WO2012102041A1 - 導波路型偏波ビームスプリッタ - Google Patents

導波路型偏波ビームスプリッタ Download PDF

Info

Publication number
WO2012102041A1
WO2012102041A1 PCT/JP2012/000476 JP2012000476W WO2012102041A1 WO 2012102041 A1 WO2012102041 A1 WO 2012102041A1 JP 2012000476 W JP2012000476 W JP 2012000476W WO 2012102041 A1 WO2012102041 A1 WO 2012102041A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
beam splitter
polarization beam
quarter
Prior art date
Application number
PCT/JP2012/000476
Other languages
English (en)
French (fr)
Inventor
才田 隆志
那須 悠介
水野 隆之
笠原 亮一
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CA2825638A priority Critical patent/CA2825638C/en
Priority to US13/981,304 priority patent/US9323000B2/en
Priority to CN201280006557.5A priority patent/CN103339540B/zh
Priority to JP2012554692A priority patent/JP5520393B2/ja
Publication of WO2012102041A1 publication Critical patent/WO2012102041A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects

Definitions

  • the present invention relates to a waveguide-type polarization beam splitter, and more particularly to a waveguide-type polarization beam splitter that combines and branches polarized waves.
  • waveguide-type polarization beam splitters are attracting attention because they can be integrated with other waveguide-type devices such as couplers, delay interferometers, and optical hybrids.
  • a waveguide-type polarization beam splitter generally has a Mach-Zehnder interferometer (MZI) configuration and provides a phase difference of ⁇ between TE polarized light and TM polarized light so that the phase difference of the TE polarized light interferometer is 0 (or ⁇ ), and the phase difference in the TM polarization interferometer is ⁇ (or 0), thereby realizing the polarization combining / branching function.
  • MZI Mach-Zehnder interferometer
  • FIG. 1 shows an example of a conventional waveguide-type polarization beam splitter.
  • a conventional waveguide-type polarization beam splitter includes input optical waveguides 101a and 101b, a first optical coupler 102, a pair of waveguide arms 103, a groove 104 provided so as to cross the waveguide arms, and a groove A quarter-wave plate 105a, 105b with an angle of 0 degrees and 90 degrees inserted in 104, a second optical coupler 106, and output optical waveguides 107a, 107b (see Patent Document 1). .
  • This method is characterized in that a polarization beam splitter having excellent temperature characteristics can be realized because the phase difference between the polarized waves is provided by the wave plates inserted in both arms.
  • the conventional configuration has a problem that the wavelength dependency is large.
  • the directional coupler is used for the first optical coupler 102 and the second optical coupler 106, the wavelength dependence of the directional coupler itself occurs.
  • the quarter-wave plate 105 gives a phase of ⁇ 90 degrees to the orthogonally polarized waves TE and TM, respectively, so that either one of the waveguide arms 103a or 103b is used for the polarization beam splitter operation. It is necessary to provide a delay unit of a quarter wavelength. Since this delay unit has wavelength dependence, the characteristics of the polarization beam splitter are deteriorated.
  • FIG. 2 is a diagram showing the wavelength characteristics of a conventional waveguide-type polarization beam splitter when manufactured ideally. As can be seen from FIG. 2, the extinction ratio is degraded to 25 dB or less in the wavelength range of 1.53 to 1.565 microns even when the conventional waveguide type polarization beam splitter is ideally manufactured. .
  • FIG. 3 shows a histogram of a conventional waveguide-type polarization beam splitter when manufacturing tolerance is taken into consideration. Even considering the manufacturing tolerance, the extinction ratio of the port 1 is 25 dB or less.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a waveguide-type polarization beam splitter that suppresses deterioration of the polarization extinction ratio due to temperature change and wavelength change. .
