Flammgehemmte cellulosische Faser, deren Verwendung sowie Verfahren zu deren Herstellung
Gegenstand der vorliegenden Erfindung sind flammgehemmte cellulosische Regeneratfasern mit verbesserten Gebrauchseigenschaften für textile
Anwendungen, die beispielsweise auch den Anforderungen einer industriellen Wäsche genügen, deren Verwendung zur Herstellung von Garnen und Flächengebilden sowie ein Verfahren zur Herstellung dieser Fasern. Stand der Technik:
Als cellulosische Regeneratfasern sind heute vor allem Fasern nach dem Viskoseverfahren bekannt und werden weltweit für Standardanwendungen im Textil- und Nonwovens-Bereich mit einem Einzelfasertiter zwischen 0,8 und 16 dtex hergestellt. Zur flammhemmenden Ausrüstung von Viskosefasern werden in der Literatur verschiedenste Chemikalien beschrieben. Dabei kommen vor allem Flammschutzmittel auf Basis von Halogenen, Silizium und Phosphor zum Einsatz.
In der Patentschrift US2678330 wird für diesen Zweck der Einsatz eines bis(2,3-dichloropropyl)chlorophosphonats beschrieben. Die Veröffentlichung GB1158231 erwähnt den Einsatz eines tris(1-bromo-3-chloro-2- propyl)phosphats. Die Patentschrift FR2138400 beschreibt den Einsatz von flüssigen Polybrombenzolen und besonders bevorzugt Hexabrombenzol. Da flüssige Flammschutzmittel nur in die Struktur der Faser eingebettet werden, aber keine Bindung zur Cellulosekomponente aufbauen, ist die Migration dieser Chemikalien aus der Faser deutlich höher als bei festen Substanzen. Vor allem nach mehrmaligem Trocknen bei hohen Temperaturen (z.B. im Tunneltrockner) kann die flammhemmende Eigenschaft der Faser deutlich reduziert sein.
Auch das sowjetische Patent SU661047 beschreibt den Einsatz von halogenierten Verbindungen wie z.B. Hexachlorocyclohexan, halogenierten Benzolen und tris(dibromo-propyl)phosphat. Der Einsatz halogenhältiger Flammschutzmittel wurde in den letzten Jahren aufgrund ökologischer
Bedenken stark reduziert und stellt auch für zukünftige Entwicklungen keine nachhaltige Lösung dar. Tris(dibromo-propyl)phosphat wird beispielsweise von der Oeko-Tex®-Gemeinschaft sogar als verbotenes Flammschutzmittel geführt.
Viskosefasern, deren flammhemmender Effekt auf dem Einsatz von Silikaten beruht - beschrieben z.B. in den Patenten W09313249 oder CN1847476 - sind ökologisch unbedenklich, erfüllen aber bei weitem nicht die
Anforderungen der modernen Textilindustrie bezüglich der mechanischen Fasereigenschaften und der Waschbeständigkeit. Nach dem heutigen Stand des Wissens können nur komplett wasserunlösliche feste phosphorhältige Flammschutzmittel, die keine Halogene enthalten, alle gewünschten
Anforderungen bezüglich Ökologie, flammhemmendem Verhalten, textilen Daten und sonstigen Gebrauchseigenschaften erfüllen.
Das Patent EP0836634 beschreibt eine flammgehemmte Regeneratfaser, die nach dem Lyocell-Prozess hergestellt wurde und die theoretisch die oben genannten Anforderungen erfüllen würde. Die Herstellung der dort
verwendeten Phosphorverbindung ist jedoch nicht in einem großtechnischen Maßstab möglich und daher zu teuer, so dass diese Faser für die Praxis keine Alternative darstellt.
Die Herstellung von flammgehemmten Viskosefasern basierend auf der Inkorporation eines phosphorhaltigen Pigments in einem
Standardviskoseverfahren wird auch in den chinesischen Patenten
CN101215726, CN101037812 und CN1904156 beschrieben. Die in diesen Patenten beschriebenen Fasern genügen jedoch nicht den hohen
Anforderungen der modernen Textilindustrie und deren Kunden, wie später anhand von Versuchen gezeigt wird (Tabelle 1).
