components of the respective wavelengths generated by the optical coherent detector 4m into digital signals, respectively, as digital data Ichmd and Qchmd Output to demultiplexer 8.
- the A / D converter 7m converts the input analog signals Ichma and Qchma into digital data Ichmd and Qchmd and outputs them to the demultiplexer 8.
- Digital data Ichmd and Qchmd are digital data of the polarization axis component of the interference component between the TM components.
- the A / D converter 7m is a second conversion unit that converts the in-phase component and the quadrature component on the polarization axis of each wavelength generated by the optical coherent detector 4m into digital data.
- the demultiplexer 8 separates the digital data Iched, Qched, Ichmd, and Qchmd converted by the A / D converters 7e and 7m into complex signals e1 and e2 of a plurality of channels ch1, ch2, ch3... Chn, respectively. .
- Each complex signal may be a complex signal having the intermediate frequency or a complex equivalent low-frequency signal that is frequency-converted to a low frequency by the same frequency as the intermediate frequency.
- the complex signal e1 is a channel complex signal with respect to a component in phase with the polarization axis, and can be represented by e1 I + je1 Q.
- Complex signal e2 is a complex signal of a channel for the component perpendicular to the polarization axis, expressed by e2 I + je2 Q.
- the multichannel analyzer 9 is an analysis unit that generates information indicating the polarization state of the modulation signal of each channel from the complex signals e1 and e2 of each of the multiple channels ch1, ch2, ch3... Chn separated by the demultiplexer 8. .
- Information indicating the polarization state of the modulation signal of each channel is expressed by, for example, Stokes parameters S0, S1, S2, and S3. How to generate the Stokes parameters S0, S1, S2, and S3 will be described in detail with reference to FIGS. 4 and 7 to be described later.
- the multichannel analyzer 9 includes squarers 91 and 92, a complex conjugate calculator 93, a multiplier 94, a real component calculator 95, an imaginary component calculator 96, a subtractor 97, and an adder 98. .
- the squarer 91 finds power by squaring the absolute value of the complex number of the input complex signal e1.
- the squarer 92 finds power by squaring the absolute value of the complex number of the input complex signal e2.
- the complex conjugate calculator 93 calculates the complex conjugate e1 * of the complex signal e1.
- the multiplier 94 multiplies the complex common benefit e1 * of the complex signal e1 by the complex signal e2.
- the real number component calculator 95 doubles the real part of the calculation result (product) by the multiplier 94, that is, 2 ⁇ Re [e1 * ⁇ e2], and outputs it as the Stokes parameter S2.
- the imaginary number component calculator 96 obtains twice the imaginary part of the calculation result (product) by the multiplier 94, that is, 2 ⁇ Im [e1 * ⁇ e2], and outputs it as the Stokes parameter S3.
- Subtractor 97 the power of the complex signal e1
- outputs the Stokes parameters S1, which is a 2.
- outputs the Stokes parameters S0 is 2
- the received light Ss is input to the polarization beam splitter 1.
- the received light Ss is branched into an electrical transverse wave component TEs and a magnetic transverse wave component TMs, the electrical transverse wave component TEs is output to the optical coherent detector 4e, and the magnetic transverse wave component TMs is optically coherent. It is output to the detector 4m.
- a large number of multitone reference lights MTlo having different wavelengths corresponding to the plurality of modulation signals are generated and input to the polarization beam splitter 3.
- the multi-tone reference light MTlo is branched into an electrical transverse wave component TElo and a magnetic transverse wave component TMlo, and the electrical transverse wave component TElo is output to the optical coherent detector 4e. It is output to the coherent detector 4m.
- the reception light Ss branched and input and the electrical transverse wave components TEs and TElo of the multitone reference light MTlo are combined to generate an interference component, and each wavelength is generated from the generated interference component.
- An in-phase component analog signal Ichea and a quadrature component analog signal Qchea are generated on the polarization axis, and output to the A / D converter 7e.
- the reception light Ss branched and input and the magnetic transverse wave components TMs and TMlo of the multitone reference light MTlo are combined to generate an interference component, and each wavelength is generated from the generated interference component.
- the in-phase component analog signal Ichma and the quadrature component analog signal Qchma in the polarization axis are generated and output to the A / D converter 7m.
- the in-phase component analog signal Ichea and the quadrature component analog signal Qchea on the polarization axis of each wavelength of the electrical transverse wave components TEs and TElo input from the optical coherent detector 4e are converted into digital data. Iched and Qched are converted and output to the demultiplexer 8.
- the in-phase component analog signal Ichma and the quadrature component analog signal Qchma in the polarization axes of the respective wavelengths of the interference components of the electrical transverse wave components TMs and TMlo input from the optical coherent detector 4m are digital data. It is converted into Ichmd and Qchmd and output to the demultiplexer 8.
- the digital data Iched, Qched, Ichmd, and Qchmd for each polarization axis component input after conversion are separated into complex signals e1 and e2 of a large number of channels ch1, ch2, ch3.
- the multi-channel analyzer 9 To the multi-channel analyzer 9.
