WO2011027456A1 - 車両のブレーキ制御装置および方法 - Google Patents

車両のブレーキ制御装置および方法 Download PDF

Info

Publication number
WO2011027456A1
WO2011027456A1 PCT/JP2009/065476 JP2009065476W WO2011027456A1 WO 2011027456 A1 WO2011027456 A1 WO 2011027456A1 JP 2009065476 W JP2009065476 W JP 2009065476W WO 2011027456 A1 WO2011027456 A1 WO 2011027456A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
wheel
wheel cylinder
cylinder
brake control
Prior art date
Application number
PCT/JP2009/065476
Other languages
English (en)
French (fr)
Inventor
俊作 小野
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to US13/389,835 priority Critical patent/US8996271B2/en
Priority to EP09848987.5A priority patent/EP2474455B1/en
Priority to PCT/JP2009/065476 priority patent/WO2011027456A1/ja
Priority to JP2011529746A priority patent/JP5296879B2/ja
Priority to CN200980161239.4A priority patent/CN102481909B/zh
Publication of WO2011027456A1 publication Critical patent/WO2011027456A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems

Definitions

  • the present invention relates to a vehicle brake control unit, and more particularly to an anti-lock brake (ABS) control unit.
  • ABS anti-lock brake
  • the ABS judges the tendency of the wheel to lock, and when lock is detected, the pressure in the wheel cylinder is reduced to release the lock state, and when the lock state is released, the pressure in the hall cylinder gradually increases. Control to strengthen the brake. Therefore, if the pressure reduction of the wheel cylinder after detecting the locked state of the wheel in the ABS control is insufficient, the locked state cannot be sufficiently solved. Further, if the pressure increase of the wheel cylinder after the wheel lock state is released is insufficient, the vehicle cannot be sufficiently decelerated. Therefore, in the ABS control, it is desirable to avoid insufficient pressure reduction of the wheel cylinder after detecting the locked state or insufficient pressure increase of the wheel cylinder after the locked state is released.
  • ABS control in general, a wheel lock tendency is determined by calculating a wheel slip rate using a wheel speed sensor.
  • the amount of pressure reduction and the amount of pressure increase during the ABS operation are determined mainly based on the measurement result by the wheel speed sensor.
  • the friction coefficient ⁇ of the road surface is estimated from the measured value of the wheel speed sensor, the target pressure reduction amount and the target pressure increase amount are determined according to the estimated low ⁇ or high ⁇ road surface condition, and the determined pressure reduction amount and pressure increase are determined.
  • there is a method using a hydraulic pressure sensor in determining the target pressure reduction amount and the target pressure increase amount for example, Patent Document 1).
  • the pressure control of the wheel cylinder is performed by an electromagnetic valve or the like so as to achieve the target pressure change amount.
  • the hydraulic pressure value measured by the hydraulic pressure sensor is used to determine the target amount of change in the wheel cylinder pressure, whether the wheel cylinder pressure has achieved the target value by driving the solenoid valve. It is not confirmed.
  • the actual pressure in the wheel cylinder does not always meet the target determined during the operation of the ABS.
  • the pressure increase amount of the wheel cylinder during the ABS operation may be It is possible that the amount of reduced pressure may deviate from an appropriate value or range.
  • the braking distance may increase when the amount of pressure increase is insufficient, or the stability of the vehicle may be impaired when the amount of pressure decrease is insufficient.
  • the brake control according to the present invention is generally based on the following concept.
  • a control sequence different from the conventional control sequence based on the slip rate or the like based on the measured value of the wheel speed sensor is provided, and this other wheel cylinder pressure control sequence is provided.
  • the minimum pressure increase amount or the minimum pressure decrease amount during the ABS operation is ensured.
  • an allowable range related to the pressure change amount of the wheel cylinder is set independently of the control sequence based on the measured value of the wheel speed sensor, and the actual pressure value is set by the pressure sensor during brake control.
  • an actuator such as a solenoid valve is driven to control the pressure in the wheel cylinder within the allowable range. Therefore, according to the present invention, during the ABS control, the actual pressure in the wheel cylinder is made independent of the conventional ABS control sequence using the wheel speed sensor, and the minimum pressure increase amount and pressure reduction during the ABS operation are reduced. The amount can be secured.
  • the brake control unit measures the wheel speed with the wheel speed sensor as in the prior art when the pressure of the hole cylinder is within the allowable range set by the present invention during the ABS operation,
  • the wheel cylinder pressure is controlled based on the measurement result, but the actual pressure value (pressure increase and pressure decrease) measured by the pressure sensor is set independently from the conventional ABS control logic.
  • the pressure in the wheel cylinder is additionally increased or decreased based on another control sequence according to the invention.
  • a brake control method for a vehicle wherein the method includes a pressure P in a wheel cylinder when a predetermined time t1 has elapsed since a wheel lock tendency was detected.
  • P t1 > P max_t1 is satisfied in the step of measuring t1 , the step of comparing the P t1 with the predetermined value P max_t1 , and the step of comparing the P t1 with the predetermined value P max_t1 , the wheel Driving a depressurizing actuator of the wheel cylinder by a predetermined amount so as to reduce the pressure in the cylinder.
  • ⁇ P t1 is a value determined in advance according to time t1.
  • the predetermined drive amount of the actuator is a fixed amount that is not changed during operation of the vehicle.
  • a vehicle brake control method that eliminates the wheel lock tendency as a result of detecting the wheel lock tendency and reducing the pressure in the wheel cylinder. Measuring a pressure P t2 in the wheel cylinder when a predetermined time t2 has elapsed, comparing the P t2 with a predetermined value P min — t2, and the P t2 and a predetermined value P min — t2 A step of driving a pressure-increasing actuator of the wheel cylinder by a predetermined amount so as to increase the pressure in the wheel cylinder when the condition of P t2 ⁇ P min — t2 is satisfied in the comparing step.
  • a step of measuring the pressure P 02 in the hole cylinder at the time, and the predetermined driving amount of the actuator is determined according to P 01 -P 02 .
  • a vehicle brake control method that eliminates the wheel lock tendency as a result of detecting the wheel lock tendency and reducing the pressure in the wheel cylinder.
  • the method according to the present embodiment preferably further includes the step of measuring the pressure P 01 in the wheel cylinder when the wheel locking tendency is detected, and the pressure in the wheel cylinder is reduced to eliminate the wheel locking tendency.
  • the method according to the present embodiment preferably further includes the step of measuring the pressure P 01 in the wheel cylinder when the wheel locking tendency is detected, and the pressure in the wheel cylinder is reduced to eliminate the wheel locking tendency.
  • a step of measuring the pressure P 02 in the hole cylinder at the time, and the predetermined driving amount of the actuator is determined according to P 01 -P 02 .
  • a vehicle brake control device which device is used to detect a pressure sensor for measuring a pressure applied to a wheel cylinder and a tendency of a wheel to lock.
  • the pressure P t1 in the wheel cylinder is received from the pressure sensor, and the P t1 is compared with a predetermined value P max — t1.
  • the actuator when meet the P t1> P max_t1, so as to reduce the pressure within the wheel cylinder Driving the motor by a predetermined amount.
  • the predetermined drive amount of the actuator is a fixed amount that is not changed during operation of the vehicle.
  • a vehicle brake control device which device is used to detect a pressure sensor for measuring a pressure applied to a wheel cylinder and a tendency of a wheel to lock.
  • the control means receives a pressure P 01 in the wheel cylinder when a wheel locking tendency is detected by the wheel speed sensor from the pressure sensor, and the control means further includes The pressure P 02 in the Hall cylinder when the pressure in the wheel cylinder is decreased to eliminate the wheel locking tendency is received from the pressure sensor, and P min_t2 is P 02 , P 01 -P 02 , and t2 It is decided according to.
  • the control means receives a pressure P 01 in a wheel cylinder when a wheel locking tendency is detected by the wheel speed sensor from the pressure sensor, and the control means further includes: The pressure P 02 in the Hall cylinder when the wheel lock tendency is eliminated by reducing the pressure in the wheel cylinder is received from the pressure sensor, and the predetermined drive amount of the actuator is in accordance with P 01 -P 02 It is determined.
  • a vehicle brake control device which device is used to detect a pressure sensor for measuring a pressure applied to a wheel cylinder and a tendency of a wheel to lock.
  • the control means receives a pressure P 01 in the wheel cylinder when a wheel locking tendency is detected by the wheel speed sensor from the pressure sensor, and the control means further includes The pressure P 02 in the Hall cylinder when the wheel locking tendency is reduced by reducing the pressure in the wheel cylinder is received from the pressure sensor, and the control means is further when the wheel locking tendency is eliminated
  • the elapsed time t2_n from the time is measured, and P min_t2_n is determined according to P 02 , P 01 -P 02 , and t2_n.
  • the control means receives a pressure P 01 in a wheel cylinder when a wheel locking tendency is detected by the wheel speed sensor from the pressure sensor, and the control means further includes: The pressure P 02 in the Hall cylinder when the wheel lock tendency is eliminated by reducing the pressure in the wheel cylinder is received from the pressure sensor, and the predetermined drive amount of the actuator is in accordance with P 01 -P 02 It is determined.
  • a vehicle having a vehicle brake control device according to the present invention is provided.
  • the actual pressure in the wheel cylinder at the time of ABS control is surely kept within a certain allowable range regardless of the control method used for ABS control. And the robustness of the brake control device can be improved.
  • a vehicle brake control unit includes a control device (ECU) 10, a wheel speed sensor 12, a pressure sensor 14, and an electromagnetic valve 16, as shown in FIG.
  • the hard wafer configuration of the ECU 10 is well-known in this technical field and will not be described in detail in this specification.
  • an ECU having an arbitrary configuration including a CPU, a memory, an input / output device, and the like can be used.
  • the ECU 10 incorporates a control program for performing ABS control according to the present invention.
  • the ECU 10 is electrically connected to a wheel speed sensor 12, a pressure sensor 14, and a solenoid valve 16, which will be described later, to supply power to the wheel speed sensor 12 and the pressure sensor 14, and to receive signals from these sensors. And the drive of the electromagnetic valve 16 can be controlled.
  • the wheel speed sensor 12 is arranged near the wheel of the vehicle as known in the art, and detects the rotational speed of the wheel.
  • the configuration and arrangement of the wheel speed sensor 12 itself are well known in the art and will not be described in detail herein.
  • any wheel speed sensor can be used.
  • a wheel speed sensor that detects the rotation speed of a vehicle wheel electromagnetically or optically can be used.
  • the wheel speed sensor 12 is connected to the ECU 10, and the ECU 10 controls power supply and signal transfer.
  • the pressure sensor 14 detects the pressure in the wheel cylinder of the vehicle.
  • the configuration and arrangement of the pressure sensor 14 itself is well known in the art and will not be described in detail herein.
  • a pressure sensor having an arbitrary configuration can be used.
  • a pressure sensor of a type that measures the deformation of the diaphragm with a strain gauge, a pressure sensor using a semiconductor, or the like can be used.
  • the pressure sensor 14 is connected to the ECU 10, and the ECU 10 controls the supply of power and the delivery of signals.
  • the electromagnetic valve 16 is arranged in the hydraulic circuit of the vehicle and functions as an actuator that is electromagnetically driven in accordance with a command from the ECU 10 to control the movement of the hydraulic fluid in the hydraulic circuit.
  • the configuration and arrangement of the electromagnetic valve 16 itself are well known in the art and will not be described in detail in this specification, but include a pressure increasing valve 16a, a pressure reducing valve 16b, and the like.
  • the solenoid valve 16 is connected to the ECU 10 and its operation is controlled by the ECU 10. In this embodiment, the electromagnetic valve 16 is used. However, in the present invention, it is not essential that the electromagnetic valve 16 can be driven, and an actuator that controls the braking force by another method may be used.
  • the system configuration shown in FIG. 1 does not limit the system configuration of the vehicle brake unit of the present invention, and system components can be increased or decreased without departing from the spirit of the present invention.
  • the hardware configuration of the vehicle brake control unit of the present embodiment is the same as that of a conventional general vehicle brake control unit except that the pressure sensor 14 is provided, and may be an arbitrary configuration.
  • the ECU 10 incorporates a program for executing the conventional ABS control and a program for controlling the pressure increase amount and / or the pressure decrease amount of the wheel cylinder according to the present invention.
  • the “conventional ABS control” is a control sequence for controlling the electromagnetic valve of the brake circuit mainly based on the measured value by the wheel speed sensor, and is not necessarily known at the time of filing of the present application. Not necessarily.