Die Patente DE4128638A1 oder DE 02004059221 A1 beschreiben
Flammschutzmitteldispersionen auf Basis eines 2,2'-oxybis[5,5-dimethyl- 1 ,3,2-dioxaphosphorinan]2,2'disulfids unter Verwendung verschiedener
Dispergiermittelsysteme und erwähnen auch die Verwendung dieser
Dispersionen zur flammhemmenden Ausrüstung von Viskosefasern.
Auch die EP1882760 beschreibt die Herstellung flammgehemmter
Viskosefasern unter Verwendung von Flammschutzdispersionen auf Basis eines 2,2'-oxybis[5,5-dimethyl-1 ,3,2-dioxaphosphorinan]2,2'disulfids. Dort wird als wichtiges Merkmal der Erfindung beschrieben, dass die Partikelgröße maximal 10 pm betragen darf und dass die Spinnmasse daher vor dem Verspinnen durch Filter mit einer maximalen Maschenweite von 10 pm gereinigt werden muss. Es hat sich jedoch gezeigt, dass dieses Kriterium nicht ausreicht, um Fasern herzustellen, die den hier beschriebenen
Anforderungen genügen. Die in EP1882760 beschriebene maximale
Partikelgröße von 10 pm ist vielleicht für Viskosefilamente, d. h.
Endlosfilamente, ausreichend, entspricht aber bei weitem nicht mehr den Anforderungen einer modernen Stapelfaserproduktion mit Faserfeinheiten von ca. 1 bis 4 dtex; eine 1 ,3 dtex Faser hat einen Durchmesser von ca. 10 pm.
Standardviskosefasern werden heute in großem Ausmaß für leichte modische Textilien eingesetzt. Die geringe Festigkeit, vor allem im nassen Zustand, die hohe Dehnung und die hohe Flächenschrumpfung setzen dem Einsatz von Viskosefasern jedoch Grenzen. Diese textilen Eigenschaften erlauben beispielsweise keinen Einsatz in Segmenten, die ein oftmaliges Waschen (besonders in Industriewäschen) der Textilien erfordern. Ein Maß für die Waschtauglichkeit ist dabei die Flächenschrumpfung. Um die
Flächenschrumpfung leicht quantitativ erfassen zu können, wird ihr
Zusammenhang mit dem Naßmodul, gemessen nach den Vorschriften der BISFA und daher im Folgenden kurz BISFA-Naßmodul genannt, ausgenutzt (BISFA, Testing methods viscose, modal, lyocell and acetate staple fibres and tows, 2004 Edition).
Der Zusammenhang zwischen Flächenschrumpf (nach Wäsche) und dem BISFA-Naßmodul ist für Viskosefasern schon seit den 70er Jahren des vergangenen Jahrhunderts bekannt (Szegö, L, Faserforsch. Text. Techn.; 21 (10), 1970). Bei einem BISFA-Naßmodul von 2 kann von einem
Waschschrumpf von 15-20% ausgegangen werden, bei einem BISFA- Naßmodul von 5 reduziert sich der Schrumpf bereits auf 4-7% (siehe Fig. 1).
Die im Stand der Technik, beschriebenen oder kommerziell erhältlichen Fasern werden sämtlich durch Standardviskoseverfahren hergestellt. Sie zeigen zwar für flammgehemmte Viskosefasern vergleichsweise gute mechanische Faserdaten, da die Phosphorgehalte sehr niedrig sind.
Untersuchungen mit verschiedensten Flammschutzmittel auf der Basis von Phosphor haben jedoch gezeigt, dass erst ab einem Phosphorgehalt von über 2,8% eine ausreichende flammhemmende Wirkung erreicht wird. Die
Flammhemmungsfähigkeit korreliert dabei sehr gut mit dem auf reinen
Phosphor umgerechneten Gehalt an Flammschutzmittel.