- optical coherent detection is performed using the polarization axis component of received light Ss wavelength-division-multiplexed with respect to a certain polarization axis and the polarization axis component of multi-tone reference light MTlo wavelength-division multiplexed, and after optical coherent detection
- the analog signals Ichea, Qchea, Ichma, and Qchma of the appearing polarization axis components are converted into digital data Iched, Qched, Ichmd, and Qchmd, and the digital signals by the demultiplexer 8 are used for the complex signals e1, ch1, ch2, ch3.
- the multi-wavelength signals received via the optical fiber cable are separated.
- the polarization state (SOP) of the received light Ss for each channel It can be analyzed.
- the configuration example of the multi-channel analyzer 9 shown in FIG. 4 is an example in which noise (noise) is not included in the complex signals e1 and e2, that is, when noise (noise) is not considered.
- a complex signal input to the channel analyzer 9 is likely to contain noise, and a configuration example in the case of complex signals r1 and r2 carrying noise is shown below.
- the same components as those shown in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.
- the multi-channel analyzer 9 of this example includes set average calculators 99a, 99b, and 99c.
- noise noise included in the complex signals r1 and r2 is Gaussian noise.
- the collective average calculator 99a is provided in front of the squarer 91.
- the set average calculator 99a calculates an average E [r1] for a certain time with respect to the input complex signal r1 and outputs it to the squarer 91.
- the set average calculator 99b is provided in front of the squarer 92.
- the set average calculator 99b calculates an average E [r2] for a certain time with respect to the input complex signal r2 and outputs it to the squarer 92.
- the set average calculator 99 c is provided between the multiplier 94, the real component calculator 95 and the imaginary component calculator 96.
- the set average calculator 99c calculates an average E [r1 * ⁇ r2] for a certain time with respect to the calculation result (the product of the complex common benefit e1 * of the complex signal e1 and the complex signal e2) by the multiplier 94, and a real number It outputs to the component calculator 95 and the imaginary component calculator 96, respectively.
- the set average calculator 99a is provided in front of the squarer 91
- the set average calculator 99b is provided in front of the squarer 92
- the set average calculator 99c is operated with the multiplier 94 and real number components.
- Each component including at least the demultiplexer 8 and the multichannel analyzer 9 shown in the above embodiment may be realized by a program installed in a memory of a communication terminal or a storage such as a hard disk device of a computer.
- An electronic medium that can be read by a communication terminal or computer It is stored in an electronic medium, and the function of the present invention is realized by the communication terminal or computer by causing the communication terminal or computer to read the program from the electronic medium. Good.