  • a first aspect of the present invention is a waveguide-type polarization beam splitter formed on a substrate, including one or two input optical waveguides, A two-input two-output first multimode interference optical coupler optically coupled to one or two input optical waveguides, and a pair optically coupled to the output of the first multimode interference optical coupler An optical waveguide arm, a two-input two-output second multimode interference optical coupler optically coupled to the pair of optical waveguide arms, and an optically coupled output of the second multimode interference optical coupler And one or two output optical waveguides.
  • a quarter-wave delay is provided on one of the pair of optical waveguide arms, and a groove is provided so as to traverse both arms of the pair of optical waveguide arms.
  • Two quarter-wave plates are inserted so as to traverse each of the optical waveguide arms, and the polarization axes of the two quarter-wave plates are orthogonal to each other.
  • At least one of the input optical waveguide and the output optical waveguide is a single optical waveguide, the one optical waveguide, and the first optical waveguide, A delay of the quarter wavelength is provided in the optical waveguide arm on the side facing through the multimode interference optical coupler coupled to the optical waveguide.
  • the angle of one polarization main axis of the two quarter-wave plates is relative to the substrate plane of the waveguide. It forms 0 degree, and the angle of the other polarization main axis of the two quarter-wave plates is 90 degrees with respect to the substrate plane of the waveguide.
  • each of the two quarter-wave plates is a polyimide wave plate.
  • the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects, tapered portions are further provided before and after the groove.
  • the sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the optical waveguide is a quartz optical waveguide formed on a silicon substrate.
  • a groove is provided so as to traverse both arms of the pair of optical waveguide arms constituting the MZI, and two quarter-wave plates are provided in the groove so as to traverse each arm of the pair of optical waveguide arms.
  • These two quarter-wave plates are used with the polarization axes orthogonal to each other, and a 2-input 2-output multimode interference optical coupler is used as the coupler. It is possible to provide a waveguide-type polarization beam splitter in which deterioration of the wave extinction ratio is suppressed.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a figure which shows the wavelength dependence of the polarization extinction ratio of the waveguide type polarization beam splitter which concerns on the 1st Embodiment of this invention.
  • FIG. 4 shows a waveguide-type polarization beam splitter according to the first embodiment.
  • the waveguide-type polarization beam splitter includes two input optical waveguides 11 (that is, 11a and 11b) and a first input / output first multiple optically coupled to the two input optical waveguides 11.
  • a quarter-wave delay 22 is provided on one 13b of the pair of optical waveguide arms.
  • the first multimode interference optical coupler 12, the pair of optical waveguide arms 13, and the second multimode interference optical coupler 18 constitute an MZI.
  • grooves 15 are formed in the pair of optical waveguide arms 13 so as to cross both arms 13a, 13b, and each arm 13a, 13b is formed in the groove 15.
  • Two quarter-wave plates 16a and 16b are provided so as to cross each of the two.
  • Two quarter-wave plates 16a and 16b are used whose polarization axes are orthogonal to each other.
  • Each of the arms 13a and 13b constituting the pair of optical waveguide arms 13 can be, for example, a quartz optical waveguide having a relative refractive index difference of 1.5% on the silicon substrate.
  • the number of input optical waveguides is 2, and the number of output optical waveguides is 2.
  • This is a combination of the polarizations input to the two input optical waveguides by this combination and input to any one input waveguide.
  • a waveguide-type polarization beam splitter capable of realizing all the functions as a polarization beam splitter, such as branching the polarized light into two output optical waveguides, can be provided.
  • the present invention is not limited to this combination, and the number of input optical waveguides may be one, and the number of output optical waveguides may be one.