Allerdings konnte festgestellt werden, dass beispielsweise die Inkorporation von großen Mengen (15-25%) eines flammhemmenden Pigments zu einer weiteren Verschlechterung der textilen Parameter der Viskosefaser führt. Daher gelten die bereits für die Standardviskosefasern erwähnten
Einschränkungen der Anwendungsbereiche erst recht für flammgehemmte Viskosefasern.
Dies ist umso bedauerlicher, da flammgehemmte Fasern besonders vorteilhaft in Produkten eingesetzt werden könnten, die auch starken mechanischen Belastungen ausgesetzt sind, beispielsweise in
Arbeitskleidung für besonders gefährliche Tätigkeiten wie bei Feuerwehren, Gießereien, Militär, Erdöl- und Chemieindustrie. Für solche Produkte werden üblicherweise bereits synthetische Hochleistungsfasern wie (aromatische) Polyamide, Aramide, Polyimide und ähnliches eingesetzt. Diese Fasern weisen jedoch einen geringen Tragekomfort auf, da sie nicht in der Lage sind, in ausreichendem Maße Feuchtigkeit aufzunehmen. Eine Mischung dieser Fasern mit cellulosischen Fasern, die das Eigenschaftsspektrum um einen erhöhten Tragekomfort ergänzen, ohne die sonstigen Eigenschaften zu sehr zu verschlechtern, wäre also wünschenswert.
Zusammenfassend offenbart der Stand der Technik also lediglich
flammgehemmte Fasern, die entweder mit ökologisch bedenklichen
Chemikalien hergestellt wurden, keine ausreichende Festigkeit, BISFA- Naßmodule und textile Gebrauchseigenschaften aufweisen, bereits aufgrund ihrer Herstellungsweise für textile Zwecke nicht verwendbar sind oder großtechnisch nicht hergestellt werden können. Einige Publikationen offenbaren genaugenommen nicht mehr als die Absicht der Verfasser, (auch) flammgemmte cellulosische Fasern herstellen zu wollen. Aufgabenstellung:
Gegenüber diesem Stand der Technik bestand die Aufgabe, eine
flammgehemmte cellulosische Faser zur Verfügung zu stellen, die den heutigen Anforderungen an einen ökonomisch und ökologisch
verantwortbaren Herstellungsprozess sowie den erhöhten textilmechanischen Ansprüchen genügt, wie sie beispielsweise bei einer industriellen Reinigung der daraus hergestellten Kleidungsstücke auftreten.
Die Anforderungen an eine flammgehemmte Faser für moderne textile Anwendungen können praxisnah durch das Produkt aus Phosphorgehalt (entspricht der Flammhemmungsfähigkeit) und Naßmodul, gemessen nach der Vorschrift der BISFA (korreliert mit dem Flächenschrumpf) beschrieben werden. Das Produkt von Phosphorgehalt und BISFA-Naßmodul soll daher im Folgenden als„Gebrauchswert" bezeichnet werden. Zusätzlich bestand die Aufgabe, ein geeignetes Herstellungsverfahren für diese Fasern zur Verfügung zu stellen.
Überraschenderweise konnte diese Aufgabe gelöst werden durch eine flammgehemmte Regeneratcellulosefaser für textile Anwendungen, die als flammhemmende Substanz eine eingesponnene, partikelförmige,
Phosphorverbindung, bevorzugt eine Organophosphorverbindung enthält und einen Gebrauchswert zwischen 6 und 35, bevorzugt zwischen 8 und 35 und besonders bevorzugt zwischen 10 und 35 aufweist. Eine solche Faser konnte
durch einen erfindungsgemäß abgewandelten Viskoseprozess erstmals hergestellt werden.
Diese flammhemmende Substanz hat vorzugsweise eine
Partikelgrößenverteilung mit x50 kleiner 1 ,0 μιτι und x99 kleiner 5,0 μιτι.