- Examples of the electronic medium include a recording medium such as a CD-ROM, a flash memory, and removable media such as removable media. Further, the configuration may be realized by distributing and storing components in different computers connected via a network, and communicating between computers in which the components are functioning.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optical Communication System (AREA)
Abstract
実施形態の光信号処理装置は、多数の変調信号を異なる波長に多重して伝送されてきた受信光を電気的横波成分と磁気的横波成分に分岐させる第1偏光分離器と、前記受信光の前記多数の変調信号それぞれに対応する多波長の参照光を発生する参照光発生器と、前記参照光を電気的横波成分と磁気的横波成分に分岐させる第2偏光分離器と、分岐された受信光と参照光の電気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第1光コヒーレント検波器と、分岐された受信光と参照光の磁気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第2光コヒーレント検波器とを具備する。
Description
本発明の実施形態は、例えば光通信に用いられる光信号処理装置および光信号処理方法に関する。
光の干渉性を応用した技術は、通信、計測、観測など、さまざまな分野での活用が期待されている。特に、光通信の分野におけるコヒーレント技術は、西暦2000年代に入り、ディジタル信号処理技術を適用することで光コヒーレント検波の技術の有用性が再認識され、西暦2012年には世界初の100Gb/s伝送用のディジタルシグナルプロセッサ(以下「DSP」と称す)が商品化されるなど、その技術は目覚ましい発展を遂げている。その後も、コヒーレント技術を例えば光ファイバ通信へ応用するなどの研究開発が発展・拡張の一途をたどっている。
光ファイバを介した通信においては、一つの伝送路(例えば1本の光ファイバケーブル)に、異なる波長の信号を伝送することで、情報の伝送容量を格段に高めることができるため、同技術は今後の活用がますます期待される。
光ファイバを介した通信において光コヒーレント検波を行う上では、光ファイバを通じて受信される光の偏光状態(SOP:state of polarization)がそのシステム性能を左右するため、SOPを解析する必要がある。
光の偏光状態を解析する従来の技術としては、例えば直交する2つの軸および45度傾いた軸において観測される直線偏光の強度と、直交する2つの軸間に光ハイブリッドカプラなどで90度の位相差をつけて45度傾いた軸において観測される直線偏光の強度とを用いて受信光の偏光状態を解析する光学的手法による技術がある(例えば非特許文献1参照)。
従来、光ファイバ通信において、一つの波長の光信号に対してSOPを解析する技術はあるが、多波長の光信号に対してSOPを解析する技術は今のところ知られていない。
サイバネット「第6回:偏光を計算するために、3-1ストークスパラメータ」、インターネット<URL:http://www.cybernet.co.jp/codev/lecture/optics/opt06/opt06.html#0>
従来の技術は、光学的手法により偏光状態を解析していたため、以下に示すような問題がある。すなわち、受信光の偏光状態を測定するために受信光の一部または全部を必要とする、干渉波生成のための光検波器までの経路上で偏光状態が変化するなど、光信号の受信条件が少し変わるだけで偏光状態が変わってしまい、正しい解析結果が得られない、通信装置などの受信機で受信される微弱な受信光では偏光状態の測定が困難である、などといった問題があった。
本発明が解決しようとする課題は、光ファイバなどの光伝送路を介して受信される多波長の信号それぞれの偏光状態を解析することのできる光信号処理装置および光信号処理方法を提供することにある。
実施形態の光信号処理装置は、多数の変調信号を異なる波長に多重して伝送されてきた受信光を電気的横波成分と磁気的横波成分に分岐させる第1偏光分離器と、前記受信光の前記多数の変調信号それぞれに対応する多波長の参照光を発生する参照光発生器と、前記参照光を電気的横波成分と磁気的横波成分に分岐させる第2偏光分離器と、分岐された受信光と参照光の電気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第1光コヒーレント検波器と、分岐された受信光と参照光の磁気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第2光コヒーレント検波器と、前記第1光コヒーレント検波器により生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第1変換部と、前記第2光コヒーレント検波器により生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第2変換部と、変換されたそれぞれの偏光軸の成分毎のディジタルデータを、多数のチャネルそれぞれの第1および第2複素信号に分離する分離部と、前記分離部により分離された多数のチャネルそれぞれの第1および第2複素信号から個々のチャネルの変調信号の偏光状態を示す情報を生成する多チャネル解析部とを具備することを特徴とする。
実施形態の光信号処理方法は、多数の変調信号を異なる波長に多重して伝送されてきた受信光を電気的横波成分と磁気的横波成分に分岐させ、前記受信光の前記複数の変調信号それぞれに対応する多波長の参照光を発生し、前記参照光を電気的横波成分と磁気的横波成分に分岐させ、分岐された受信光と参照光の電気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成し、分岐された受信光と参照光の磁気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成し、生成した電気的横波成分および磁気的横波成分それぞれの成分の各波長の偏光軸の同相成分と直交成分をディジタルデータに変換し、変換した各波長の偏光軸の同相成分と直交成分のディジタルデータを、多数のチャネルそれぞれの第1および第2複素信号に分離し、分離した多数のチャネルそれぞれの第1および第2複素信号から個々のチャネルの変調信号の偏光状態を示す情報を生成することを特徴とする。