  • the quarter-wave plates 16a and 16b can be made of polyimide. Since polyimide is thin, the groove 15 for inserting the quarter-wave plates 16a and 16b can be narrowed to, for example, less than 20 ⁇ m. If the angle of the polarization axis is 0 degrees and 90 degrees with respect to the perpendicular line of the plane on which the pair of optical waveguide arms 13a and 13b are formed, the separated polarized waves become linearly polarized waves, and the handling becomes easy. .
  • tapered portions 14 a, 14 b, 17 a, and 17 b may be provided in the waveguide portions before and after the groove 15.
  • the terminal width of the tapered portion is preferably 10 ⁇ m or more.
  • FIG. 5 is a sectional view taken along the line VV in FIG.
  • Two arms 13a and 13b are formed on the substrate 10, and quarter-wave plates 16a and 16b are provided so as to cross the respective cores.
  • the wavelength dependence of the polarization extinction ratio is greatly reduced in the waveguide type polarization beam splitter according to the present embodiment as shown in FIG.
  • the waveguide type polarization beam splitter secures a polarization extinction ratio of 28 dB or more in consideration of manufacturing tolerance as shown in FIG. be able to.
  • FIG. 8 shows a waveguide-type polarization beam splitter according to the second embodiment.
  • the waveguide polarization beam splitter includes a single input optical waveguide 11, a two-input two-output first multimode interference optical coupler 12 optically coupled to the single input optical waveguide 11, A pair of optical waveguide arms 13 (ie, 13a and 13b) optically coupled to the output of the first multimode interference optical coupler, and a two-input two optically coupled to the pair of optical waveguide arms 13a and 13b
  • An output second multimode interference optical coupler 18 and two output optical waveguides 19 a and 19 b optically coupled to the second multimode interference optical coupler 18 are provided.
  • the optical waveguide arm 13a facing the input optical waveguide 11 via the multimode interference optical coupler 12 is provided with a delay 22 of a quarter wavelength.
  • the first multimode optical coupler 12, the pair of optical waveguide arms 13 (that is, 13a and 13b), and the second optical coupler 18 constitute an MZI.
  • a delay 22 having a quarter wavelength is provided in the optical waveguide arm 13a facing the input optical waveguide 11 via the multimode interference optical coupler 12.
  • a groove 15 is formed so as to cross both arms 13a and 13b, and two quarter-wave plates 16a and 16b are provided in the groove 15 so as to cross each arm 13a and 13b, respectively. ing.
  • Two quarter-wave plates 16a and 16b are used whose polarization axes are orthogonal to each other.
  • the number of output optical waveguides is two, this provides a waveguide-type polarization beam splitter capable of realizing the function of splitting the polarization input to one input waveguide into two output optical waveguides. Because it can be done.
  • the present invention is not limited to this combination of embodiments, and the number of output optical waveguides may be one.
  • Each of the arms 13a and 13b constituting the pair of optical waveguide arms 13 can be, for example, a quartz optical waveguide having a relative refractive index difference of 1.5% on the silicon substrate.
  • the wavelength dependence of the polarization extinction ratio is greatly reduced in the waveguide type polarization beam splitter according to the present embodiment as shown in FIG.
  • the waveguide type polarization beam splitter secures a polarization extinction ratio of 25 dB or more when manufacturing tolerance is taken into consideration as shown in FIG. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 温度変化、波長変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供する。導波路型偏波ビームスプリッタは、入力用光導波路(11)、入力用光導波路(11)に結合された第1の多モード干渉光カプラ(12)、第1の多モード干渉光カプラ(12)の出力に結合された一対の光導波路アーム(13)、一対の光導波路アーム(13)に結合された第2の多モード干渉光カプラ(18)、及び第2の多モード干渉光カプラ(18)の出力に結合された出力用光導波路(19a、19b)を備える。一対の光導波路アームの一方(13b)には四分の一波長の遅延(22)が設けられ、一対の光導波路アーム(13)の両アームを横断するように溝(15)が形成され、溝(15)には各アーム(13a、13b)を夫々横断するように2枚の四分の一波長板(16a、16b)が設けられる。四分の一波長板(16a、16b)は互いに偏波軸が直交する。

