WO2011016404A1 - 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料 - Google Patents

有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料 Download PDF

Info

Publication number
WO2011016404A1
WO2011016404A1 PCT/JP2010/062958 JP2010062958W WO2011016404A1 WO 2011016404 A1 WO2011016404 A1 WO 2011016404A1 JP 2010062958 W JP2010062958 W JP 2010062958W WO 2011016404 A1 WO2011016404 A1 WO 2011016404A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
organic
inorganic composite
polymer gel
hyaluronic acid
Prior art date
Application number
PCT/JP2010/062958
Other languages
English (en)
French (fr)
Inventor
長田憲典
小松通郎
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to EP10806403.1A priority Critical patent/EP2462915B1/en
Priority to US13/388,711 priority patent/US9011888B2/en
Publication of WO2011016404A1 publication Critical patent/WO2011016404A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/614By macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to an organic-inorganic composite particle in which a polymer gel molecule derived from a natural product having an anionic functional group and one or more hydroxyl groups in the molecule is electrostatically bonded to the particle surface, and production of the particle
  • the present invention relates to a method, a dispersion containing the particles, and a cosmetic containing the particles.
  • the inorganic oxide particles are used by blending with paints, inks, resin compositions, cosmetics, etc. for the purpose of pigments, ultraviolet absorbers, fillers and the like.
  • a low-polarity solvent such as oil that is poorly compatible with water, so that the particles are likely to aggregate. there were.
  • Patent Document 1 discloses an emulsion method or a polymerization method.
  • Patent Document 2 discloses a method for producing resin-coated particles by spray drying on scale-like composite particles.
  • Patent Document 4 describes inorganic pigments, mica, clays and other extender pigments, cosmetics, industrial pigments, and high molecular substances having carboxyl groups having an acid value of 200 or more, such as Al, Mg, Ca, It describes that a metal salt of Zn, Zr, Ti, or the metal salt and a hydrophobizing agent is stirred and then dried and attached to the pigment.
  • Patent Document 5 discloses inorganic particles such as silicic acid compounds, alumina compounds, and phosphoric acid compounds, or organic particles such as cellulose, catechins, vitamins, tannins, natural moisturizing factors, plant-derived materials. Natural organic component-supported particles obtained by mixing a natural organic component selected from essential oils of this product and spray-drying this mixture using a spray dryer has dispersibility with respect to linseed oil. It is described that it can be used. Furthermore, Patent Document 6 discloses a manufacturing method in which a hygroscopic substance is attached to the pigment surface.
  • JP 2003-012460 A JP 2003-063932 A JP 2006-052299 A JP-A-63-199273 JP 2006-054991 A JP 2007-284483 A
  • Patent Document 1 The emulsion and polymerization surface treatment method described in Patent Document 1 must be further developed to increase the density of the coating on the surface of the inorganic oxide particles.
  • the organic compound in the plasma modified solid described in Patent Document 2, the organic compound must be exposed to the solid surface instantaneously at a temperature of 100 ° C. or higher.
  • the spray-drying method of Patent Document 3 preparation using a spray dryer operated in an air flow atmosphere of 100 ° C. or higher during processing is essential, and there is a possibility that uniform coating cannot be performed.
  • the coating method of Patent Document 4 is a technique in which the pigment and the moisturizing component molecules are stirred and then dried and adhered by van der Waals force, and there is a possibility that uniform coating cannot be performed.
  • polyvalent metal ions are added to inorganic oxide particles and surface modified by adding polyvalent metal ions in the presence of an inorganic oxide pigment and a surface modifier having an anionic functional group.
  • the material is connected to the metal soap like metal soap.
  • these conventional adhesion and spray-drying coatings are based on van der Waals forces, and the connected organic molecular components become particles due to changes in the external environment such as pH and impurity ions after organic molecule coating and friction between particles. There was a problem of tearing or missing.
  • organic-inorganic composite particles that can be uniformly modified by simple means and can maintain the properties of the coated components for a long period of time without any restrictions on the components supported or modified on the particle surface. The establishment of the method to do was desired.
  • the present inventors have found that the surface of the inorganic oxide particle having a cationic charge on the particle surface has one anionic functional group and one or
  • a polymer gel molecule derived from a natural product having two or more hydroxyl groups in the molecule can be electrostatically bonded to the particle surface and uniformly modified organic-inorganic composite particles can be prepared. It came.
  • the organic-inorganic composite particle according to the present invention is a polymer gel derived from a natural product having an anionic functional group and one or more hydroxyl groups in the molecule on the surface of the inorganic oxide particle having a cationic charge on the particle surface. It is characterized in that molecules are electrostatically bonded to the particle surface.
  • the polymer gel preferably has an anionic functional group and one or more hydroxyl groups in the molecule and has both shrinkability and swelling property.
  • the inorganic oxide particles are oxide particles of at least one metal element selected from cesium, magnesium, calcium, barium, cerium, titanium, zirconium, vanadium, iron, zinc, aluminum, silicon, etc. (however, silicon Oxide particles are excluded.) Or composite oxide particles are preferable.
  • the inorganic oxide particles are selected from cesium, magnesium, calcium, barium, cerium, titanium, zirconium, vanadium, iron, zinc, aluminum, silicon, etc. Further, it is preferable that the oxide is coated with an oxide of at least one metal element (excluding silicon oxide) or a composite oxide. As the inorganic oxide particles used in the present application, it is more preferable to use particles subjected to a surface treatment for the purpose of adjusting the surface charge amount.
  • the average particle diameter of the inorganic oxide particles is preferably in the range of 0.1 to 280 ⁇ m.
  • the polymer gel molecule is preferably one that contracts or swells by changing its molecular form according to changes in the surrounding environment.
  • the polymer gel molecule preferably has one or two or more hydroxyl groups in the molecule.
  • the polymer gel molecule is a carboxyl group, a thiol group, a sulfone group, a sulfine group, a sulfene group, a phosphonic acid group, a phosphinic acid group, a phosphenic acid group, a phosphoric acid group, a hydroxymic acid group, a hydroxamic acid group, a nitrol group, It is preferable that the molecule has at least one anionic functional group selected from the group of a nitrosol group and a nitronate group in the molecule.
  • the polymer gel molecule includes hyaluronic acid composed of hyaluronic acid or a salt thereof, amino acid, polyamino acid, pyrrolidone carboxylic acid or derivative thereof, urea or derivative thereof, N-acetylglucosamine, animal or plant polysaccharide, coenzyme Q10, rice powder, It is preferably at least one selected from gelatin, oligosaccharides, monosaccharides, saponins, vegetable peptides, phospholipids, sericin, chondroitin, ceramide, albumin, collagen, chitin and chitosan, plant and seaweed extracts .
  • the polymer gel molecule is at least one compound selected from natural polymer compounds, itaconic acids, and N-isopropylacrylamide, or the compound and an ester compound or a poly (meth) acrylate ester. You may use the at least 1 sort (s) of compound chosen from the copolymer.
  • the natural polymer compound is at least one selected from catechins, vitamins, tannins, polysaccharides, proteins, phospholipids, natural moisturizing factors, alginic acids, polyglutamic acids and polyaspartic acids or The salt is preferred.
  • the catechins are preferably tea-derived catechins.
  • the vitamins are preferably at least one selected from vitamins, vitamin derivatives, and vitamin-like substances that act similar to vitamins.
  • the tannin is preferably at least one selected from tannin, tannic acid, pyrogallol, gallic acid and gallic acid ester.
  • the average particle diameter of the organic-inorganic composite particles is preferably in the range of 0.1 to 300 ⁇ m.
  • the organic-inorganic composite particles have an average particle diameter controlled by the amount of the polymer gel molecules electrostatically bonded to the surface of the inorganic oxide particles and the length of time for swelling the polymer gel molecules. Preferably there is.
  • the method for producing organic-inorganic composite particles according to the present invention includes an anionic functional group and one or two or more hydroxyl groups in the molecule on the surface of inorganic oxide particles having a cationic charge on the particle surface.
  • a method for producing organic-inorganic composite particles obtained by combining a polymer gel molecule derived from a natural product having swellability by electrostatic attraction, (1) adding a solvent capable of shrinking the polymer gel molecule to the solution containing the polymer gel molecule and stirring the solution; (2) A step of electrostatically bonding the polymer gel molecules to the surface of the inorganic oxide particles by adding and stirring the inorganic oxide particles to the solution obtained in the step (1).
  • a solvent capable of swelling the polymer gel molecules is added to the dispersion obtained in the step (2) and stirred to electrostatically bind to the surface of the inorganic oxide particles.
  • Swelling the polymer gel molecules (4)
  • the solvent added in the step (1) is preferably acetone.
  • the solvent added in the step (3) is preferably water.
  • the organic-inorganic composite particle dispersion according to the present invention is obtained by converting the organic-inorganic composite particles into oils, waxes, hydrocarbons, fatty acids, alcohols, alkyl glyceryl ethers, esters, polyhydric alcohols, sugars, silicones. It is characterized by being dispersed in a range of 0.001 to 50% by weight in a solvent selected from oil, crosslinked silicone gel and fluorine oil or a mixed solvent thereof.
  • the cosmetic according to the present invention is characterized in that the organic-inorganic composite particles are blended in the range of 0.001 to 40% by weight.
  • the cosmetic is preferably a skin care cosmetic, a base makeup cosmetic, a cleaning cosmetic, or a body care cosmetic.
  • Organic-inorganic composite particles according to the present invention that is, organic-inorganic composite particles formed by binding a polymer gel molecule derived from a natural product having both shrinkage and swelling properties to the surface of inorganic oxide particles by electrostatic attraction,
  • water-based solvents such as water
  • non-aqueous solvents have good dispersibility, and the particles are less likely to aggregate.
  • the average particle diameter of the polymer gel molecules can be controlled by the amount of the polymer gel molecules bonded to the surface of the inorganic oxide particles and the length of time for which the polymer gel molecules are swollen. It has the characteristics of.
  • an anionic functional group and one or two anionic functional groups are formed on the surface of inorganic oxide particles having a cationic charge on the surface of the particles under normal temperature / normal pressure liquid conditions.
  • a polymer gel molecule derived from a natural product having at least one hydroxyl group in the molecule and having both shrinkability and swelling property can be easily bonded by electrostatic attraction. That is, according to the method of the present invention, since a heating operation of 100 ° C. or higher is not required, even if the polymer gel molecule lacks thermal stability, it easily binds to the surface of the inorganic oxide particles. Can be made.
  • organic-inorganic composite particles having a property of being well dispersible in non-aqueous solvents in addition to water-based solvents such as water and having the property that particles do not easily aggregate are easily obtained. Obtainable.
  • the inorganic oxide particles are inorganic oxide particles having an anionic charge on the particle surface (for example, silicon oxide particles such as silica), the surface is covered with an inorganic oxide having a cationic charge.
  • the inorganic oxide particles can also be used as inorganic oxide particles in the present invention.
  • FIG. 1 is a photograph of a magnification of 10,000 times taken with a scanning electron microscope of silica particles coated with alumina (that is, inorganic oxide particles “alumina-coated silica particles (II)” having a cationic charge on the particle surface).
  • SEM photograph shows a photograph (SEM) of an organic-inorganic composite particle (particle D of Example 4) obtained by bonding hyaluronic acid to the surface of silica particles coated with alumina, taken with a scanning electron microscope (SEM). Photo).
  • Organic inorganic composite particles The organic-inorganic composite particle according to the present invention has an anionic functional group and one or more hydroxyl groups in the molecule on the surface of the inorganic oxide particle having a cationic charge on the particle surface.
  • the polymer gel molecule derived from a natural product that combines the above is electrostatically bonded to the particle surface.
  • the inorganic oxide particles can be used without particular limitation as long as they have a cationic charge on the particle surface. That is, a commercially available product may be used as it is, or a product prepared by a conventionally known method may be used. Examples of the preparation method include a spray drying method, a hydrolysis method, and a sol-gel method.
  • the inorganic oxide particles include an oxide of at least one metal element selected from cesium, magnesium, calcium, barium, cerium, titanium, zirconium, vanadium, iron, zinc, aluminum, silicon, and the like. It is preferable that it is an object particle (however, except a silicon oxide particle) or a composite oxide particle.
  • the inorganic oxide particles may be selected from cesium, magnesium, calcium, barium, cerium, titanium, zirconium, vanadium, iron, zinc, aluminum, silicon, and the surface of silicon oxide particles having an anionic charge on the particle surface. It is preferable that the oxide is coated with an oxide of at least one metal element (excluding silicon oxide) or a composite oxide. As the inorganic oxide particles used in the present invention, it is more preferable to use particles subjected to a surface treatment for the purpose of adjusting the surface charge amount.
  • the average particle diameter of the inorganic oxide particles is preferably in the range of 0.1 to 280 ⁇ m, particularly 0.15 to 250 ⁇ m.
  • those having an average particle diameter of less than 0.1 ⁇ m are not preferable because the scattering power of the particles is increased and handling becomes difficult.
  • the average particle diameter exceeds 280 ⁇ m, the natural sedimentation force increases and it becomes difficult to uniformly disperse in the solvent.
  • the inorganic oxide particles may be those adjusted to particles of an appropriate size by pulverization using a sample mill, sand mill, jet mill, juicer mixer, yary pulverizer, or the like.
  • the shape of the inorganic oxide particles is not particularly limited and is appropriately selected from those having a needle shape, a spherical shape, a rod shape, a plate shape, a scale shape, an annular shape, a hollow shape, or a shape having a through-hole depending on applications and effects. Can be used.
  • the average particle diameter there are cases where individual measurement conditions (for example, (length in the longitudinal direction + length in the lateral direction) / 2) are indicated depending on the shape, but in the present invention, It means a value measured using a centrifugal sedimentation type particle size distribution measuring device described in “Measurement method and evaluation method” described later.
  • the inorganic oxide particles are usually used as added in a solution containing organic compound molecules, which will be described later. However, particles having a small average particle size (for example, less than 1 ⁇ m) are aggregated. Sometimes. Therefore, it is preferable to use such a small average particle diameter by dispersing or suspending in advance in a solvent such as water or an organic solvent.
  • the polymer gel molecule used in the present invention is a polymer derived from a natural product having an anionic functional group and one or two or more hydroxyl groups in the molecule, and having both shrinkability and swelling property.
  • Gel molecules can be electrostatically bonded to the particle surface.
  • the “electrostatic bond” means a force acting between a positive charge and a negative charge, such as a Coulomb force, a hydrogen bond force, a hydrophobic interaction, and the like. A state in which polymer gel molecules are bonded. Therefore, it is distinguished from those having weak coupling forces such as van der Waals force and intercalation.
  • the polymer gel molecules are appropriately selected from those that shrink or swell by changing the molecular form according to changes in the surrounding environment. Moreover, it is preferable that the polymer gel molecule has one or two or more hydroxyl groups in the molecule. Here, water molecules are included or released by the hydroxyl group. Due to this change in the amount of water molecules taken up, the polymer gel molecules change in molecular form, ie, contraction or swelling.