以下、図面を参照して、実施形態を詳細に説明する。
(実施形態)
図1は一つの実施の形態のマルチコヒーレント偏光アナライザを示す図である。
図1に示すように、第1実施形態のマルチコヒーレント偏光アナライザは、偏光ビームスプリッタ1、3、基準光発生器2、光コヒーレント検波器4e、4m、アナログ/ディジタル変換部7e、7m(以下「A/D変換器7e、7m」と称す)、デマルチプレクサ8、マルチチャネルアナライザ9などを有する。
(実施形態)
図1は一つの実施の形態のマルチコヒーレント偏光アナライザを示す図である。
図1に示すように、第1実施形態のマルチコヒーレント偏光アナライザは、偏光ビームスプリッタ1、3、基準光発生器2、光コヒーレント検波器4e、4m、アナログ/ディジタル変換部7e、7m(以下「A/D変換器7e、7m」と称す)、デマルチプレクサ8、マルチチャネルアナライザ9などを有する。
このマルチコヒーレント偏光アナライザには、光ファイバケーブルが透過可能な波長域(例えば波長が1200nm~1700nmなど)において異なる波長に変調信号を多重(波長分割多重)して伝送してきた光が受信される。この光を受信光Ssという。本実施形態では、通信方式として波長分割多重通信(WDM:Wavelength Division Multiplex)を用い、変調方式として例えばQPSK方式やBPSK方式等を用いるものとする。
受信光Ssは、偏光状態(SOP)が未知の多波長信号ある。波長は、一対一の関係にある周波数に言い換えてもよい。また、光ファイバ通信以外に適用する場合には、上記の波長域を超えて適用が可能である。
図2に示すように、受信光Ssには多数の変調信号ch1、ch2、ch3…chnが含まれている。変調信号ch1の中心周波数はfcs1、変調信号ch2の中心周波数はfcs2、変調信号ch3の中心周波数はfcs3、変調信号chnの中心周波数はfcsnである。
偏光ビームスプリッタ1は、受信光Ssを電気的横波成分(TE成分)TEsと磁気的横波成分(TM成分)TMsに分岐させる第1偏光分離器である。
基準光発生器2は、受信光Ssの各変調信号に対応する多波長の参照光(マルチトーン参照光MTlo)を発生するマルチトーン参照光発生器である。マルチトーン参照光MTloはローカル光または局部発振光などともいう。基準光発生器2は、受信光Ssの多数の変調信号の波長に対応した多数の参照光を発生する。
マルチトーン参照光MTloは、各変調信号毎に所定波長分オフセットした波長成分を有し、各波長成分どうしが高い干渉性(コヒーレンス)を有する。
図3に示すように、マルチトーン参照光MTloは、全ての波長で偏光状態(SOP)がそろった多波長搬送波、つまり線スペクトルP1…Pnである。
線スペクトルP1…Pnは強度が一定であり、線スペクトル毎に中心周波数fcs1…fcsn(中心波長に相当)から所定波周波数分Δf1…Δfnオフセットした位置に周波数fcl1…fclnを持つ信号である。
つまりマルチトーン参照光MTそれぞれの周波数fcl1~fclnは、検波出力後の中間周波数fif1~fifn毎の成分が互いに干渉し合わないようオフセットして設定されている。
このように強度が一定の多数の線スペクトル(光周波数コム)を生成する技術は、例えば特開2007-248660号公報などに、単一の変調器を用いて平坦なスペクトル特性を有する光周波数コムを発生する光周波数コム発生装置の技術が開示されており、この技術を利用するものとする。
マルチトーン参照光MTloは、基本的に、その偏光状態(SOP)が直線偏光であり、次段の偏光ビームスプリッタ3によって電気的横波成分(TE成分)TEloと磁気的横波成分(TM成分)TMloに電力等分される。
マルチトーン参照光MTloのSOPと、次段の偏光ビームスプリッタ3によって分離されるTE成分とTM成分への電力比率が既知である場合には、前述したような光学的処理を次段の偏光ビームスプリッタ3の前段で行うか、後述のマルチチャネルアナライザ9において既知の情報を用いた処理を行ってもよい。
偏光ビームスプリッタ3は、基準光発生器2から入力されるマルチトーン参照光MTを電気的横波成分TEloと磁気的横波成分TMloに分岐させる第2偏光分離器である。
偏光ビームスプリッタ3は、光学素子により偏光分離するものの他、同一偏光において電力分離し、分離したマルチトーン参照光MTのそれぞれを偏光制御器により、電気的横波成分TEloと磁気的横波成分TMloに偏光を調整するものであってもよい。
光コヒーレント検波器4eは、第1光コヒーレント検波器であり、90°光ハイブリッドカップラと2つのフォトディテクタを有している。90°光ハイブリッドカップラは、分岐された各波長毎の受信光Ssと参照光のTE成分TEs、TEloどうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分であるIch成分とこれと直交する直交成分であるQch成分とを生成する。フォトディテクタは、通常の単一のフォトディテクタのほか、バランスドフォトディテクタ(差動型の2つのフォトディテクタの組み合わせ)も含む。
2つのフォトディテクタのうち一つのフォトディテクタはIch成分を電気信号Icheaに変換し変換部7eへ出力する。他の一つのフォトディテクタはQch成分をアナログの電気信号(以下「アナログ信号」と称す)Qcheaに変換し変換部7eへ出力する。
図5に光コヒーレント検波器4eの90°光ハイブリッドカップラにより生成されるIch成分の一例を示す。
検波出力の中間周波数fif1~fifnは、fifn=fcln-fcsn[n=1,2,3…N]で表される。検波波出力の中間周波数fif1~fifn毎の成分は、互いに干渉し合わないようマルチトーン参照光MTそれぞれの周波数fcl1~fclnが設定されている。これにより、周波数チャネル(fif1~fifn)毎の分離、偏光解析が可能になる。
光コヒーレント検波器4mは、第2光コヒーレント検波器であり、90°光ハイブリッドカップラと2つのフォトディテクタを有している。
90°光ハイブリッドカップラは、分岐された各波長毎の受信光Ssと参照光のTM成分TMs、TMloどうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分であるIch成分とこれと直交する直交成分であるQch成分とを生成する。
フォトディテクタは、通常の単一のフォトディテクタのほか、バランスドフォトディテクタ(差動型の2つのフォトディテクタの組み合わせ)も含む。
2つのフォトディテクタのうち一つのフォトディテクタはIch成分を電気信号Ichmaに変換し変換部7mへ出力する。他の一つのフォトディテクタはQch成分をアナログの電気信号(以下「アナログ信号」と称す)Qchmaに変換し変換部7mへ出力する。
図6に光コヒーレント検波器4mの90°光ハイブリッドカップラにより生成されるIch成分の一例を示す。
A/D変換器7eは、光コヒーレント検波器4eにより生成された各波長の偏光軸成分のアナログ信号(同相成分Icheaと直交成分Qchea)をそれぞれディジタル信号に変換しディジタルデータIched、Qchedとしてデマルチプレクサ8に出力する。