Description

導波路型偏波ビームスプリッタ
 本発明は、導波路型偏波ビームスプリッタに関し、より詳細には、偏波を合分岐する導波路型偏波ビームスプリッタに関する。
 大容量光通信に向けて偏波多重された光信号の利用が進んでおり、偏波を合分岐する偏波ビームスプリッタの重要性が増している。特に導波路型偏波ビームスプリッタは、カプラや遅延干渉計、光ハイブリッドなど他の導波路型デバイスと一体集積できることから注目されている。導波路型偏波ビームスプリッタは一般に、マッハツェンダ型干渉計(MZI)の構成でTE偏光とTM偏光との間にπの位相差を設けて、TE偏光の干渉計での位相差を0(あるいはπ)とし、TM偏光の干渉計での位相差をπ(あるいは0)とすることで偏波合分岐機能を実現する。
 図1に、従来の導波路型偏波ビームスプリッタの例を示す。従来の導波路型偏波ビームスプリッタは入力用光導波路101a、101bと、第1の光カプラ102と、一対の導波路アーム103と、導波路アームを横断するように設けた溝104と、溝104に挿入された0度および90度の角度の四分の一波長板105a、105bと、第2の光カプラ106と、出力用光導波路107a、107bから構成されている(特許文献1参照)。この手法は、偏波間の位相差を両アームに挿入された波長板によって付与するため、温度特性に優れた偏波ビームスプリッタを実現できる特徴がある。
特開平7-92326号公報
 しかしながら、従来の構成には、波長依存性が大きいという問題があった。図1の構成では第1の光カプラ102および第2の光カプラ106に方向性結合器を用いているために、方向性結合器自体の波長依存性が生じる。また、四分の一波長板105は、直交する偏波TEおよびTMにそれぞれ、±90度の位相を与えるため、偏波ビームスプリッタ動作のためには導波路アーム103aあるいは103bのいずれかに四分の一波長の遅延部を設ける必要がある。この遅延部は波長依存性を有するため、偏波ビームスプリッタの特性は劣化する。
 図2は、理想的に製造された場合の、従来の導波路型偏波ビームスプリッタの波長特性を示す図である。図2より分かるように、従来の導波路型偏波ビームスプリッタでは理想的に製造された場合であっても波長範囲1.53~1.565ミクロンの範囲で、消光比は25dB以下まで劣化する。
 図3は、製造トレランスを考慮した場合の、従来の導波路型偏波ビームスプリッタのヒストグラムを示している。製造トレランスを考慮しても、ポート1の消光比は25dB以下となっている。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、温度変化および波長変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供することにある。
 このような目的を達成するために、本発明の第1の態様は、基板上に形成された導波路型偏波ビームスプリッタであって、1本または2本の入力用光導波路と、前記1本または2本の入力用光導波路に光学的に結合された2入力2出力の第1の多モード干渉光カプラと、前記第1の多モード干渉光カプラの出力に光学的に結合された一対の光導波路アームと、前記一対の光導波路アームに光学的に結合された2入力2出力の第2の多モード干渉光カプラと、前記第2の多モード干渉光カプラの出力に光学的に結合された1本または2本の出力用光導波路とを備える。そして、前記一対の光導波路アームの一方に四分の一波長の遅延が設けられており、前記一対の光導波路アームの両方のアームを横断するように溝が設けられ、前記溝に、前記一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、前記2枚の四分の一波長板は、互いに偏波軸が直交していることを特徴とする。
 また、本発明の第2の態様は、第1の態様において、入力用光導波路または出力用光導波路の少なくともいずれか一方が1本の光導波路であり、前記1本の光導波路と、前記1本の光導波路と結合された多モード干渉光カプラを介して対向する側の光導波路アームに、前記四分の一波長の遅延が設けられていることを特徴とする。
 また、本発明の第3の態様は、第1又は第2の態様において、前記2枚の四分の一波長板のうちの一方の偏波主軸の角度は、導波路の基板平面に対して0度をなし、前記2枚の四分の一波長板のうちの他方の偏波主軸の角度は、導波路の基板平面に対して90度をなしていることを特徴とする。