Als Organophosphorverbindung wird bevorzugt 2,2'-oxybis[5,5-dimethyl-1 ,3,2- dioxaphosphorinan]2,2'disulfids (Formel I) eingesetzt. Diese Substanz ist unter anderem unter den Handelsnamen Exolit und Sandoflam in
ausreichenden Mengen erhältlich und wird während des
Herstellungsverfahrens und auch in der späteren Anwendung nicht aus den Fasern ausgewaschen:
Die erfindungsgemäße Faser enthält in einer bevorzugten Ausführungsform mindestens 2,8%, bevorzugt zwischen 3,2% und 6,0 %, besonders bevorzugt zwischen 3,5% und 6,0 % Phosphor, jeweils bezogen auf Cellulose.
Geringere Phosphorgehalte als 2,8 % ergeben keine ausreichende
flammhemmende Wirkung. Höhere Phosphorgehalte als 6 % verschlechtern die mechanischen Eigenschaften der Fasern und sind darüber hinaus nicht mehr wirtschaftlich:
Besonders geeignet ist eine erfindungsgemäße flammgehemmte Faser, die einen BISFA-Naßmodul Bm von größer oder gleich 0,5· (V"T) ·10 Γ bei einer Dehnung von 5 % im nassen Zustand aufweist. T ist darin der Titer einer einzelnen Faser, ausgedrückt in dtex; Bm wird in cN/tex ausgedrückt.
Bevorzugt liegt die erfindungsgemäße Faser als Stapelfaser vor, d. h. sie wird im Verlauf des Herstellungsverfahrens auf eine einheitliche Länge
geschnitten. Übliche Schnittlängen für Stapelfasern für den textilen Bereich: liegen zwischen ca. 20 und 150 mm. Erst eine solche einheitliche Länge aller
Fasern erlaubt eine problemlose Verarbeitung auf den heute in der textilen Kette üblichen Maschinen mit hoher Produktivität.
Gegenstand der vorliegenden Erfindung ist auch die Verwendung der erfindungsgemäßen Faser zur Herstellung eines Games. Ein solches Garn zeichnet sich gegenüber Garnen aus Fasern, die bisher verfügbar waren, durch eine deutlich höhere Festigkeit aus. Um für den jeweiligen
Anwendungszweck passende Eigenschaften aufzuweisen, kann ein solches erfindungsgemäßes Garn neben den erfindungsgemäßen Fasern auch noch Fasern anderer Herkunft enthalten, beispielsweise Wolle, flammgehemmte Wolle, para- und meta-Aramide, Polybenzimidazol (PBI), p-Phenyl-2,6- Bezobisoxazol (PBO), Polyimid (P84®), Polyamidimid (Kermel®), Modacryl, Polyamide, flammgehemmte Polyamide, flammgehemmte Acrylfasern, Melaminfasern, Polyester, flammgehemmte Polyester, Polyphenylensulfid (PPS), Polytetrafluorethylen (PTFE), Glasfasern, Baumwolle, Seide,
Carbonfasern, oxidierte thermisch stabilisierte Polyacrylnitrilfasern (PANOX®) und elektrisch leitfähige Fasern, sowie Mischungen dieser Fasern.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Faser zur Herstellung eines textilen Flächengebildes. Neben den erfindungsgemäßen Fasern kann dieses Flächengebilde auch weitere Fasern enthalten, beispielsweise und insbesondere Wolle,
flammgehemmte Wolle, para- und meta-Aramide, Polybenzimidazol (PBI), p- Phenyl-2,6-Bezobisoxazol (PBO), Polyimid (P84®), Polyamidimid (Kermel®), Modacryl, Polyamide, flammgehemmte Polyamide, flammgehemmte
Acrylfasern, Melaminfasern, Polyester, flammgehemmte Polyester,
Polyphenylensulfid (PPS), Polytetrafluorethylen (PTFE), Glasfasern,
Baumwolle, Seide, Carbonfasern, oxidierte thermisch stabilisierte
Polyacrylnitrilfasern (PANOX®) und elektrisch leitfähige Fasern, sowie Mischungen dieser Fasern.