  • the term “conventional ABS control” is used in the control sequence unless the operation control of the solenoid valve is directly performed based on the measured value of the pressure sensor as in the embodiment of the present invention described below. It is a concept that includes a part that uses a measurement value by a pressure sensor.
  • a method of determining a target hydraulic pressure value using a hydraulic pressure sensor is also included in “conventional ABS control”.
  • the slip ratio of the wheel is calculated from the measured value of the wheel speed sensor 12, and the electromagnetic valve 16 is controlled so that the slip ratio becomes a predetermined value.
  • the slip ratio of the wheel exceeds a predetermined value, it is determined that the wheel tends to be locked, and the ECU 10 drives the pressure reducing valve 16b to reduce the pressure in the wheel cylinder, and the slip ratio is
  • the control sequence is such that the ECU 10 drives the pressure increasing valve 16a to increase the wheel cylinder pressure.
  • the ECU 10 of the vehicle brake control unit is based on a measurement value obtained by the pressure sensor 14 that measures the pressure in the wheel cylinder in addition to the program for executing the conventional ABS control.
  • a program for controlling the solenoid valve 16 is incorporated.
  • the electromagnetics are directly based on the measurements by the pressure sensor 14 for measuring the pressure in the wheel cylinder, which is added to the conventional ABS control sequence as described in the summary of the invention.
  • the sequence for controlling the valve 16 may be referred to simply as “another control sequence” or “additional control sequence”.
  • FIG. 2 shows a flowchart for executing a control sequence during the ABS operation of the present invention in accordance with the flow of processing in the ECU 10.
  • a portion surrounded by a broken line is an example of another control sequence added by the present invention, and the rest is almost the same as the conventional ABS control sequence.
  • step S ⁇ b> 10 the ECU 10 receives the wheel speed measured by the wheel speed sensor 12.
  • step S12 the ECU 10 determines the state of the wheel from the received wheel speed. Specifically, the slip ratio is calculated, and if the slip ratio is greater than a predetermined value, the wheel tends to be locked and is determined to be “unstable”. If the slip ratio is equal to or less than the predetermined value, the wheel is “stable”. It is judged that.
  • a person skilled in the art can appropriately design the slip ratio calculation method and the predetermined value relating to the slip ratio based on the conventional ABS control sequence.
  • step S14 the ECU 10 calculates a target pressure increase amount or a target pressure reduction eye amount of the wheel cylinder according to the state of the wheel determined in step S12. Specifically, the target pressure reduction amount is calculated when the wheel is unstable, and the target pressure increase amount is calculated when the wheel is stable.
  • a method for calculating the target pressure increase amount and the target pressure decrease amount can be appropriately designed by those skilled in the art based on the conventional ABS control sequence.
  • step S16 the ECU 10 calculates the drive amount of the actuator necessary to achieve the target pressure increase amount or the target pressure decrease amount calculated in step S14. Specifically, for example, the driving time of the pressure increasing valve 16a and the pressure reducing valve 16b is calculated. As another embodiment, when another actuator is used, the driving amount of the actuator is calculated. For example, in the case of an actuator using a pulse motor, the number of pulses to be applied is calculated. In step S16, as will be described later, an additional drive amount of the actuator determined in step S24 is added as necessary.
  • step S18 the ECU 10 issues a drive command to the actuator in order to drive the actuator by the drive amount calculated in step S16. Thereafter, the process returns to step S10, and the above process is repeated.
  • ABS control sequence portion of the ABS control sequence according to the embodiment of the present invention is as described above.
  • control sequence according to the embodiment of the present invention is further described below with a dotted line in FIG. A control sequence to be described is added.
  • step S20 the ECU 10 receives the wheel cylinder pressure signal measured by the pressure sensor 14.
  • step S22 the ECU 10 calculates an allowable range of the pressure of the wheel cylinder based on the received pressure signal and the wheel state determined in step S12.
  • the allowable pressure range of the wheel cylinder will be described later, the allowable pressure range of the wheel cylinder is defined by at least one of the allowable maximum pressure Pmax and the allowable minimum pressure Pmin .
  • step S24 it is determined whether to drive the solenoid valve 16 based on the pressure value received in step S20 and the allowable pressure range calculated in step S22. Specifically, if the wheel cylinder pressure received in step S20 is smaller than the allowable minimum pressure Pmin, it is determined that the wheel cylinder should be increased, and if the wheel cylinder pressure is higher than the allowable maximum pressure Pmax. And determine that the wheel cylinder should be depressurized. At this time, the drive amount of the solenoid valve 16 for pressure increase and pressure reduction is added to the drive amount of the solenoid valve 16 calculated based on the conventional ABS control sequence in step 16. The driving amount of the electromagnetic valve 16 to be added here will be described later.
  • FIGS. 3 and 4 schematically show the time variation of the pressure of the wheel cylinder based on the ABS control sequence according to one embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents wheel cylinder pressure.
  • the wheel speed sensor 12 measures the rotational speed of the wheel and determines whether to start the ABS control. Specifically, for example, it is determined whether or not ABS control is to be started by calculating a slip ratio of a wheel from a measured value by the wheel speed sensor 12 and comparing the slip ratio with a predetermined value.
  • the ECU 10 receives the wheel speed measured by the wheel speed sensor 12.
  • step S12 the ECU 10 determines from the received wheel speed whether the wheel state is “stable” or “unstable”. Specifically, the case where the slip ratio of the wheel exceeds a predetermined value is determined as “unstable”, and the case where the wheel slip rate is equal to or less than the predetermined value is determined as “stable”.
  • step S14 to step S18 in FIG. 2 the ECU 10 appropriately calculates and the pressure reducing valve 16b is driven to reduce the pressure of the wheel cylinder. The operations from step S10 to step S18 are periodically repeated.
  • the pressure P 01 of the wheel cylinder at the start of ABS operation measured by the pressure sensor 14.
  • the measured pressure value is sent to the ECU 10 and stored in the memory of the ECU 10.
  • P max (t) at an arbitrary time t is indicated by a thick solid line.
  • ⁇ P (t) is held in the ECU 10 in advance.
  • t1 can be an arbitrary value, and can be freely set by those skilled in the art.
  • t1 can be set to a time when pressure reduction is assumed to end in the conventional ABS control.
  • t1 can be 10 ms.
  • a shorter time may be set as t1, and the steps in FIG. 2 may be repeatedly executed every time t1 elapses.
  • step S24 it is determined whether to additionally drive the pressure reducing valve 16b from the allowable maximum pressure P max (t1) calculated in step S22 and the wheel cylinder pressure P (t1) measured in step S20.
  • P max (t1) the allowable maximum pressure calculated in step S22
  • P max (t1) the wheel cylinder pressure measured in step S20.
  • the drive time of the pressure reducing valve 16b is calculated in step S16 so that the pressure reducing valve 16b is additionally driven for a predetermined time in step S16. That is, the additional drive time determined in step S24 is added to the drive time of the pressure reducing valve 16b based on the conventional ABS control sequence (steps S10 to S14).
  • the additional driving time of the pressure reducing valve 16b can be set to +5 ms.
  • the additional driving time of the pressure reducing valve 16b can be a fixed value that is not changed during operation of the vehicle, or the additional driving time of the pressure reducing valve 16b may be changed according to the elapsed time t1. .
  • the conventional ABS control is performed.
  • the ABS operation is controlled by the sequence (S10, S12, S14, S16, S18).
  • a control sequence for ensuring the above-described minimum amount of pressure reduction (in parallel). S20, S22, S24, S16, S18) are executed. Therefore, according to the present embodiment, regardless of the conventional ABS control sequence in the pressure-reducing phase during ABS control, the pressure in the wheel cylinder is the minimum defined by the allowable maximum pressure P max (t). The amount of decompression is ensured. Whether or not the minimum amount of pressure reduction is ensured is directly measured using the pressure sensor 14, so that highly reliable control can be performed with respect to the pressure of the wheel cylinder.
  • the allowable maximum pressure P max of the (t), the pressure P 01 of the wheel cylinder at the start of pressure reduction since the calculation from the predetermined value [Delta] P (t), P from the measured P 01 (t As long as no so-called zero point shift of the pressure sensor occurs between the measurement of the pressure sensor), the zero point shift problem of the pressure sensor does not occur.
  • the problem of the zero point shift of the pressure sensor does not substantially occur in this embodiment.
  • the allowable maximum pressure value P max (t) of the wheel cylinder pressure is used in order to secure the minimum pressure reduction amount.
  • the pressure reduction amount may be limited using an allowable minimum pressure value P min (t) as shown in FIG.
  • the pressure P (t) of the wheel cylinder after the predetermined time has passed satisfies the condition of P min (t) ⁇ P (t) or P min (t) ⁇ P (t) ⁇ P max (t).
  • each of the pressure increasing valve 16a and the pressure reducing valve 16b may be driven and controlled.
  • step S12 of FIG. 2 When it is determined in step S12 of FIG. 2 that the wheel state is stable, the ECU 10 calculates appropriately in steps S14 to S18, and the pressure increase valve 16a is driven to increase the pressure of the wheel cylinder.
  • the ECU 10 receives the wheel cylinder pressure P (t2) measured by the pressure sensor 14 in step S20. To do.
  • the allowable pressure range at time t2 in the pressure increasing phase is defined by the allowable minimum pressure P min (t2).
  • t2 can be an arbitrary value, and can be freely set by those skilled in the art.
  • step S16 the driving time of the pressure increasing valve 16a is calculated so that the pressure increasing valve 16a is additionally driven for a predetermined time. That is, the additional drive time determined and calculated in step S24 is added to the drive time of the pressure increasing valve 16a based on the conventional ABS control sequence (S10, S12, S14).
  • the additional drive amount of the pressure increasing valve 16a can be determined according to P 01 -P 02 (the pressure reduction amount in the pressure reduction phase), for example, can be determined to be proportional to P 01 -P 02 .
  • the additional drive amount of the pressure increasing valve 16a may be a fixed value that is not changed during operation of the vehicle.
  • step S18 the booster valve 16a is driven based on the additional (correction) drive amount introduced by the present invention in addition to the drive amount of the booster valve 16a based on the conventional ABS control sequence.
  • the pressure of the wheel cylinder rises and the pressure of the wheel cylinder falls within the allowable pressure range.
  • the conventional ABS control sequence (S10, S12, S14, S16, S18) is used.
  • a control sequence for securing the minimum pressure increase amount as described above is executed in parallel with the conventional ABS control sequence. Therefore, according to the present embodiment, the minimum pressure increase amount defined by the allowable minimum pressure P min (t) is ensured whatever the conventional ABS control sequence is in the ABS pressure increase phase. It will be. Whether or not the minimum amount of pressure increase is secured is directly measured using the pressure sensor 14, so that highly reliable control can be performed with respect to the pressure of the wheel cylinder.
  • the allowable minimum pressure value P min (t) of the wheel cylinder pressure is used as the allowable pressure range in order to ensure the minimum amount of pressure increase.
  • the pressure increase amount may be limited using an allowable maximum pressure value P max (t) as shown in FIG.
  • P max (t) the pressure P (t) of the wheel cylinder after the predetermined time has passed satisfies the condition of P (t) ⁇ P max (t) or P min (t) ⁇ P (t) ⁇ P max (t).
  • each of the pressure increasing valve 16a and the pressure reducing valve 16b may be driven and controlled.
  • the pressure of the wheel cylinder is designed to be designed regardless of the sequence in which the conventional ABS control is performed and in any operating environment. It can be within an acceptable range. Therefore, the vehicle can be prevented from becoming unexpectedly unstable in the pressure-reducing phase, and the pressure-increasing phase can be prevented from being delayed unexpectedly in the pressure-increasing phase, thereby improving the robustness of the brake control. . Further, since the conventional ABS control sequence is hardly changed, the robustness of the vehicle brake control device can be improved with little modification to the conventional ABS control sequence.
  • the brake control apparatus and method by this invention have been demonstrated, this invention is not limited to the above-mentioned embodiment.
  • Various features of the above-described embodiments can be combined with each other without departing from the spirit of the present invention.
  • the brake control as in the above-described embodiment may be performed in the pressure reduction phase, and only the conventional ABS control may be performed in the pressure increase phase.
  • only the conventional ABS control may be performed in the pressure reduction phase, and the brake control as in the above-described embodiment may be performed in the pressure increase phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