換言すると、A/D変換器7eは、入力されるアナログ信号Ichea、QcheaをディジタルデータIched、Qchedに変換しデマルチプレクサ8に出力する。
ディジタルデータIched、QchedはTE成分どうしの干渉成分の偏光軸成分のディジタルデータである。
すなわちA/D変換器7eは、光コヒーレント検波器4eにより生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第1変換部である。
A/D変換器7mは、光コヒーレント検波器4mにより生成された各波長の偏光軸成分のアナログの電気信号(同相成分Ichmaと直交成分Qchma)をそれぞれディジタル信号に変換しディジタルデータIchmd、Qchmdとしてデマルチプレクサ8に出力する。
換言すると、A/D変換器7mは、入力されるアナログ信号Ichma、QchmaをディジタルデータIchmd、Qchmdに変換しデマルチプレクサ8に出力する。
ディジタルデータIchmd、QchmdはTM成分どうしの干渉成分の偏光軸成分のディジタルデータである。
すなわちA/D変換器7mは、光コヒーレント検波器4mにより生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第2変換部である。
デマルチプレクサ8は、各A/D変換器7e、7mによりそれぞれ変換されるディジタルデータIched、Qched、Ichmd、Qchmdを、複数のチャネルch1、ch2、ch3…chnそれぞれの複素信号e1、e2に分離する。
それぞれの複素信号は、上記中間周波数を有する複素信号であるほか、上記中間周波数と同じ周波数だけ低域に周波数変換された複素等価低域信号であってもよい。
複素信号e1は偏光軸と同相の成分に対するチャネルの複素信号であり、e1I+je1Qで表せる。複素信号e2は偏光軸に直交する成分に対するチャネルの複素信号であり、e2I+je2Qで表せる。
マルチチャネルアナライザ9は、デマルチプレクサ8により分離された多数のチャネルch1、ch2、ch3…chnそれぞれの複素信号e1、e2から個々のチャネルの変調信号の偏光状態を示す情報を生成する解析部である。
個々のチャネルの変調信号の偏光状態を示す情報は、例えばストークスパラメータS0、S1、S2、S3などで表現される。各ストークスパラメータS0、S1、S2、S3の生成の仕方については、後述する図4および図7の説明で詳述する。
図4に示すように、マルチチャネルアナライザ9は、二乗器91、92、複素共役算出部93、乗算器94、実数成分演算器95、虚数成分演算器96、減算器97、加算器98を有する。
二乗器91は、入力された複素信号e1の複素数の絶対値を2乗して電力を求める。二乗器92は、入力された複素信号e2の複素数の絶対値を2乗して電力を求める。
複素共役算出部93は、複素信号e1の複素共役e1*を算出する。乗算器94は、複素信号e1の複素共益e1*と複素信号e2とを乗算する。
実数成分演算器95は、乗算器94による算出結果(乗積)の実部を2倍、つまり2・Re[e1*・e2]を求め、ストークスパラメータS2として出力する。
虚数成分演算器96は、乗算器94による算出結果(乗積)の虚数部を2倍、つまり2・Im[e1*・e2]を求め、ストークスパラメータS3として出力する。
減算器97は、複素信号e1の電力|e1|2と複素信号e2の電力|e2|2とを減算して互いの差|e1|2-|e2|2であるストークスパラメータS1を出力する。
加算器98は、複素信号e1の電力|e1|2と複素信号e2の電力|e2|2とを加算して互いの和|e1|2+|e2|2であるストークスパラメータS0を出力する。
続いて、このマルチコヒーレント偏光アナライザの動作を説明する。
多数の変調信号を異なる波長に多重した光信号が送信機から光ファイバを通じて伝送され、このマルチコヒーレント偏光アナライザに受信される。
多数の変調信号を異なる波長に多重した光信号が送信機から光ファイバを通じて伝送され、このマルチコヒーレント偏光アナライザに受信される。
マルチコヒーレント偏光アナライザでは、受信光Ssが偏光ビームスプリッタ1に入力される。
第1偏光ビームスプリッタ1では、受信光Ssは電気的横波成分TEsと磁気的横波成分TMsに分岐され、電気的横波成分TEsが光コヒーレント検波器4eに出力され、磁気的横波成分TMsが光コヒーレント検波器4mに出力される。
一方、基準光発生器2では、複数の変調信号それぞれに対応する波長の異なる多数のマルチトーン参照光MTloが発生されて偏光ビームスプリッタ3に入力される。
偏光ビームスプリッタ3では、マルチトーン参照光MTloが電気的横波成分TEloと磁気的横波成分TMloに分岐されて、電気的横波成分TEloが光コヒーレント検波器4eに出力され、磁気的横波成分TMloが光コヒーレント検波器4mに出力される。
光コヒーレント検波器4eでは、分岐して入力された受信光Ssとマルチトーン参照光MTloの電気的横波成分どうしTEs、TEloが合波されて干渉成分が生成され、生成された干渉成分から各波長の偏光軸における同相成分のアナログ信号Icheaと直交成分のアナログ信号Qcheaが生成され、A/D変換器7eに出力される。
光コヒーレント検波器4mでは、分岐して入力された受信光Ssとマルチトーン参照光MTloの磁気的横波成分どうしTMs、TMloが合波されて干渉成分が生成され、生成された干渉成分から各波長の偏光軸における同相成分のアナログ信号Ichmaと直交成分のアナログ信号Qchmaが生成され、A/D変換器7mに出力される。
A/D変換器7eでは、光コヒーレント検波器4eから入力された電気的横波成分TEs、TEloの干渉成分の各波長の偏光軸における同相成分のアナログ信号Icheaと直交成分のアナログ信号QcheaがディジタルデータIched、Qchedに変換されて、デマルチプレクサ8に出力される。
A/D変換器7mでは、光コヒーレント検波器4mから入力された電気的横波成分TMs、TMloの干渉成分の各波長の偏光軸における同相成分のアナログ信号Ichmaと直交成分のアナログ信号QchmaがディジタルデータIchmd、Qchmdに変換されて、デマルチプレクサ8に出力される。
デマルチプレクサ8では、変換して入力されたそれぞれの偏光軸成分毎のディジタルデータIched、Qched、Ichmd、Qchmdが、多数のチャネルch1、ch2、ch3…chnそれぞれの複素信号e1、e2に分離されて、マルチチャネルアナライザ9に出力される。
マルチチャネルアナライザ9では、デマルチプレクサ8により分離して入力された多数のチャネルch1,ch2,ch3…chnそれぞれの複素信号e1、e2から個々のチャネルの変調信号の偏光状態を示す情報(ストークスパラメータS0、S1、S2、S3)が生成されて出力される。
このようにこの実施形態のマルチコヒーレント偏光アナライザによれば、以下のような効果が得られる。