Das Flächengebilde ist bevorzugt ein Gewebe, Gewirke oder Gestrick, kann aber grundsätzlich auch ein Vlies sein. Auch für hochwertige Vliese ist die Verwendung von Fasern mit hohem BISFA-Nassmodul und hoher Festigkeit
von entscheidender Bedeutung. Im Falle eines Gewebes oder Gestrickes ist die Mischung der erfindungsgemäßen Fasern mit den weiteren Fasern entweder durch das Mischen vor der Garnherstellung, die sogenannte
Intimmischung, oder durch gemeinsame Verwendung jeweils reiner Garne der verschiedenen Faserarten beim Weben, Wirken bzw. Stricken möglich.
Die erfindungsgemäße Faser kann durch einen erfindungsgemäß
abgewandelten Viskoseprozess hergestellt werden, der ebenfalls Gegenstand der vorliegenden Erfindung ist. Viskoseprozesse für Stapelfasern und
Endlosfilamente sind prinzipiell seit vielen Jahren bekannt und beispielsweise ausführlich bei K. Götze, Chemiefasern nach dem Viskoseverfahren, 1967, beschrieben. Die textilen Eigenschaften der daraus erhaltenen Fasern und Filamente werden jedoch von vielen Parametern erheblich beeinflusst. Zudem werden für viele Einflussgrößen durch die Auslegung der bestehenden Produktionsanlagen Grenzen vorgegeben, die aus technischen oder wirtschaftlichen Gründen nicht überschritten werden können, so dass beliebige Variationen der Parameter oft gar nicht möglich sind und daher der Fachmann hierzu gar nicht veranlasst wäre. Es hat sich gezeigt, dass zur Herstellung der erfindungsgemäßen Fasern eine Cellulosekonzentration von 4-7% bei Verwendung eines Zellstoffs mit einem R-18 Gehalt von 93-98% und ein Alkaliverhältnis (= Cellulosekonzentration/ Natriumhydroxidkonzentration, jeweils in g/l) von 0,7 bis 1 ,5 die idealen Bedingungen darstellen. Jedoch müssen die Spinnparameter aufgrund der Zudösierung des flammhemmenden FR-Pigments entsprechend angepasst werden.
Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung einer flammgehemmten regenerierten Cellulosefaser für textile Anwendungen durch Spinnen einer Viskose mit einem Gehalt von 4 bis 7 % Cellulose, 5 bis 10% NaOH, 36 bis 42% (bezogen auf Cellulose) Schwefelkohlenstoff sowie 1 bis 5% (bezogen auf Cellulose) eines Modifizierungsmittels in ein Spinnbad, Abziehen der koagulierten Fäden, wobei eine Viskose verwendet wird, deren Spinngammawert 50 bis 68, vorzugsweise 55 bis 58, und deren
Spinnviskosität 50 bis 120 Kugelfallsekunden beträgt; und dass die
Temperatur des Spinnbades 34 bis 48°C beträgt, wobei
a. das Alkaliverhältnis (= Cellulosekonzentration/Alkaligehalt) der spinnfertigen Viskose 0,7 bis 1 ,5 beträgt,
b. folgende Spinnbadkonzentrationen eingesetzt werden:
• H2S04 68 - 90 g/l
• Na2S04 90 - 160 g/l
• ZnS04 30 - 65 g/l
c. der Endabzug aus dem Spinnbad mit einer Geschwindigkeit zwischen 5 und 60 m/min erfolgt und
d. als flammhemmende Substanz eine pigmentförmige Organophosphorverbindung in Form einer Pigmentdispersion eingesponnen wird.
Zweckmäßig wird eine Viskose verwendet, der das Modifizierungsmittel erst kurz vor dem Verspinnen der Viskose zugegeben wird.
