WO2011018918A1 - ディーゼルエンジンのpm排出量推定装置 - Google Patents

ディーゼルエンジンのpm排出量推定装置 Download PDF

Info

Publication number
WO2011018918A1
WO2011018918A1 PCT/JP2010/059939 JP2010059939W WO2011018918A1 WO 2011018918 A1 WO2011018918 A1 WO 2011018918A1 JP 2010059939 W JP2010059939 W JP 2010059939W WO 2011018918 A1 WO2011018918 A1 WO 2011018918A1
Authority
WO
WIPO (PCT)
Prior art keywords
emission amount
amount
correction
map
emission
Prior art date
Application number
PCT/JP2010/059939
Other languages
English (en)
French (fr)
Inventor
芳克 井川
三橋 真人
和成 井手
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP10808103.5A priority Critical patent/EP2444607B1/en
Priority to US13/386,142 priority patent/US8869606B2/en
Publication of WO2011018918A1 publication Critical patent/WO2011018918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to PM (particulates) in exhaust gas discharged from a diesel engine.
  • This invention relates to an estimation device for estimating the amount of matter (particulate matter).
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-23959
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-23959
  • a PM emission amount map 01 for calculating a basic value of the PM emission amount in accordance with the operating condition of the engine speed Ne and the fuel injection quantity Qf
  • a first parameter P A Is the target excess air ratio t ⁇
  • the second parameter P B is the actual excess air ratio r ⁇
  • the difference (r ⁇ t ⁇ ) or ratio (r ⁇ / t ⁇ ) between the actual excess air ratio r ⁇ and the target excess air ratio t ⁇ is used.
  • a configuration for calculating a PM emission amount by multiplying a correction coefficient is disclosed.
  • the PM emission amount corrected by the correction coefficient is integrated by the integration unit 07, and is accumulated in a DPF (diesel particulate filter) that is installed in the exhaust passage of the diesel engine and collects PM in the exhaust gas.
  • DPF diesel particulate filter
  • the PM accumulation amount estimation means disclosed in Patent Document 1 always uses the correction coefficient obtained from the excess air ratio as the basic PM emission amount regardless of whether the engine is in a transient state or a steady state.
  • the PM emission amount is calculated by multiplication. Therefore, since it is a correction coefficient for all operating states including the steady state, there is a problem in that it is difficult to accurately obtain an appropriate correction by accurately grasping the transient state.
  • the actual excess air ratio r ⁇ is calculated based on the actual air amount and the actual fuel injection amount (corrected by a learning value) or acquired by an air-fuel ratio sensor. It is doubtful whether or not the actual excess air ratio r ⁇ can be obtained to such an extent that it can be used for calculating a correction coefficient for correcting the basic value.
  • the present invention has been made in view of such problems, and can improve the accuracy of correction performed on the basic value of the PM emission amount from the PM emission amount map, and in particular, can accurately calculate the PM emission amount in a transient state.
  • the present invention provides a PM emission estimation device for a diesel engine in which a DPF (black smoke removal device) that collects PM (particulate matter) discharged from an exhaust passage of the engine is arranged.
  • PM for calculating a basic PM emission amount map for calculating the basic PM emission amount according to the operating state of the engine, and a correction coefficient for correcting the basic PM emission amount calculated by the basic PM emission amount map according to the transient state Emission amount correcting means, transient state determining means for determining a transient state from a change in the excess air ratio of the engine, and a correction coefficient calculated by the PM emission amount correcting means only when the transient state is determined by the transient state determining means And a PM discharge amount calculating means for correcting the basic PM discharge amount and outputting the basic PM discharge amount in a steady state.
  • the device of the present invention it is determined whether the operation state is a transient state or a steady state from the change in the excess air ratio, and the basic PM emission amount calculated by the basic PM emission amount map is obtained only when the operation state is in the transient state. Correct with the correction factor.
  • the basic PM discharge amount is used as it is and is calculated as the PM discharge amount. This makes it possible to accurately calculate the PM emission amount particularly in a transient state. That is, since it is not necessary to make the correction coefficient compatible with a wide range of operating conditions including the steady state, it is possible to set the correction coefficient with high accuracy using parameters that reproduce the transient state in detail, and the PM emission amount in the transient state can be accurately set. It will be possible to calculate well.
  • the transient value is not greatly affected by the accuracy of the measured value or the calculated value of the excess air ratio. It can be determined whether or not it is in a state.
  • the transient state determination means remove noise by a first-order lag low-pass filter by removing a calculation value obtained by dividing (current excess ratio-previous value) by a measurement time interval.
  • the calculated value may be compared with a set threshold value to determine whether it is a transient state or a steady state.
  • noise is removed from the calculated value by the first-order lag low-pass filter, so that it is possible to accurately determine the transient state in which the change of the excess air ratio due to the noise signal is removed.
  • the information storage amount of the transient state determining means can be suppressed to a small value.
  • the PM emission amount correction means is a PM emission amount correction map set based on at least an excess air ratio of intake air supplied to the combustion chamber. Furthermore, in addition to the excess air ratio, it may be set as a function based on the engine speed and the fuel injection amount.
  • the PM emission amount correction map may be set as a function that averages the actual measurement values of the experimental data based on the excess air ratio, and in addition to the excess air ratio ⁇ , You may set as a function of rotation speed and fuel injection amount.
  • the PM emission amount correction map may be set as a function based on the oxygen concentration of the intake air sucked into the combustion chamber in addition to the parameters. Since PM is generated by an oxidation reaction between the fuel and the oxygen concentration of the intake air, the amount of PM generated is closely related to the oxygen concentration of the intake air. Therefore, by adding the oxygen concentration as a parameter and setting the PM emission amount correction map as a function of the oxygen concentration, it becomes possible to accurately calculate the optimum correction coefficient according to the transient operation.
  • a primary delay element is provided for multiplying the basic PM discharge amount by the correction coefficient in the correction of the basic PM discharge amount by the correction coefficient calculated by the PM discharge amount correcting means, and the primary delay is provided.
  • the correction coefficient corresponding to the PM emission characteristic at the time of transition and performing multiplication the phenomenon at the time of PM discharge at the time of actual transient operation can be reproduced with high accuracy, and PM discharge with high accuracy is possible.
  • the amount can be calculated.
  • the time constant of the first-order lag may be reduced as the correction coefficient calculated by the PM emission amount correcting means increases.
  • the basic PM emission map for calculating the basic PM emission according to the engine operating state, and the basic PM emission calculated by the basic PM emission map is corrected according to the transient state.
  • PM emission correction means for calculating a correction coefficient to be performed
  • transient state determination means for determining a transient state from a change in the excess air ratio of the engine, and the PM emission amount only when the transient state determination means determines that the state is a transient state PM exhaust amount calculation means for correcting the basic PM discharge amount by a correction coefficient from the correction means and outputting the basic PM discharge amount as it is in a steady state.
  • FIG. 1 A first embodiment of the device of the present invention will be described with reference to FIGS.
  • a DPF diesel particulate filter
  • PM particulate matter
  • the PM emission amount estimation device 1 is configured so that a basic PM emission amount map 3 for calculating a basic emission amount of PM in a steady state of an engine and a basic PM emission amount calculated by the basic PM emission amount map 3 according to a transient operation state.