 また、本発明の第4の態様は、第1から第3のいずれかの態様において、前記2枚の四分の一波長板がそれぞれ、ポリイミド波長板であることを特徴とする。
 また、本発明の第5の態様は、第1から第4のいずれかの態様において、前記溝の前後にテーパ部をさらに備えることを特徴とする。
 また、本発明の第6の態様は、第1から第5のいずれかの態様において、前記光導波路がシリコン基板上に形成された石英系光導波路であることを特徴とする。
 MZIを構成する一対の光導波路アームの両方のアームを横断するように溝が設けられ、当該溝に、一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、これら2枚の四分の一波長板として、互いに偏波軸が直交するものを用い、カプラとして2入力2出力多モード干渉光カプラを用いることで、波長変化および温度変化による偏波消光比の劣化を抑制した導波路型偏波ビームスプリッタを提供することができる。
従来の導波路型偏波ビームスプリッタを示す図である。 従来の導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 従来の導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。 本発明の第1の実施形態に係る導波路型偏波ビームスプリッタを示す図である。 図4のV-V線に沿った断面図を示す図である。 本発明の第1の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 本発明の第1の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。 本発明の第2の実施形態に係る導波路型偏波ビームスプリッタを示す図である。 本発明の第2の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比の波長依存性を示す図である。 本発明の第2の実施形態に係る導波路型偏波ビームスプリッタの偏波消光比のヒストグラムを示す図である。
 以下、図面を参照して本発明の実施形態を説明する。
 (第1の実施形態)
 図4に、第1の実施形態に係る導波路型偏波ビームスプリッタを示す。導波路型偏波ビームスプリッタは、2本の入力用光導波路11(即ち、11aおよび11b)と、2本の入力用光導波路11に光学的に結合された1入力2出力の第1の多モード干渉光カプラ12と、第1の多モード干渉光カプラの出力に光学的に結合された一対の光導波路アーム13(即ち、13aおよび13b)と、一対の光導波路アーム13aおよび13bに光学的に結合された2入力2出力の第2の多モード干渉光カプラ18と、第2の多モード干渉光カプラ18の出力に光学的に結合された2本の出力用光導波路19a、19bとを備える。一対の光導波路アームの一方13bには、四分の一波長の遅延22が設けられている。第1の多モード干渉光カプラ12、一対の光導波路アーム13、および第2の多モード干渉光カプラ18がMZIを構成する。
 本実施形態による導波路型偏波ビームスプリッタでは、一対の光導波路アーム13に、両方のアーム13a、13bを横断するように溝15が形成されており、溝15には、各アーム13a、13bをそれぞれ横断するように2枚の四分の一波長板16a、16bが設けられている。2枚の四分の一波長板16a、16bは、互いに偏波軸が直交するものを用いている。このような構成にすることで、2つのアーム13a、13bは、挿入されている波長板も含めて、偏波軸方向を除き完全に対称となるので、温度依存性が小さくなる。
 一対の光導波路アーム13を構成する各アーム13a、13bは、例えば、シリコン基板上の比屈折率差1.5%の石英系光導波路とすることができる。光ファイバとの接続損失小が0.6dB/点未満となる利点や、量産性および制御性に優れるという利点がある。
 入力光導波路の本数を2、出力光導波路の本数を2としたが、これはこの組み合わせによって2本の入力光導波路に入力された偏波の合成する、いずれか1本の入力導波路に入力された偏波を2本の出力光導波路に分岐するなど、偏波ビームスプリッタとしての全ての機能が実現可能な導波路型偏波ビームスプリッタが提供できるからである。しかしながら、本発明はこの組み合わせに限定されるものではなく、入力用光導波路の本数は1でもよく、出力光導波路の本数も1でももちろん構わない。