 車両のブレーキ制御装置において、いかなる方式に基づいてABS制御を行う場合であっても、ABS制御時のホイールシリンダ内の実際の増圧量および実際の減圧量を適正な範囲内に収めるようにする。 本発明のブレーキ制御方法によれば、ABS制御時において、車輪速センサの測定値によるスリップ率等に基づく従来の制御シーケンスとは別の制御シーケンスを備えるようにし、この別のホイールシリンダ圧力制御シーケンスにより、ABS動作時の最低限の増圧量または最低限の減圧量を確保するようにする。本願発明による別の制御シーケンスは、車輪速センサの測定値に基づく制御シーケンスから独立して、ホイールシリンダの圧力変化量に関する許容範囲を設定しておき、ブレーキ制御時において圧力センサで実際の圧力値を監視し、ホイールシリンダ内の圧力がこれらの許容範囲からはずれたときに電磁弁などのアクチュエータを駆動してホイールシリンダ内の圧力が許容範囲内に収まるように制御する。

Description

車両のブレーキ制御装置および方法
 本発明は車両のブレーキ制御ユニットに関し、特に、アンチロックブレーキ(ABS)制御ユニットに関する。
 ABSは、ホイールのロック傾向を判断して、ロックが検出されるとホイールシリンダ内の圧力を減少させてロック状態を解放して、ロック状態が解放されると徐々にホールシリンダ内の圧力を増加させてブレーキを強める制御を行う。従って、ABS制御において車輪のロック状態を検出した後のホイールシリンダの減圧が不十分であると、ロック状態を十分に解消できないこととなる。また、車輪のロック状態が解放された後のホイールシリンダの増圧が不十分であると車両を十分に減速できないこととなる。そこで、ABS制御において、ロック状態を検出した後のホイールシリンダの不十分な減圧、またはロック状態が解放された後のホイールシリンダの不十分な増圧を回避することが望ましい。
 ABS制御においては、一般に、車輪速センサを用いて車輪のスリップ率を算出することによりホイールのロック傾向を判断する。ABS作動時の減圧量および増圧量は、主に車輪速センサによる測定結果に基づいて決定される。車両の安定性を損なわずに制動距離を短くするための様々なABS制御アルゴリズムが存在する。たとえば、車輪速センサの測定値から路面の摩擦係数μを推定し、推定した低μまたは高μの路面状態に応じて目標減圧量および目標増圧量を決定し、決定された減圧量および増圧量を実現するように電磁弁を駆動制御する制御方式がある。あるいは、目標減圧量および目標増圧量の決定に際して、液圧センサを用いるものもある(たとえば特許文献1)。
特開2006-176046号公報
 一般に従来のABS制御においては、ホイールシリンダに付与されるべき目標減圧量および目標増圧量を決定したら、その後は、目標圧力変化量を達成するように電磁弁などによりホイールシリンダの圧力制御を行う。しかし、ホイールシリンダの目標圧力変化量を決定するために液圧センサにより測定した液圧値を用いる場合であっても、電磁弁の駆動によりホイールシリンダの圧力が目標通りの値を達成しているかどうかは確認されない。
 従って、ホイールシリンダ内の実際の圧力が、ABSの動作中に決定した目標どおりになっているとは限らず、動作環境などの影響により、場合によってはABS動作時のホイールシリンダの増圧量および減圧量が適正な値または範囲からはずれることがあり得る。その結果、増圧量が不十分である場合に制動距離が長くなったり、減圧量が不十分である場合に車両の安定性が損なわれたりすることがあり得る。
 また、近年のABS制御においては機能の高度化が進み、路面状態や車両状態等を判別して、それらの状態に応じて制御パラメータを変更するなど複雑な制御ロジックが用いられることがある。しかし、すべての状態の組み合わせをあらゆる状況下で評価・試験するのは困難である。そのため、通常で考えられるホイールシリンダの圧力の適正な変化範囲からはずれてホイールシリンダの圧力制御がなされることがあり得る。たとえば、路面状態を判別した結果として、ABS作動時におけるホイールシリンダの圧力の増圧勾配を抑える機能と、車両状態を判別した結果として、ABS作動時におけるホイールシリンダの圧力の増圧勾配を抑える機能とが共に作用した場合、想定以上にホイールシリンダの増圧量が小さくなることがあり得る。そのような場合、制動距離が想定以上に長くなるという問題が生じ得る。
 そこで、車両のブレーキ制御装置において、いかなる制御ロジックに基づいてABS制御を行う場合であっても、ABS制御時のホイールシリンダ内の実際の増圧量および実際の減圧量を適正な範囲内に収めることが望まれる。
 本願発明によるブレーキ制御は、概ね以下のような考え方に基づいている。本発明のブレーキ制御方法によれば、ABS制御時において、車輪速センサの測定値によるスリップ率等に基づく従来の制御シーケンスとは別の制御シーケンスを備えるようにし、この別のホイールシリンダ圧力制御シーケンスにより、ABS動作時の最低限の増圧量または最低限の減圧量を確保するようにする。本願発明による別の制御シーケンスは、車輪速センサの測定値に基づく制御シーケンスから独立して、ホイールシリンダの圧力変化量に関する許容範囲を設定しておき、ブレーキ制御時において圧力センサで実際の圧力値を監視し、ホイールシリンダ内の圧力がこれらの許容範囲からはずれたときに電磁弁などのアクチュエータを駆動してホイールシリンダ内の圧力が許容範囲内に収まるように制御する。従って、本発明によれば、ABS制御時において、ホイールシリンダ内の実際の圧力を、車輪速センサを用いた従来のABS制御シーケンスから独立して、ABS動作時の最低限の増圧量および減圧量を確保することができる。つまり、本発明によれば、ABS動作時においてブレーキ制御ユニットは、ホールシリンダの圧力が本発明により設定した許容範囲内にあるときは、従来のように車輪速センサで車輪速を測定し、その測定結果に基づいてホイールシリンダの圧力を制御するが、圧力センサで測定したホイールシリンダ内の実際の圧力値(増圧量および減圧量)が、従来のABS制御ロジックから独立して設定された許容範囲から外れたときは、本発明による別の制御シーケンスに基づいて追加的にホイールシリンダ内の圧力を増圧または減圧させる。
 本発明の一実施形態によれば、車両のブレーキ制御方法が提供されであって、本方法は、車輪のロック傾向が検出されたときから所定時間t1が経過したときにホイールシリンダ内の圧力Pt1を測定するステップと、前記Pt1と所定値Pmax_t1とを比較するステップと、前記Pt1と所定値Pmax_t1とを比較するステップにおいてPt1>Pmax_t1の条件を満たす場合に、前記ホイールシリンダ内の圧力を減少させるように前記ホイールシリンダの減圧用のアクチュエータを所定量だけ駆動するステップと、を有する。
 本実施形態による方法において、好ましくは、さらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップを有し、前記Pmax_t1は、Pmax_t1=P01-ΔPt1で表され、ここでΔPt1は時間t1に応じて予め決定される値である。
 本実施形態による方法において、好ましくは、前記アクチュエータの所定の駆動量は、車両の運転中に変更されることのない固定量である。
 本発明の一実施形態によれば、車両のブレーキ制御方法が提供され、本方法は、車輪のロック傾向が検出されてホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過したときに、前記ホイールシリンダ内の圧力Pt2を測定するステップと、前記Pt2と所定値Pmin_t2とを比較するステップと、前記Pt2と所定値Pmin_t2とを比較するステップにおいてPt2<Pmin_t2の条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記ホイールシリンダの増圧用のアクチュエータを所定量だけ駆動するステップと、を有する。
 本実施形態による方法において、好ましくは、さらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、Pmin_t2は、P02、P01-P02、およびt2に応じて決定される。
 本実施形態による方法において、好ましくは、さらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、前記アクチュエータの所定の駆動量はP01-P02に応じて決定される。
 本発明の一実施形態によれば、車両のブレーキ制御方法が提供され、本方法は、車輪のロック傾向が検出されてホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過する毎に、前記ホイールシリンダ内の圧力Pt2_nを測定するステップと、前記Pt2_nと所定値Pmin_t2_nとを比較するステップと、前記Pt2_nと所定値Pmin_t2_nとを比較するステップにおいて、Pt2_n<Pmin_t2_nの条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記ホイールシリンダの増圧用のアクチュエータを所定量だけ駆動するステップと、を有する。
 本実施形態による方法は、好ましくは、さらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップと、車輪のロック傾向が解消されたときからの経過時間t2_nを計測するステップと、を有し、Pmin_t2_nは、P02、P01-P02、およびt2_nに応じて決定される。