  • the polymer gel molecule is a carboxyl group, a thiol group, a sulfone group, a sulfine group, a sulfene group, a phosphonic acid group, a phosphinic acid group, a phosphenic acid group, a phosphoric acid group, a hydroxymic acid group, a hydroxamic acid group, a nitrol group, It is preferable that the molecule has at least one anionic functional group selected from the group of a nitrosol group and a nitronate group in the molecule.
  • These compounds may be used alone or as a mixture of two or more.
  • the natural moisturizing factors include hyaluronic acid consisting of hyaluronic acid or a salt thereof, amino acid, polyamino acid, pyrrolidone carboxylic acid or derivative thereof, urea or derivative thereof, N-acetyl.
  • hyaluronic acid consisting of hyaluronic acid or a salt thereof, amino acid, polyamino acid, pyrrolidone carboxylic acid or derivative thereof, urea or derivative thereof, N-acetyl.
  • the average molecular weight of hyaluronic acid or a salt thereof is 1,000 to 5,000,000, preferably 5,000 to 3,000,000.
  • the average molecular weight is less than 1,000 since the effect of hyaluronic acid's moisturizing function is low. If the average molecular weight exceeds 5,000,000, the viscosity may increase and adversely affect the dispersibility of the particles. As a result, it becomes difficult to uniformly bind the polymer gel molecules to the particle surface. It is not preferable.
  • the average molecular weight here is measured by a viscosity measurement method defined in the Japanese Pharmacopoeia General Test Method.
  • the polymer gel molecule is at least one compound selected from natural polymer compounds, itaconic acids, and N-isopropylacrylamide, or the compound and an ester compound or a poly (meth) acrylate ester. There may be mentioned at least one compound selected from copolymers.
  • the natural polymer compounds are at least selected from catechins, vitamins, tannins, polysaccharides, proteins, phospholipids, natural moisturizing factors, alginic acids, polyglutamic acids, and polyasparagic acids. It is preferable that it is 1 type or its salt.
  • the catechins are preferably tea-derived catechins.
  • the vitamins are preferably at least one selected from vitamins, vitamin derivatives, and vitamin-like substances that act similar to vitamins.
  • the tannins are preferably at least one selected from tannin, tannic acid, pyrogallol, gallic acid, and gallic acid ester.
  • Plant and seaweed extracts include avocado extract, altea extract, arnica extract, ashitaba extract, aloe extract, almond oil, carob bean extract, rice extract, strawberry extract, fennel extract, turmeric extract , Usbunia mushroom extract, Saishin extract, Sesame oil, Oren extract, Olive oil, Odori extract, Hypericum extract, Ogon extract, Ononis extract, Ginseng extract, Chamomile extract, Oat extract, Licorice extract , Kizuta extract, Raspberry extract, Kingfisher extract, Kumazasa extract, Gardenia extract, Grapefruit extract, Kujin extract, Clara extract, Watercress extract, Brown sugar extract, Gentian shochu extract, Gentianana extract, Burdock extract, Kobotan extract, Wheat extract, Small Germ extract, sesame extract, comfrey extract, cactus extract, cassava extract, hawthorn extract, salvia extract, ginger extract, perilla extract, sage extract, shea butter, shimotake extract, peonies extract
  • Red algae such as pine tree, red pine, funnel, ibranori, ogonori, spider, duls, igis, egonori, konohanori, himegome; It is preferable that it is at least one selected from seaweed extracts such as green algae such as Aomidoro.
  • the organic-inorganic composite particles can be controlled in average particle diameter by the amount of the polymer gel molecules bonded to the surface of the inorganic oxide particles and the length of time for which the polymer gel molecules are swollen. Is one characteristic part of the present invention.
  • the amount of the polymer gel molecules to be bonded to the surface of the inorganic oxide particles is in the range of 0.001 to 20% by weight, preferably 0.005 to 10% by weight, based on the total amount of the inorganic oxide particles. Is preferred.
  • the binding amount is less than 0.001% by weight, the function of the polymer gel molecule (for example, feel characteristics when the organic-inorganic composite particles are used in cosmetics) is developed. Is not preferable because it becomes difficult.
  • the binding amount exceeds 20% by weight, the interaction between the polymer gel molecules becomes strong, which may cause a decrease in the function of the polymer gel molecules, which is not preferable.
  • the average particle size of the organic-inorganic composite particles obtained in this way is preferably in the range of 0.1 to 300 ⁇ m, preferably 0.15 to 280 ⁇ m.
  • those having an average particle diameter of less than 0.1 ⁇ m can be used, but this is not preferable because the scattering force of the particles is increased and the handling becomes difficult.
  • the average particle diameter exceeds 300 ⁇ m, as in the case of the inorganic oxide particles, the natural sedimentation force increases and it becomes difficult to uniformly disperse in the solvent.
  • the inorganic oxide particles may be those adjusted to particles of an appropriate size by pulverization using a sample mill, sand mill, jet mill, juicer mixer, yary pulverizer, or the like.
  • the organic-inorganic composite particles are used after being dissolved in a solvent such as an aqueous solvent or a non-aqueous solvent.
  • a solvent such as an aqueous solvent or a non-aqueous solvent.
  • Any solvent that can dissolve the polymer gel molecules can be used without particular limitation.
  • water, alcohols including methanol, ethanol, isopropanol, acetone, ethyl methyl ketone, ketones including methyl isobutyl ketone, ethers including THF, dioxane, amides including DMF and NMP However, it should be appropriately selected in consideration of the type of the polymer gel molecule.
  • These solvents may be used alone or as a mixture of two or more. However, it is desirable to select not only the solvent itself but also one that does not cause phase separation with the polymer gel molecule.
  • the polymer gel molecule includes and releases water molecules by one or more hydroxyl groups in the molecule of the molecule, and changes in the amount of water molecules taken up according to changes in the surrounding environment. It has water retention properties by changing its molecular form to shrink or swell. That is, in contrast to the swelling associated with the inclusion of water molecules, the contraction means the phenomenon of releasing water molecules as a process opposite to the swelling.
  • changes in the surrounding environment are 1) changes in physical properties such as the temperature and pH of the solvent (system) in the dispersion, and 2) dipoles accompanying changes in the solvent composition in the mixed solvent system. Examples include changes in parameters, relative permittivity, viscosity, and polarity.
  • the swelling property is expressed by the degree of swelling and is defined by the following formula.
  • Swelling degree weight of polymer gel molecule after swelling / weight of polymer gel molecule before swelling (1)
  • the measuring method is to measure the weight when water is gradually dropped and left for 18 hours with respect to 1 g of the polymer gel molecule before swelling, and then the weight when water seepage (fully swollen and partitioned) is confirmed, It calculates with Formula (1).
  • the polymer gel molecule used in the present invention is preferably a polymer gel molecule having a swelling degree of 10 to 8,000. For example, for hyaluronic acid, the degree of swelling is approximately 6,000. Further, the polymer gel molecule preferably takes a molecular swelling state in a solvent containing water as a main component, and takes a molecular contraction state in a hydrous organic solvent containing an organic solvent as a main component.
  • the method for producing organic-inorganic composite particles according to the present invention includes an anionic functional group and one or two or more hydroxyl groups in the molecule on the surface of inorganic oxide particles having a cationic charge on the particle surface.
  • a solvent for shrinking the polymer gel molecules with stirring is added to a solution in which the polymer gel molecules are dissolved in a suitable solvent at room temperature while stirring, and further 200 to 200 at room temperature. Stir for 1 to 4 hours at a speed of 700 rpm.
  • the solvent for dissolving the polymer gel molecule is selected from an aqueous solvent or a non-aqueous solvent capable of dissolving the polymer gel molecule.
  • the solvent can be heated as necessary, but when the polymer gel molecules are cooled to room temperature, the dissolved state of the polymer gel molecules can be maintained. It is preferable.
  • the solvent for shrinking the polymer gel molecules varies depending on the type of organic compound molecules used, it is necessary to select an appropriate solvent from an aqueous solvent or a non-aqueous solvent.
  • the solvent it is preferable to use not only the solvent used for dissolving the polymer gel molecules but also a solvent that does not cause phase separation with the polymer gel molecules.
  • the polymer gel molecule dissolved in the aqueous solvent or non-aqueous solvent varies depending on the kind of the polymer gel molecule and its solubility, but is contained in the solvent in an amount of 0.5 to 3.0% by weight. It is preferable to add at such a ratio.
  • the solvent for shrinking the polymer gel molecules varies depending on the type and the type of the polymer gel molecules, but the content of the polymer gel molecules contained in the resulting solution is 0.2. It is preferable to add at a ratio of ⁇ 1.0% by weight.
  • the content of the polymer gel molecule is less than 0.2% by weight, the amount of the solvent used is undesirably increased, and the content of the polymer gel molecule is 1.0. If it exceeds wt%, the viscosity of the resulting solution may increase, which is not preferable.
  • Step (2) In this step, while stirring the solution containing the polymer gel molecules obtained in the step (1), the inorganic oxide particles are gradually added thereto, and further, 1 at a rate of 200 to 700 rpm at room temperature. Stir for ⁇ 6 hours. As a result, the polymer gel molecules are bonded to the surface of the inorganic oxide particles by electrostatic attraction.
  • the stirring time varies depending on the weight of the inorganic oxide particles to be added and the like, but the time until the inorganic oxide particles are uniformly dispersed in the dispersion is used as a guide. However, even if stirring is performed for more than 6 hours, no particular effect is obtained, so it is not a good idea to perform further stirring.
  • Process (3) In this step, first, a solvent for swelling the organic compound molecules is added while stirring the dispersion liquid obtained in the step (2), and further, 1 at a speed of 200 to 700 rpm at room temperature. Stir for ⁇ 6 hours.
  • the solvent is added so that the content of the polymer gel molecules contained in the resulting solution is 0.05 to 0.3% by weight.
  • the stirring time varies depending on the weight of the inorganic oxide particles (the surface on which the polymer gel molecules are electrostatically bonded) contained in the solution, but the inorganic oxide particles Is a time until uniform dispersion in the dispersion.
  • stirring is performed for more than 6 hours, no particular effect is obtained, so it is not a good idea to perform further stirring.
  • the stirring is stopped and the mixture is allowed to stand at room temperature for 6 to 24 hours. Accordingly, the polymer gel molecules electrostatically bonded to the surface of the inorganic oxide particles are swollen.
  • the standing time varies depending on the kind of the polymer gel molecule and the amount of the polymer gel molecule bound, but if it is less than 6 hours, the polymer gel molecule may not be completely swollen. Absent. However, this is not the case when it is necessary to control the average particle size of the particles. In addition, even if it is left for more than 24 hours, no particular effect is obtained, so it is not a good idea to do this further.
  • the solid content is separated by filtering the solution containing the organic-inorganic composite particles obtained in the step (3). Separation of the solid content composed of the organic-inorganic composite particles can be performed using a commercially available filtration device such as a Buchner funnel, filter press, horizontal belt filter, synchro filter, precoat filter, drum filter, belt filter, tray filter. . As the separation method, a conventionally known method can be adopted, but it is preferably carried out by a vacuum filtration method. In addition, the cake-like substance of the organic-inorganic composite particles obtained in this way is preferably sufficiently washed using the solvent added in the step (3).
  • the cake-like substance is preferably dried at normal pressure or reduced pressure at room temperature to 80 ° C., preferably at room temperature to 60 ° C. for 0.5 to 6 hours, preferably 1 to 3 hours.
  • the drying temperature is less than room temperature, the cake-like substance cannot be sufficiently dried in a short time, and if the drying temperature exceeds 80 ° C., the surface of the inorganic oxide particles is electrostatically charged. This is not preferable because the polymer gel molecules bonded to each other may be decomposed.
  • the dry powder (particle group) of the organic-inorganic composite particles obtained in this way is subjected to a pulverization apparatus or a pulverization apparatus such as a sample mill, a jet mill, a juicer mixer, or a yary pulverizer as necessary. It is desirable to pulverize a lump or the like in advance.
  • inorganic oxide particles for example, alumina-coated silica particles
  • inorganic oxide particles for example, alumina-coated silica particles
  • Organic-inorganic composite particle dispersion The organic-inorganic composite particle dispersion according to the present invention is obtained by converting the organic-inorganic composite particles into oils, waxes, hydrocarbons, fatty acids, alcohols, alkyl glyceryl ethers, esters, polyhydric alcohols, sugars, silicones. It is dispersed in a solvent selected from oil, crosslinked silicone gel and fluorine oil or a mixed solvent thereof in the range of 0.001 to 50% by weight.
  • the organic-inorganic composite particles according to the present invention have good dispersibility with respect to non-aqueous solvents in addition to aqueous solvents such as water, and the particles are less likely to aggregate. It can be easily dispersed in the solvent.
  • the dispersion even if the content of the organic-inorganic composite particles is less than 0.001% by weight, there is no particular problem, but depending on the application (for example, cosmetics), the organic-inorganic composite particles This is not preferable because the function it has cannot be exhibited.
  • the content of the organic-inorganic composite particles exceeds 50% by weight, the viscosity of the solution increases and aggregation of the particles may occur.
  • the cosmetic according to the present invention is obtained by blending the organic-inorganic composite particles in the range of 0.001 to 40% by weight.
  • the organic-inorganic composite particles are used by directly blending the solid content of the particles into a conventionally known cosmetic ingredient, or by blending the organic-inorganic composite particle dispersion containing the particles into a conventionally known cosmetic ingredient.
  • Then, in the dispersion there is no particular problem even if the content of the organic-inorganic composite particles is less than 0.001% by weight, but depending on the cosmetic application, the function of the organic-inorganic composite particles (for example, , The touch characteristics) cannot be exhibited, which is not preferable.
  • the functionality of the organic-inorganic composite particles may be excessively expressed or may cause side effects (for example, skin irritation). Because there is, it is not preferable.
  • the cosmetics include skin care cosmetics, base makeup cosmetics, cleaning cosmetics, and body care cosmetics.
  • the organic-inorganic composite particles according to the present invention are moisturizing and preventing rough skin, acne, keratin care, wrinkle / sagging, dullness / bearing, UV care, anti-oxidation skin care cosmetics, powder foundation, liquid, etc.
  • Measurement methods and evaluation methods used in Examples and others of the present invention are shown below.
  • Measuring method of average particle diameter (a) Measuring method A of average particle diameter A slurry liquid (solid content concentration: 1.0% by weight) in which the inorganic oxide particles or the organic-inorganic composite particles are dispersed in pure water is prepared, and an ultrasonic grinder (TA-manufactured by Kaijo Corporation) is prepared. The particles are well dispersed by irradiating with ultrasonic waves for 5 minutes using a 5287 type ultrasonic breaker. Next, the obtained dispersion is applied to a centrifugal sedimentation type particle size distribution analyzer (CAPA-700 manufactured by Horiba Seisakusho) to measure the particle size distribution of the particles, and the particle size value at which the volume-based integrated distribution is 50%.
  • a centrifugal sedimentation type particle size distribution analyzer (CAPA-700 manufactured by Horiba Seisakusho) to measure the particle size distribution of the particles, and the particle size value at which the volume-based integrated distribution is 50%.