Die erfindungsgemäß vorgeschlagenen Maßnahmen der Einhaltung einer bestimmten Spinnreife, für die der Spinngammawert charakteristisch ist, der Einhaltung einer bestimmten Viskosität, für die die Kugelfallwerte
charakteristisch sind, und der Einhaltung bestimmter Bedingungen im
Spinnbad, bewirken zusammen die angestrebten Fasereigenschaften. Unter dem Spinngammawert versteht man den Anteil der an 100
Cellulosemolekülen gebundenen Schwefelkohlenstoffmoleküle. Der
Spinngammawert wird bestimmt nach Zellcheming-Merkblattentwurf von R. Stahn [1958] bzw. Merkblatt lll/F 2. Unter Kugelfall versteht man die nach der Kugelfall-Methode bestimmte Viskosität; sie wird in Kugelfallsekunden ausgedrückt. Die Bestimmung ist in K. Götze, Chemiefasern [1951], S. 175 angegeben.
Die flammhemmende Phosphorverbindung, die als Pigment hergestellt wird, wird erfindungsgemäß der Viskosespinnlösung in Form einer
Pigmentdispersion zugegeben. Dabei wird soviel von der flammhemmenden
Substanz eingesponnen, dass die fertige Faser mindestens 2,6%, bevorzugt zwischen 3,2% und 6,0 %, besonders bevorzugt zwischen 3,5% und 6,0 % Phosphor, bezogen auf Cellulose enthält. Wie bereits weiter oben ausgeführt, ist eine besonders gut für die Zwecke der vorliegenden Erfindung geeignete flammhemmende
Organophosphorverbindung das 2,2'-oxybis[5,5-dimethyl-1 ,3,2- dioxaphosphorinan]2,2'disulfid. Einen wesentlichen Einfluss auf die Fasereigenschaften hat insbesondere auch die Güte der Pigmentdispersion. Diese wird bestimmt durch die mittlere und maximale Teilchengröße der Pigmente, die Konzentration der Dispersion beim Einsatz, d. h. bei der Zugabe zur Viskosespinnlösung, sowie Art und Menge der Dispergierhilfsmittel.
Entgegen der in Patent EP1882760 beschriebenen möglichen oberen
Partikelgröße von 10 pm wurde gefunden, dass eine mittlere Partikelgröße (xso) kleiner 1 pm und eine maximale Partikelgröße (x99) kleiner 5 pm notwendig sind. Fig. 2 zeigt eine Größenverteilung einer noch geeigneten Pigmentdispersion.
Vorzugsweise sollte die Pigmentdispersion zwischen 10 und 50 % der flammhemmenden Substanz enthalten. In den meisten Dokumenten zum Stand der Technik wird der Einfluss des Dispergiermittels nicht so ausführlich beschrieben, wie es angemessen wäre. Viele Chemikalien, die eine hervorragend stabilisierte
Flammschutzmitteldispersion liefern, haben jedoch negative Auswirkungen auf den Spinnprozess, da sie zwar ebenfalls eine modifizierende Wirkung im Viskosefaden bewirken, aber die Faserfestigkeit im Gegensatz zu den verwendeten Modifikatoren nicht positiv beeinflussen. Als ideale
Dispergiermittel für die Flammschutzmitteldispersion zur Herstellung der erfindungsgemäßen Fasern, die die Faserfestigkeit nicht negativ beeinflussen, haben sich insbesondere solche herausgestellt, die aus der Gruppe,
enthaltend modifizierte Polycarboxylate, wasserlösliche Polyester,
Alkyletherphosphate, endgruppenverschlossene Nonylphenolethoxylate, Rizinusölalkoxylester und carboxymethylierte Alkoholpolyglycolether ausgewählt wurden. Vorzugsweise sollte die Pigmentdispersion zwischen 1 ,5 und 13 % des Dispergierhilfsmittels enthalten.