すなわち、ある偏光軸に対して波長分割多重された受信光Ssの偏光軸成分と、波長分割多重されたマルチトーン参照光MTloの偏光軸成分とを用いて光コヒーレント検波を行い、光コヒーレント検波後に現れる偏光軸成分のアナログ信号Ichea、Qchea、Ichma、QchmaをディジタルデータIched、Qched、Ichmd、Qchmdに変換し、デマルチプレクサ8によるディジタル処理でそれぞれのチャネルch1、ch2、ch3…chnの複素信号e1、e2に分離し、分離した複素信号e1、e2をチャネル毎に演算処理して、チャネル毎のストークスパラメータS0、S1、S2、S3を出力するので、光ファイバケーブルを介して受信される多波長の受信光Ssの偏光状態(SOP)をチャネル毎に解析することができる。
これにより、高価な測定器でなくても通信装置などの受信機にこの機能を組み込むことが可能になる。また受信光Ssそのものの偏光状態を解析するので、解析結果を用いた受信光Ssのさまざまに処理(偏光分離や偏光ダイバーシティなど)が可能になる。
この他、複数の波長チャネル間の相対的な偏光状態(SOP)を知ることができるので、伝送路上におけるSOP変動の波長依存性を観測できるなど、学術的な面での波及効果が大きい。また、原理的にはSOPを随時観測できるため偏光変調方式(特に復調技術)への応用など、技術的な派生にも期待できる。
さらに本技術はディジタルコヒーレント検波との高い親和性を有することから、信号の復調と同時にSOPを観測できるため、予等化や偏光補償、偏光多重の効率化などへの応用も期待できる。
また、この実施形態の構成要素をディジタルコヒーレント通信用のLSIに組み込むことで、システム性能の改善に貢献でき、これにより質の高い通信インフラを提供することができる。
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
上記の図4に示したマルチチャネルアナライザ9の構成例は複素信号e1、e2にノイズ(雑音)が載っていない場合、つまりノイズ(雑音)を考慮しない場合の例であり、実際には、マルチチャネルアナライザ9に入力される複素信号にはノイズ(雑音)が載ってくる可能性が高く、ノイズ(雑音)が載った複素信号r1、r2の場合の構成例を以下に示す。なお図4に示した構成と同じ構成には同一の符号を付しその説明は省略するものとする。
すなわち、図7に示すように、この例のマルチチャネルアナライザ9は、集合平均計算器99a、99b、99cを有する。なおこの例では、複素信号r1、r2に載るノイズ(雑音)をガウス雑音と想定する。
集合平均計算器99aは、二乗器91の前段に設けられる。集合平均計算器99aは、入力される複素信号r1に対してある一定時間における平均E[r1]を算出し二乗器91に出力する。
集合平均計算器99bは、二乗器92の前段に設けられている。集合平均計算器99bは、入力される複素信号r2に対してある一定時間の平均E[r2]を算出し二乗器92に出力する。
集合平均計算器99cは、乗算器94と実数成分演算器95および虚数成分演算器96との間に設けられている。集合平均計算器99cは、乗算器94による算出結果(複素信号e1の複素共益e1*と複素信号e2との乗積)に対してある一定時間の平均E[r1*・r2]を算出し実数成分演算器95および虚数成分演算器96にそれぞれ出力する。
この例のマルチチャネルアナライザ9では、集合平均計算器99aを二乗器91の前段に設け、集合平均計算器99bを二乗器92の前段に設け、集合平均計算器99cを乗算器94と実数成分演算器95および虚数成分演算器96との間に設けることで、それぞれの入力信号を平均化した上で電力または各成分を求める。これにより、雑音の影響を少なくした偏光解析結果を得ることができる。
上記実施形態に示したデマルチプレクサ8およびマルチチャネルアナライザ9を少なくとも含む各構成要素を、通信端末のメモリ、またはコンピュータのハードディスク装置などのストレージにインストールしたプログラムで実現してもよく、また上記プログラムを、通信端末またはコンピュータが読取可能な電子媒体:electronic mediaに記憶しておき、プログラムを電子媒体から通信端末またはコンピュータに読み取らせることで本発明の機能を通信端末またはコンピュータが実現するようにしてもよい。
電子媒体としては、例えばCD-ROM等の記録媒体やフラッシュメモリ、リムーバブルメディア:Removable media等が含まれる。さらに、ネットワークを介して接続した異なるコンピュータに構成要素を分散して記憶し、各構成要素を機能させたコンピュータ間で通信することで実現してもよい。
1、3…偏光ビームスプリッタ、2…基準光発生器、4e、4m…光コヒーレント検波器、7e、7m…アナログ/ディジタル変換器(A/D変換器)、8…デマルチプレクサ、9…マルチチャネルアナライザ、91、92…二乗器、93…複素共役算出部、94…乗算器、95…実数成分演算器、96…虚数成分演算器、97…減算器、98…加算器、99a、99b、99c…集合平均計算器。
Claims (5)
- 多数の変調信号を異なる波長に多重して伝送されてきた受信光を電気的横波成分と磁気的横波成分に分岐させる第1偏光分離器と、
前記受信光の前記多数の変調信号それぞれに対応する多波長の参照光を発生する参照光発生器と、
前記参照光を電気的横波成分と磁気的横波成分に分岐させる第2偏光分離器と、
分岐された受信光と参照光の電気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第1光コヒーレント検波器と、
分岐された受信光と参照光の磁気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成する第2光コヒーレント検波器と、
前記第1光コヒーレント検波器により生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第1変換部と、
前記第2光コヒーレント検波器により生成された各波長の偏光軸における同相成分と直交成分をディジタルデータに変換する第2変換部と、
変換されたそれぞれの偏光軸の成分毎のディジタルデータを、多数のチャネルそれぞれの第1および第2複素信号に分離する分離部と、
前記分離部により分離された多数のチャネルそれぞれの第1および第2複素信号から個々のチャネルの変調信号の偏光状態を示す情報を生成する多チャネル解析部と
を具備することを特徴とする光信号処理装置。 - 前記参照光発生器は、
前記多数の変調信号に対応し、強度が一定であり、各変調信号毎に所定波長分オフセットした波長成分を有し、前記波長成分どうしが互いに干渉性を有する参照光を発生することを特徴とする請求項1記載の光信号処理装置。 - 前記多チャネル解析部は、
前記第1複素信号をあるチャネルにおける前記偏光軸の同相成分のものとし、前記第2複素信号を前記偏光軸に直交する成分のものとし、前記第1複素信号の電力と前記第2複素信号の電力との和をストークスパラメータS0、前記第1複素信号の電力と前記第2複素信号の電力との差をストークスパラメータS1、前記第1複素信号の複素共益と前記第2複素信号の乗積の実部の2倍をストークスパラメータS2、前記第1複素信号の複素共益と前記第2複素信号の乗積の虚部の2倍をストークスパラメータS3として偏光状態を示す情報を求めることを特徴とする請求項1または請求項2いずれか記載の光信号処理装置。 - 前記多チャネル解析部は、