  • the average particle diameter of a particle group having a particle diameter of 0.01 to 300 ⁇ m dispersed in an aqueous solvent (pure water) can be measured.
  • isononyl isononanoate Saracos 99 (registered trademark) manufactured by Nisshin Oilio Group Co., Ltd.
  • the obtained dispersion is applied to a centrifugal sedimentation type particle size distribution measuring device (CAPA-700 manufactured by Horiba Seisakusho) to measure the particle size distribution of the particles, and the particle size value at which the volume-based integrated distribution is 50%.
  • the average particle diameter of a particle group having a particle diameter of 0.01 to 300 ⁇ m dispersed in a non-aqueous solvent isononyl isononanoate
  • the dispersibility evaluation of the organic-inorganic composite particles is carried out by measuring the average particle size of the organic-inorganic composite particles dispersed in isononyl isononanoate (so-called median). (Diameter). In addition, this average particle diameter is measured based on said average particle diameter measuring method B.
  • the average particle diameter (so-called median diameter) of the inorganic oxide particles after polymer gel molecule bonding is smaller than the average particle diameter (so-called median diameter) of the inorganic oxide particles before polymer gel molecule bonding. It means that the higher the dispersibility, the higher the dispersibility of the organic-inorganic composite particles in the organic solvent.
  • the organic-inorganic composite particles having amphiphilic properties can be easily dispersed even in an aqueous solvent or an organic solvent having poor compatibility with water, and also cause aggregation of the particles in the organic solvent.
  • the average particle size of the organic-inorganic composite particles dispersed in isononyl isononanoate
  • the present invention will be specifically described based on examples.
  • the present invention is not limited to these examples. That is, here, only examples of using hyaluronic acid or sericin as a polymer gel molecule derived from a natural product are shown, but it has an anionic functional group and one or more hydroxyl groups in the molecule and contracts. As long as it is a polymer gel molecule having both properties and swelling properties, it can be used without particular limitation.
  • a method for completely modifying the surface of the inorganic oxide particles with the polymer gel molecules based on “change in solution composition”, which is one of the changing factors of the surrounding environment, is described. (For example, temperature change, pH change, etc.) may be employed.
  • Example 1 Preparation of inorganic oxide particles (I) having a cation surface charge Silica particles [SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 3 liter titanium tank 68 g of an average particle size of 26.37 ⁇ m measured by the above measuring method B] was added, and 670 g of pure water was added so that the solid content was about 9% by weight. Next, a pH meter and a temperature sensor were installed in the titanium tank, and stirred for 2 hours at a rotational speed of 350 rpm using a titanium flat blade to obtain a slurry of the silica particles.
  • Silica particles SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 3 liter titanium tank 68 g of
  • a 10% strength aqueous hydrochloric acid solution was added while stirring the slurry to adjust the pH of the slurry to 6.00. Furthermore, while maintaining the pH of the slurry at 6.00, 27 g of a highly basic aluminum chloride aqueous solution (PAC # 1000, manufactured by Taki Chemical Co., Ltd.) of about 5% by weight in terms of Al 2 O 3 was added for 2 hours. Added over time. Thereafter, the temperature of the slurry was kept at 70 ° C. with stirring for 7 hours. Thereby, the surface of the silica particle was coat
  • PAC # 1000 highly basic aluminum chloride aqueous solution
  • alumina-coated silica particles (I) dry powder of silica particles coated with alumina (hereinafter referred to as “alumina-coated silica particles (I)”) is obtained by pulverizing with a sample mill in order to break up the aggregation of particles generated during drying. It was.
  • the average particle diameter of the alumina-coated silica particles (I) thus obtained was 8.60 ⁇ m and the average particle diameter was 23.17 ⁇ m measured by the measurement method A.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of alumina-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 11.88 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (A)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (A) dry powder
  • the dispersibility of the organic-inorganic composite particles (A) thus obtained was evaluated by the above dispersibility evaluation method, it was 8.53 ⁇ m.
  • the organic-inorganic composite particles (A) were measured by the differential thermal balance method (TG-DTA method), the surface (bonded portion of hyaluronic acid) was applied to the surface of the substrate (alumina-coated silica particles). Confirmed a peak of a large amount of water component not detected. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 2 Preparation of organic / inorganic composite particles (B) In a 300 ml glass beaker containing a magnetic stir bar, 0.0048 g of hyaluronic acid (Hyaluronic Sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Kewpie Co., Ltd. was added. 48 g of pure water was added so that the content of was about 0.01% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in water. Next, acetone as a solvent causing molecular contraction of hyaluronic acid was added with stirring so that the content of hyaluronic acid was about 0.003% by weight, and further stirred at room temperature. The amount of acetone added at this time was 144 g.
  • hyaluronic acid Hydrophilic Sun HA-LQ average molecular weight: 85 to 1.6 million
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Furthermore, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of the alumina-coated silica particles (I)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 11.96 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (B)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (B) dry powder
  • the dispersibility of the organic-inorganic composite particles (B) thus obtained was evaluated by the above dispersibility evaluation method, it was 8.59 ⁇ m.
  • the organic compound molecule (B) was measured by the above differential thermal balance method (TG-DTA method), the surface (bonded portion of hyaluronic acid) and the surface of the substrate (alumina-coated silica particles) A large amount of water component peaks that were not detected were confirmed. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 3 Preparation of inorganic oxide particles (II) having a cation surface charge Silica particles [SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 3 liter titanium tank 68 g of an average particle size of 26.37 ⁇ m measured by the above measuring method B] was added, and 670 g of pure water was added so that the solid content was about 9% by weight. Next, a pH meter and a temperature sensor were installed in the titanium tank, and stirred for 2 hours at a rotational speed of 350 rpm using a titanium flat blade to obtain a slurry of the silica particles.
  • Silica particles SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 3 liter titanium tank 68 g
  • a 10% strength aqueous hydrochloric acid solution was added while stirring the slurry to adjust the pH of the slurry to 6.00. Furthermore, while maintaining the pH of the slurry at 6.00, 11 g of a highly basic aluminum chloride aqueous solution (PAC # 1000, manufactured by Taki Chemical Co., Ltd.) of about 2% by weight in terms of Al 2 O 3 was added for 2 hours. Added over time. Thereafter, the temperature of the slurry was kept at 70 ° C. with stirring for 7 hours. Thereby, the surface of the silica particle was coat
  • PAC # 1000 highly basic aluminum chloride aqueous solution
  • alumina-coated silica particles (II) dry powder of silica particles that are crushed by a sample mill to break up the aggregation of particles generated during drying are coated. It was.
  • the thus-obtained alumina-coated silica particles (II) had an average particle size of 10.42 ⁇ m measured by the above measuring method A and an average particle size of 26.37 ⁇ m measured by the above measuring method B.
  • Hyaluronic acid (Hyaluronic sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Cupy Co., Ltd. was placed in a 500 ml glass beaker containing a magnetic stir bar. 12 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 35 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of alumina-coated silica particles (II)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.26 g of a dry powder of alumina-coated silica particles in which hyaluronic acid was electrostatically bonded to the particle surfaces (hereinafter referred to as “organic-inorganic composite particles (C)”) was obtained.
  • organic-inorganic composite particles (C) a dry powder of alumina-coated silica particles in which hyaluronic acid was electrostatically bonded to the particle surfaces
  • the dispersibility of the thus obtained organic-inorganic composite particles (C) was evaluated by the above dispersibility evaluation method and found to be 11.23 ⁇ m. Subsequently, when the organic-inorganic composite particles (C) were measured by the differential thermal balance method (TG-DTA method), the surface (bonded portion of hyaluronic acid) was applied to the surface of the base material (alumina-coated silica particles). Confirmed a peak of a large amount of water component not detected. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of alumina-coated silica particles (II)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.51 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (D)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (D) dry powder
  • the dispersibility of the organic-inorganic composite particles (D) thus obtained was evaluated by the above dispersibility evaluation method, and was 10.33 ⁇ m.
  • the organic-inorganic composite particles (D) were measured by the differential thermal balance method (TG-DTA method)
  • the surface (bonded portion of hyaluronic acid) was applied to the surface of the substrate (alumina-coated silica particles). Confirmed a peak of a large amount of water component not detected.
  • a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 5 Preparation of organic-inorganic composite particles (E) In a 500 ml glass beaker containing a magnetic stir bar, 0.480 g of hyaluronic acid (sodium biohyaluronate manufactured by Shiseido Co., Ltd., average molecular weight: 1.1 to 1,600,000) was put. 48 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent causing molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 144 g.
  • hyaluronic acid sodium biohyaluronate manufactured by Shiseido Co., Ltd., average molecular weight: 1.1 to 1,600,000
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of alumina-coated silica particles (II)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.51 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (E)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (E) dry powder
  • Example 6 Preparation of inorganic oxide particles (III) having a cation surface charge Silica particles [SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 5 liter titanium tank 53 g of the particle size 8.40 ⁇ m and the average particle size 26.37 ⁇ m measured by the above measuring method B] was added, and 470 g of pure water was added so that the solid content was about 9% by weight. Next, a pH meter and a temperature sensor were installed in the titanium tank and stirred for 2 hours at a rotational speed of 200 rpm using a titanium flat blade to obtain a slurry of the silica particles.
  • Silica particles [SILICA MICROBEADS (registered trademark) P-1500, manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle measured by the above measuring method A] in a 5 liter titanium
  • a 15% strength aqueous ammonia solution was added while stirring the slurry to adjust the pH of the slurry to 9.35. Further, 5 g of about 10 wt% magnesium chloride (manufactured by Kanto Chemical Co., Inc.) was added over 6 hours while maintaining the pH of the slurry at 9.35. Then, the temperature of the slurry was kept at 70 ° C. with stirring and left for 13 hours. Thereby, the surface of the silica particle was coat
  • magnesium oxide-coated silica particles (III) were crushed with a sample mill and coated with magnesium oxide in order to break up the aggregation of particles generated during drying. Got.
  • the thus-obtained magnesium oxide-coated silica particles (III) had an average particle size of 8.26 ⁇ m measured by the above measuring method A and an average particle size of 28.67 ⁇ m measured by the above measuring method B.
  • Hyaluronic acid (Hyaluronic sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Cupy Co., Ltd. was placed in a 300 ml glass beaker containing a magnetic stir bar. 12 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 36 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of magnesium oxide-coated silica particles (III)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.26 g of a dry powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surface (hereinafter referred to as “organic-inorganic composite particles (F)”) was obtained.
  • organic-inorganic composite particles (F) a dry powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surface
  • the dispersibility of the organic-inorganic composite particles (F) thus obtained was evaluated by the above dispersibility evaluation method, it was 9.38 ⁇ m.
  • the organic-inorganic composite particles (F) were measured by the above differential thermal balance method (TG-DTA method), the substrate (magnesium oxide-coated silica particles (III)) was formed on the surface (bonded portion of hyaluronic acid). From the surface of), a large amount of water component peaks that were not detected were confirmed. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 7 Preparation of organic-inorganic composite particles (G) In a 300 ml glass beaker containing a magnetic stir bar, 0.480 g of hyaluronic acid (Hyaluronic Sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Kewpie Co., Ltd. was added. 48 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent causing molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 144 g.
  • hyaluronic acid Hydrophilic Sun HA-LQ average molecular weight: 85 to 1.6 million
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of magnesium oxide-coated silica particles (III)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.51 g of dry powder of magnesium oxide-coated silica particles (hereinafter referred to as “organic-inorganic composite particles (G)”) having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (G) dry powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • Example 8 Preparation of organic-inorganic composite particles (H) In a 500 ml glass beaker containing a magnetic stirrer, 0.480 g of hyaluronic acid (sodium biohyaluronate manufactured by Shiseido Co., Ltd., average molecular weight: 1.1 to 1.6 million) was put, and hyaluronic acid was added. 48 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water.
  • hyaluronic acid sodium biohyaluronate manufactured by Shiseido Co., Ltd., average molecular weight: 1.1 to 1.6 million
  • acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours.
  • the amount of acetone added at this time was 144 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of magnesium oxide-coated silica particles (III)).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.51 g of a dry powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces (hereinafter referred to as “organic-inorganic composite particles (H)”) was obtained.
  • organic-inorganic composite particles (H) a dry powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces
  • the dispersibility of the organic-inorganic composite particles (H) thus obtained was evaluated by the above dispersibility evaluation method, it was 9.58 ⁇ m.
  • the organic-inorganic composite particles (H) were measured by the differential thermal balance method (TG-DTA method) described above, the surface of the base material (magnesium oxide-coated silica particles) was placed on the surface (hyaluronic acid binding portion). A large amount of water component peaks that were not detected were observed. A thermogravimetric change was confirmed although it was weak at around 400 ° C. derived from hyaluronic acid.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Furthermore, the cake-like substance (hyaluronic acid-bonded magnesium oxide-coated silica particles) was washed with 100 g of pure water (about 20 times the weight of magnesium oxide-coated silica particles).
  • hyaluronic acid Hydrophilic Sun HA-LQ average molecular weight: 85 to 1.6 million manufactured by Kewpie Co., Ltd. was put into a 1 liter glass beaker containing a magnetic stir bar, and the hyaluronic acid content was about 1 weight.
  • the pure water 20g was added so that it might become%. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water.
  • acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 60 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 100 g of pure water (about 20 times the weight of hyaluronic acid-bonded magnesium oxide-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 5.11 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (I)”) of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (I) dry powder
  • Hyaluronic acid (Hyaluronic Sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Cupy Co., Ltd. was placed in a 500 ml glass beaker containing a magnetic stir bar. 12 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 35 g.
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.18 g of a dry powder (hereinafter referred to as “organic-inorganic composite particles (J)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (J) a dry powder
  • Hyaluronic acid (Hyaluronic Sun HA-LQ average molecular weight: 85 to 1.6 million) made by 500 ml glass beaker containing a magnetic stir bar was added to hyaluronic acid. 48 g of pure water was added so that the content of water became about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 145 g.
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 11.96 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (K)”) of alumina-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (K) dry powder
  • the dispersibility of the organic-inorganic composite particles (K) thus obtained was evaluated, it was 8.59 ⁇ m.
  • the organic-inorganic composite particles (K) were measured by the above differential thermal balance method (TG-DTA method), the surface (bonded portion of hyaluronic acid) was applied to the surface of the substrate (alumina-coated silica particles). Confirmed a peak of a large amount of water component not detected. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 12 Preparation of organic-inorganic composite particles (L) Sericin (SILKGEN (registered trademark) G SOLUBLES-E 5.5 wt%, manufactured by Ichimaru Falcos Co., Ltd.) in a 300 ml glass beaker containing a magnetic stirring bar, average molecular weight: 500 to 40,000) was added, and 4 g of ethanol was added so that the content of sericin was about 1% by weight. Next, acetone as a solvent causing molecular shrinkage of sericin was added with stirring so that the content of sericin was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 12 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Furthermore, the cake-like substance was washed with 100 g of pure water (about 20 times the weight of alumina-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 4.78 g of a dry powder (hereinafter referred to as “organic-inorganic composite particles (L)”) of alumina-coated silica particles in which sericin was electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (L) a dry powder
  • the dispersibility of the thus obtained organic-inorganic composite particles (L) was evaluated by the above dispersibility evaluation method and found to be 8.63 ⁇ m.