Die Erfindung soll nun anhand von Beispielen erläutert werden. Diese sind als mögliche Ausführungsformen der Erfindung zu verstehen. Keineswegs ist die Erfindung auf den Umfang dieser Beispiele eingeschränkt.
Beispiele:
Beispiel 1 :
6 Gewichts-Teile 2,2'-oxybis[5,5-dimethyl-1 ,3,2- dioxaphosphorinan]2,2'disulfid, 6 Gewichts-Teile Wasser und 0,55 Gewichts- Teile Alkylpolyglykoletherphosphorsäureester werden mittels einem Dissolver homogenisiert und in einer Rührwerkskugelmühle (Drais, Typ Perl Mill PML- V/H) mit Zirkonoxidmahlkörpern bei einer Temperatur von 40-55 °C
vermählen, bis die fertige Dispersion ein X99 < 1 ,50 pm aufweist.
Buchenzellstoff (R 8 = 97,5%) wurde mit Maischlauge, welche 240 g/l NaOH enthielt, bei 35°C unter Umrühren alkalisiert und zu einem Alkalicellulosevlies abgepresst. Das Alkalicellulosevlies wurde zerfasert, abgereift und sulfidiert. Das Xanthogenat wurde mit einer verdünnten Natronlauge zu einer Viskose mit 5,6% Cellulose, 6,8% NaOH und 39% CS2, bezogen auf Cellulose, gelöst. Die Viskose wurde 4mal filtriert und entlüftet. Der Viskose wurden 1 h vor dem Verspinnen 3%, bezogen auf Cellulose, ethoxyliertes Amin, eines eine
Mantelstruktur bewirkenden Modifizierungsmittels zudosiert. Die Viskose wurde auf einen Spinngammawert von 57 nachgereift. Die Viskosität betrug während des Verspinnens 80 Kugelfallsekunden. Die fertige
Flammschutzmitteldispersion wird dieser spinnfertigen Viskose zugesetzt Die verwendeten Düsen weisen einen Düsenlochdurchmesser von 60 pm auf. Das Spinnbad enthält 72 g/l Schwefelsäure, 120 g/l Natriumsulfat und 60 g/l Zinksulfat.
Die Spinnbadtemperatur betrug 38°C. Der koagulierte und teilweise
regenerierte plastische Fadenstrang von blaßgelber Farbe wurde über eine
Galette (G 1) in ein zweites Bad, dessen Temperatur 95 °C war, geführt und dort zwischen G 1 und einer zweiten Galette (G 2) um 120% verstreckt. Der Endabzug betrug 42 m/min. Das Spinnkabel wurde zu Stapeln von 40 mm Länge geschnitten, welche in verdünnter Schwefelsäure vollständig
regeneriert, hierauf mit Heißwasser säurefrei gewaschen, mit verdünnter Natronlauge entschwefelt, abermals ausgewaschen, mit verdünnter
Natriumhypochloritlösung gebleicht, abermals ausgewaschen, aviviert, abgepresst und getrocknet wurden. Beispiel 2:
6 Gewichts-Teile 2,2'-oxybis[5,5-dimethyl-1 ,3,2- dioxaphosphorinan]2,2'disulfid, 6 Gewichts-Teile Wasser und 0,63 Gewichts- Teile carboxymethylierter Alkoholpolyglycolether werden analog Beispiel 1 verarbeitet zu einer spinnfertigen Viskose (Zusammensetzung: Cellulose 5,9%, NaOH 6,7%, 41% CS2, bezogen auf Cellulose, 3,5 % ethoxyliertes Amin, bezogen auf Cellulose) und in ein wässriges Spinnbad versponnen. Die verwendeten Düsen weisen einen Düseniochdurchmesser von 50 pm auf. Das Spinnbad enthält 74 g/l Schwefelsäure, 132 g/l Natriumsulfat und 65 g/l Zinksulfat.