  • PM emission correction map 5 for calculating a correction coefficient to be corrected
  • transient state determination means 7 for determining transient operation from a change in excess air ratio of the engine, and only when transient operation is determined by transient state determination means 7
  • PM emission amount calculating means 9 for multiplying and correcting the basic PM emission amount by the correction coefficient calculated by the PM emission amount correction map 5 and outputting the basic PM emission amount as it is in the case of non-transient operation, that is, in a steady state
  • PM accumulation amount estimation means 11 for integrating the PM emission amount calculated by the PM emission amount calculation means 9 and estimating the PM accumulation amount deposited on the DPF. It has been.
  • a PM emission amount corresponding to the engine speed Ne and the fuel injection amount Qf in a steady operation state is obtained in advance by experiments.
  • a basic PM emission amount map 3 is created from the experimental results. From this basic PM emission amount map 3, the basic PM emission amount is calculated based on the engine speed Ne and the fuel injection amount Qf at every sampling time.
  • the PM emission amount correction map 5 is a map for calculating the correction coefficient. For example, as shown in FIG. 2, an appropriate correction coefficient corresponding to the excess air ratio ⁇ is obtained in advance through experiments. Using these as actual measurement data, the horizontal axis represents the excess air ratio ⁇ , and the vertical axis represents the correction coefficient. An approximate function of a correction coefficient for the excess air ratio ⁇ is obtained by regression analysis based on the actual measurement data. The PM emission amount correction map 5 is obtained by setting this approximate function as a map. An example of the PM emission amount correction map thus created is shown as a PM emission amount correction map 5a in FIG. Thus, the correction coefficient may be set only from the excess air ratio ⁇ .
  • the PM emission amount correction map 5 is expressed not only by the excess air ratio ⁇ but also by a multivariable function using the engine speed Ne and the fuel injection amount Qf as parameters, and a correction coefficient suitable for the engine operating state in the transient state is provided. It is possible to set. Also in this case, an appropriate correction coefficient is obtained in advance for the excess air ratio ⁇ , the engine speed Ne, and the fuel injection amount Qf through experiments. An approximate function of a correction coefficient for the parameter is obtained by multiple regression analysis processing based on these actually measured value data.
  • An example of the PM emission amount correction map 5 created in this way is shown as a PM emission amount correction map 5b in FIG.
  • the PM emission amount correction map 5b creates a plurality of correction maps for each value ( ⁇ 1 to ⁇ 3) of the excess air ratio ⁇ . Then, a correction map corresponding to the corresponding excess air ratio value is selected, and a correction coefficient is set based on the selected correction map.
  • the transient state determination means 7 includes a calculation unit 13 that calculates (current value of excess air ratio ⁇ previous value) / dt (data sampling period), a first-order lag low-pass filter 15 that removes noise from the calculated value, noise, The determination unit 17 determines whether or not the calculated value removed is larger than a determination threshold.
  • a calculation formula of ⁇ intake air amount Qa / (fuel injection amount Qf ⁇ 14.4)
  • the excess air ratio ⁇ is calculated.
  • time series data of these calculated values is created.
  • the excess air ratio ⁇ may be detected by an air-fuel ratio sensor regardless of the calculation formula.
  • the first-order lag low-pass filter 15 removes noise from the time-series data of the calculated values calculated by the calculation unit 13. As a result, in the calculation of the excess air ratio ⁇ , it is possible to eliminate the influence of errors due to noise signals such as the intake air amount Qa and the fuel injection amount Qf.
  • the determination unit 17 determines whether or not the calculated value is larger than a determination threshold value. When the calculated value is smaller than the determination threshold, it is determined as a transient state, and when it is equal to or higher than the determination threshold, it is determined as a steady state. As shown in (C) of FIGS. 5A, 5B, and 5C, the determination threshold is selected so that the calculation line L3 overlaps the actual measurement value line L0.
  • FIG. 5A shows a case where the determination threshold is set small.
  • the operation state is always determined to be a steady state, and therefore, the PM emission amount is calculated only by the basic PM emission amount map 3 without being corrected by the PM emission amount correction map 5.
  • the PM integrated value obtained by the PM accumulation amount estimation means 11 becomes a curve L1 and deviates from the actual measurement value line L0.
  • FIG. 5B shows a case where the determination threshold is set large.
  • the operation state is always determined to be an excessive state, and therefore, the PM emission amount is calculated only by the basic PM emission amount map 3 without correction by the PM emission amount correction map 5.
  • the PM integrated value obtained by the PM accumulation amount estimation means 11 becomes a curve L2, which deviates from the actual measurement value line L0.
  • the determination threshold is set on the graph so that the calculated line L3 that overlaps with the actually measured actual value line L0 located between the calculated lines L1 and L2 is obtained. Find out. Specifically, for example, the determination threshold value is decreased from a sufficiently large value, and the determination threshold value is increased when the estimated PM discharge integrated amount value is smaller than the actual measurement value and larger than the actual measurement value. In this way, the determination threshold is narrowed down to find the optimum value.
  • the PM emission amount calculation means 9 outputs a correction coefficient (a coefficient larger than 1) from the PM emission amount correction map 5 to the multiplier 19 when the transient state determination means 7 determines that the state is a transient state. Then, the basic PM emission amount calculated from the basic PM emission amount map 3 is multiplied by a correction coefficient and output as a PM emission amount. When it is determined that it is constant, 1 is output as a correction coefficient to the multiplier 19 and the basic PM discharge amount is output as it is as the PM discharge amount.
  • the PM emission amount calculated by the PM emission amount calculation means 9 is integrated by the PM accumulation amount estimation means 11, where the PM accumulation amount deposited on the DPF is estimated. Based on the estimation result, the DPF regeneration process is performed.
  • the PM deposition amount estimation procedure by the PM emission amount estimation device 1 will be described with reference to the flowchart of FIG.
  • the engine speed Ne and the fuel injection amount Qf are read every sampling time (20 milliseconds) (step S1), and the basic PM emission amount map 3 is used to correspond to the detected engine speed Ne and the fuel injection amount Qf.
  • the PM emission amount during the steady operation is calculated (step S2).
  • step 6 it is determined whether or not the calculated value B is larger than the determination threshold value (step 6). If the calculated value B is smaller, it is determined that the state is transient, and a correction coefficient is calculated based on the PM emission amount correction map 5 (step S7). .
  • this correction coefficient is calculated by the PM discharge amount correction map 5
  • the PM discharge amount correction map 5 is a map set with a function having the excess air ratio ⁇ as a parameter, the excess air ratio ⁇ calculated in step S3. Is used to find the correction coefficient.
  • the PM emission amount correction map 5 is a map set with a function having the excess air ratio ⁇ , the engine speed Ne, and the fuel injection amount Qf as parameters, the respective detections calculated in steps S1 and S3.
  • the correction coefficient is obtained using the value.
  • step S8 If the calculated value B is greater than or equal to the determination threshold, it is determined that the operation is stationary and the correction coefficient is set to 1 (step S8).
  • the PM discharge amount is calculated by multiplying the basic PM discharge amount by the basic PM discharge amount map 3 by the correction coefficient (step S9). Then, the calculated PM discharge amount is integrated to calculate the PM deposition amount (step 10), and the process is completed.