  • the organic-inorganic composite particles (L) were measured by the differential thermal balance method (TG-DTA method) described above, the surface (the electrostatic binding portion of sericin) was coated with a substrate (alumina-coated silica particles). A large amount of water component peaks not detected from the surface were confirmed.
  • Example 13 Preparation of Organic-Inorganic Composite Particles (M) Sericin (SILKGEN (registered trademark) G SOLUBLES-E 5.5 wt%, manufactured by Ichimaru Falcos Co., Ltd.), average molecular weight: 5, 500 to 40,000) was added, and 16 g of ethanol was added so that the content of sericin was about 1% by weight. Next, acetone as a solvent causing molecular shrinkage of sericin was added with stirring so that the content of sericin was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 46 g.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Furthermore, the cake-like substance was washed with 100 g of pure water (about 20 times the weight of alumina-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 4.80 g of dry powder of alumina-coated silica particles (hereinafter referred to as “organic-inorganic composite particles (M)”) in which sericin was electrostatically bonded to the particle surfaces was obtained.
  • organic-inorganic composite particles (M) dry powder of alumina-coated silica particles
  • the dispersibility of the organic-inorganic composite particles (M) thus obtained was evaluated by the above dispersibility evaluation method, it was 9.95 ⁇ m.
  • the organic-inorganic composite particles (M) were measured by the differential thermal balance method (TG-DTA method) described above, the substrate (alumina-coated silica particles) was applied to the surface (electrostatic binding portion of sericin). A large amount of water component peaks not detected from the surface were confirmed.
  • Hyaluronic acid (Hyaluronic sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by 300 milliliter glass beaker containing a magnetic stir bar was added to the hyaluronic acid. 5 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 12 g.
  • titania particles manufactured by Ishihara Sangyo Co., Ltd., TIPAQUE WHITE (registered trademark) CR-50, measurement method A
  • 5 g of an average particle size of 0.62 ⁇ m and an average particle size of 13.37 ⁇ m measured by the above measuring method B) was gradually added with stirring, and further stirred at room temperature for 2 hours.
  • the hyaluronic acid was electrostatically bonded to the surface of the titania particles.
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 4.76 g of a dry powder of titania particles having hyaluronic acid electrostatically bonded to the particle surface (hereinafter referred to as “organic-inorganic composite particles (N)”) was obtained.
  • the dispersibility of the organic-inorganic composite particles (N) thus obtained was evaluated by the above dispersibility evaluation method, it was 11.41 ⁇ m.
  • the organic-inorganic composite particles (N) were measured by the differential thermal balance method (TG-DTA method) described above, the surface of the substrate (titania particles) was placed on the surface (the electrostatic binding portion of hyaluronic acid). A large amount of water component peaks that were not detected were observed. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • Example 15 Preparation of organic-inorganic composite particles (O) In a 300 ml glass beaker containing a magnetic stir bar, 0.2 g of hyaluronic acid (Hyaluronic Sun HA-LQ average molecular weight: 85 to 1.6 million) manufactured by Kewpie Co., Ltd. was added. 20 g of pure water was added so that the content of was about 1% by weight. Further, the mixture was stirred at room temperature for 4 hours to dissolve hyaluronic acid in pure water. Next, acetone as a solvent that causes molecular contraction of hyaluronic acid was added with stirring so that the hyaluronic acid content was about 0.3% by weight, and further stirred at room temperature for 2 hours. The amount of acetone added at this time was 46 g.
  • hyaluronic acid Hydrophilic Sun HA-LQ average molecular weight: 85 to 1.6 million
  • titania particles manufactured by Ishihara Sangyo Co., Ltd., TIPAQUE WHITE (registered trademark) CR-50, measurement method A
  • 5 g of an average particle size of 0.62 ⁇ m and an average particle size of 13.37 ⁇ m measured by the above measuring method B) was gradually added with stirring, and further stirred at room temperature for 2 hours.
  • the hyaluronic acid was electrostatically bonded to the surface of the titania particles.
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 4.76 g of a dry powder of titania particles having hyaluronic acid electrostatically bonded to the particle surface (hereinafter referred to as “organic-inorganic composite particles (O)”) was obtained.
  • the dispersibility of the organic-inorganic composite particles (O) thus obtained was evaluated by the above dispersibility evaluation method, it was 12.47 ⁇ m.
  • the organic-inorganic composite particles (O) were measured by the above differential thermal balance method (TG-DTA method), the surface (the electrostatic binding portion of hyaluronic acid) and the surface of the base material (titania particles) were measured. A large amount of water component peaks that were not detected were observed. Furthermore, a thermogravimetric change was confirmed although weak at around 400 ° C. derived from hyaluronic acid.
  • sodium-coated silica particles dry powder of silica particles (hereinafter referred to as “sodium-coated silica particles”) (IV), which is crushed by a sample mill in order to break up the aggregation of particles generated during drying, is coated with sodium. It was.
  • the average particle diameter of the sodium-coated silica particles obtained as described above was 9.68 ⁇ m as measured by the above measuring method A.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 240 g of pure water (about 20 times the weight of sodium-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 12.51 g of dry powder (hereinafter referred to as “organic-inorganic composite particles (a)”) of sodium-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces was obtained.
  • the solid content contained in the stationary liquid thus obtained was filtered under reduced pressure using a Buchner funnel to obtain a cake-like substance. Further, the cake-like substance was washed with 100 g of pure water (about 20 times the weight of magnesium oxide-coated silica particles).
  • the obtained cake-like substance was put into a drier kept at a temperature of 60 ° C. and dried for 4 hours, and then dried under reduced pressure in a desiccator kept at room temperature. Further, in order to break up the aggregation of particles generated during drying, the particles were put in a sample mill and crushed. As a result, 5.3 g of dried powder of magnesium oxide-coated silica particles having hyaluronic acid electrostatically bonded to the particle surfaces (hereinafter referred to as “organic-inorganic composite particles (b)”) was obtained.
  • the dispersibility of the organic-inorganic composite particles (b) thus obtained was evaluated, it was 19.36 ⁇ m.
  • the organic-inorganic composite particles (b) were measured by the differential thermal balance method (TG-DTA method) described above, the surface of the base material (magnesium oxide-coated silica particles) was placed on the surface (bonded portion of hyaluronic acid). The peak of a large amount of water component that could not be detected was not confirmed. Furthermore, although it was weak at around 400 ° C. derived from hyaluronic acid, no thermogravimetric change could be confirmed.
  • the organic-inorganic composite particles obtained above that is, Example composite particles AK and Comparative example composite particles a to b are summarized in Table 1 below.
  • the coverage is defined by the amount of raw material charged in the preparation of each particle. That is, it defines with the ratio which processes a cationic charge provision agent and a polymer gel with respect to the weight reference
  • the particles whose surface is modified with sodium are referred to as “sodium-coated silica particles” for the sake of convenience, but the same coverage as other examples is not calculated.
  • the peak of the water component by the differential thermal balance (TG-DTA method) evaluation was not confirmed from the surfaces of the obtained particles a and b, and it was derived from hyaluronic acid. No thermogravimetric change has been confirmed. Therefore, the corresponding component column in the polymer gel column is blank.
  • Example 16 and Comparative Example 3 The powder of organic-inorganic composite particles obtained in the organic-inorganic feel properties of the composite particles Examples 1-2 and Comparative Examples 1-2, performed a functional test by expert panelists (feel characteristics evaluation test), moist feel, uniform Interview surveys were conducted on the three evaluation items of stretchability and softness. The results were evaluated based on the following evaluation point criteria. The results obtained from this evaluation test are shown in Table 2.
  • SILICA MICROBEADS registered trademark
  • Evaluation criteria Excellent. ⁇ : Excellent. ⁇ : Normal.
  • X Inferior.