 本実施形態による方法は、好ましくは、さらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、前記アクチュエータの所定の駆動量はP01-P02に応じて決定される。
 本発明の一実施形態によれば、車両のブレーキ制御装置が提供され、本装置は、ホイールシリンダに付与された圧力を測定するための圧力センサと、車輪のロック傾向を検出するために用いられる車輪速センサと、前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときから所定時間t1が経過したときにホイールシリンダ内の圧力Pt1を前記圧力センサから受け取り、前記Pt1と所定値Pmax_t1とを比較し、Pt1>Pmax_t1の条件を満たす場合に、前記ホイールシリンダ内の圧力を減少させるように前記アクチュエータを所定量だけ駆動する。
 本実施形態による装置において、好ましくは、前記制御手段はさらに、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、前記Pmax_t1は、Pmax_t1=P01-ΔPt1で表され、ここでΔPt1は時間t1に応じて予め決定される値である。
 本実施形態による装置において、好ましくは、前記アクチュエータの所定の駆動量は、車両の運転中に変更されることのない固定量である。
 本発明の一実施形態によれば、車両のブレーキ制御装置が提供され、本装置は、ホイールシリンダに付与された圧力を測定するための圧力センサと、車輪のロック傾向を検出するために用いられる車輪速センサと、前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されて前記ホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過したときに、前記ホイールシリンダ内の圧力Pt2を前記圧力センサから受け取り、前記Pt2と所定値Pmin_t2とを比較し、Pt2<Pmin_t2の条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記アクチュエータを所定量だけ駆動する。
 本実施形態による装置において、好ましくは、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときの前記ホイールシリンダ内の圧力P01を前記圧力センサから受け取り、前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、Pmin_t2は、P02、P01-P02、およびt2に応じて決定される。
 本実施形態による装置において、好ましくは、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、 前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、前記アクチュエータの所定の駆動量はP01-P02に応じて決定される。
 本発明の一実施形態によれば、車両のブレーキ制御装置が提供され、本装置は、ホイールシリンダに付与された圧力を測定するための圧力センサと、車輪のロック傾向を検出するために用いられる車輪速センサと、前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されて前記ホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過する毎に、前記ホイールシリンダ内の圧力Pt2_nを前記圧力センサから受け取り、前記Pt2_nと所定値Pmin_t2_nとを比較し、Pt2_n<Pmin_t2_nの条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記アクチュエータを所定量だけ駆動する。
 本実施形態による装置において、好ましくは、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときの前記ホイールシリンダ内の圧力P01を前記圧力センサから受け取り、前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、前記制御手段はさらに、車輪のロック傾向が解消されたときからの経過時間t2_nを計測し、Pmin_t2_nは、P02、P01-P02、およびt2_nに応じて決定される。
 本実施形態による装置において、好ましくは、前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、前記アクチュエータの所定の駆動量はP01-P02に応じて決定される。
 本発明の一実施形態によれば、本発明による車両ブレーキ制御装置を有する車両が提供される。
 以上のように、本発明によるブレーキ制御装置および方法においては、いかなる制御方式でABS制御を行ったとしても、ABS制御時のホイールシリンダ内の実際の圧力を、一定の許容範囲内に確実に収めることができ、ブレーキ制御装置のロバスト性を向上させることができる。
本発明の一実施形態による車両ブレーキ制御装置の構成を示す図である。 本発明の一実施形態による車両ブレーキ制御方法の動作フローを示す図である。 本発明の一実施形態による車両ブレーキ制御を実行しているときのホイールシリンダの圧力の経時変化の一例を示す図である。 本発明の一実施形態による車両ブレーキ制御を実行しているときのホイールシリンダの圧力の経時変化の一例を示す図である。
 以下に、本発明の実施形態を添付図面とともに説明する。
本発明の一実施形態による車両ブレーキ制御ユニットは、図1に示すように、制御装置(ECU)10、車輪速センサ12、圧力センサ14、電磁弁16、を備える。
 ECU10のハードウェハ構成は、本技術分野において公知であるので本明細書では詳述しない。本実施形態においては、CPU、メモリ、入出力装置等を備える任意の構成のECUを用いることができる。本実施形態において、ECU10は本発明によるABS制御を行うための制御プログラムが組み込まれている。また、ECU10は、後述する車輪速センサ12、圧力センサ14、電磁弁16に電気的に接続されており、車輪速センサ12および圧力センサ14への電源供給、およびこれらのセンサからの信号の受信を行い、また、電磁弁16の駆動を制御することができる。
 車輪速センサ12は、本技術分野で知られているように車両のホイール付近に配置され、ホイールの回転速度を検出する。車輪速センサ12自体の構成および配置は本技術分野において公知であるので本明細書では詳述しない。本実施形態において、任意の車輪速センサを用いることができる。たとえば、電磁的または光学的に車両のホイールの回転速度を検出する車輪速センサを用いることができる。車輪速センサ12はECU10に接続されており、ECU10により電源の供給および信号の受け渡し等の制御がなされる。
 圧力センサ14は車両のホイールシリンダ内の圧力を検出する。圧力センサ14自体の構成および配置は、本技術分野において公知であるので本明細書では詳述しない。本実施形態において、任意の構成の圧力センサを用いることができる。たとえば、ダイアフラムの変形を歪ゲージにより測定するタイプの圧力センサや、半導体を利用した圧力センサなどを利用できる。圧力センサ14はECU10に接続され、ECU10により電源の供給および信号の受け渡し等の制御がなされる。
 電磁弁16は車両の液圧回路内に配置され、ECU10からの命令に応じて電磁的に駆動して液圧回路内の作動液の移動を制御するアクチュエータとして機能する。電磁弁16自体の構成および配置は本技術分野において公知であるので本明細書では詳述しないが、増圧弁16a、減圧弁16bなどを含む。電磁弁16はECU10に接続され、ECU10により動作制御がなされる。なお、本実施形態では電磁弁16を用いているが、本発明において電磁式に駆動できることは必須の要件ではなく、他の方式でブレーキ力を制御するアクチュエータを用いてもよい。
 なお、図1に示すシステム構成は、本発明の車両ブレーキユニットのシステム構成を限定するものではなく、本発明の趣旨に反しない限りシステムコンポーネントの増減は可能である。本実施形態の車両ブレーキ制御ユニットのハードウェア構成は、圧力センサ14を備えることを除いて従来の一般的な車両ブレーキ制御ユニットと同様であり、また任意の構成とすることができる。
 本実施形態において、ECU10は従来のABS制御を実行するプログラム、および本発明によるホイールシリンダの増圧量および/または減圧量を制御するプログラムが組み込まれている。なお、本明細書において「従来のABS制御」とは、主に車輪速センサによる測定値に基づいてブレーキ回路の電磁弁を制御する制御シーケンスであり、必ずしも本願の出願時において公知のABS制御シーケンスでなくてもよい。また、「従来のABS制御」との用語は、以下に説明する本願発明の実施形態のように圧力センサの測定値に直接的に基づいて電磁弁の動作制御を行うものでない限り、制御シーケンスの一部に圧力センサによる測定値を利用するものも含む概念である。従って、たとえば特許文献1に記載のように、液圧センサを用いて目標液圧値を決定する方式も、「従来のABS制御」に含まれる。従来のABS制御ロジックの一例をあげれば、車輪速センサ12の測定値から車輪のスリップ率を算出し、スリップ率が所定の値になるように電磁弁16を制御する。具体的には、車輪のスリップ率が所定値を超えたら、車輪がロック傾向にあると判断して、ECU10は減圧弁16bを駆動して、ホイールシリンダ内の圧力を減少させ、そしてスリップ率が所定値まで減少したら、ECU10は増圧弁16aを駆動してホイールシリンダの圧力を上昇させるような制御シーケンスである。