  • whether the state is a transient state or a steady state is determined from the change in the excess air ratio ⁇ , and the correction is made by the correction coefficient only when the state is in a transient state. Since the PM emission amount is calculated, the PM emission amount particularly in a transient state can be calculated with high accuracy. That is, since it is not necessary to make the correction coefficient compatible with a wide range of operating conditions including the steady state, it is possible to set the correction coefficient with high accuracy using parameters that reproduce the transient state in detail, and the PM emission amount in the transient state can be accurately set. It can be calculated well.
  • the transient state is not greatly affected by the accuracy of the measured value or the calculated value of the excess air ratio. Can be determined.
  • the PM emission correction map 5 is set as a function that averages the actual measurement results using a regression analysis method based on the actual measurement values of the experimental data based on the excess air ratio. Furthermore, since it is set as a function including parameters of engine speed and fuel injection amount, a correction coefficient suitable for transient operation can be calculated with high accuracy.
  • the transient value determination means 13 removes noise from the calculated value B by the first-order lag low-pass filter 15, it is possible to accurately determine the transient state by removing the change in the excess air ratio due to the noise signal. Further, since the calculated value B can be calculated only with the previous value and the current value of the excess air ratio ⁇ , the information storage amount of the transient state determination means 13 can be kept small.
  • the parameters for creating the PM emission correction map 5 are drawn into the combustion chamber in addition to the excess air ratio ⁇ , the engine speed Ne, and the fuel injection amount Qf.
  • the oxygen concentration Do is used.
  • the oxygen concentration Do can be detected by, for example, an oxygen concentration sensor provided in the intake pipe immediately before the combustion chamber.
  • FIG. 8 shows an example in which the PM emission amount correction map 5c is created with the excess air ratio ⁇ and the oxygen concentration Do.
  • the amount of PM generated is closely related to the oxygen concentration. If the oxygen concentration is high, the amount of PM decreases, and if the oxygen concentration is low, the amount of PM increases. Therefore, by adding the oxygen concentration as a parameter, it is possible to calculate an estimated value that matches the actually measured value of the PM emission integrated amount, and to improve the estimation accuracy.
  • the PM emission amount correction map 5 is expressed by a multivariable function using the excess air ratio ⁇ , the engine speed Ne, the fuel injection amount Qf, and the oxygen concentration Do as parameters, and a correction coefficient suitable for the engine operating state in the transient state. Can be set. Also in this case, an appropriate correction coefficient is obtained for the excess air ratio ⁇ , the engine speed Ne, the fuel injection amount Qf, and the oxygen concentration Do by experiments. An approximate function of a correction coefficient for the parameter is obtained by multiple regression analysis processing based on these actually measured value data.
  • An example of the PM emission amount correction map 5 thus created is shown as a PM emission amount correction map 5d in FIG.
  • This PM emission amount correction map 5d creates a plurality of maps C1 -n depending on the difference in the engine speed Ne or the fuel injection amount Qf.
  • the excess air ratio ⁇ is plotted on the horizontal axis
  • the correction coefficient is plotted on the vertical axis
  • a plurality of oxygen concentration curves are provided according to the value of the oxygen concentration Do.
  • a correction coefficient is set.
  • the PM emission correction map 5d is created using the excess air ratio ⁇ , the engine speed Ne, the fuel injection amount Qf, and the oxygen concentration Do as parameters, the PM emission integrated amount can be estimated with higher accuracy.
  • the correction coefficient for correcting the PM emission amount at an excessive time is not obtained from the PM emission amount correction map 5 as in the first embodiment or the second embodiment, but is excessively derived from the excess air ratio ⁇ . This is obtained from the gain formula.
  • k ⁇ is a correction coefficient calculation multiplier.
  • the correction coefficient is set to 1 as in the first and second embodiments.
  • the correction coefficient is set using the excessive gain formula E. Therefore, as in the first embodiment or the second embodiment, the PM emission amount There is no need to create the correction map 5. Therefore, the estimation work of PM accumulation amount becomes easy.
  • FIGS. 11 a fourth embodiment of the device of the present invention will be described with reference to FIGS.
  • a first-order lag element 23 that adds a first-order lag to the signal input to the multiplier 19 of the PM emission amount calculating means 21 is added.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a primary delay element 23 is provided to control the output signal so that it rises to a peak during this transition and then gradually decreases.
  • the first-order lag element 23 is configured to include a signal determination unit 25, a time constant calculation unit 27, and an adder / subtractor 29, and when the transient PM discharge amount changes in the positive direction, The value is output, and control is performed so that the first-order lag acts on the change in the negative direction based on the previous output value.
  • the signal determination unit 25 determines the magnitude of the input signal IN and the output signal OUT.
  • IN> OUT that is, when outputting in the positive direction
  • the input signal IN is updated.
  • the time constant calculating unit 27 is reset, and the time constant for the updated F is calculated and changed.
  • the time constant calculation unit 27 does not change the time constant.
  • the adder / subtracter 29 subtracts the time constant from the value of F (F is the same as the previous value) and adds the constant 1 to obtain an output.
  • the addition of the constant 1 by the adder / subtractor 29 is for preventing the coefficient from becoming zero when the multiplier 19 multiplies the basic PM emission amount by the basic PM emission amount map 3 by the multiplier 19 after the output of the primary delay element 23. This is a processing constant.
  • the calculated value of the time constant Ts may be changed according to the value F of the input signal IN or according to the magnitude of the excess air ratio.
  • the time constant Ts may be reduced as the excess air ratio decreases. That is, as shown in FIG. 13, when the peak is large (X portion), the convergence to the steady PM discharge amount corresponds to the tendency to converge to the steady discharge amount in a shorter time than when the peak is small (Y portion). Control.
  • the relationship between the magnitude of the excess air ratio and the correction coefficient tends to increase as the excess air ratio ⁇ decreases, as described in the first embodiment (FIG. 2). For this reason, the calculated value of the time constant Ts may be changed according to the magnitude of the correction coefficient. For example, the time constant Ts may be decreased as the correction coefficient increases.
  • the correction coefficient is large and rapidly converges to the steady PM discharge amount.
  • the correction coefficient is small and the time constant Ts is changed so as to converge smoothly. Therefore, the correction coefficient corresponding to the phenomenon at the time of PM discharge at the time of actual transient operation can be calculated, and the correction accuracy of the basic PM discharge amount calculated by the basic PM discharge amount map 3 can be improved.
  • the fourth embodiment by multiplying the correction coefficient corresponding to the PM emission amount characteristic at the time of transition, the phenomenon at the time of PM discharge at the time of actual transient operation can be reproduced with high accuracy.
  • the PM emission amount and the accumulation amount can be estimated with high accuracy.
  • the transient state is determined based on the change in the excess air ratio, and only in the transient state, correction is performed on the basic value of the PM emission amount from the PM emission amount map, and the transient state is corrected. Since it is possible to accurately calculate the PM emission amount, the total PM emission amount and the accumulation amount including the transient state and the steady state can be estimated with high accuracy. Therefore, the PM emission of the diesel engine having the DPF in the exhaust passage can be estimated. Suitable for use in quantity estimation devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PM排出量マップからのPM排出量の基本値に対する補正精度を高め、特に過渡状態時のPM排出量を正確に算出可能にして、過渡状態及び定常状態を含む全体のPM排出量及び堆積量を高精度に推定することが課題である。本発明は、排気通路から排出されるPMを捕集するDPFが配置されたディーゼルエンジンのPM排出量推定装置において、エンジンの運転状態に応じてPMの基本排出量を算出する基本PM排出量マップ3と、基本PM排出量マップ3によって算出される基本PM排出量を過渡状態に応じて補正する補正係数を算出するPM排出量補正マップ5と、エンジンの空気過剰率の変化から過渡状態を判定する過渡状態判定手段7と、該過渡状態判定手段7によって過渡状態と判定された場合のみPM排出量補正マップ5からの補正係数によって基本PM排出量を補正し、定常状態の場合には基本PM排出量をそのまま出力せしめるPM排出量算出手段9とを備えている。