  • Example 17 and Comparative Example 4 Preparation of powder foundation Example particles C to E obtained in Examples 3 to 5 and Comparative example particles a obtained in Comparative Examples 1 and 2 so as to have the blending ratio (% by weight) shown in Table 3 And b (components described as various beads in Table 3) and components (2) to (9) in Table 3 were respectively put in a mixer and stirred to mix uniformly. Next, the following cosmetic ingredients (10) to (12) were put into this mixer and stirred, and further uniformly mixed. Next, after crushing the obtained cake-like substance, about 12 g was taken out from it, put into a square metal pan of 46 mm ⁇ 54 mm ⁇ 4 mm, and press molded. As a result, Example cosmetics C to E containing Example particles C to E and Comparative cosmetics a and b containing Comparative example particles a and b were obtained.
  • SILICA MICROBEADS registered trademark
  • Evaluation criteria Excellent. ⁇ : Excellent. ⁇ : Normal.
  • X Inferior.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料に関する。 粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を、粒子表面に静電的結合させた有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料。この有機無機複合粒子は、水などの水系溶媒の他に、非水系溶媒に対しても分散性がよく、しかも粒子同士の凝集が起こりにくいという特性を備えている。

Description

有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料
 本発明は、アニオン性官能基と1個または2個以上の水酸基を分子内に有する天然物由来の高分子ゲル分子を、粒子表面に静電的結合させた有機無機複合粒子並びに該粒子の製造方法、該粒子を含む分散液および該粒子を配合した化粧料に関する。
 無機酸化物粒子は、顔料、紫外線吸収剤、充填剤などの目的で塗料、インク、樹脂組成物、化粧料などに配合して使用されている。しかし、このような無機酸化物粒子の表面には、水酸基があるため、水との相溶性に乏しいオイルなどの低極性溶媒中では分散性が低いため、粒子の凝集などが起こりやすいといった問題があった。
 このような問題を解決する手段として、例えば本願出願人は、多孔質シリカ粒子に対する樹脂被覆粒子の製造方法を検討してきた。特許文献1にて、エマルジョン法または重合法を開示している。
 また本願出願人は、特許文献2にて、プラズマ重合法による樹脂被覆粒子の製造方法を記載している。さらには、特許文献3にて、鱗片状複合粒子に対し噴霧乾燥法による樹脂被覆粒子の製造方法を開示している。
 化粧料の用途として天然物由来の高分子ゲル分子を用いる場合、高分子ゲル溶液のまま用いる場合がほとんどであり、有機粒子として使用(併用も含む)する例はあるが無機粒子と併用して用いる例は少ない。その中で、特許文献4には、無機顔料、雲母類、クレー類その他の体質顔料、化粧品用、工業用顔料と、カルボキシル基を有する酸価200以上の高分子物質のAl、Mg、Ca、Zn、Zr、Tiの金属塩、または該金属塩と疎水化剤共存下、撹拌した後乾燥し顔料に付着させることが記載されている。
 一方、特許文献5には、ケイ酸系化合物、アルミナ系化合物、リン酸系化合物などの無機粒子またはセルロースを始めとする有機粒子と、カテキン類、ビタミン類、タンニン類、天然保湿因子、植物由来の精油などから選ばれる天然有機成分とを混合し、この混合物をスプレードライヤーを用いて噴霧乾燥して得られる天然有機成分担持粒子が、亜麻仁油に対して分散性を有することにより、化粧品材料として使用可能であることが記載されている。
 さらに、特許文献6には、吸湿性物質を顔料表面へ付着させる製造方法が開示されている。
特開2003-012460号公報 特開2003-063932号公報 特開2006-052299号公報 特開昭63-199273号公報 特開2006-045491号公報 特開2007-284483号公報
 特許文献1に記載のエマルジョンおよび重合法表面処理方法は、さらに無機酸化物粒子表面への被覆の高密度化へと発展させる必要があった。
 また、特許文献2に記載のプラズマ修飾固体では、固体表面が瞬間的に100℃以上の条件下に有機化合物が曝される必要があった。
 さらに、特許文献3の噴霧乾燥法では、処理時に100℃以上の気流雰囲気下で操作されるスプレードライヤーを用いた調製が必須であり、さらに均一な被覆ができない恐れがある。また、特許文献4の被覆法では、顔料と保湿成分分子を撹拌した後、乾燥しファンデルワールス力によって付着させる手法であり、均一な被覆ができない恐れがある。
 また、特許文献5に記載の天然有機成分担持粒子は、100℃以上の気流雰囲気下で操作されるスプレードライヤーを用いて調製されるが、粒子に担持すべき天然有機成分が熱安定性に欠ける場合にはこの方法を採用することができないため、低温条件下で粒子表面を修飾する方法が求められていた。
 さらに、特許文献6の被覆法では、無機酸化物顔料とアニオン性官能基を有する表面改質剤共存下、多価金属イオンを添加することにより、多価金属イオンが無機酸化物粒子と表面改質剤とを金属石鹸的に連結するものである。しかしながら、これら従来の付着や噴霧乾燥法による被覆はファンデルワールス力によるものであり、有機分子被覆後のpHや不純物イオンといった外部環境の変化や粒子同士の摩擦により、連結した有機分子成分が粒子から解裂または欠落するという問題点があった。
 さらに述べれば、粒子表面への担持成分または修飾成分について何ら制約を受けることなく、しかも簡便な手段で均一に修飾し、かつ被覆した成分の特性を長期間持続できるような有機無機複合粒子を製造する方法の確立が望まれていた。
 そこで、本発明者らは、上記のような問題を解決することを目的として鋭意研究を重ねた結果、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有する天然物由来の高分子ゲル分子を、粒子表面に静電的結合させ、かつ均一に修飾した有機無機複合粒子を調製できることを見出し、本発明を完成させるに至った。
 本発明に係る有機無機複合粒子は、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有する天然物由来の高分子ゲル分子を、粒子表面に静電的結合させてなることを特徴としている。
 前記高分子ゲルは、アニオン性官能基と1個または2個以上の水酸基を分子内に有して収縮性と膨潤性とを兼ね備えるものであることが好ましい。
 前記無機酸化物粒子は、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、およびケイ素などから選ばれた少なくとも1種の金属元素の酸化物粒子(ただし、ケイ素酸化物粒子を除く。)または複合酸化物粒子であることが好ましい。
 前記無機酸化物粒子は、粒子表面にアニオン電荷を有するケイ素酸化物粒子の表面を、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、およびケイ素などから選ばれた少なくとも1種の金属元素の酸化物(ただし、ケイ素酸化物を除く。)または複合酸化物で被覆したものであることが好ましい。本願で用いる無機酸化物粒子は、表面電荷量の調節を目的とした表面処理を施した粒子を使用することがより好ましい。
 前記無機酸化物粒子の平均粒子径は、0.1~280μmの範囲にあることが好ましい。
 前記高分子ゲル分子は、周辺環境の変化に応じてその分子形態を変化させて収縮したり、膨潤したりするものであることが好ましい。
 前記高分子ゲル分子は、その分子内に1個または2個以上の水酸基を有するものであることが好ましい。
 前記高分子ゲル分子は、カルボキシル基、チオール基、スルホン基、スルフィン基、スルフェン基、ホスホン酸基、ホスフィン酸基、ホスフェン酸基、リン酸基、ヒドロキシム酸基、ヒドロキサム酸基、ニトロール基、ニトロソール基、およびニトロン酸基の群から選ばれた少なくとも1種のアニオン性官能基を分子内に有するものであることが好ましい。
 前記高分子ゲル分子は、ヒアルロン酸またはその塩からなるヒアルロン酸類、アミノ酸、ポリアミノ酸、ピロリドンカルボン酸またはその誘導体、尿素またはその誘導体、N-アセチルグルコサミン、動植物性多糖類、コエンザイムQ10、ライスパウダー、ゼラチン、オリゴ糖、単糖類、サポニン類、植物性ペプタイド、リン脂質、セリシン、コンドロイチン、セラミド、アルブミン、コラーゲン、キチンおよびキトサン、植物・海藻抽出物類から選ばれた少なくとも1種であることが好ましい。
 さらに前記高分子ゲル分子は、天然高分子化合物類、イタコン酸類、およびN-イソプロピルアクリルアミド類から選ばれた少なくとも1種の化合物、または該化合物とエステル系化合物もしくはポリ(メタ)アクリル酸エステルとの共重合体から選ばれた少なくとも1種の化合物を用いてもよい。
 前記天然高分子化合物類は、カテキン類、ビタミン類、タンニン類、多糖類、たんぱく質類、リン脂質類、天然保湿因子類、アルギン酸類、ポリグルタミン酸類およびポリアスパラギン酸類から選ばれた少なくとも1種またはその塩であることが好ましい。
 前記カテキン類は、茶由来のカテキンであることが好ましい。
 前記ビタミン類は、ビタミン、ビタミン誘導体、ビタミンに近い働きをするビタミン様物質から選ばれた少なくとも1種であることが好ましい。
 前記タンニン類は、タンニン、タンニン酸、ピロガロール、没食子酸および没食子酸エステルから選ばれた少なくとも1種であることが好ましい。
 前記有機無機複合粒子の平均粒子径は、0.1~300μmの範囲にあることが好ましい。
 前記有機無機複合粒子は、前記無機酸化物粒子の表面に静電的結合させる前記高分子ゲル分子の量と該高分子ゲル分子を膨潤させる時間の長さによってその平均粒子径を制御したものであることが好ましい。
 本発明に係る有機無機複合粒子の製造方法は、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を静電的引力により結合させてなる有機無機複合粒子の製造方法であって、
(1)前記高分子ゲル分子を含む溶液に、該高分子ゲル分子を収縮させることのできる溶媒を添加して撹拌する工程、
(2)前記工程(1)で得られた溶液に前記無機酸化物粒子を添加して撹拌することにより該無機酸化物粒子の表面に前記高分子ゲル分子を静電的結合させる工程、
(3)前記工程(2)で得られた分散液に、前記高分子ゲル分子を膨潤させることのできる溶媒を添加して撹拌することにより、前記無機酸化物粒子の表面に静電的結合させた高分子ゲル分子を膨潤させる工程、
(4)前記工程(3)で得られた分散液を濾過して固形分を分離する工程、
(5)前記工程(4)で得られた固形分を乾燥する工程、
を含むことを特徴としている。
 上記の製造方法において、前記高分子ゲル分子がヒアルロン酸であるとき、前記工程(1)で添加される溶媒は、アセトンであることが好ましい。
 また、前記高分子ゲル分子がヒアルロン酸であるとき、前記工程(3)で添加される溶媒は、水であることが好ましい。
 本発明に係る有機無機複合粒子分散液は、前記有機無機複合粒子を油脂類、ロウ類、炭化水素類、脂肪酸類、アルコール類、アルキルグリセリルエーテル類、エステル類、多価アルコール類、糖類、シリコーン油、架橋シリコーンゲルおよびフッ素油から選ばれた溶媒またはその混合溶媒に、0.001~50重量%の範囲で分散させてなることを特徴としている。
 本発明に係る化粧料は、前記有機無機複合粒子を0.001~40重量%の範囲で配合してなるものであることを特徴としている。
 前記化粧料は、スキンケア化粧料、ベースメークアップ化粧料、洗浄用化粧料、またはボディーケア化粧料であることが好ましい。
 本発明に係る有機無機複合粒子、すなわち無機酸化物粒子の表面に収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を静電的引力により結合させてなる有機無機複合粒子は、水などの水系溶媒の他に、非水系溶媒に対しても分散性がよく、しかも粒子同士の凝集が起こりにくいという特性を備えている。
 また、従来のファンデルワールス力による有機無機複合粒子と異なり、連結された有機分子成分が粒子から容易に解裂または欠落する虞がない。
 また、前記高分子ゲル分子は、前記無機酸化物粒子の表面に結合させる前記高分子ゲル分子の量と該高分子ゲル分子を膨潤させる時間の長さによってその平均粒子径を制御することができるという特性を備えている。
 本発明に係る有機無機複合粒子の製造方法によれば、常温・常圧の液中条件下で、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を静電的引力によって簡単に結合させることができる。すなわち、本発明方法によれば、100℃以上の加熱操作を必要としないので、たとえ前記高分子ゲル分子が熱安定性に欠けるものであっても、前記無機酸化物粒子の表面に容易に結合させることができる。
 また、本発明方法によれば、水などの水系溶媒の他に、非水系溶媒に対しても分散性がよく、しかも粒子同士の凝集が起こりにくいという特性を備えた有機無機複合粒子を容易に得ることができる。
 さらに、前記無機酸化物粒子が、たとえ粒子表面にアニオン電荷を有する無機酸化物粒子(例えば、シリカなどのケイ素酸化物粒子)であっても、カチオン電荷を有する無機酸化物でその表面を被覆すれば、本発明でいう無機酸化物粒子として使用することもできる。
図1は、アルミナで被覆したシリカ粒子(すなわち、粒子表面にカチオン電荷を有する無機酸化物粒子「アルミナ被覆シリカ粒子(II)」)を、走査型電子顕微鏡で撮った倍率10,000倍の写真(SEM写真)である。 図2は、アルミナで被覆したシリカ粒子の表面にヒアルロン酸を結合させてなる有機無機複合粒子(実施例4の粒子D)を、走査型電子顕微鏡で撮った倍率350,000倍の写真(SEM写真)である。
 以下、本発明に係る有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料の実施態様について具体的に説明する。
[有機無機複合粒子]
 本発明に係る有機無機複合粒子は、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を、粒子表面に静電的結合させてなるものである。
無機酸化物粒子
 前記無機酸化物粒子としては、粒子表面にカチオン電荷を有するものであれば、特に制限なく使用することができる。すなわち、市販されているものをそのまま用いてもよく、また従来公知の方法で調製したものを用いてもよい。その調製方法としては、例えば噴霧乾燥法、加水分解法、ゾルーゲル法などが挙げられる。
 さらに具体的に述べれば、前記無機酸化物粒子は、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、ケイ素などから選ばれた少なくとも1種の金属元素の酸化物粒子(ただし、ケイ素酸化物粒子を除く。)または複合酸化物粒子であることが好ましい。
 また、前記無機酸化物粒子は、粒子表面にアニオン電荷を有するケイ素酸化物粒子の表面を、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、ケイ素、から選ばれた少なくとも1種の金属元素の酸化物(ただし、ケイ素酸化物を除く。)または複合酸化物で被覆したものであることが好ましい。本発明で用いる無機酸化物粒子は、表面電荷量の調節を目的とした表面処理を施した粒子を使用することがより好ましい。
 前記無機酸化物粒子の平均粒子径は、0.1~280μm、特に0.15~250μmの範囲にあることが好ましい。ここで、前記平均粒子径が0.1μm未満のものは、粒子の飛散力が高まって取扱いが難しくなるので好ましくない。また、前記平均粒子径が280μmを超えると、自然沈降力が高まって溶媒中に均一に分散させることが難しくなるので、好ましくない。
 なお、前記無機酸化物粒子は、サンプルミル、サンドミル、ジェットミル、ジューサーミキサー、ヤリヤ粉砕機などを用いて粉砕して適当な大きさの粒子に調節したものであってもよい。
 前記無機酸化物粒子の形状は、特に制限されずに用途や効果に応じて針状、球状、棒状、板状、鱗片状、円環状、中空状または貫通孔を有する形状のものから適宜選択して用いることができる。なお、前記平均粒子径については、その形状によって個別の測定条件(例えば、(長手方向の長さ+短手方向の長さ)/2など)が示される場合があるが、本発明においては、後述する「測定方法および評価方法」のところに記載された遠心沈降式粒度分布測定装置を用いて測定された値を意味する。
 前記無機酸化物粒子は、通常、後述する有機化合物分子を含む溶液中に、そのまま添加して使用されるが、平均粒子径の小さいもの(例えば、1μm未満)については粒子同士が凝集してしまうことがある。よって、このように平均粒子径の小さいものは、水や有機溶媒などの溶媒中に予め分散または懸濁させて使用することが好ましい。
高分子ゲル分子
 本発明で使用される高分子ゲル分子は、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を、粒子表面に静電的結合させることができるものである。
 ここで、「静電的結合」とは、正電荷と負電荷間に働く力、例えばクーロン力、水素結合力、疎水性相互作用などをいい、静電的引力によって無機酸化物粒子の表面に高分子ゲル分子が結合した状態をいう。従って、ファンデルワールス力、インターカレーション等の結合力の弱いものとは区別される。
 前記高分子ゲル分子は、周辺環境の変化に応じてその分子形態を変化させて収縮したり、膨潤したりするものから適宜選択される。
 また、前記高分子ゲル分子は、その分子の分子内に1個または2個以上の水酸基を有するものであることが好ましい。ここで、前記水酸基により、水分子を包接したり、放出したりする。この水分子の取り込み量の変化により、前記高分子ゲル分子が収縮または膨潤という分子形態の変化をする。
 前記高分子ゲル分子は、カルボキシル基、チオール基、スルホン基、スルフィン基、スルフェン基、ホスホン酸基、ホスフィン酸基、ホスフェン酸基、リン酸基、ヒドロキシム酸基、ヒドロキサム酸基、ニトロール基、ニトロソール基、およびニトロン酸基の群から選ばれた少なくとも1種のアニオン性官能基を分子内に有するものであることが好ましい。
 さらに詳しく述べれば、前記高分子ゲル分子としては、カルボキシル基(-COOH)をもつ有機炭素酸化物、チオール基(-SH)、スルホン基(-SOH)、スルフィン基(-S(=O)OH)、スルフェン基(-SOH)などをもつ有機硫黄酸化物、ホスホン酸基(-P(=O)(OH)2)、ホスフィン酸基、ホスフェン酸基などをもつ有機リン酸化物、ヒドロキシム酸(-C(=NOH)OH)、ヒドロキサム酸(-C(=O)NHOH)、ニトロール酸、ニトロソール酸、ニトロン酸などをもつ有機窒素酸化物や有機ホウ素酸化物、またはその塩がある。なお、これらの化合物は、1種単独または2種以上の混合物であってもよい。
 前記高分子ゲル分子について、さらに具体的に述べれば、天然保湿因子類は、ヒアルロン酸またはその塩からなるヒアルロン酸類、アミノ酸、ポリアミノ酸、ピロリドンカルボン酸またはその誘導体、尿素またはその誘導体、N-アセチルグルコサミン、動植物性多糖類、コエンザイムQ10、ライスパウダー、ゼラチン、オリゴ糖、単糖類、サポニン類、植物性ペプタイド、リン脂質、セリシン、コンドロイチン、セラミド、アルブミン、コラーゲン、キチンおよびキトサン、植物・海藻抽出物類から選ばれた少なくとも1種であることが好ましい。
 前記高分子ゲル分子のうちヒアルロン酸またはその塩の平均分子量は、1,000~5,000,000、好ましくは5,000~3,000,000であることが望ましい。ここで、前記平均分子量が1,000未満であると、ヒアルロン酸のもつ保湿機能の発現効果が低いため好ましくない。また前記平均分子量が5,000,000を超えると、粘性が増加して粒子の分散性に悪影響を及ぼすことがあり、結果として高分子ゲル分子を粒子表面に均一結合させることが難しくなるので、好ましくない。
 なお、ここでいう平均分子量とは、日本薬局方一般試験法に定める粘度測定法にて測定したものである。