Beispiel 3:
6 Gewichts-Teile 2,2'-oxybis[5,5-dimethyl-1 , 3,2- dioxaphosphorinan]2,2'disulfid, 6 Gewichts-Teile Wasser und 1 ,1 Gewichts- Teile ethoxylierte Phtalsäure werden analog Beispiel 1 verarbeitet zu einer spinnfertigen Viskose (Zusammensetzung: Cellulose 5,8%, NaOH 6,5%, 40% CS2, bezogen auf Cellulose, als Modifizierungsmittel eine Mischung aus 2% DMA+1 % PEG 2000, jeweils bezogen auf Cellulose) und in ein wässriges Spinnbad versponnen.
Die verwendeten Düsen weisen einen Düseniochdurchmesser von 50 pm auf. Das Spinnbad enthält 73 g/l Schwefelsäure, 120 g/l Natriumsulfat und 58 g/l Zinksulfat.
Beispiel 4 (Vergleichsbeispiel):
Eine Faser wurde gemäß der Lehre der CN 101037812 hergestellt. Da in dieser Publikation keine Angaben zum Naßmodul gemacht werden, wurden die Bedingungen des dortigen Beispiels mit der höchsten Naßfestigkeit (Beispiel 2, 1 ,52 cN/tex) der erhaltenen Faser ausgewählt und
dementsprechend folgende Verfahrensbedingungen eingestellt:
Cellulose 8,86 %, NaOH 6,24%, 31% CS2, bezogen auf Cellulose. Ein
Modifikator wurde nicht zugegeben. Die Viskose wurde bei einer Viskosität von 42 Kugelfallsekunden versponnen.
Die in dieser Publikation angegebenen hohen Phosphorgehalte konnten nicht nachvollzogen werden. Um zu akzeptablen Festigkeiten zu gelangen, wurden unter den angegebenen Bedingungen mehrere Optimierungsversuche mit unterschiedlichen Gehalten an Flammschutzmittel durchgeführt. Erst bei der Reduzierung auf einen P-Gehalt von 2,1 % Gew.-%, bezogen auf Cellulose, konnten die angegebenen Eigenschaften erreicht werden.
Die verwendeten Düsen weisen einen Düsenlochdurchmesser von 60 pm auf. Das Spinnbad enthält 1 15 g/l Schwefelsäure, 330 g/l Natriumsulfat und 45 g/l Zinksulfat.
Beispiel 5 (Vergleichsbeispiel):
Eine Faser wurde gemäß CN1904156 hergestellt, wobei die dort konkret empfohlenen Verfahrensbedingungen eingestellt wurden:
Cellulose 8,9 %, NaOH 5,2 %, 33%,CS2, bezogen auf Cellulose. Ein
Modifikator wurde nicht zugegeben. Die Viskose wurde bei einer Viskosität von 55 Kugelfallsekunden versponnen.
Auch die in dieser Publikation angegebenen hohen Phosphorgehalte konnten nicht nachvollzogen werden. Um zu akzeptablen Festigkeiten zu gelangen, wurden unter den angegebenen Bedingungen mehrere Optimierungsversuche mit unterschiedlichen Gehalten an Flammschutzmittel durchgeführt. Auch in diesem Beispiel konnten erst bei der Reduzierung auf einen P-Gehalt von 2,1 % Gew.-%, bezogen auf Cellulose, die angegebenen Eigenschaften erreicht werden.
Die verwendeten Düsen weisen einen Düsenlochdurchmesser von 60 pm auf. Das Spinnbad enthält 1 15 g/l Schwefelsäure, 350 g/l Natriumsulfat und 1 1 g/l Zinksulfati Die Spinnbadtemperatur betrug 49°C.
Tabelle 1 : Faserdaten:
Der Vergleich der Fasereigenschaften zeigt deutlich, dass flammgehemmte Viskosefasern, die nach Standard-Viskosebedingungen gemäß den
Beispielen 4 bzw. 5 hergestellt wurden, deutlich schlechtere Gebrauchswerte als die erfindungsgemäß hergestellten aufweisen.