Description

ディーゼルエンジンのPM排出量推定装置
 本発明は、ディーゼルエンジンから排出される排気ガス中のPM(パティキュレート・
マター;粒子状物質)量を推定する推定装置に関する。
 ディーゼルエンジンから排出されるPM量を推定する推定装置として、特許文献1(特開2007-23959号公報)の技術が知られている。
 特許文献1には、図14に示すように、エンジン回転数Neと燃料噴射量Qfとの運転状態に応じてPM排出量の基本値を算出するPM排出量マップ01と、第1パラメータPを目標空気過剰率tλとし、第2パラメータPを実空気過剰率rλとし、実空気過剰率rλと目標空気過剰率tλとの差(rλ-tλ)または比(rλ/tλ)を用いて、補正係数を算出するPM排出量補正係数マップ03とを備え、PM排出量マップ01によって算出したPM排出量の基本値に対して、乗算器05でPM排出量補正係数マップ03によって算出された補正係数を乗算してPM排出量を算出する構成が開示されている。
 さらに、補正係数によって補正した後のPM排出量を積算部07で積算し、ディーゼルエンジンの排気通路に設置されて排ガス中のPMを捕集するDPF(ディーゼル・パティキュレート・フィルタ)に堆積されるPM堆積量を推定する構成が示されている。
特開2007-23959号公報
 前述のように、特許文献1に開示されたPM堆積量推定手段では、エンジンが過渡状態であるか定常状態であるかを問わず、空気過剰率から求められる補正係数を常に基本PM排出量に乗算してPM排出量を算出している。
 従って、定常状態も含めた全運転状態に対する補正係数であることから、過渡時を正確に捉えて適切な補正が得られ難いという問題がある。
 さらに、特許文献1においては、実空気過剰率rλを、実空気量と実燃料噴射量とに基づいて計算し(学習値で補正)、又は空燃比センサによって取得しているが、PM排出量の基本値を補正する補正係数算出用として用いることができる程度まで正確な実空気過剰率rλを取得できるかどうか疑問である。
 本発明は、かかる問題点に鑑みなされたものであり、PM排出量マップからのPM排出量の基本値に対して行う補正の精度を高め、特に過渡状態時のPM排出量を正確に算出可能にして、過渡状態及び定常状態を含む全体のPM排出量及び堆積量が高精度に推定できるディーゼルエンジンのPM排出量推定装置を提供することを課題とする。
 かかる課題を達成するため、本発明は、エンジンの排気通路から排出されるPM(粒子状物質)を捕集するDPF(黒煙除去装置)が配置されたディーゼルエンジンのPM排出量推定装置において、エンジンの運転状態に応じてPMの基本排出量を算出する基本PM排出量マップと、該基本PM排出量マップによって算出される基本PM排出量を過渡状態に応じて補正する補正係数を算出するPM排出量補正手段と、エンジンの空気過剰率の変化から過渡状態を判定する過渡状態判定手段と、該過渡状態判定手段によって過渡状態と判定された場合のみPM排出量補正手段で算出される補正係数によって基本PM排出量を補正し、定常状態の場合には基本PM排出量を出力せしめるPM排出量算出手段と、を備えたことを特徴とする。
 本発明装置によれば、空気過剰率の変化から運転状態が過渡状態か、又は定常状態かを判定し、過渡状態にあるときにのみ、基本PM排出量マップで算出された基本PM排出量を補正係数によって補正する。定常時には基本PM排出量をそのまま用いてPM排出量として算出する。これによって、特に過渡状態におけるPM排出量を精度よく算出できるようになる。即ち、補正係数を定常状態も含めて広い運転状態に対応させる必要がないので、過渡状態を詳しく再現したパラメータを用いて精度良い補正係数の設定が可能になり、過渡状態のPM排出量を精度よく算出できるようになる。
 また、空気過剰率そのものではなく、空気過剰率の変化に基づいて過渡状態であるか否かを判定するので、空気過剰率の測定値又は算出値そのものの精度に大きく影響されることなく、過渡状態か否かを判定できる。
 また、本発明装置において、好ましくは、前記過渡状態判定手段は、(空気過剰率の今回値-同前回値)を測定時間間隔で除した計算値を一次遅れローパスフィルタでノイズ除去し、ノイズ除去された計算値を設定された閾値と比較して過渡状態か定常状態かを判定するものであるとよい。これによって、前記計算値を一次遅れローパスフィルタでノイズ除去するので、ノイズ信号による空気過剰率の変化を除去した正確な過渡状態の判定が可能となる。また、前記計算値は、空気過剰率の前回値と今回値のみで算出できるので、過渡状態判定手段の情報記憶量を小さく抑えることができる。
 また、本発明装置において、好ましくは、前記PM排出量補正手段は、少なくとも燃焼室に供給される吸気の空気過剰率に基づいて設定されているPM排出量補正マップであるとよい。さらには、空気過剰率に加えて、エンジン回転数および燃料噴射量に基づく関数として設定するとよい。
 PM排出量補正マップは、空気過剰率に基づいて、図2に示すように、実験データの実測値を平均的に表す関数として設定してもよく、さらに、空気過剰率λに加えて、エンジン回転数及び燃料噴射量の関数として設定してもよい。
 予め、実験によって、これらパラメータに基づく関数を回帰分析手法によって設定して、マップとして表すことで、過渡運転時に応じた最適の補正係数を精度よく算出できるようになる。
 また、PM排出量補正マップは、前記パラメータに加えて、燃焼室に吸入される吸気の酸素濃度に基づいてその関数として設定してもよい。PMは燃料と吸気の酸素濃度との酸化反応で生成されるものであるため、PMの発生量は、吸気の酸素濃度と密接な関係にある。そのため、パラメータとして酸素濃度を加え、PM排出量補正マップを酸素濃度の関数として設定することにより、過渡運転時に応じた最適の補正係数を精度よく算出できるようになる。
 図13に示すように、過渡時にPM排出量にピークが立ち、その後、緩やかに定常の基本PM排出量に戻ることが実験で分かっている。本発明装置において、好ましくは、前記PM排出量補正手段で算出された補正係数による基本PM排出量の補正における補正係数の基本PM排出量への乗算に、一次遅れ要素が設けられ、該一次遅れ要素が、過渡PM排出量が正方向に変化する場合は、その変化値を出力し、負方向への変化に対して一次遅れが作用するとよい。
 これによって、この過渡時のPM排出量特性に対応させた補正係数を算出して乗算を行うことで、実際の過渡運転時のPM排出時の現象を高精度に再現可能となり、精度良いPM排出量の算出が可能となる。
 さらに、前記一次遅れの時定数をPM排出量補正手段で算出される補正係数が大きくなるに従って小さくするとよい。これによって、実際の過渡運転時のPM排出時の現象を一層高精度で再現可能となるため、精度良いPM排出量の推定が可能となる。
 即ち、図13に示すように、PM排出量のピークの大きい場合(X部分)には、定常PM排出量への収束が、ピークが小さい場合(Y部分)に比べて短時間で収束する傾向にあり、この傾向に対応した制御とするために、ピークが大きく補正係数を大きく取り必要があるときには、時定数Tsを小さくして急速に定常PM排出量に収束させ、ピークが小さく補正係数が小さくよいときには、時定数Tsを大きくしてなだらかに収束するように変更することで、より一層実際の過渡運転時のPM排出時の現象に対応した補正係数が算出できる。
 本発明装置によれば、エンジンの運転状態に応じてPMの基本排出量を算出する基本PM排出量マップと、該基本PM排出量マップによって算出される基本PM排出量を過渡状態に応じて補正する補正係数を算出するPM排出量補正手段と、エンジンの空気過剰率の変化から過渡状態を判定する過渡状態判定手段と、該過渡状態判定手段によって過渡状態と判定された場合のみ前記PM排出量補正手段からの補正係数によって前記基本PM排出量を補正し、定常状態の場合には前記基本PM排出量をそのまま出力せしめるPM排出量算出手段と、を備えているので、空気過剰率の変化を基に過渡状態が否かを判定し、過渡状態時においてのみ、PM排出量マップからのPM排出量の基本値に対して補正を実施することにより、過渡状態時のPM排出量を正確に算出可能になる。従って、過渡状態および定常状態を含む全体のPM排出量及び堆積量を高精度に推定できるPM排出量推定装置を実現できる。