 さらに前記高分子ゲル分子は、天然高分子化合物類、イタコン酸類、およびN-イソプロピルアクリルアミド類から選ばれた少なくとも1種の化合物、または該化合物とエステル系化合物もしくはポリ(メタ)アクリル酸エステルとの共重合体から選ばれた少なくとも1種の化合物などが挙げられるものであってもよい。
 ここで、前記天然高分子化合物類は、カテキン類、ビタミン類、タンニン類、多糖類、たんぱく質類、リン脂質類、天然保湿因子類、アルギン酸類、ポリグルタミン酸類、およびポリアスパアギン酸類から選ばれた少なくとも1種またはその塩であることが好ましい。
 また、前記カテキン類は、茶由来のカテキンであることが好ましい。
 前記ビタミン類は、ビタミン、ビタミン誘導体、およびビタミンに近い働きをするビタミン様物質から選ばれた少なくとも1種であることが好ましい。
 また、前記タンニン類は、タンニン、タンニン酸、ピロガロール、没食子酸、および没食子酸エステルから選ばれた少なくとも1種であることが好ましい。
 植物・海藻抽出物類としては、アボカド抽出物、アルテア抽出物、アルニカ抽出物、アシタバ抽出物、アロエ抽出物、アーモンド油、イナゴマメ抽出物、イネ抽出物、イチゴ抽出物、ウイキョウ抽出物、ウコン抽出物、ウスベニアオイ抽出物、サイシン抽出物、エゴマ油、オウレン抽出物、オリーブ油、オドリコソウ抽出物、オトギリソウ抽出物、オウゴン抽出物、オノニス抽出物、インチンコウ抽出物、カミツレ抽出物、カラスムギ抽出物、カンゾウ抽出物、キズタ抽出物、キイチゴ抽出物、キンギンカ抽出物、クマザサ抽出物、クチナシ抽出物、グレープフルーツ抽出物、クジン抽出物、クララ抽出物、クレソン抽出物、黒砂糖抽出物、ゲンノショウコ抽出物、ゲンチアナ抽出物、ゴボウ抽出物、コボタンヅル抽出物、コムギ抽出物、小麦胚芽抽出物、ゴマ抽出物、コンフリー抽出物、サボテン抽出物、サボンソウ抽出物、サンザシ抽出物、サルビア抽出物、ショウガ抽出物、シソ抽出物、ジオウ抽出物、シア脂、シモツケ抽出物、シャクヤク抽出物、シラカバ抽出物、シラユリ抽出物、センキュウ抽出物、ゼニアオイ抽出物、ソウハクヒ抽出物、タチジャコウソウ抽出物、大豆抽出物、緑茶、紅茶、烏龍茶等の茶抽出物、ツバキ抽出物、トウモロコシ抽出物、トウチュウカソウ抽出物、トルメンチラ抽出物、トウキ抽出物、ドクダミ抽出物、バクモンドウ抽出物、ハウチマメ抽出物、ハマメリス抽出物、ハッカ抽出物、ミドリハッカ抽出物、セイヨウハッカ抽出物、パセリ抽出物、バラ抽出物、ヒマワリ抽出物、ヒノキ抽出物、ヘチマ抽出物、ブドウ抽出物、プルーン抽出物、ブッチャーズブルーム抽出物、ボラージ油、ボタン抽出物、ホホバ油、ボダイジュ抽出物、ホップ抽出物、マツ抽出物、マロニエ抽出物、マカデミアナッツ油、マルメロ抽出物、ムラサキ抽出物、メドウホーム油、メリッサ抽出物、ムクロジ抽出物、モッカ抽出物、ヤグルマソウ抽出物、ユリ抽出物、ユズ抽出物、ユキノシタ抽出物、ヨクイニン抽出物、羅漢果抽出物、ライム抽出物、ラベンダー抽出物、リンドウ抽出物、ワレモコウ抽出物、リンゴ抽出物及びレンゲソウ抽出物等の植物抽出物やコンブ、マコンブ、ワカメ、ヒジキ、ヒバマタ、ウミウチワ、マツモ、モズク、イシゲ、ハバノリ、コンブモドキ、フクロノリ、イワヒゲ、カゴメノリ、アナメ、スジメ、トロロコンブ、カジメ、ツルアラメ、チガイソ、エゾイシゲ、ラッパモク、ホンダワラ、オオバモク、ジャイアントケルプ等の褐藻類;テングサ、ヒラクサ、オニクサ、オバクサ、トサカノリ、キリンサイ、ツノマタ、トチヤカ、スギノリ、シキンノリ、カイノリ、ウスバノリ、ウシケノリ、アサクサノリ、フサノリ、カギノリ、ヒビロウド、カタノリ、ムカデノリ、マツノリ、トサカマツ、フノリ、イバラノリ、オゴノリ、カイメンソウ、ダルス、イギス、エゴノリ、コノハノリ、ヒメゴケ等の紅藻類;クロレラ、アオノリ、ドナリエラ、クロロコッカス、アナアオサ、カワノリ、マリモ、シオグサ、カサノリ、フトジュズモ、タマジュズモ、ヒトエグサ、アオミドロ等の緑藻類等の海藻抽出物から選ばれた少なくとも1種であることが好ましい。
 前記有機無機複合粒子は、前記無機酸化物粒子の表面に結合させる前記高分子ゲル分子の量と該高分子ゲル分子を膨潤させる時間の長さによってその平均粒子径を制御することができ、これは本発明における一つの特徴部分である。
 前記無機酸化物粒子の表面に結合させる前記高分子ゲル分子の量は、該無機酸化物粒子の全量に対し0.001~20重量%、好ましくは0.005~10重量%の範囲にあることが好ましい。ここで、前記結合量が0.001重量%未満では、高分子ゲル分子のもつ機能(例えば、該有機無機複合粒子を化粧料に配合して使用する場合は、感触特性など)を発現させることが難しくなるため、好ましくない。また、前記結合量が20重量%を超える場合は、高分子ゲル分子同士の相互作用が強くなって、該高分子ゲル分子のもつ機能を低下させる要因となることがあるので、好ましくない。
 このようにして得られる前記有機無機複合粒子の平均粒子径は、0.1~300μm、好ましくは0.15~280μmの範囲にあることが好ましい。ここで、前記平均粒子径が0.1μm未満のものを使用することもできるが、粒子の飛散力が高まって取扱いが難しくなるので好ましくない。また、前記平均粒子径が300μmを超えると、前記無機酸化物粒子の場合と同様に、自然沈降力が高まって溶媒中に均一に分散させることが難しくなるので、ここでは、300μmを上限値とする。
 なお、前記無機酸化物粒子は、サンプルミル、サンドミル、ジェットミル、ジューサーミキサー、ヤリヤ粉砕機などを用いて粉砕して適当な大きさの粒子に調節したものであってもよい。
 先にも述べたように、前記有機無機複合粒子は、水系溶媒や非水系溶媒などの溶媒に溶解して使用される。
 前記溶媒としては、前記高分子ゲル分子を溶解させることができるものであれば特に制限なく使用することができる。例えば、水、メタノール、エタノール、イソプロパノールをはじめとするアルコール類、アセトン、エチルメチルケトン、メチルイソブチルケトンをはじめとするケトン類、THF、ジオキサンをはじめとするエーテル類、DMF、NMPをはじめとするアミド類などを挙げることができるが、前記高分子ゲル分子の種類などを考慮して適宜選択すべきである。なお、これらの溶媒は、1種単独または2種以上の混合物であってもよい。ただし、溶媒自身のみならず前記高分子ゲル分子と相分離を起こさないものから選択することが望ましい。
 さらに、前記高分子ゲル分子は、その分子の分子内に1個または2個以上の水酸基により、水分子を包接、放出を行い、周辺環境の変化に応じて水分子の取り込み量の変化により、その分子形態を変化させて収縮したり、膨潤したりすることで保水性を有するものである。すなわち、水分子の包接に伴う膨潤に対し、収縮は膨潤とは逆の過程として、水分子を放出する現象を意味する。ここで、周辺環境の変化とは、1)分散している溶媒(系)の温度、pHなどの物理的性質の変化や、2)混合溶媒系においては、溶媒組成の変化などに伴う双極子パラメーター、比誘電率、粘度、極性などの変化が挙げられる。
 前記膨潤性とは膨潤度で表され、次式で定義する。
 膨潤度 = 膨潤後の高分子ゲル分子の重量/膨潤前の高分子ゲル分子の重量・・・(1)
 測定方法は、膨潤前の高分子ゲル分子1gに対し、水を徐々に滴下し18時間静置した後、水の染み出し(充分膨潤仕切った状態)が確認されたときの重量を測定し、式(1)で算出する。本発明に用いる前記高分子ゲル分子は、膨潤度として10~8,000となる高分子ゲル分子が好ましい。例えば、ヒアルロン酸については、膨潤度が凡6,000となる。
 さらに、前記高分子ゲル分子は、水を主成分とする溶媒中で分子の膨潤状態をとり、一方、有機溶媒を主成分とする含水有機溶媒中で分子の収縮状態をとることが好ましい。
[有機無機複合粒子の製造方法]
 本発明に係る有機無機複合粒子の製造方法は、粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた天然物由来の高分子ゲル分子を静電的引力により結合させてなる有機無機複合粒子の製造方法であって、
(1) 前記高分子ゲル分子を含む溶液に、該高分子ゲル分子を収縮させることのできる溶媒を添加して撹拌する工程、
(2) 前記工程(1)で得られた溶液に前記無機酸化物粒子を添加して撹拌することにより該無機酸化物粒子の表面に前記高分子ゲル分子を静電的結合させる工程、
(3) 前記工程(2)で得られた分散液に、前記高分子ゲル分子を膨潤させることのできる溶媒を添加して撹拌することにより前記無機酸化物粒子の表面に結合した高分子ゲル分子を膨潤させる工程、
(4) 前記工程(3)で得られた分散液を濾過して固形分を分離する工程、
(5) 前記工程(4)で得られた固形分を乾燥する工程、
を含むものである。
 次に、この製造方法の各工程について具体的に説明すれば、以下の通りである。
工程(1)
 この工程では、前記高分子ゲル分子を適当な溶媒に撹拌しながら室温で溶解させた溶液に、撹拌しながら該高分子ゲル分子を収縮させるための溶媒を添加して、さらに室温にて200~700rpmの速度で1~4時間撹拌する。ここで、前記高分子ゲル分子を溶解させる溶媒は、該高分子ゲル分子を溶解し得る水系溶媒または非水系溶媒から選ばれる。また、該高分子ゲル分子を溶解させる際には、必要に応じて前記溶媒を加温することも可能であるが、室温まで冷却したときに、前記高分子ゲル分子が溶解した状態を保持できるものであることが好ましい。
 さらに、前記高分子ゲル分子を収縮させる溶媒は、使用される有機化合物分子の種類などによっても異なるので、水系溶媒または非水系溶媒から適宜選択して使用することが必要である。ここで、前記溶媒としては、前記高分子ゲル分子を溶解するために使用した溶媒だけでなく前記高分子ゲル分子と相分離を起こさないものを使用することが好ましい。
 前記水系溶媒または非水系溶媒中に溶解される前記高分子ゲル分子は、該高分子ゲル分子の種類やその溶解性などによっても異なるが、該溶媒中に0.5~3.0重量%含むような割合で添加することが好ましい。
 また、前記高分子ゲル分子を収縮させるための溶媒は、その種類や前記高分子ゲル分子の種類などによっても異なるが、得られる溶液中に含まれる前記高分子ゲル分子の含有量が0.2~1.0重量%となるような割合で添加することが好ましい。ここで、前記高分子ゲル分子の含有量が0.2重量%未満であると、使用される溶媒の量が必要以上に増えるので好ましくなく、また前記高分子ゲル分子の含有量が1.0重量%を超えると、得られる溶液の粘度が高くなる場合があるので好ましくない。
工程(2)
 この工程では、前記工程(1)で得られた前記高分子ゲル分子を含む溶液を撹拌しながら、これに前記無機酸化物粒子を徐々に添加し、さらに室温にて200~700rpmの速度で1~6時間撹拌する。
 これにより、前記無機酸化物粒子の表面に、前記高分子ゲル分子を静電的引力により結合させる。ここで、前記撹拌時間は、添加する無機酸化物粒子の重量などに依存して変動するが、該無機酸化物粒子が分散液内で均一分散するまでの時間を目安とする。ただし、6時間を超えて撹拌しても格別の効果は得られないので、これ以上行うことは得策ではない。
工程(3)
 この工程では、先ず始めに、前記工程(2)で得られた分散液を撹拌しながら、前記有機化合物分子を膨潤させるための溶媒を添加して、さらに室温にて200~700rpmの速度で1~6時間撹拌する。
 ここで、前記溶媒は、得られる溶液中に含まれる前記高分子ゲル分子の含有量が0.05~0.3重量%となるように添加される。また、前記撹拌時間は、前記溶液中に含まれる無機酸化物粒子(その表面に前記高分子ゲル分子が静電的結合したもの)の重量などに依存して変動するが、該無機酸化物粒子が分散液内で均一分散するまでの時間を目安とする。ただし、6時間を超えて撹拌しても格別の効果は得られないので、これ以上行うことは得策ではない。
 次いで、前記の撹拌を止めて、室温にて6~24時間静置する。これにより、前記無機酸化物粒子の表面に静電的結合した前記高分子ゲル分子を膨潤させる。ここで、前記静置時間は、前記高分子ゲル分子の種類やその結合量などによっても異なるが、6時間未満では、該高分子ゲル分子を完全に膨潤させることができない可能性があるので好ましくない。ただし、粒子の平均粒子径を制御する必要がある場合にはこの限りでない。また、24時間を超えて静置しても格別の効果は得られないので、これ以上行うことは得策ではない。
工程(4)
 この工程では、前記工程(3)で得られた有機無機複合粒子を含む溶液を濾過して固形分を分離する。
 前記有機無機複合粒子からなる固形分の分離は、ブフナー漏斗、フィルタープレス、水平ベルトフィルター、シンクロフィルター、プリコートフィルター、ドラムフィルター、ベルトフィルター、トレイフィルターなどの市販の濾過装置を用いて行うことができる。また、その分離方法も、従来公知の方法を採用することができるが、減圧濾過方式で行うことが好ましい。
 また、このようにして得られる前記有機無機複合粒子のケーキ状物質は、工程(3)で添加した溶媒を用いて、十分に洗浄しておくことが好ましい。
工程(5)
 次いで、前記ケーキ状物質は、常圧または減圧にて、室温~80℃、好ましくは室温~60℃の温度で0.5~6時間、好ましくは1~3時間かけて乾燥することが好ましい。ここで、前記乾燥温度が室温未満であると、前記ケーキ状物質を短時間で十分に乾燥することができず、また前記乾燥温度が80℃を超えると、無機酸化物粒子の表面に静電的結合した前記高分子ゲル分子が分解することがあるので、好ましくない。なお、前記有機無機複合粒子のケーキ状物質の乾燥を比較的低い温度で、しかも短時間で行うためには、減圧乾燥方式で行うことが好ましい。
 また、このようにして得られる有機無機複合粒子の乾燥粉体(粒子群)は、必要に応じてサンプルミル、ジェットミル、ジューサーミキサー、ヤリヤ粉砕機などの粉砕装置や解砕装置にかけて凝集物や塊状になったものなどを予め解砕しておくことが望ましい。
 以上、本発明に係る有機無機複合粒子の製造方法について記載したが、前記高分子ゲル分子としてヒアルロン酸を使用したときの一例を上記の工程ごとに述べれば、以下の通りである。
(1)高分子ゲル分子としてのヒアルロン酸を、溶媒としての水に撹拌しながら室温で溶解させる。次いで、この溶液に、前記ヒアルロン酸を収縮させるための溶媒としてのアセトンを添加して、さらに室温にて約200rpmの速度で約2時間撹拌する。これにより、前記ヒアルロン酸を水中で収縮させる。
(2)前記工程(1)で得られたヒアルロン酸を含む溶液を撹拌しながら、これに無機酸化物粒子(例えば、アルミナ被覆シリカ粒子)を徐々に添加し、さらに室温にて約400rpmの速度で約3時間撹拌する。これにより、前記無機酸化物粒子の表面に、前記ヒアルロン酸を静電的引力により結合させる。
(3)前記工程(2)で得られた分散液を撹拌しながら、これに前記ヒアルロン酸を膨潤させるための溶媒としての水を添加して、さらに室温にて約400rpmの速度で約3時間撹拌する。次いで、前記の撹拌を止めて、室温にて約18時間静置する。これにより、前記無機酸化物粒子の表面に静電的結合した前記ヒアルロン酸を膨潤させる。
(4)前記工程(3)で得られたヒアルロン酸付き有機無機複合粒子を含む溶液を濾過して固形分を分離する。
(5)前記工程(4)で得られた固形分(ケーキ状物質)を減圧条件下、約60℃の温度で約3時間かけて乾燥する。
[有機無機複合粒子分散液]
 本発明に係る有機無機複合粒子分散液は、前記有機無機複合粒子を油脂類、ロウ類、炭化水素類、脂肪酸類、アルコール類、アルキルグリセリルエーテル類、エステル類、多価アルコール類、糖類、シリコーン油、架橋シリコーンゲルおよびフッ素油から選ばれた溶媒またはその混合溶媒に、0.001~50重量%の範囲で分散させてなるものである。
 本発明に係る有機無機複合粒子は、先にも述べたように、水などの水系溶媒の他に、非水系溶媒に対しても分散性がよく、しかも粒子同士の凝集が起こりにくいため、上記の溶媒中に容易に分散させることができる。ここで、前記分散液において、前記有機無機複合粒子の含有量が0.001重量%未満であっても特に問題はないが、その用途(例えば、化粧料)によっては、該有機無機複合粒子のもつ機能を発揮させることができないので、好ましくない。また、前記有機無機複合粒子の含有量が50重量%を超えると、溶液の粘度が増加して、粒子同士の凝集が起こる場合もあるので、好ましくない。
[化粧料]
 本発明に係る化粧料は、前記有機無機複合粒子を0.001~40重量%の範囲で配合してなるものである。
 前記有機無機複合粒子は、該粒子の固形分をそのまま従来公知の化粧料成分に配合するか、あるいは該粒子を含む前記有機無機複合粒子分散液を従来公知の化粧料成分に配合して使用される。ここで、前記分散液において、前記有機無機複合粒子の含有量が0.001重量%未満であっても特に問題はないが、その化粧料用途によっては、該有機無機複合粒子のもつ機能(例えば、感触特性)を発揮させることができないので、好ましくない。また、前記有機無機複合粒子の含有量が40重量%を超えると、該有機無機複合粒子のもつ機能性が過度に発現したり、あるいは副作用(たとえば、皮膚の炎症など)を引き起こしたりする場合があるので、好ましくない。
 前記化粧料としては、スキンケア化粧料、ベースメークアップ化粧料、洗浄用化粧料、ボディーケア化粧料などが挙げられる。この中でも、本発明に係る有機無機複合粒子は、保湿・肌荒れ防止、アクネ、角質ケア、しわ・たるみ対応、くすみ・くま対応、紫外線ケア、抗酸化ケア用等のスキンケア化粧料、パウダーファンデーション、リキッドファンデーション、クリームファンデーション、ムースファンデーション、プレスドパウダー、化粧下地等のベースメークアップ化粧料、石鹸、クレンジングフォーム、メーク落とし用クリーム等の洗浄用化粧料、洗浄用、日焼け防止、手荒れ防止、ボディパウダー等のボディーケア化粧料などの用途に使用することが好ましい。
[測定方法および評価方法]
 本発明の実施例その他で使用された測定方法および評価方法を以下に示す。
(1)平均粒子径の測定方法
(a)平均粒子径の測定法A
 前記無機酸化物粒子または前記有機無機複合粒子を純水中に分散させたスラリー液(固形分濃度1.0重量%)を調製し、これに超音波粉砕機装置((株)カイジョー製TA-5287型超音波破壊装置)を用いて5分間、超音波を照射して前記粒子をよく分散させる。次いで、得られた分散液を、遠心沈降式粒度分布測定装置(堀場製作所製CAPA―700)にかけて前記粒子の粒子径分布を測定して、体積基準の積算分布が50%となる粒子径の値を平均粒子径(所謂、メディアン径)とする。因みに、この測定方法では、水系溶媒(純水)に分散させた0.01~300μmの粒子径をもつ粒子群の平均粒径を測定することができる。
(b)平均粒子径の測定法B
 前記無機酸化物粒子または前記有機無機複合粒子をイソノナン酸イソノニル(日清オイリオグループ(株)製サラコス99(登録商標))中に分散させたスラリー液(固形分濃度1.0重量%)を調製し、これに超音波粉砕機装置((株)カイジョー製TA-5287型超音波破壊装置)を用いて5分間、超音波を照射して、前記粒子をよく分散させる。次いで、得られた分散液を、遠心沈降式粒度分布測定装置(堀場製作所製CAPA-700)にかけて前記粒子の粒子径分布を測定して、体積基準の積算分布が50%となる粒子径の値を平均粒子径(所謂、メディアン径)とする。因みに、この測定方法では、非水系溶媒(イソノナン酸イソノニル)に分散させた0.01~300μmの粒子径をもつ粒子群の平均粒径を測定することができる。
(2)示差熱測定方法
 前記有機無機複合粒子の粉体を白金製容器に約30mg採取し、示差熱天秤装置((株)リガク製 示差熱天秤 サーモプラスTG8110)にかけて前記粒子表面に静電的結合した高分子ゲル分子(水分吸収性のあるものは水分)の量を、大気雰囲気下で、温度を室温から1000℃まで10℃/分の度合いで昇温して測定し、その際の試料の重量変化(%)から求める。
(3)分散性の評価方法
 前記有機無機複合粒子の分散性評価は、水との相溶性に乏しい有機溶媒であるイソノナン酸イソノニル中に分散させた有機無機複合粒子の平均粒子径(所謂、メディアン径)で評価する。なお、この平均粒子径は、上記の平均粒子径測定法Bに基づき測定する。ここで、高分子ゲル分子結合前の無機酸化物粒子の平均粒子径(所謂、メディアン径)より、高分子ゲル分子結合後の無機酸化物粒子の平均粒子径(所謂、メディアン径)が小さくなっていればいるほど、前記有機無機複合粒子の有機溶媒中における分散性が高まっていることを意味する。このように両親媒性を有する有機無機複合粒子は、水溶媒中でも水との相溶性に乏しい有機溶媒に対しても容易に分散させることができ、また該有機溶媒中で粒子の凝集を引き起こすこともない。
 以下、本発明を実施例に基づき具体的に説明する。しかし、本発明は、これらの実施例に限定されるものではない。すなわち、ここには、天然物由来の高分子ゲル分子としてヒアルロン酸またはセリシンを使用した事例のみを示しているが、アニオン性官能基と1個または2個以上の水酸基を分子内に有し収縮性と膨潤性とを兼ね備えた高分子ゲル分子であれば、特に制限なく使用することができる。また、周辺環境の変化因子の一つである「溶液組成の変化」に基づいて、無機酸化物粒子の表面を前記高分子ゲル分子で完全に修飾する方法を記載しているが、その他の手法(例えば、温度変化やpH変化など)を採用してもよい。
[実施例1]
カチオン表面電荷を持つ無機酸化物粒子(I)の調製