前記第1複素信号をあるチャネルにおける前記偏光軸の同相成分のものとし、前記第2複素信号を前記偏光軸に直交する成分のものとし、前記第1複素信号に対するある一定時間の平均の電力と前記第2複素信号に対するある一定時間の平均の電力の和をストークスパラメータS0、それらの差をストークスパラメータS1、前記第1複素信号の複素共益と前記第2複素信号の乗積に対するある一定時間の平均の実部の2倍をストークスパラメータS2、前記乗積に対するある一定時間の平均の虚部の2倍をストークスパラメータS3として偏光状態を示す情報を求めることを特徴とする請求項1または請求項2いずれか記載の光信号処理装置。 - 多数の変調信号を異なる波長に多重して伝送されてきた受信光を電気的横波成分と磁気的横波成分に分岐させ、
前記受信光の前記複数の変調信号それぞれに対応する多波長の参照光を発生し、
前記参照光を電気的横波成分と磁気的横波成分に分岐させ、
分岐された受信光と参照光の電気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成し、
分岐された受信光と参照光の磁気的横波成分どうしを合波して干渉させた干渉成分から各波長の偏光軸における同相成分と直交成分を生成し、
生成した電気的横波成分および磁気的横波成分それぞれの成分の各波長の偏光軸の同相成分と直交成分をディジタルデータに変換し、
変換した各波長の偏光軸の同相成分と直交成分のディジタルデータを、多数のチャネルそれぞれの第1および第2複素信号に分離し、
分離した多数のチャネルそれぞれの第1および第2複素信号から個々のチャネルの変調信号の偏光状態を示す情報を生成する
ことを特徴とする光信号処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-014631 | 2016-01-28 | ||
JP2016014631A JP6703708B2 (ja) | 2016-01-28 | 2016-01-28 | 光信号処理装置および光信号処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130941A1 true WO2017130941A1 (ja) | 2017-08-03 |
Family
ID=59398243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002291 WO2017130941A1 (ja) | 2016-01-28 | 2017-01-24 | 光信号処理装置および光信号処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6703708B2 (ja) |
WO (1) | WO2017130941A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072645A (zh) * | 2019-06-11 | 2022-02-18 | 拉瓦尔大学 | 偏振计和确定入射光束的偏振态的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7340190B2 (ja) * | 2020-04-03 | 2023-09-07 | Kddi株式会社 | 光受信装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514280A (ja) * | 1991-07-05 | 1993-01-22 | Hitachi Ltd | 光周波数分割多重伝送装置 |
JP2010028470A (ja) * | 2008-07-18 | 2010-02-04 | Nippon Telegr & Teleph Corp <Ntt> | 受信装置、補償演算回路、および受信方法 |
JP2010171788A (ja) * | 2009-01-23 | 2010-08-05 | Nippon Telegr & Teleph Corp <Ntt> | 光信号送信方法、光通信システム、光送信器および光受信器 |
WO2011027895A1 (ja) * | 2009-09-07 | 2011-03-10 | 古河電気工業株式会社 | Plc型復調器及び光伝送システム |
EP2348651A1 (en) * | 2010-01-18 | 2011-07-27 | Alcatel Lucent | Method for retrieving a signal |
JP2012515468A (ja) * | 2009-01-12 | 2012-07-05 | アルカテル−ルーセント ユーエスエー インコーポレーテッド | 共有光ハイブリッド(SharedOpticalHybrid)および多波長(Multi−Wavelength)局部発振器を有する多波長コヒーレント受信器(CoherentReceiver) |
JP2014016197A (ja) * | 2012-07-06 | 2014-01-30 | Nippon Telegr & Teleph Corp <Ntt> | 光信号測定装置 |
US20150086204A1 (en) * | 2013-09-20 | 2015-03-26 | Alcatel-Lucent Usa Inc. | Frequency-diversity mimo processing for optical transmission |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7116419B1 (en) * | 2002-11-15 | 2006-10-03 | Purdue Research Foundation | Wavelength-parallel polarization measurement systems and methods |
JP5740982B2 (ja) * | 2011-01-06 | 2015-07-01 | 日本電気株式会社 | 波長分解ストークスベクトル測定装置および測定方法 |
-
2016
- 2016-01-28 JP JP2016014631A patent/JP6703708B2/ja not_active Expired - Fee Related
-
2017
- 2017-01-24 WO PCT/JP2017/002291 patent/WO2017130941A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514280A (ja) * | 1991-07-05 | 1993-01-22 | Hitachi Ltd | 光周波数分割多重伝送装置 |
JP2010028470A (ja) * | 2008-07-18 | 2010-02-04 | Nippon Telegr & Teleph Corp <Ntt> | 受信装置、補償演算回路、および受信方法 |