本発明装置の第1実施形態の全体構成図である。 補正係数の実測値を示す線図である。 第1実施形態のPM排出量補正マップの一例を示す線図である。 第1実施形態のPM排出量補正マップの別の例を示す線図である。 判定閾値の設定手順を示す線図であり、(A)は判定閾値が小さい場合を示し、(B)は判定閾値が大きい場合を示し、(C)は判定閾値が最適な場合を示す。 第1実施形態における推定手順を示すフローチャートである。 本発明装置の第2実施形態の全体構成図である。 第2実施形態のPM排出量補正マップの一例を示す線図である。 第2実施形態のPM排出量補正マップの別の例を示す線図である。 本発明装置の第3実施形態の全体構成図である。 本発明装置の第4実施形態一部構成図である。 第4実施形態の一次遅れ要素のブロック線図である。 過渡状態時のPM排出量の特性を示す説明図である。 従来のPM排出量推定装置を示す全体構成図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(第1実施形態)
 本発明装置の第1実施形態を図1~図6に基づいて説明する。図1において、図示しないディーゼルエンジンの排気通路には、排ガス中のPM(粒子状物質)を捕集するDPF(ディーゼル・パティキュレート・フィルタ)が設けられており、このDPFに堆積されるPM堆積量を推定するために、PM排出量推定装置1が設けられている。
 このPM排出量推定装置1は、エンジンの定常状態のPMの基本排出量を算出する基本PM排出量マップ3と、基本PM排出量マップ3によって算出される基本PM排出量を過渡運転状態に応じて補正する補正係数を算出するPM排出量補正マップ5と、エンジンの空気過剰率の変化から過渡運転を判定する過渡状態判定手段7と、過渡状態判定手段7によって過渡運転と判定された場合のみPM排出量補正マップ5で算出した補正係数を基本PM排出量に乗算して補正し、過渡運転でない場合、即ち定常状態の場合には基本PM排出量をそのまま出力するPM排出量算出手段9と、さらに、PM排出量算出手段9によって算出されたPM排出量を積算し、DPFに堆積されるPM堆積量を推定するPM堆積量推定手段11とを備えて構成されている。
 まず、定常運転状態におけるエンジン回転数Neと燃料噴射量Qfとに応じたPM排出量を予め実験によって求めておく。この実験結果から基本PM排出量マップ3を作成しておく。この基本PM排出量マップ3から、サンプリング時間毎にエンジン回転数Ne及び燃料噴射量Qfに基づいて、基本PM排出量が算出される。
 PM排出量補正マップ5は、前記補正係数を算出するためのマップである。例えば、図2に示すように、予め実験によって空気過剰率λに応じた適切な補正係数を求める。これらを実測値データとして、横軸に空気過剰率λを取り、縦軸に補正係数を取った座標にプロットする。この実測値データを基に回帰分析処理によって、空気過剰率λに対する補正係数の近似関数を求める。PM排出量補正マップ5は、この近似関数をマップとして設定したものである。こうして作成したPM排出量補正マップの一例を、図3にPM排出量補正マップ5aとして示す。このように、空気過剰率λのみから補正係数を設定してもよい。
 さらに、PM排出量補正マップ5を、空気過剰率λだけではなく、エンジン回転数Ne及び燃料噴射量Qfをパラメータとした多変数関数によって表し、過渡状態におけるエンジンの運転状態に適した補正係数を設定することが可能である。
 この場合にも、予め実験によって、空気過剰率λ、エンジン回転数Ne、燃料噴射量Qfに対して適切な補正係数を求める。これらの実測値データを基に重回帰分析処理によって、前記パラメータに対する補正係数の近似関数を求める。
 例えば、補正係数α1を、α1=a+aNe(rpm)+aQf(g/sec)+aλのような近似関数によって設定する。こうして作成したPM排出量補正マップ5の一例を、図4にPM排出量補正マップ5bとして示す。PM排出量補正マップ5bは、空気過剰率λの値(λ1~λ3)毎に複数の補正マップを作成する。そして、該当する空気過剰率の値に対応した補正マップを選択し、選択された補正マップに基づいて補正係数を設定する。
 過渡状態判定手段7は、(空気過剰率の今回値-前回値)/dt(データのサンプリング周期)を計算する演算部13と、この計算値のノイズ除去を行なう一次遅れローパスフィルタ15と、ノイズ除去された計算値が判定閾値より大きいか否かを判定する判定部17とからなっている。
 演算部13では、例えば、20m秒のサンプリング周期において、吸入空気量Qaと燃料噴射量Qfとを基に、λ=吸入空気量Qa/(燃料噴射量Qf×14.4)の計算式によって、空気過剰率λを算出する。そして、これら計算値の時系列データを作成する。また、空気過剰率λは、前記計算式によらず空燃比センサによって検出してもよい。
 一次遅れローパスフィルタ15では、演算部13で算出した計算値の時系列データからノイズを除去する。これによって、空気過剰率λの算出において、吸入空気量Qaや燃料噴射量Qfのノイズ的な信号による誤差の影響を排除できる。
 判定部17では、前記計算値が、判定閾値より大きいか否かを判定する。前記計算値が、判定閾値より小さい場合には過渡状態と判定し、判定閾値以上の場合には定常状態と判定する。この判定閾値は、図5の(A)、(B)、(C)のうち、(C)に示すように、実測値ラインL0に算出ラインL3が重なるように判定閾値を選定する。
 図5(A)は、判定閾値を小さく設定した場合である。この場合、運転状態が常に定常状態と判定され、そのため、PM排出量補正マップ5による補正をせずに、基本PM排出量マップ3だけによってPM排出量が算出される。このPM排出量に基づいて、PM堆積量推定手段11で得られたPM積算値は、曲線L1となり、実測値ラインL0と乖離する。
 図5(B)は、判定閾値を大きく設定した場合である。この場合、運転状態が常に過度状態と判定され、そのため、PM排出量補正マップ5による補正をせずに、基本PM排出量マップ3だけによってPM排出量が算出される。このPM排出量に基づいて、PM堆積量推定手段11で得られたPM積算値は、曲線L2となり、実測値ラインL0と乖離する。
 そのため、図5(C)に示すように、算出ラインL1とL2の間に位置する実際に計測された実測値ラインL0と最も重なるような算出ラインL3が得られるように、判定閾値をグラフ上で見出す。具体的には、例えば、判定閾値を十分大きな値から減らしていき、PM排出積算量推定値が実測より小さい状態から、実測値より大きい状態になったら、判定閾値を増やす。こうして、判定閾値を絞り込んでいき、最適値を見い出すようにする。
 PM排出量算出手段9は、過渡状態判定手段7によって過渡状態と判定された場合、PM排出量補正マップ5から補正係数(1より大きい係数)を乗算器19に出力する。そして、基本PM排出量マップ3から算出した基本PM排出量に補正係数を乗算してPM排出量として出力する。定常時と判定された場合は、補正係数として1を乗算器19に出力して基本PM排出量をそのままPM排出量として出力する。
 PM排出量算出手段9によって算出されたPM排出量は、PM堆積量推定手段11によって積算され、ここで、DPFに堆積されるPM堆積量が推定される。この推定結果に基づいて、DPFの再生処理が実施される。
 次に、PM排出量推定装置1によるPM堆積量の推定手順について、図6のフローチャートを参照して説明する。
 まず、エンジン回転数Ne、燃料噴射量Qfをサンプリング時間(20m秒)毎に読み込み(ステップS1)、基本PM排出量マップ3を用いて、検出したエンジン回転数Ne及び燃料噴射量Qfに対応する定常運転時のPM排出量を算出する(ステップS2)。
 次に、エンジンへの吸入空気量Qa、燃料噴射量Qfよりサンプリング時間毎に空気過剰率λを算出する(ステップS3)。そして、演算部13で、算式A=(空気過剰率の今回値-同前回値)/dt(データのサンプリング周期)を計算する(ステップS4)。
 次に、一次遅れローパスフィルタ15で、算式Aで算出した計算値Bのノイズ除去を行なう(ステップS5)。
 そして、該計算値Bが判定閾値より大きいか否かを判定し(ステップ6)、小さい場合には過渡時と判定し、PM排出量補正マップ5に基づいて補正係数を算出する(ステップS7)。この補正係数をPM排出量補正マップ5によって算出するとき、PM排出量補正マップ5が空気過剰率λをパラメータとする関数で設定されているマップであれば、ステップS3で算出した空気過剰率λを用いて補正係数を求める。あるいは、PM排出量補正マップ5が空気過剰率λと、エンジン回転数Ne及び燃料噴射量Qfとをパラメータとする関数で設定されているマップであれば、ステップS1及びS3で算出したそれぞれの検出値を用いて、補正係数を求める。
 計算値Bが判定閾値以上の場合には定常時と判定し、補正係数を1に設定する(ステップS8)。ステップS7又はS8で、過渡状態又は定常状態の補正係数を求めたら、基本PM排出量マップ3による基本PM排出量に補正係数を乗算してPM排出量を算出する(ステップS9)。そして、算出したPM排出量を積算してPM堆積量を算出し(ステップ10)、これで終了する。