 四分の一波長板16a、16bは、ポリイミドから作製することができる。ポリイミドは薄いので、四分の一波長板16a、16bを挿入する溝15を例えば20μm未満等に狭くすることができる。偏波軸の角度は、一対の光導波路アーム13aおよび13bが形成されている平面の垂線に対して、0度と90度とすると分離される偏波が直線偏波となり、取り扱いが容易となる。
 溝15における過剰損失を低減するために、溝15の前後の導波路部分にテーパ部14a、14b、17a、17bを設けてもよい。テーパ部の終端幅は、10μm以上とするのが好ましい。
 図5に、図4のV-V線に沿った断面図を示す。基板10の上に2つのアーム13a、13bが形成されており、それぞれのコアを横断するように四分の一波長板16a、16bが設けられる。
 図2に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図6に示すように偏波消光比の波長依存性が大幅に低減されている。
 また、図3に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図7に示すように製造トレランスを考慮した場合の偏波消光比としても28dB以上を確保することができる。
 (第2の実施形態)
 図8に、第2の実施形態に係る導波路型偏波ビームスプリッタを示す。導波路型偏波ビームスプリッタは、1本の入力用光導波路11と、1本の入力用光導波路11に光学的に結合された2入力2出力の第1の多モード干渉光カプラ12と、第1の多モード干渉光カプラの出力に光学的に結合された一対の光導波路アーム13(即ち、13aおよび13b)と、一対の光導波路アーム13aおよび13bに光学的に結合された2入力2出力の第2の多モード干渉光カプラ18と、第2の多モード干渉光カプラ18に光学的に結合された2本の出力用光導波路19a、19bとを備える。一対の光導波路アーム13a、13bのうちの、入力用光導波路11と多モード干渉光カプラ12を介して対向する光導波路アーム13aには、四分の一波長の遅延22が設けられている。第1の多モード光カプラ12、一対の光導波路アーム13(即ち、13aおよび13b)、および第2の光カプラ18がMZIを構成する。
 本実施形態による導波路型偏波ビームスプリッタでは、入力用光導波路11と多モード干渉光カプラ12を介して対向する光導波路アーム13aに、四分の一波長の遅延22が設けられているので、遅延部の波長依存性を多モード干渉光カプラの波長依存性で打ち消すことで、波長依存性に優れた導波路型偏波ビームスプリッタを提供することができる。
 両方のアーム13a、13bを横断するように溝15が形成されており、溝15には、各アーム13a、13bをそれぞれ横断するように2枚の四分の一波長板16a、16bが設けられている。2枚の四分の一波長板16a、16bは、互いに偏波軸が直交するものを用いている。このような構成にすることで、2つのアーム13a、13bは、挿入されている波長板も含めて、偏波軸方向を除き完全に対称となるので、温度依存性が小さくなる。
 出力光導波路の本数は2としたが、これは1本の入力導波路に入力された偏波を2本の出力光導波路に分岐する機能を実現可能な、導波路型偏波ビームスプリッタを提供することができるからである。しかしながら、本発明はこの実施形態の組み合わせに限定されるものではなく、出力光導波路の本数は1でも構わない。
 一対の光導波路アーム13を構成する各アーム13a、13bは、例えば、シリコン基板上の比屈折率差1.5%の石英系光導波路とすることができる。光ファイバとの接続損失小が0.6dB/点未満となる利点や、量産性および制御性に優れるという利点がある。
 図2に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図9に示すように偏波消光比の波長依存性が大幅に低減されている。
 また、図3に示した例とは対照的に、本実施形態による導波路型偏波ビームスプリッタでは図10に示すように製造トレランスを考慮した場合の偏波消光比としても25dB以上を確保することができる。
 101、11 入力用光導波路
 102、12 第1の光カプラ
 103、13 一対の光導波路アーム
 104、15 導波路溝
 14、17 テーパ光導波路あるいはパラボラ光導波路
 105、16 四分の一波長板
 106、18 第2の光カプラ
 107、19 出力用光導波路
 20 クラッド
 21 コア
 22 遅延