JP2012515468A (ja) * | 2009-01-12 | 2012-07-05 | アルカテル−ルーセント ユーエスエー インコーポレーテッド | 共有光ハイブリッド(SharedOpticalHybrid)および多波長(Multi−Wavelength)局部発振器を有する多波長コヒーレント受信器(CoherentReceiver) |
JP2010171788A (ja) * | 2009-01-23 | 2010-08-05 | Nippon Telegr & Teleph Corp <Ntt> | 光信号送信方法、光通信システム、光送信器および光受信器 |
WO2011027895A1 (ja) * | 2009-09-07 | 2011-03-10 | 古河電気工業株式会社 | Plc型復調器及び光伝送システム |
EP2348651A1 (en) * | 2010-01-18 | 2011-07-27 | Alcatel Lucent | Method for retrieving a signal |
JP2014016197A (ja) * | 2012-07-06 | 2014-01-30 | Nippon Telegr & Teleph Corp <Ntt> | 光信号測定装置 |
US20150086204A1 (en) * | 2013-09-20 | 2015-03-26 | Alcatel-Lucent Usa Inc. | Frequency-diversity mimo processing for optical transmission |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072645A (zh) * | 2019-06-11 | 2022-02-18 | 拉瓦尔大学 | 偏振计和确定入射光束的偏振态的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6703708B2 (ja) | 2020-06-03 |
JP2017133969A (ja) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2166681B1 (en) | Optical modulation circuit and optical transmission system | |
EP2672636B1 (en) | Coherent optical receiver, and inter-channel skew detection device and detection method in coherent optical receiver | |
Reis et al. | Terabit+ (192× 10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band | |
JP5034770B2 (ja) | コヒーレント光受信器および光通信システム | |
US8582979B2 (en) | Method and arrangement for transmitting an optical OFDM-signal | |
JP5712935B2 (ja) | 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置 | |
US8768174B2 (en) | Modulation device and modulation method, and demodulation device and demodulation method | |
Saif et al. | Optical performance monitoring in mode division multiplexed optical networks | |
JP4675796B2 (ja) | 自動分散補償型光伝送システム | |
US20120195600A1 (en) | Reference-signal distribution in an optical transport system | |
Kumar et al. | Performance investigation of inter-satellite optical wireless communication (IsOWC) system employing multiplexing techniques | |
EP2101425B1 (en) | Optical receiving apparatus and method | |
WO2017130941A1 (ja) | 光信号処理装置および光信号処理方法 | |
Shao et al. | 100 km coherent Nyquist ultradense wavelength division multiplexed passive optical network using a tunable gain-switched comb source | |
JP5710989B2 (ja) | コヒーレント光受信装置及び光通信システム | |
JP4730560B2 (ja) | 光伝送システム、光伝送方法及び光送信装置 | |
CN107204803A (zh) | 一种基于ppm传输系统的偏振模色散监测方法及系统 | |
US11405112B2 (en) | Wavelength division multiplexed optical parameter detection receiver | |
JP6468629B2 (ja) | Wdmコヒーレント伝送方式 | |
JP6070062B2 (ja) | 光送信システムおよび制御方法 | |
Zhou et al. | A method to reduce the algorithm complexity of the single-photodiode-per-polarization coherent receiver | |
JP2013016979A (ja) | 光直交周波数分割多重伝送方式による受信装置および受信方法 | |
JP2018049214A (ja) | 高周波変調信号発生装置及び位相揺らぎ抑制方法 | |
Temprana et al. | Dynamic reconfiguration of parametric frequency comb for superchannel and flex-grid transmitters | |
Baker-Meflah et al. | Multi-impairment WDM optical performance monitoring for burst switched networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744171 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17744171 Country of ref document: EP Kind code of ref document: A1 |