 第1実施形態によれば、空気過剰率λの変化から過渡状態か、定常状態かを判定して、過渡状態にあるときにのみ補正係数によって補正し、定常時には基本PM排出量をそのまま用いてPM排出量を算出するので、特に過渡状態におけるPM排出量を精度よく算出できるようになる。即ち、補正係数を定常状態も含めて広い運転状態に対応させる必要がないので、過渡状態を詳しく再現したパラメータを用いて精度良い補正係数の設定が可能になり、過渡状態のPM排出量を精度良く算出できる。
 また、空気過剰率の変化状態、即ち、算式Aに基づいて過渡状態であるか否かを判定するので、空気過剰率の測定値又は算出値そのものの精度に大きく影響されることなく、過渡状態であるかどうかを判定できる。
 また、PM排出量補正マップ5は、図2に示すように、空気過剰率に基づいた実験データの実測値を基に、回帰分析手法を用いて実測結果を平均的に表す関数として設定され、さらにエンジン回転数及び燃料噴射量のパラメータをも含めた関数として設定されるので、過渡運転時に適した補正係数を精度良く算出できるようになる。
 さらに、過渡状態判定手段13で、計算値Bを一次遅れローパスフィルタ15でノイズ除去するので、ノイズ信号による空気過剰率の変化を除去した正確な過渡状態の判定が可能となる。また、計算値Bは、空気過剰率λの前回値と今回値のみで算出できるので、過渡状態判定手段13の情報記憶量を小さく抑えることができる。
(第2実施形態)
 次に、図7乃至図9を参照して、第2実施形態を説明する。図7に示すように、本実施形態は、PM排出量補正マップ5を作成するためのパラメータとして、空気過剰率λ、エンジン回転数Ne及び燃料噴射量Qfに加えて、燃焼室に吸入される酸素濃度Doを用いたものである。酸素濃度Doは、例えば、燃焼室直前の吸気管に設けられた酸素濃度センサ等によって検出することができる。
 図8は、空気過剰率λと酸素濃度Doとで、PM排出量補正マップ5cを作成する場合の例である。PM発生量は、該酸素濃度と密接な関係がある。酸素濃度が高ければ、PM量は少なくなり、酸素濃度が低ければ、PM量は多くなる。そのため、酸素濃度をパラメータとして加えることにより、PM排出積算量の実測値に合った推定値を算出でき、推定精度を向上できる。
 さらに、PM排出量補正マップ5を、空気過剰率λ、エンジン回転数Ne、燃料噴射量Qf及び酸素濃度Doをパラメータとした多変数関数によって表し、過渡状態におけるエンジンの運転状態に適した補正係数を設定することが可能である。
 この場合にも、予め実験によって、空気過剰率λ、エンジン回転数Ne、燃料噴射量Qf及び酸素濃度Doに対して適切な補正係数を求める。これらの実測値データを基に重回帰分析処理によって、前記パラメータに対する補正係数の近似関数を求める。
 例えば、補正係数α2を、α2=a+aNe(rpm)+aQf(g/sec)+aλ+aDoのような近似関数によって設定する。こうして作成したPM排出量補正マップ5の一例を、図9にPM排出量補正マップ5dとして示す。このPM排出量補正マップ5dは、エンジン回転数Ne又は燃料噴射量Qfの領域の違いによって、複数のマップC1~nを作成する。各マップC1~nでは、空気過剰率λを横軸に、補正係数を縦軸に取り、酸素濃度Doの値に応じて複数の酸素濃度曲線が設けられ、空気過剰率λ及び酸素濃度曲線から補正係数が設定される。
 このように、空気過剰率λ、エンジン回転数Ne、燃料噴射量Qf及び酸素濃度Doをパラメータとして、PM排出量補正マップ5dを作成するので、PM排出積算量をさらに精度良く推定できる。
(第3実施形態)
 次に、本発明装置の第3実施形態を図10により説明する。本実施形態は、過度時にPM排出量を補正する補正係数を、第1実施形態又は第2実施形態のように、PM排出量補正マップ5から求めるのではなく、空気過剰率λから導き出される過度ゲイン算式から求めるようにしたものである。図10において、空気過剰率λから過渡状態判定手段7で過度状態と判定され、かつλ<2のとき、過度ゲイン算式E=kλ/(λ―1)で補正係数を算出する。ここで、kλとは補正係数算出乗数である。なお、過渡状態判定手段7で定常状態と判定されたときは、第1及び第2実施形態と同様に、補正係数=1とする。
 本実施形態によれば、過度状態と判定され、かつλ<2にとき、過度ゲイン算式Eを用いて補正係数を設定するので、第1実施形態又は第2実施形態のように、PM排出量補正マップ5を作成する作業が不要になる。そのため、PM堆積量の推定作業が容易になる。
(第4実施形態)
 次に、図11~図13により、本発明装置の第4実施形態を説明する。本実施形態は、図11のように、PM排出量算出手段21の乗算器19に入力する信号に対して、一次遅れを作用させる一次遅れ要素23を付加したものである。第1実施形態と同一の構成には同一の番号を付して説明を省略する。
 図13に示すように、過渡時にPM排出量にピークが立ち、その後緩やかに定常の基本PM排出量に戻ることが実験で分かっている。この過渡時のPM排出量特性に対応させた補正係数の乗算を行うことで、実際の過渡運転時のPM排出時の現象を高精度で再現可能になり、精度良いPM排出量の推定が可能になる。
 この過渡時にピークに立ち上がり、その後、緩やかに減少させるように出力信号を制御するために、一次遅れ要素23を設ける。図12で示すように、一次遅れ要素23は、信号判定部25と、時定数算出部27と、加減算器29とを有して構成され、過渡PM排出量が正方向に変化する場合は、その値を出力し、負方向の変化に対しては前の出力値を基に一次遅れが作用するように制御される。
 信号判定部25では入力信号INと出力信号OUTとの大小を判定して、IN>OUTの場合、即ち、正方向に出力する場合には、F(t)=INとすることでFが新たな入力信号INに更新される。そして、Fの値が更新されると、時定数算出部27がリセットされて更新後のFに対する時定数を算出して変更を行う。そして、加減算器29では、Fの値に定数1を加算して出力(OUT=F+1)を得る。
 また、信号判定部25で、IN≦OUTの場合すなわち負方向に出力信号が変化する場合には、F(t)=F(t-Δt)として、Fの値は前回の値と同じで更新されず、また、Aの値が更新されないため、時定数算出部27で時定数の変更は行われない。そして、加減算器29では、Fの値(Fを前の値と同じ)に対して時定数の減算と、定数1を加算して出力を得る。
 加減算器29での定数1の加算は、一次遅れ要素23の出力後に乗算器19によって、基本PM排出量マップ3による基本PM排出量に乗算する際に係数がゼロになることを防止するための処理上の定数である。
 また、時定数Tsの算出値を、入力信号INの値Fによって、または、空気過剰率の大きさに応じて変化させるとよい。例えば、空気過剰率が小さくなるに従って時定数Tsを小さくするとよい。即ち、図13に示すようにピークの大きい場合(X部分)には定常PM排出量への収束が、ピークが小さい場合(Y部分)に比べて短時間で定常排出量へ収束する傾向に対応した制御とすることができる。
 空気過剰率の大きさと補正係数との関係は、第1実施形態(図2)で説明したように、空気過剰率λが小さくなるに従って補正係数が大きくなる傾向にある。このため、時定数Tsの算出値を、補正係数の大きさに応じて変化してもよく。例えば、補正係数が大きくなるに従って、時定数Tsを小さくしてもよい。
 そのため、図13に示すように、ピークの大きいときには補正係数は大きく、急速に定常PM排出量に収束させ、ピークが小さいときには補正係数は小さく、なだらかに収束するように時定数Tsが変更されるので、より一層実際の過渡運転時のPM排出時の現象に対応した補正係数の算出ができ、基本PM排出量マップ3によって算出された基本PM排出量の補正精度を高めることができる。
 以上のように、第4実施形態によれば、過渡時のPM排出量特性に対応させた補正係数の乗算を行うことで、実際の過渡運転時のPM排出時の現象を高精度で再現可能となり、精度良いPM排出量および堆積量の推定が可能になる。
 本発明によれば、空気過剰率の変化を基に過渡状態を判定して過渡状態時においてのみ、PM排出量マップからのPM排出量の基本値に対して補正を実施して過渡状態時のPM排出量を正確に算出可能にするため、過渡状態及び定常状態を含む全体のPM排出量及び堆積量が高精度に推定できるようになるので、排気通路にDPFを備えたディーゼルエンジンのPM排出量推定装置へ用いるのに適している。