Claims (6)

  1.  基板上に形成された導波路型偏波ビームスプリッタであって、
     1本または2本の入力用光導波路と、
     前記1本または2本の入力用光導波路に光学的に結合された2入力2出力の第1の多モード干渉光カプラと、
     前記第1の多モード干渉光カプラの出力に光学的に結合された一対の光導波路アームと、
     前記一対の光導波路アームに光学的に結合された2入力2出力の第2の多モード干渉光カプラと、
     前記第2の多モード干渉光カプラの出力に光学的に結合された1本または2本の出力用光導波路と
    を備え、
     前記一対の光導波路アームの一方に四分の一波長の遅延が設けられており、
     前記一対の光導波路アームの両方のアームを横断するように溝が設けられ、前記溝に、前記一対の光導波路アームの各アームをそれぞれ横断するように2枚の四分の一波長板が挿入され、前記2枚の四分の一波長板は、互いに偏波軸が直交していることを特徴とする導波路型偏波ビームスプリッタ。
  2.  入力用光導波路または出力用光導波路の少なくともいずれか一方が1本の光導波路であり、
     前記1本の光導波路と、前記1本の光導波路と結合された多モード干渉光カプラを介して対向する側の光導波路アームに、前記四分の一波長の遅延が設けられていることを特徴とする請求項1に記載の導波路型偏波ビームスプリッタ。
  3.  前記2枚の四分の一波長板のうちの一方の偏波主軸の角度は、導波路の基板平面に対して0度をなし、前記2枚の四分の一波長板のうちの他方の偏波主軸の角度は、導波路の基板平面に対して90度をなしていることを特徴とする請求項1または2に記載の導波路型偏波ビームスプリッタ。
  4.  前記2枚の四分の一波長板はそれぞれ、ポリイミド波長板であることを特徴とする請求項1から3のいずれかに記載の導波路型偏波ビームスプリッタ。
  5.  前記溝の前後にテーパ部をさらに備えることを特徴とする請求項1から4のいずれかに記載の導波路型偏波ビームスプリッタ。
  6.  前記光導波路はシリコン基板上に形成された石英系光導波路であることを特徴とする請求項1から5のいずれかに記載の導波路型偏波ビームスプリッタ。
PCT/JP2012/000476 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ WO2012102041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2825638A CA2825638C (en) 2011-01-26 2012-01-25 Waveguide-type polarization beam splitter
US13/981,304 US9323000B2 (en) 2011-01-26 2012-01-25 Waveguide-type polarization beam splitter
CN201280006557.5A CN103339540B (zh) 2011-01-26 2012-01-25 波导型偏振分束器
JP2012554692A JP5520393B2 (ja) 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014546 2011-01-26
JP2011-014546 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012102041A1 true WO2012102041A1 (ja) 2012-08-02

Family

ID=46580616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000476 WO2012102041A1 (ja) 2011-01-26 2012-01-25 導波路型偏波ビームスプリッタ

Country Status (5)