 発明の概要で述べたように、本実施形態の車両ブレーキ制御ユニットのECU10は、従来のABS制御を実行するプログラムに加えて、ホイールシリンダ内の圧力を測定する圧力センサ14による測定値に基づいて電磁弁16を制御するプログラムが組み込まれている。説明の便宜のために、以下において、発明の概要で述べたような、従来のABS制御シーケンスに追加される、ホイールシリンダ内の圧力を測定する圧力センサ14による測定値に直接的に基づいて電磁弁16を制御するシーケンスを、単に「別の制御シーケンス」または「追加の制御シーケンス」のように言及することがある。
 以下に、本発明の一実施形態による本発明の車両ブレーキの制御シーケンスを図2-4とともに説明する。
図2は、本発明のABS動作中の制御シーケンスを実行するためのフローチャートを、ECU10内の処理の流れに従って示している。図2において、破線で囲まれた部分は、本発明により追加される別の制御シーケンスの一例であり、それ以外は従来のABS制御シーケンスとほぼ同様である。
 まず、簡単に従来のABS制御シーケンスに相当する部分を説明する。ステップS10において、ECU10は車輪速センサ12で測定した車輪速度を受信する。
 次にステップS12において、ECU10は受信した車輪速度から車輪の状態を判別する。具体的にはスリップ率を算出して、スリップ率が所定値よりも大きければ車輪がロック傾向にあり「不安定」であると判断し、スリップ率が所定値以下であれば車輪は「安定」であると判断する。このスリップ率の算出方法およびスリップ率に関する所定値は、従来のABS制御シーケンスに基づいて当業者が適宜設計できる。
 次にステップS14において、ECU10は、ステップS12で判定した車輪の状態に応じてホイールシリンダの目標増圧量、または目標減圧目量を計算する。具体的には、車輪が不安定な場合は目標減圧量が計算され、車輪が安定な場合は目標増圧量が計算される。この目標増圧量および目標減圧量の計算方法は従来のABS制御シーケンスに基づいて当業者が適宜設計できる。
 次にステップS16において、ECU10は、ステップS14で計算した目標増圧量または目標減圧量を達成するために必要なアクチュエータの駆動量を計算する。具体的には、たとえば増圧弁16a、減圧弁16bの駆動時間を計算する。他の実施形態として、他のアクチュエータを用いる場合、そのアクチュエータの駆動量を計算する。たとえば、パルスモータを用いるアクチュエータの場合は、付与すべきパルス数等を計算する。なお、ステップS16において、後述するが、必要に応じてステップS24において決定されたアクチュエータの追加の駆動量が加算される。
 次に、ステップS18において、ECU10はステップS16で計算した駆動量だけアクチュエータを駆動するためにアクチュエータに対して駆動命令を出す。その後はまた、ステップS10に戻り、上記処理を繰り返すことになる。
 本発明の一実施形態によるABS制御シーケンスのうちの従来のABS制御シーケンスの部分は以上の通りであるが、本発明による一実施形態による制御シーケンスはさらに、図2の破線で囲まれた以下に説明する制御シーケンスが追加される。
 ステップS20において、ECU10は圧力センサ14により測定されたホイールシリンダの圧力信号を受信する。
 次に、ステップS22において、ECU10は、受信した圧力信号とステップS12で判別した車輪状態とに基づいてホイールシリンダの圧力の許容範囲を計算する。ホイールシリンダの圧力許容範囲については後述するが、ホイールシリンダの圧力許容範囲は、許容最大圧力Pmaxまたは許容最小圧力Pminの少なくとも一方により画定される。
 次に、ステップS20で受信した圧力値と、ステップS22で計算した圧力許容範囲に基づいて電磁弁16を駆動するかどうかをステップS24において判断する。具体的には、ステップS20で受信したホイールシリンダの圧力が許容最小圧力Pminより小さい場合は、ホイールシリンダを増圧すべきと判断し、ホイールシリンダの圧力が許容最大圧力Pmaxよりも大きい場合は、ホイールシリンダを減圧すべきと判断する。このときの増圧および減圧のための電磁弁16の駆動量は、ステップ16において従来のABS制御シーケンスに基づいて計算される電磁弁16の駆動量に加算される。なお、ここで加算されるべき電磁弁16の駆動量は後述する。
 以下に、図2で示される制御シーケンスが、実際に車両のブレーキを制御する場合に実行される状況を、図3、4に示すホイールシリンダの圧力変化とともに説明する。図3および図4は、本発明の一実施形態によるABS制御シーケンスに基づくホイールシリンダの圧力の時間変化を模式的に示している。これらの図において、横軸は時間であり縦軸はホイールシリンダの圧力を示している。
 車両の運転中に運転者がフットブレーキペダルまたはハンドブレーキレバーのようなブレーキ機構を操作することにより、図3に細い実線で示すようにホイールシリンダ内の圧力が上昇する。
 ホイールシリンダの圧力が上昇しているときに、車輪速センサ12により車輪の回転速度が測定され、ABS制御を開始するかどうかを判定する。具体的には、たとえば、車輪速センサ12による測定値から車輪のスリップ率を計算して、スリップ率が所定値と比較することによりABS制御を開始するかどうかを判定する。
 以下の説明において、図3におけるt=0のときにABS動作を開始したとする。ABS動作が開始されると、その後(図3のt≧0)は、ECU10は、前述の図2に示すシーケンスに従って動作する。
 図2のステップS10において、ECU10は、車輪速センサ12で測定した車輪速度を受信する。
 その後、ステップS12において、ECU10は、受信した車輪速度から車輪状態が「安定」であるか「不安定」であるかを判断する。具体的には、車輪のスリップ率が所定値を超えた場合を「不安定」とし、所定値以下である場合を「安定」であると判断する。図3において、t=0のときはABS制御を開始するときであるので、車輪状態は不安定であると判断される。その後、図2のステップS14~ステップS18において、ECU10で適宜計算がなされ、減圧弁16bが駆動されて、ホイールシリンダの圧力が減圧される。かかるステップS10~ステップS18までの動作は定期的に繰り返される。
 一方で、図3のt=0においてABS動作を開始したら、ABS動作を開始したときのホイールシリンダの圧力P01を、圧力センサ14により測定する。この圧力の測定値はECU10に送られ、ECU10のメモリに保存される。
 さらに、ECU10は、ABS動作を開始したとき(図3のt=0)から所定時間t1が経過したときに、ステップS20において圧力センサ14で測定された圧力値P(t1)を受け取る。そして、ステップS22において、ECU10は、時間t1における圧力許容範囲を計算する。図3のt=1のときに車輪は不安定状態であるとし、このときの時間t1における圧力許容範囲は、許容最大圧力Pmax(t1)で規定される。本実施形態において、許容最大圧力Pmax(t1)は、ABS開始時において測定されたホイールシリンダの圧力P01と、ABS動作を開始したとき(図3のt=0)からの経過時間t1とに応じて決定される。好ましくは、時間t1における許容最大圧力Pmax(t1)は、Pmax(t1)=P01-ΔP(t1)の式で表され、ここでΔP(t1)は時間tに応じて予め決定される値である。図3において、一例として任意の時間tにおけるPmax(t)が太い実線で示されている。なお、本実施形態において、ΔP(t)はECU10に予め保持されている。
 なお、本実施形態において、t1は任意の値とすることができ、当業者が自由に設定できる。たとえば、t1は従来のABS制御において、減圧が終了すると想定される時間とすることができる。たとえば、t1は10msとすることができる。あるいは、t1としてより短い時間を設定して、t1が経過する毎に繰り返し図2のステップを実行するようにしてもよい。
 次にステップS24において、ステップS22で計算された許容最大圧力Pmax(t1)と、ステップS20で測定したホイールシリンダ圧力P(t1)とから、減圧弁16bを追加駆動するかどうかを判断する。図3のt=1においては、P(t1)>Pmax(t1)であるので、この場合、減圧弁16bを駆動すると判断される。そして、ステップS16において減圧弁16bを所定時間だけ追加駆動するように、ステップS16で減圧弁16bの駆動時間を計算する。つまり、従来のABS制御シーケンス(ステップS10~ステップS14)に基づく減圧弁16bの駆動時間に、ステップS24で判断された追加駆動時間を加える。減圧弁16bの追加駆動時間は、当業者が任意の値を採用できる。たとえば、減圧弁16bの追加駆動時間を+5msとすることができる。減圧弁16bの追加駆動時間は、車両の運転中に変更されることのない固定値とすることができ、あるいは経過時間t1に応じて減圧弁16bの追加駆動時間を変更するようにしてもよい。