Claims (8)

  1.  エンジンの排気通路から排出されるPM(粒子状物質)を捕集するDPF(黒煙除去装置)が配置されたディーゼルエンジンのPM排出量推定装置において、
     エンジンの運転状態に応じてPMの基本排出量を算出する基本PM排出量マップと、該基本PM排出量マップによって算出される基本PM排出量を過渡状態に応じて補正する補正係数を算出するPM排出量補正手段と、エンジンの空気過剰率の変化から過渡状態を判定する過渡状態判定手段と、該過渡状態判定手段によって過渡状態と判定された場合のみ前記PM排出量補正手段で算出される補正係数によって前記基本PM排出量を補正し、定常状態の場合には前記基本PM排出量を出力せしめるPM排出量算出手段と、を備えたことを特徴とするディーゼルエンジンのPM排出量推定装置。
  2.  前記過渡状態判定手段は、(空気過剰率の今回値-同前回値)を測定時間間隔で除した計算値を一次遅れローパスフィルタでノイズ除去し、ノイズ除去された計算値を設定された閾値と比較して過渡状態か定常状態かを判定するものであることを特徴とする請求項1記載のディーゼルエンジンのPM排出量推定装置。
  3.  前記PM排出量補正手段は、少なくとも空気過剰率の関数として設定されているPM排出量補正マップであることを特徴とする請求項1記載のディーゼルエンジンのPM排出量推定装置。
  4.  前記PM排出量補正マップは、さらに、前記空気過剰率に加えてエンジン回転数および燃料噴射量の関数として設定されていることを特徴とする請求項3記載のディーゼルエンジンのPM排出量推定装置。
  5.  前記PM排出量補正マップは、さらに、燃焼室に吸入される吸気の酸素濃度の関数として設定されていることを特徴とする請求項3又は4に記載のディーゼルエンジンのPM排出量推定装置。
  6.  前記PM排出量補正手段は、空気過剰率から導き出される過度ゲイン算式から補正係数を算出するものであることを特徴とする請求項1に記載のディーゼルエンジンのPM排出量推定装置。
  7.  前記PM排出量補正手段で算出される補正係数による前記基本PM排出量の補正における補正係数の基本PM排出量への乗算に、一次遅れ要素が設けられ、該一次遅れ要素が、過渡PM排出量が正方向に変化する場合は、その変化値を出力し、負方向への変化に対して一次遅れが作用することを特徴とする請求項1記載のディーゼルエンジンのPM排出量推定装置。
  8.  前記一次遅れの時定数を前記PM排出量補正手段で算出される補正係数が大きくなるに従って小さくすることを特徴とする請求項7記載のディーゼルエンジンのPM排出量推定装置。
PCT/JP2010/059939 2009-08-10 2010-06-11 ディーゼルエンジンのpm排出量推定装置 WO2011018918A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10808103.5A EP2444607B1 (en) 2009-08-10 2010-06-11 Pm emission amount estimation device for diesel engine
US13/386,142 US8869606B2 (en) 2009-08-10 2010-06-11 PM emission amount estimation device for diesel engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009185629 2009-08-10
JP2009-185629 2009-08-10
JP2010-030025 2010-02-15
JP2010030025A JP5645418B2 (ja) 2009-08-10 2010-02-15 ディーゼルエンジンのpm排出量推定装置