Country Link
US (1) US9323000B2 (ja)
JP (1) JP5520393B2 (ja)
CN (1) CN103339540B (ja)
CA (1) CA2825638C (ja)
WO (1) WO2012102041A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928917A (zh) * 2012-11-12 2013-02-13 中国计量学院 双扇环形太赫兹波偏振分束器
CN102937730A (zh) * 2012-11-12 2013-02-20 中国计量学院 L形缝隙结构的太赫兹波偏振分束器
JP2015215578A (ja) * 2014-05-13 2015-12-03 日本電信電話株式会社 光導波路素子およびそれを用いた偏波分離器
WO2016060263A1 (ja) * 2014-10-17 2016-04-21 株式会社フォトニックラティス 偏光分離/合成機能をもつ集積型光結合器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219887B2 (ja) * 2015-06-25 2017-10-25 Nttエレクトロニクス株式会社 光導波路デバイス
KR20190115757A (ko) * 2018-04-03 2019-10-14 한국전자통신연구원 광 회로 소자
CN108663750B (zh) * 2018-06-19 2019-08-02 上海交通大学 可实现任意角度正交投影的波导极化分束器
KR20210018726A (ko) 2019-08-09 2021-02-18 한국전자통신연구원 코히어런트 광수신기 및 그의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241304A (ja) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存導波型光デバイス
JPH0792326A (ja) * 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光波長板とその製造方法及びこれを用いた導波型光デバイス
JPH1130766A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JP2001255567A (ja) * 2000-03-09 2001-09-21 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2007286426A (ja) * 2006-04-18 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> 光信号処理器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502578B2 (ja) 1999-08-11 2004-03-02 日本電信電話株式会社 導波路型偏波状態測定器
GB0124840D0 (en) 2001-10-16 2001-12-05 Univ Nanyang A polarization beam splitter
KR100943847B1 (ko) * 2006-01-19 2010-02-24 미쓰미덴기가부시기가이샤 도파로형 광대역 광아이솔레이터
CN101573645B (zh) * 2007-01-10 2011-05-18 日本电信电话株式会社 波导型干涉仪
CN101784926B (zh) * 2007-08-24 2012-05-16 日本电信电话株式会社 偏振无关波导型干涉光路
JP5457661B2 (ja) * 2008-07-14 2014-04-02 日本電信電話株式会社 光波長合分波回路
US8787710B2 (en) 2009-06-02 2014-07-22 Nippon Telegraph And Telephone Corporation Wideband interferometer type polarization light beam combiner and splitter
JP5684131B2 (ja) 2009-09-07 2015-03-11 古河電気工業株式会社 Plc型復調器及び光伝送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241304A (ja) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> 偏波無依存導波型光デバイス
JPH0792326A (ja) * 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光波長板とその製造方法及びこれを用いた導波型光デバイス
JPH1130766A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
JP2001255567A (ja) * 2000-03-09 2001-09-21 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2007286426A (ja) * 2006-04-18 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> 光信号処理器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928917A (zh) * 2012-11-12 2013-02-13 中国计量学院 双扇环形太赫兹波偏振分束器
CN102937730A (zh) * 2012-11-12 2013-02-20 中国计量学院 L形缝隙结构的太赫兹波偏振分束器
CN102928917B (zh) * 2012-11-12 2013-10-23 中国计量学院 双扇环形太赫兹波偏振分束器
JP2015215578A (ja) * 2014-05-13 2015-12-03 日本電信電話株式会社 光導波路素子およびそれを用いた偏波分離器
WO2016060263A1 (ja) * 2014-10-17 2016-04-21 株式会社フォトニックラティス 偏光分離/合成機能をもつ集積型光結合器

Also Published As

Publication number Publication date
JPWO2012102041A1 (ja) 2014-06-30
CN103339540A (zh) 2013-10-02
US9323000B2 (en) 2016-04-26
US20130301977A1 (en) 2013-11-14
CN103339540B (zh) 2016-06-15
JP5520393B2 (ja) 2014-06-11
CA2825638A1 (en) 2012-08-02
CA2825638C (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5567696B2 (ja) 導波路型偏波ビームスプリッタ
JP5520393B2 (ja) 導波路型偏波ビームスプリッタ
US8787710B2 (en) Wideband interferometer type polarization light beam combiner and splitter
CN109001858B (zh) 一种基于表面等离子体亚波长光栅的偏振分束器
JP2017504830A (ja) 導波路偏光スプリッタ兼偏光回転子
WO2014187374A1 (en) System and method for an optical phase shifter
JP2011027773A (ja) 光ミキサー
CN114641720A (zh) 偏振系统和方法
US10444430B2 (en) Optical waveguide structure and optical waveguide circuit
CN112630892A (zh) 一种基于非等臂宽马赫曾德干涉仪的四通道粗波分复用器
JP5137619B2 (ja) Plc型可変分散補償器
CN108761648B (zh) 一种混合集成的三端口光环形器
CN108897099B (zh) 一种全保偏光纤干涉型梳状滤波器
JP2015215578A (ja) 光導波路素子およびそれを用いた偏波分離器
Mizuno et al. Ultra-compact and low-loss silica-based dual polarization optical hybrid for digital coherent receiver with excellent common-mode rejection ratio
JP2020177109A (ja) 光90度ハイブリッド回路
US11733460B2 (en) Devices and methods for polarization splitting
JP2862630B2 (ja) 導波路型光アイソレータ
JP2015106083A (ja) 光方向性結合器
JP2007188002A (ja) 光信号処理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554692

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981304

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2825638

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738965

Country of ref document: EP

Kind code of ref document: A1