 図3のt=1において、減圧弁16bが追加的に駆動されることにより、図3に示すように、ホイールシリンダの圧力は減圧される。
 以上のように、本実施形態では、ABS動作中の減圧フェーズ(ABS動作中の車輪が不安定状態であるフェーズ)において、ホイールシリンダの圧力が圧力許容範囲内にあるときは、従来のABS制御シーケンス(S10、S12、S14、S16、S18)によりABS動作制御がなされるが、従来のABS制御シーケンスとは別に、並列的に上述のような最低限の減圧量を確保するための制御シーケンス(S20、S22、S24、S16、S18)が実行される。そのため、本実施形態によれば、ABS制御時の減圧フェーズにおいて従来のABS制御シーケンスがいかなるものであっても、ホイールシリンダ内の圧力が許容最大圧力Pmax(t)で画定される最低限の減圧量が確保されることになる。最低限の減圧量が確保されているか否かは、圧力センサ14を用いて直接的に測定しているので、ホイールシリンダの圧力に関して信頼性の高い制御を実行できる。
 また、許容最大圧力Pmax(t)を、減圧を開始したときのホイールシリンダの圧力P01と、所定値ΔP(t)とから算出しているので、P01を測定してからP(t)を測定するまでの間に、圧力センサのいわゆるゼロ点シフトが生じないかぎり、圧力センサのゼロ点シフトの問題は生じない。一般に、ABSの動作サイクルのような短時間の間にゼロ点シフトが生じることは考えられないので、本実施形態において圧力センサのゼロ点シフトの問題は実質的に生じないといえる。
 なお、上述の実施形態においては、最低限の減圧量を確保するためにホイールシリンダの圧力の許容最大圧力値Pmax(t)を利用したが、他の実施形態として、同様に、減圧量を制限するために、図3に示すような許容最小圧力値Pmin(t)を利用して、減圧量を制限してもよい。その場合、所定時間経過後のホイールシリンダの圧力P(t)が、Pmin(t)<P(t)またはPmin(t)<P(t)<Pmax(t)の条件を満たすように、増圧弁16aおよび減圧弁16bをそれぞれ駆動制御すればよい。
 さらに、図3の説明においては、運転者によるブレーキ操作により最初にABS制御を開始したときをt=0として説明したが、ABS動作中においても、増圧フェーズから再び減圧フェーズに入るときをt=0として上述の減圧フェーズのシーケンスを実行できる。
 次に、ABS動作中の増圧フェーズ(ABS動作中の車輪が安定状態にあるフェーズ)における動作シーケンスを図2および図4とともに説明する。ABS動作が開始され、ホイールシリンダが十分に減圧されると、車輪の状態が安定になり増圧フェーズに入る。増圧フェーズに入ると、減圧フェーズから増圧フェーズに入ったとき(図4のt=0)のホイールシリンダの圧力P02を測定し、圧力P02をECU10のメモリに記憶する。減圧フェーズから増圧フェーズに入ったときを判定するには、たとえば、ステップS12における前回の車輪状態判別結果をECU10に記憶しておくようにし、前回の車輪状態が不安定状態であり、今回の車輪状態が安定状態に変化したときを増圧フェーズに入ったときであると判断できる。
 図2のステップS12において車輪状態が安定であると判断されると、ステップS14~ステップS18においてECU10で適宜計算がなされて、増圧弁16aが駆動されてホイールシリンダが増圧される。
 一方でECU10は増圧フェーズを開始したとき(図4のt=0)から所定時間t2が経過した時に、ステップS20においてECU10は、圧力センサ14で測定したホイールシリンダの圧力P(t2)を受信する。そして、ステップS22において、ECU10は、車輪状態と圧力測定値P(t2)とから時間t2における圧力許容範囲を計算する。なお、図4のt=t2においては、車輪状態は安定であると判断される。本実施形態において、増圧フェーズにおける時間t2での圧力許容範囲は、許容最小圧力Pmin(t2)により規定される。本実施形態において、許容最小圧力Pmin(t2)は、ABS動作を開始したときまたは増圧フェーズから減圧フェーズに入ったときのホイールシリンダの圧力P01と、増圧フェーズに入ったときのホイールシリンダの圧力P02と、増圧フェーズに入ったとき(図4のt=0)からの経過時間t2とに応じて決定される。より詳細には、時間t2におけるPmin(t2)は、P02(増圧フェーズ開始時の圧力)、P01-P02(減圧フェーズでの減圧量)、およびt2(増圧フェーズが開示してからの経過時間)に応じて決定される。一例として、任意の時間tにおける許容最小圧力Pmin(t)は、図4において太い実線で示すように決定することができる。なお、Pmin(t)を計算する計算式はECU10に予め保持しておく。
 なお、本実施形態において、t2は任意の値とすることができ、当業者が自由に設定できる。たとえば、t2はABS制御で想定される増圧フェーズの1サイクル時間の4分の1程度の値とすることができ、たとえばt2=60msとすることができる。
 次に、ステップS24において、時間t2における計算された許容最小圧力Pmin(t2)と、圧力測定値P(t2)とから増圧弁16aを追加駆動するかどうかを判断する。図4のt=t2においては、P(t2)<Pmin(t)であるので、この場合、増圧弁16aを追加駆動すると判断される。そして、ステップS16において増圧弁16aを所定時間だけ追加駆動するように、増圧弁16aの駆動時間を計算する。つまり、従来のABS制御シーケンス(S10、S12、S14)に基づく増圧弁16aの駆動時間に、ステップS24で判断および計算された追加駆動時間を加える。増圧弁16aの追加駆動量は、P01-P02(減圧フェーズでの減圧量)に応じて決定することができる、たとえば、P01-P02に比例するように決定することができる。あるいは、増圧弁16aの追加駆動量は、車両の運転中に変更されることのない固定値としてもよい。
 そして、ステップS18において、従来のABS制御シーケンスに基づく増圧弁16aの駆動量に加えて、本発明により導入される追加(補正)駆動量に基づいて増圧弁16aが駆動される。その結果、図4に示すように、ホイールシリンダの圧力が上昇し、ホイールシリンダの圧力が圧力許容範囲内に入ることになる。
 以上のように、本実施形態では、ABSの動作中の増圧フェーズにおいて、ホイールシリンダの圧力が許容範囲内にあるときは、従来のABS制御シーケンス(S10、S12、S14、S16、S18)によりABS動作制御がなされるが、従来のABS制御シーケンスとは別に、並列的に上述のような最低限の増圧量を確保するための制御シーケンスが実行される。そのため、本実施形態によれば、ABSの増圧フェーズにおいて従来のABS制御シーケンスがいかなるものであっても、許容最小圧力Pmin(t)により規定される最低限の増圧量が確保されることになる。最低限の増圧量が確保されているか否かは、圧力センサ14を用いて直接的に測定しているので、ホイールシリンダの圧力に関して信頼性の高い制御を実行できる。
 また、許容最小圧力Pmin(t)を、ABS動作を開始したときまたは減圧フェーズに入ったときのホイールシリンダの圧力P01と、増圧フェーズに入ったときのホイールシリンダの圧力P02と、増圧フェーズに入ったとき(図4のt=0)からの経過時間t2とから計算しているので、P01を測定してからP(t2)を測定するまでの間に、圧力センサのいわゆるゼロ点シフトが生じないかぎり、圧力センサのゼロ点シフトの問題は生じない。一般に、ABSの動作サイクルのような短時間の間にゼロ点シフトが生じることは考えられないので、本実施形態において圧力センサのゼロ点シフトの問題は実質的に生じないといえる。
 なお、上述の実施形態においては、最低限の増圧量を確保するために圧力許容範囲としてホイールシリンダの圧力の許容最小圧力値Pmin(t)を採用したが、他の実施形態として、同様に、増圧量を制限するために、図4に示すような許容最大圧力値Pmax(t)を利用して、増圧量を制限してもよい。その場合、所定時間経過後のホイールシリンダの圧力P(t)が、P(t)<Pmax(t)またはPmin(t)<P(t)<Pmax(t)の条件を満たすように、増圧弁16aおよび減圧弁16bをそれぞれ駆動制御すればよい。
 以上のように、本発明の上述の実施形態によれば、従来のABS制御がいかなるシーケンスに基づいて行われても、また、いかなる動作環境であっても、ホイールシリンダの圧力を設計された圧力許容範囲内にすることができる。従って、減圧フェーズにおいて想定外に車両が不安定になることを防止でき、また、増圧フェーズにおいては、想定外に増圧が遅れることを防止でき、ブレーキ制御のロバスト性を向上させることができる。また、従来のABS制御シーケンスをほとんど変更しないので、従来のABS制御シーケンスにほとんど修正を加えることなく、車両のブレーキ制御装置のロバスト性を向上させることができる。
 以上のように、本発明によるブレーキ制御装置および方法を説明してきたが、本発明は上述の実施形態に限定されない。上述の実施形態の様々な特徴は、本発明の趣旨に反しない限り、互いに組み合わせることが可能である。たとえば、減圧フェーズにおいては、上述の実施形態のようなブレーキ制御を行い、増圧フェーズにおいては従来のABS制御をのみ行うようにしてもよい。また逆に、減圧フェーズにおいては、従来のABS制御のみを行い、増圧フェーズにおいては、上述の実施形態のようなブレーキ制御を行ってもよい。