Publications (1)

Publication Number Publication Date
WO2011018918A1 true WO2011018918A1 (ja) 2011-02-17

Family

ID=43586098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059939 WO2011018918A1 (ja) 2009-08-10 2010-06-11 ディーゼルエンジンのpm排出量推定装置

Country Status (5)

Country Link
US (1) US8869606B2 (ja)
EP (1) EP2444607B1 (ja)
JP (1) JP5645418B2 (ja)
KR (1) KR20120025557A (ja)
WO (1) WO2011018918A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574762A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation Soot emission estimation method and arrangement
WO2014083626A1 (ja) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 内燃機関の制御装置
CN112096532A (zh) * 2019-06-18 2020-12-18 北京福田康明斯发动机有限公司 限制燃油喷射量的方法及其系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459835B (en) * 2008-04-30 2012-12-12 Tracker Network Uk Ltd Vehicle engine operation
EP2574763A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation NOx emission estimation method and arrangement
US8906134B2 (en) * 2012-11-08 2014-12-09 GM Global Technology Operations LLC Engine-out soot flow rate prediction
JP5979012B2 (ja) * 2013-01-11 2016-08-24 トヨタ自動車株式会社 Pm排出量推定装置
CN105229284A (zh) * 2013-05-24 2016-01-06 万国引擎知识产权有限责任公司 发动机NOx模型
EP3121428B1 (de) * 2015-05-19 2019-07-17 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
US10392998B2 (en) * 2015-10-27 2019-08-27 Paccar Inc Combining model and delta pressure based soot load estimates
FR3082962B1 (fr) * 2018-06-26 2020-07-31 Bull Sas Determination automatique et auto-optimisee des parametres d'execution d'une application logicielle sur une plateforme de traitement de l'information
DE102018218695A1 (de) 2018-10-31 2020-04-30 Robert Bosch Gmbh Verfahren und Steuereinrichtung zur Überwachung der Funktion eines Partikelfilters
DE102020214474A1 (de) * 2020-11-18 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Erstellen eines Emissionsmodells eines Verbrennungsmotors
CN114718707B (zh) * 2022-03-08 2023-04-07 潍柴动力股份有限公司 工程车辆的dpf故障诊断方法和车辆的控制器
CN116122944B (zh) * 2023-04-19 2023-07-18 潍柴动力股份有限公司 一种发动机后处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213395A (ja) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd 空燃比制御装置
JP2006316682A (ja) * 2005-05-12 2006-11-24 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2007023959A (ja) 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm堆積量推定装置
JP2008057486A (ja) * 2006-09-01 2008-03-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008215210A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009036025A (ja) * 2007-07-31 2009-02-19 Toyota Motor Corp 内燃機関の排気浄化装置及び粒子状物質排出量推定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864146B1 (fr) * 2003-12-23 2006-03-03 Renault Sas Procede de determination en temps reel de la masse de particules presente dans un filtre a particules de vehicule automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213395A (ja) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd 空燃比制御装置
JP2006316682A (ja) * 2005-05-12 2006-11-24 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2007023959A (ja) 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm堆積量推定装置
JP2008057486A (ja) * 2006-09-01 2008-03-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008215210A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009036025A (ja) * 2007-07-31 2009-02-19 Toyota Motor Corp 内燃機関の排気浄化装置及び粒子状物質排出量推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444607A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574762A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation Soot emission estimation method and arrangement
US20130081444A1 (en) * 2011-09-30 2013-04-04 Volvo Car Corporation Soot emission estimation method and arrangement
CN103032142A (zh) * 2011-09-30 2013-04-10 沃尔沃汽车公司 炭黑排放估算方法及装置
WO2014083626A1 (ja) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 内燃機関の制御装置
CN112096532A (zh) * 2019-06-18 2020-12-18 北京福田康明斯发动机有限公司 限制燃油喷射量的方法及其系统
CN112096532B (zh) * 2019-06-18 2023-03-14 北京福田康明斯发动机有限公司 限制燃油喷射量的方法及其系统

Also Published As

Publication number Publication date
JP5645418B2 (ja) 2014-12-24
JP2011058487A (ja) 2011-03-24
EP2444607A4 (en) 2015-04-22
EP2444607A1 (en) 2012-04-25
EP2444607B1 (en) 2016-12-14
US20120174653A1 (en) 2012-07-12
KR20120025557A (ko) 2012-03-15
US8869606B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
JP5645418B2 (ja) ディーゼルエンジンのpm排出量推定装置
US7028467B2 (en) Exhaust emission control device for internal combustion engine
JP4872615B2 (ja) 内燃機関の診断装置
JP2004076589A (ja) フィルタ制御方法及び装置
JP5030020B2 (ja) 内燃機関の排気浄化装置
US10697345B2 (en) Method to determine the quantity of metal powders accumulated in a particulate filter for an internal combustion engine
JP2019113048A (ja) エアフローメータの異常診断装置
JP2005226633A (ja) 内燃機関の排気浄化装置
CN111911267B (zh) 用于运行内燃机的废气后处理系统中的颗粒过滤器的方法
JP2007023959A (ja) Pm堆積量推定装置
JP4578544B2 (ja) 内燃機関の制御装置
JP2009108809A (ja) 排気浄化装置及び排気浄化方法
JP5533366B2 (ja) 内燃機関のフィルタの故障検出装置
JP2006063905A (ja) パティキュレートフィルタの粒子状物質残量推定方法およびパティキュレートフィルタの再生方法
JP5724943B2 (ja) 内燃機関の排気浄化装置
JP2004339983A (ja) 内燃機関制御装置
JP4534955B2 (ja) 内燃機関の排気浄化装置
JP5493268B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
KR101305777B1 (ko) Dpf 내부 애쉬 퇴적에 따른 학습 기능을 통한 유효 체적인식 방법
CN102454461B (zh) 用于确定机动车辆排气系统中的微粒过滤器的过滤效率的方法
JP2017115810A (ja) 排気浄化システムの異常診断装置
JP2008057486A (ja) 内燃機関の排気浄化装置
JP2006029156A (ja) Pm燃焼量推定装置
JP2005337040A (ja) 内燃機関の排気浄化装置
JP5724942B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117031263

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010808103

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010808103

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13386142

Country of ref document: US