 3リットルのチタン製タンクにシリカ粒子[日揮触媒化成(株)製 SILICA MICROBEADS(登録商標) P-1500、前記測定法Aで測定した平均粒子径8.40μm、前記測定法Bで測定した平均粒子径26.37μm]を68g入れ、固形分含有量が約9重量%となるように純水670gを加えた。次に、前記チタン製タンクにpHメーターおよび温度センサーを設置し、チタン製平羽根を用いて回転速度350rpmで2時間撹拌して前記シリカ粒子のスラリーを得た。
 次に、得られたスラリーを70℃の温度まで加熱したのち、このスラリーを撹拌しながら10%濃度の塩酸水溶液を添加してスラリーのpHを6.00に調整した。さらに、前記スラリーのpHを6.00に維持しながら、Al換算基準で約5重量%の高塩基性塩化アルミニウム水溶液(多木化学(株)製 PAC#1000)27gを、2時間かけて添加した。その後、撹拌しながらスラリーの温度を70℃に保って7時間放置した。これにより、シリカ粒子の表面をアルミナ成分で被覆した。
 次いで、前記スラリーの温度を室温まで冷却したのち、ブフナー漏斗を用いて減圧濾過を行った。さらに、シリカの重量に対して20倍量の純水1400gで洗浄した。次に、得られたケーキ状物質を110℃の温度で18時間乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためサンプルミルで解砕して、アルミナで被覆されたシリカ粒子(以下、「アルミナ被覆シリカ粒子(I)」という。)の乾燥粉体69gを得た。このようにして得られたアルミナ被覆シリカ粒子(I)を前記測定法Aで測定した平均粒子径は8.60μm、前記測定法Bで測定した平均粒子径23.17μmであった。
有機無機複合粒子(A)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.0012g入れ、ヒアルロン酸の含有量が約0.01重量%になるように純水12gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.003重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は36gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(I)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(I)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(I)の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(アルミナ被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(A)」という。)11.88gを得た。
 このようにして得られた有機無機複合粒子(A)の分散性を、上記の分散性評価法で評価したところ、8.53μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(A)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例2]
有機無機複合粒子(B)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.0048g入れ、ヒアルロン酸の含有量が約0.01重量%になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.003重量%濃度になるよう撹拌しながら加え、さらに室温にて撹拌した。この時のアセトンの添加量は144gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(I)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(I)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(I)の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次いで、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(アルミナ被覆シリカ粒子(I)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(B)」という)11.96gを得た。
 このようにして得られた有機無機複合粒子(B)の分散性を、上記の分散性評価法で評価したところ、8.59μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機化合物分子(B)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例3]
カチオン表面電荷を持つ無機酸化物粒子(II)の調製
 3リットルのチタン製タンクにシリカ粒子[日揮触媒化成(株)製 SILICA MICROBEADS(登録商標) P-1500、前記測定法Aで測定した平均粒子径8.40μm、前記測定法Bで測定した平均粒子径26.37μm]を68g入れ、固形分含有量が約9重量%となるように純水670gを加えた。次に、前記チタン製タンクにpHメーターおよび温度センサーを設置し、チタン製平羽根を用いて回転速度350rpmで2時間撹拌して前記シリカ粒子のスラリーを得た。
 次に、得られたスラリーを70℃の温度まで加熱したのち、このスラリーを撹拌しながら10%濃度の塩酸水溶液を添加してスラリーのpHを6.00に調整した。さらに、前記スラリーのpHを6.00に維持しながら、Al換算基準で約2重量%の高塩基性塩化アルミニウム水溶液(多木化学(株)製 PAC#1000)11gを、2時間かけて添加した。その後、撹拌しながらスラリーの温度を70℃に保って7時間放置した。これにより、シリカ粒子の表面をアルミナ成分で被覆した。
 次いで、前記スラリーの温度を室温まで冷却したのち、ブフナー漏斗を用いて減圧濾過を行った。さらに、シリカの重量に対して20倍量の純水1400gで洗浄した。次に、得られたケーキ状物質を110℃の温度で18時間乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためサンプルミルで解砕して、アルミナで被覆されたシリカ粒子(以下、「アルミナ被覆シリカ粒子(II)」という。)の乾燥粉体69gを得た。このようにして得られたアルミナ被覆シリカ粒子(II)の前記測定法Aで測定した平均粒子径は10.42μm、前記測定法Bで測定した平均粒子径26.37μmであった。
有機無機複合粒子(C)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.120g入れ、ヒアルロン酸の含有量が約1重量%になるように純水12gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は35gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(II)の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(アルミナ被覆シリカ粒子(II)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(C)」という。)12.26gを得た。
 このようにして得られた有機無機複合粒子(C)の分散性を、上記の分散性評価法で評価したところ、11.23μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(C)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例4]
有機無機複合粒子(D)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は145gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(II)の表面に静電的結合したヒアルロン酸を膨潤させるための純水204gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌をとめて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(アルミナ被覆シリカ粒子(II)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(D)」という。)12.51gを得た。
 このようにして得られた有機無機複合粒子(D)の分散性を、上記の分散性評価法で評価したところ、10.33μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(D)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例5]
有機無機複合粒子(E)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(資生堂(株)製 バイオヒアルロン酸ナトリウム 平均分子量:110~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は144gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)12gを撹拌しながら加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(II)の表面に静電的結合したヒアルロン酸を膨潤させるための純水205gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(アルミナ被覆シリカ粒子(II)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(E)」という。)12.51gを得た。
 このようにして得られた有機無機複合粒子(E)の分散性を、上記の分散性評価法で評価したところ、10.50μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(E)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材では検出しない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例6]
カチオン表面電荷を持つ無機酸化物粒子(III)の調製
 5リットルのチタン製タンクにシリカ粒子[日揮触媒化成(株)製 SILICA MICROBEADS(登録商標) P-1500、前記測定法Aで測定した平均粒子径8.40μm、前記測定法Bで測定した平均粒子径26.37μm]を53g入れ、固形分含有量が約9重量%となるように純水470gを加えた。次に、前記チタン製タンクにpHメーターおよび温度センサーを設置し、チタン製平羽根を用いて回転速度200rpmで2時間撹拌して前記シリカ粒子のスラリーを得た。
 次に、得られたスラリーを70℃の温度まで加熱したのち、このスラリーを撹拌しながら15%濃度のアンモニア水溶液を添加してスラリーのpHを9.35に調整した。さらに、前記スラリーのpHを9.35に維持しながら、MgO換算基準で約10重量%の塩化マグネシウム(関東化学(株)製)5gを、6時間かけて添加した。その後、撹拌しながらスラリーの温度を70℃に保って13時間放置した。これにより、シリカ粒子の表面を酸化マグネシウム成分で被覆した。
 次いで、前記スラリーの温度を室温まで冷却したのち、ブフナー漏斗を用いて減圧濾過を行った。さらに、シリカの重量に対して20倍量の純水1100gで洗浄した。次に、得られたケーキ状物質を110℃の温度で18時間乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためサンプルミルで解砕して、酸化マグネシウムで被覆されたシリカ粒子(以下、「酸化マグネシウム被覆シリカ粒子(III)」という。)の乾燥粉体53gを得た。このようにして得られた酸化マグネシウム被覆シリカ粒子(III)の前記測定法Aで測定した平均粒子径は8.26μm、前記測定法Bで測定した平均粒子径28.67μmであった。
有機無機複合粒子(F)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.120g入れ、ヒアルロン酸の含有量が約1重量%になるように純水12gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は36gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製した酸化マグネシウム被覆シリカ粒子(III)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこの酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合させた。
 次いで、この溶液中に、前記酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(酸化マグネシウム被覆シリカ粒子(III)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させた酸化マグネシウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(F)」という。)12.26gを得た。
 このようにして得られた有機無機複合粒子(F)の分散性を、上記の分散性評価法で評価したところ、9.38μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(F)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(酸化マグネシウム被覆シリカ粒子(III))の表面からは、検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例7]
有機無機複合粒子(G)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は144gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製した酸化マグネシウム被覆シリカ粒子(III)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこの酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合させた。
 次いで、この溶液中に、前記酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合したヒアルロン酸を膨潤させるための純水205gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(酸化マグネシウム被覆シリカ粒子(III)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させた酸化マグネシウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(G)」という。)12.51gを得た。
 このようにして得られた有機無機複合粒子(G)の分散性を、上記の分散性評価法で評価したところ、9.42μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(G)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(酸化マグネシウム被覆シリカ粒子(III))の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例8]
有機無機複合粒子(H)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(資生堂(株)製 バイオヒアルロン酸ナトリウム 平均分子量:110~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は144gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製した酸化マグネシウム被覆シリカ粒子(III)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこの酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合させた。
 次いで、この溶液中に、前記酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合したヒアルロン酸を膨潤させるための純水205gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(酸化マグネシウム被覆シリカ粒子(III)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させた酸化マグネシウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(H)」という。)12.51gを得た。
 このようにして得られた有機無機複合粒子(H)の分散性を、上記の分散性評価法で評価したところ、9.58μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(H)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(酸化マグネシウム被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。またヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例9]
有機無機複合粒子(I)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアロオリゴ(登録商標) 平均分子量:1万以下)を0.20g入れ、ヒアルロン酸の含有量が約1重量%になるように純水20gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は60gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製した酸化マグネシウム被覆シリカ粒子(III)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこの酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合させた。
 次いで、この溶液中に、前記酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合したヒアルロン酸を膨潤させるための純水80gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(酸化マグネシウム被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質(ヒアルロン酸結合酸化マグネシウム被覆シリカ粒子)を洗浄した。
 さらに、マグネティック撹拌子を入れた1リットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.20g入れ、ヒアルロン酸の含有量が約1重量%になるように純水20gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は60gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したヒアルロン酸結合酸化マグネシウム被覆シリカ粒子5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのヒアルロン酸結合酸化マグネシウム被覆シリカ粒子の表面に静電的結合させた。
 次いで、この溶液中に、前記ヒアルロン酸結合酸化マグネシウム被覆シリカ粒子の表面に静電的結合したヒアルロン酸を膨潤させるための純水80gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(ヒアルロン酸結合酸化マグネシウム被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させた酸化マグネシウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(I)」という。)5.11gを得た。
 このようにして得られた有機無機複合粒子(I)の分散性を評価したところ、9.59μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(I)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(酸化マグネシウム被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例10]