Claims (19)

  1.  車両のブレーキ制御方法であって、前記方法は、
     車輪のロック傾向が検出されたときから所定時間t1が経過したときにホイールシリンダ内の圧力Pt1を測定するステップと、
     前記Pt1と所定値Pmax_t1とを比較するステップと、
     前記Pt1と所定値Pmax_t1とを比較するステップにおいてPt1>Pmax_t1の条件を満たす場合に、前記ホイールシリンダ内の圧力を減少させるように前記ホイールシリンダの減圧用のアクチュエータを所定量だけ駆動するステップと、を有する方法。
  2.  請求項1に記載の方法であって、
     前記方法はさらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップを有し、
     前記Pmax_t1は、Pmax_t1=P01-ΔPt1で表され、ここでΔPt1は時間t1に応じて予め決定される値である、方法。
  3.  請求項1または2に記載の方法であって、前記アクチュエータの所定の駆動量は、車両の運転中に変更されることのない固定量である、ABS制御方法。
  4.  車両のブレーキ制御方法であって、前記方法は、
     車輪のロック傾向が検出されてホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過したときに、前記ホイールシリンダ内の圧力Pt2を測定するステップと、
     前記Pt2と所定値Pmin_t2とを比較するステップと、
     前記Pt2と所定値Pmin_t2とを比較するステップにおいてPt2<Pmin_t2の条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記ホイールシリンダの増圧用のアクチュエータを所定量だけ駆動するステップと、を有する方法。
  5.  請求項4に記載の方法であって、前記方法はさらに、
     車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、
     ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、
     Pmin_t2は、P02、P01-P02、およびt2に応じて決定される、方法。
  6.  請求項4に記載の方法であって、
     前記方法はさらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、
     ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、
     前記アクチュエータの所定の駆動量はP01-P02に応じて決定される、方法。
  7.  車両のブレーキ制御方法であって、前記方法は、
     車輪のロック傾向が検出されてホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過する毎に、前記ホイールシリンダ内の圧力Pt2_nを測定するステップと、
     前記Pt2_nと所定値Pmin_t2_nとを比較するステップと、
     前記Pt2_nと所定値Pmin_t2_nとを比較するステップにおいて、Pt2_n<Pmin_t2_nの条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記ホイールシリンダの増圧用のアクチュエータを所定量だけ駆動するステップと、を有する方法。
  8.  請求項7に記載の方法であって、前記方法はさらに、
     車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、
     ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップと、
     車輪のロック傾向が解消されたときからの経過時間t2_nを計測するステップと、を有し、
     Pmin_t2_nは、P02、P01-P02、およびt2_nに応じて決定される、方法。
  9.  請求項7に記載の方法であって、
     前記方法はさらに、車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を測定するステップと、
     ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を測定するステップを有し、
     前記アクチュエータの所定の駆動量はP01-P02に応じて決定される、方法。
  10.  車両のブレーキ制御装置であって、
     ホイールシリンダに付与された圧力を測定するための圧力センサと、
     車輪のロック傾向を検出するために用いられる車輪速センサと、
     前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、
     前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときから所定時間t1が経過したときにホイールシリンダ内の圧力Pt1を前記圧力センサから受け取り、前記Pt1と所定値Pmax_t1とを比較し、Pt1>Pmax_t1の条件を満たす場合に、前記ホイールシリンダ内の圧力を減少させるように前記アクチュエータを所定量だけ駆動する、車両ブレーキ制御装置。
  11.  請求項10に記載の車両のブレーキ制御装置であって、
     前記制御手段はさらに、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、
     前記Pmax_t1は、Pmax_t1=P01-ΔPt1で表され、ここでΔPt1は時間t1に応じて予め決定される値である、車両ブレーキ制御装置。
  12.  請求項10または11に記載の車両のブレーキ制御装置であって、前記アクチュエータの所定の駆動量は、車両の運転中に変更されることのない固定量である、車両ブレーキ制御装置。
  13.  車両のブレーキ制御装置であって、
     ホイールシリンダに付与された圧力を測定するための圧力センサと、
     車輪のロック傾向を検出するために用いられる車輪速センサと、
     前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、
     前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されて前記ホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過したときに、前記ホイールシリンダ内の圧力Pt2を前記圧力センサから受け取り、前記Pt2と所定値Pmin_t2とを比較し、Pt2<Pmin_t2の条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記アクチュエータを所定量だけ駆動する、車両ブレーキ制御装置。
  14.  請求項13に記載の車両のブレーキ制御装置であって、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときの前記ホイールシリンダ内の圧力P01を前記圧力センサから受け取り、
     前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、
     Pmin_t2は、P02、P01-P02、およびt2に応じて決定される、車両ブレーキ制御装置。
  15.  請求項13に記載の車両ブレーキ制御装置であって、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、
     前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、
     前記アクチュエータの所定の駆動量はP01-P02に応じて決定される、車両ブレーキ制御装置。
  16.  車両のブレーキ制御装置であって、
     ホイールシリンダに付与された圧力を測定するための圧力センサと、
     車輪のロック傾向を検出するために用いられる車輪速センサと、
     前記ホイールシリンダ内の圧力を制御するためのアクチュエータと、
     前記圧力センサ、前記車輪速センサ、および前記アクチュエータに電気的に接続された制御手段と、を有し、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されて前記ホイールシリンダ内の圧力を減少させた結果として車輪のロック傾向が解消されたときから所定時間t2が経過する毎に、前記ホイールシリンダ内の圧力Pt2_nを前記圧力センサから受け取り、前記Pt2_nと所定値Pmin_t2_nとを比較し、Pt2_n<Pmin_t2_nの条件を満たす場合に、前記ホイールシリンダ内の圧力を増加させるように前記アクチュエータを所定量だけ駆動する、車両ブレーキ制御装置。
  17.  請求項16に記載の車両のブレーキ制御装置であって、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときの前記ホイールシリンダ内の圧力P01を前記圧力センサから受け取り、
     前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、
     前記制御手段はさらに、車輪のロック傾向が解消されたときからの経過時間t2_nを計測し、
     Pmin_t2_nは、P02、P01-P02、およびt2_nに応じて決定される、車両ブレーキ制御装置。
  18.  請求項16に記載の車両ブレーキ制御装置であって、
     前記制御手段は、前記車輪速センサにより車輪のロック傾向が検出されたときのホイールシリンダ内の圧力P01を前記圧力センサから受け取り、
     前記制御手段はさらに、前記ホイールシリンダ内の圧力を減少させて車輪のロック傾向が解消されたときのホールシリンダ内の圧力P02を前記圧力センサから受け取り、
     前記アクチュエータの所定の駆動量はP01-P02に応じて決定される、車両ブレーキ制御装置。
  19.  請求項10乃至18のいずれか一項に記載の車両ブレーキ制御装置を有する車両。
PCT/JP2009/065476 2009-09-04 2009-09-04 車両のブレーキ制御装置および方法 WO2011027456A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/389,835 US8996271B2 (en) 2009-09-04 2009-09-04 Vehicle brake control device and method
EP09848987.5A EP2474455B1 (en) 2009-09-04 2009-09-04 Vehicle brake control device and method
PCT/JP2009/065476 WO2011027456A1 (ja) 2009-09-04 2009-09-04 車両のブレーキ制御装置および方法
JP2011529746A JP5296879B2 (ja) 2009-09-04 2009-09-04 車両のブレーキ制御装置および方法
CN200980161239.4A CN102481909B (zh) 2009-09-04 2009-09-04 车辆的制动控制装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065476 WO2011027456A1 (ja) 2009-09-04 2009-09-04 車両のブレーキ制御装置および方法

Publications (1)

Publication Number Publication Date
WO2011027456A1 true WO2011027456A1 (ja) 2011-03-10

Family

ID=43649018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065476 WO2011027456A1 (ja) 2009-09-04 2009-09-04 車両のブレーキ制御装置および方法

Country Status (5)

Country Link
US (1) US8996271B2 (ja)
EP (1) EP2474455B1 (ja)
JP (1) JP5296879B2 (ja)
CN (1) CN102481909B (ja)
WO (1) WO2011027456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196438A (ja) * 2014-03-31 2015-11-09 日信工業株式会社 車両用ブレーキ制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076806A1 (en) * 2014-11-12 2016-05-19 Darcan Göksel A constant force braking method for vehicles
WO2017075608A1 (en) 2015-10-30 2017-05-04 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery Suture sleeve patch and methods of delivery within an existing arphroscopic workflow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137382A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp ブレーキ液圧制御装置
JP2006176046A (ja) 2004-12-24 2006-07-06 Honda Motor Co Ltd 車両用ブレーキ装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790607A (en) * 1985-02-19 1988-12-13 Kelsey Hayes Company Vehicle anti-lock brake system
US4783127A (en) 1985-10-21 1988-11-08 General Motors Corporation Anti-lock brake control system
DE3543145C2 (de) * 1985-12-06 1995-08-03 Bosch Gmbh Robert Elektrisches Bremssystem für ein Fahrzeug
DE3812903A1 (de) * 1988-04-18 1989-10-26 Lucas Ind Plc Verfahren zum regeln des bremsdruckes in einer abs-bremsanlage
US4850650A (en) * 1988-09-02 1989-07-25 General Motors Corporation Hierarchical brake controller
DE68926116T2 (de) * 1989-01-17 1996-10-02 Sumitomo Electric Industries Regler für die radgeschwindigkeit
JPH03118264A (ja) * 1989-09-30 1991-05-20 Aisin Seiki Co Ltd アンチスキッド制御装置
JP2885903B2 (ja) * 1990-08-03 1999-04-26 本田技研工業株式会社 車両用流体圧供給装置
DE4215350A1 (de) 1992-05-09 1993-11-11 Kugelfischer G Schaefer & Co Antiblockierregelsystem
DE4424270A1 (de) * 1994-07-09 1996-01-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung des Anlegedrucks einer Bremseinrichtung für Fahrzeuge
DE4442326B4 (de) * 1994-11-29 2004-01-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung einer Druckgröße
US5558409A (en) * 1994-12-14 1996-09-24 General Motors Corporation Electrohydraulic braking system
DE19511152A1 (de) * 1995-03-27 1996-10-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
DE19537437B4 (de) * 1995-10-07 2004-08-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Bremsanlage eines Fahrzeugs
WO1998013244A1 (fr) * 1996-09-26 1998-04-02 Toyota Jidosha Kabushiki Kaisha Dispositif de freinage
DE19707960B4 (de) * 1997-02-27 2011-02-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung des Drucks in wenigstens einer Radbremse
JP2000071967A (ja) * 1998-06-15 2000-03-07 Denso Corp 車両用ブレ―キ装置
CN1295952A (zh) * 2000-11-03 2001-05-23 华南理工大学 汽车防抱制动系统参考车速确定方法及其制动控制程序
JP3939936B2 (ja) 2001-05-30 2007-07-04 トヨタ自動車株式会社 車輌用制動制御装置
US8121770B2 (en) * 2001-07-31 2012-02-21 Kelsey-Hayes Company Boundary adaptation scheme for spool valve pressure control
JP4747765B2 (ja) * 2005-09-29 2011-08-17 株式会社アドヴィックス 車両のアンチスキッド制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137382A (ja) * 2004-11-15 2006-06-01 Toyota Motor Corp ブレーキ液圧制御装置
JP2006176046A (ja) 2004-12-24 2006-07-06 Honda Motor Co Ltd 車両用ブレーキ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2474455A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196438A (ja) * 2014-03-31 2015-11-09 日信工業株式会社 車両用ブレーキ制御装置

Also Published As

Publication number Publication date
US20120209491A1 (en) 2012-08-16
US8996271B2 (en) 2015-03-31
EP2474455B1 (en) 2016-12-28
EP2474455A1 (en) 2012-07-11
EP2474455A4 (en) 2014-05-07
CN102481909B (zh) 2015-03-11
JP5296879B2 (ja) 2013-09-25
JPWO2011027456A1 (ja) 2013-01-31
CN102481909A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5252118B2 (ja) 車両制御装置
KR100212332B1 (ko) 안티로크 제동제어장치
JP5296879B2 (ja) 車両のブレーキ制御装置および方法
JP2009023466A (ja) 車両用ブレーキ液圧制御装置
JP6620245B2 (ja) モータサイクルのブレーキシステムに生じさせるブレーキ力の制御装置及び制御方法
US20150360657A1 (en) Brake traction control system and control method thereof
JP5384724B2 (ja) ブレーキ液圧制御方法および装置
KR101118951B1 (ko) 전자식 제동력 분배 시스템에서의 최대 제동력 확보 방법
US9315183B2 (en) Brake pressure apply
KR101307850B1 (ko) 안티 록 브레이크 시스템
KR20140021311A (ko) 차량의 제동 제어 장치 및 그 제어 방법
JP3476405B2 (ja) ブレーキ制御装置
KR100828946B1 (ko) 브레이크 신호를 이용한 차량의 제동 제어방법
JP5281092B2 (ja) Absを備える自動二輪車用の連動式ブレーキ制御装置及びその制御方法
JP7354404B2 (ja) 車両のアンチロックブレーキシステムを動作させる方法および対応するアンチロックブレーキシステム
KR100750852B1 (ko) 안티록 브레이크 시스템
KR100721376B1 (ko) 차량용 안티록 브레이크 시스템
JP2009023467A (ja) 車両用ブレーキ液圧制御装置
JP6669562B2 (ja) 車両用ブレーキ液圧制御装置
KR20030093455A (ko) 에이비에스 제어를 위한 노면상태 감지방법
KR20150046867A (ko) Esc 시스템의 마스터실린더 압력 오프셋값 재설정 방법
WO2011108083A1 (ja) 車両制御装置
JP2014189133A (ja) 車両用ブレーキ制御装置
KR101141517B1 (ko) 차량의 속도 추정 방법
JP2001191907A (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161239.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529746

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009848987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009848987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389835

Country of ref document: US