有機無機複合粒子(J)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.120g入れ、ヒアルロン酸の含有量が約1重量%濃度になるように純水12gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は35gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)を12g撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、前記スラリー中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、アセトン240g(アルミナ被覆シリカ粒子(II)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(J)」という。)12.18gを得た。
 このようにして得られた有機無機複合粒子(J)の分散性を評価したところ、7.44μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(J)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例11]
有機無機複合粒子(K)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%濃度になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は145gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)を12g撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、前記スラリー中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、アセトン240g(アルミナ被覆シリカ粒子(II)重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(K)」という。)11.96gを得た。
 このようにして得られた有機無機複合粒子(K)の分散性を評価したところ、8.59μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(K)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例12]
有機無機複合粒子(L)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにセリシン(一丸ファルコス(株)製 SILKGEN(登録商標) G SOLUBLES-E 5.5重量%、平均分子量:5,500~40,000)を0.91g入れ、セリシンの含有量が約1重量%になるようにエタノール4gを加えた。次いで、セリシンの分子収縮を起こさせる溶媒としてのアセトンを、セリシンの含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は12gであった。
 次に、このようにして得られた溶液(収縮状態のセリシンを含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記セリシンをこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(II)の表面に静電的結合したセリシンを膨潤させるための純水30gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(アルミナ被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にセリシンを静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(L)」という。)4.78gを得た。
 このようにして得られた有機無機複合粒子(L)の分散性を、上記の分散性評価法で評価したところ、8.63μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(L)を測定したところ、その表面(セリシンの静電的結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。
[実施例13]
有機無機複合粒子(M)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにセリシン(一丸ファルコス(株)製 SILKGEN(登録商標) G SOLUBLES-E 5.5重量%、平均分子量:5,500~40,000)を3.64g入れ、セリシンの含有量が約1重量%になるようにエタノール16gを加えた。次いで、セリシンの分子収縮を起こさせる溶媒としてのアセトンを、セリシンの含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は46gであった。
 次に、このようにして得られた溶液(収縮状態のセリシンを含む。)に、上記で調製したアルミナ被覆シリカ粒子(II)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記セリシンをこのアルミナ被覆シリカ粒子(II)の表面に静電的結合させた。
 次いで、この溶液中に、前記アルミナ被覆シリカ粒子(II)の表面に静電的結合したセリシンを膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(アルミナ被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にセリシンを静電的結合させたアルミナ被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(M)」という。)4.80gを得た。
 このようにして得られた有機無機複合粒子(M)の分散性を、上記の分散性評価法で評価したところ、9.95μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(M)を測定したところ、その表面(セリシンの静電的結合部分)に、基材(アルミナ被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認した。
[実施例14]
有機無機複合粒子(N)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.05g入れ、ヒアルロン酸の含有量が約1重量%になるように純水5gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は12gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、チタニア粒子(石原産業(株)製、TIPAQUE WHITE(登録商標)CR-50、前記測定法Aで測定した平均粒子径0.62μm、前記測定法Bで測定した平均粒子径13.37μm)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのチタニア粒子の表面に静電的結合させた。
 次いで、この溶液中に、前記チタニア粒子の表面に静電的結合したヒアルロン酸を膨潤させるための純水25gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(チタニア粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたチタニア粒子の乾燥粉体(以下、「有機無機複合粒子(N)」という。)4.76gを得た。
 このようにして得られた有機無機複合粒子(N)の分散性を、上記の分散性評価法で評価したところ、11.41μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(N)を測定したところ、その表面(ヒアルロン酸の静電的結合部分)に、基材(チタニア粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[実施例15]
有機無機複合粒子(O)の調製
 マグネティック撹拌子を入れた300ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.2g入れ、ヒアルロン酸の含有量が約1重量%になるように純水20gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。この時のアセトン添加量は46gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、チタニア粒子(石原産業(株)製、TIPAQUE WHITE(登録商標)CR-50、前記測定法Aで測定した平均粒子径0.62μm、前記測定法Bで測定した平均粒子径13.37μm)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのチタニア粒子の表面に静電的結合させた。
 次いで、この溶液中に、前記チタニア粒子の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(チタニア粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたチタニア粒子の乾燥粉体(以下、「有機無機複合粒子(O)」という。)4.76gを得た。
 このようにして得られた有機無機複合粒子(O)の分散性を、上記の分散性評価法で評価したところ、12.47μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(O)を測定したところ、その表面(ヒアルロン酸の静電的結合部分)に、基材(チタニア粒子)の表面からは検出されない大量の水成分のピークを確認した。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できた。
[比較例1]
カチオン表面電荷を持つ無機酸化物粒子の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにシリカ粒子[日揮触媒化成(株)製 SILICA MICRO BEADS(登録商標) P-1500、前記測定法Aで測定した平均粒子径8.40μm、前記測定法Bで測定した平均粒子径26.37μm]を20g入れ、固形分含有量が約9重量%となるように純水220gを加えた。次に、前記ガラス製ビーカーにpHメーターを設置し、マグネティック撹拌子を用いて回転速度300rpmで2時間撹拌して前記シリカ粒子のスラリーを得た。
 次に、得られたスラリーを室温にて撹拌しながら15%濃度の水酸化ナトリウム水溶液を添加してスラリーのpHを約12.0に調整し、4時間撹拌した後スラリーを18時間放置し、シリカ粒子の表面にナトリウム成分を静電的結合させた。
 次いで前記スラリー中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過を行った。さらに、シリカの重量に対して20倍量の純水400gで洗浄した。次に、得られたケーキ状物質を110℃の温度で18時間乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためサンプルミルで解砕して、ナトリウムで被覆されたシリカ粒子(以下、「ナトリウム被覆シリカ粒子」という。)(IV)の乾燥粉体20gを得た。このようにして得られたナトリウム被覆シリカ粒子の前記測定法Aで測定した平均粒子径は9.68μmであった。
有機無機複合粒子(a)の調製
 マグネティック撹拌子を入れた500ミリリットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアルロンサン HA-LQ 平均分子量:85~160万)を0.480g入れ、ヒアルロン酸の含有量が約1重量%濃度になるように純水48gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて2時間撹拌した。このときのアセトン添加量は144gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製したナトリウム被覆シリカ粒子(IV)12gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこのナトリウム被覆シリカ粒子(IV)の表面に静電的結合させた。
 次いで、この溶液中に、前記ナトリウム被覆シリカ粒子(IV)の表面に静電的結合したヒアルロン酸を膨潤させるための純水60gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水240g(ナトリウム被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させたナトリウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(a)」という。)12.51gを得た。
 このようにして得られた有機無機複合粒子(a)の分散性を評価したところ、20.06μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(a)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(ナトリウム被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認できなかった。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できなかった。
[比較例2]
有機無機複合粒子(b)の調製
 マグネティック撹拌子を入れた1リットルのガラス製ビーカーにヒアルロン酸(キューピー(株)製 ヒアロオリゴ(登録商標) 平均分子量:1万以下)を0.20g入れ、ヒアルロン酸の含有量が約1重量%になるように純水20gを加えた。さらに、室温にて4時間撹拌して、ヒアルロン酸を純水中に溶解させた。次いで、ヒアルロン酸の分子収縮を起こさせる溶媒としてのアセトンを、ヒアルロン酸の含有量が約0.3重量%になるように撹拌しながら加え、さらに室温にて4時間撹拌した。このときのアセトン添加量は60gであった。
 次に、このようにして得られた溶液(収縮状態のヒアルロン酸を含む。)に、上記で調製した酸化マグネシウム被覆シリカ粒子(III)5gを撹拌しながら徐々に加え、さらに室温にて2時間撹拌した。これにより、前記ヒアルロン酸をこの酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合させた。
 次いで、この溶液中に、前記酸化マグネシウム被覆シリカ粒子(III)の表面に静電的結合したヒアルロン酸を膨潤させるための純水80gを撹拌しながら加え、さらに室温にて2時間撹拌した。その後、この撹拌を止めて、室温にて18時間静置した。
 次に、このようにして得られた静置液中に含まれる固形分を、ブフナー漏斗を用いて減圧濾過して、ケーキ状物質を得た。さらに、純水100g(酸化マグネシウム被覆シリカ粒子重量の約20倍量)で前記ケーキ状物質を洗浄した。
 次いで、得られたケーキ状物質を60℃の温度に保たれた乾燥機に入れて4時間乾燥した後、室温に保たれたデシケーター内で減圧乾燥した。さらに、乾燥時に生じた粒子同士の凝集を解すためにサンプルミルに入れて解砕した。これにより、粒子表面にヒアルロン酸を静電的結合させた酸化マグネシウム被覆シリカ粒子の乾燥粉体(以下、「有機無機複合粒子(b)」という。)5.3gを得た。
 このようにして得られた有機無機複合粒子(b)の分散性を評価したところ、19.36μmであった。
 次いで、上記の示差熱天秤法(TG-DTA法)で前記有機無機複合粒子(b)を測定したところ、その表面(ヒアルロン酸の結合部分)に、基材(酸化マグネシウム被覆シリカ粒子)の表面からは検出されない大量の水成分のピークを確認できなかった。さらに、ヒアルロン酸由来の400℃付近に弱いながら熱重量変化が確認できなかった。
 なお、比較を容易にするため、上記で得られた有機無機複合粒子、すなわち実施例複合粒子A~Kおよび比較例複合粒子a~bの概要を以下の表1に示す。
 表1において、被覆率については、各粒子の調製における原料の仕込み量によって定義する。すなわち、調製対象となる無機金属酸化物粒子の重量基準に対して、カチオン電荷付与剤および高分子ゲルを処理する割合によって定義する。
 尚、比較例1においては、シリカ粒子表面がナトリウムで修飾された粒子について便宜上「ナトリウム被覆シリカ粒子」と称したが、他の例と同様の被覆率については算出していない。
 そして、比較例1および比較例2では、得られた粒子aおよび粒子bの表面からは示差熱天秤法(TG-DTA法)評価による水成分のピークは確認されず、また、ヒアルロン酸由来の熱重量変化が確認されていない。したがって、高分子ゲル欄の該当する成分欄は空欄とした。
Figure JPOXMLDOC01-appb-T000001
[実施例16および比較例3]
有機無機複合粒子の感触特性
 実施例1~2および比較例1~2で得られた有機無機複合粒子の粉体について、専門パネラーによる官能テスト(感触特性評価試験)を行い、しっとり感、均一な延び広がり性、柔らかさの3つの評価項目に関して聞き取り調査を行った。その結果を以下の評価点基準に基づき評価した。この評価試験から得られた結果を表2に示す。
 表中のSILICA MICROBEADS(登録商標)とは、高分子ゲル処理を行っていない試料を用いたものを比較例として示す。
評価点基準
◎:非常に優れている。
○:優れている。
△:普通。
×:劣る。
Figure JPOXMLDOC01-appb-T000002
[実施例17および比較例4]
パウダーファンデーションの調製
 表3に示す配合比率(重量%)となるように、実施例3~5で得られた実施例粒子C~E並びに比較例1および比較例2で得られた比較例粒子aおよびbである成分(1)(表3では各種ビーズと記す)と、表3中の成分(2)~(9)とをそれぞれミキサーに入れて撹拌し、均一に混合した。次に、下記化粧料成分(10)~(12)をこのミキサーに入れて撹拌し、さらに均一に混合した。
 次いで、得られたケーキ状物質を解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。
 これにより、実施例粒子C~Eを配合した実施例化粧料C~E、並びに比較例粒子aおよびbを配合した比較例化粧料aおよびbを得た。
Figure JPOXMLDOC01-appb-T000003
パウダーファンデーションの使用感
 有機無機複合粒子の粉体を配合したパウダーファンデーションについて、専門パネラーによる官能テスト(感触特性評価試験)を行い、肌に塗布後の均一な延び、しっとり感、柔らかさ、の3つの評価項目に関して聞き取り調査を行った。その結果を以下の評価点基準に基づき評価した。この評価試験から得られた結果を表4に示す。
 表中のSILICA MICROBEADS(登録商標)とは、高分子ゲル処理を行っていない試料を用いたものを比較例として示す。
評価点基準
◎:非常に優れている。
○:優れている。
△:普通。
×:劣る。
Figure JPOXMLDOC01-appb-T000004

Claims (16)

  1.  粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有する天然物由来の高分子ゲル分子を、粒子表面に静電的結合させた化粧料用の有機無機複合粒子。
  2.  前記高分子ゲル分子が、アニオン性官能基と1個または2個以上の水酸基を分子内に有して収縮性と膨潤性とを兼ね備えるものであることを特徴とする請求項1に記載の有機無機複合粒子。
  3.  前記無機酸化物粒子が、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、およびケイ素から選ばれた少なくとも1種の金属元素の酸化物粒子(ただし、ケイ素酸化物粒子を除く。)または複合酸化物粒子であることを特徴とする請求項1または2に記載の有機無機複合粒子。
  4.  前記無機酸化物粒子が、粒子表面にアニオン電荷を有するケイ素酸化物粒子の表面を、セシウム、マグネシウム、カルシウム、バリウム、セリウム、チタニウム、ジルコニウム、バナジウム、鉄、亜鉛、アルミニウム、およびケイ素から選ばれた少なくとも1種の金属元素の酸化物(ただし、ケイ素酸化物を除く。)または複合酸化物で被覆したものであることを特徴とする請求項1または2に記載の有機無機複合粒子。
  5.  前記無機酸化物粒子の平均粒子径が、0.1~280μmの範囲にあることを特徴とする請求項1~4のいずれかに記載の有機無機複合粒子。
  6.  前記高分子ゲル分子が、周辺環境の変化に応じてその分子形態を変化させて収縮したり、膨潤したりするものであることを特徴とする請求項1~5のいずれかに記載の有機無機複合粒子。
  7.  前記高分子ゲル分子が、カルボキシル基、チオール基、スルホン基、スルフィン基、スルフェン基、ホスホン酸基、ホスフィン酸基、ホスフェン酸基、リン酸基、ヒドロキシム酸基、ヒドロキサム酸基、ニトロール基、ニトロソール基、およびニトロン酸基の群から選ばれた少なくとも1種のアニオン性官能基を分子内に有するものであることを特徴とする請求項1~6のいずれかに記載の有機無機複合粒子。
  8.  前記高分子ゲル分子が、ヒアルロン酸またはその塩からなるヒアルロン酸類、アミノ酸、ポリアミノ酸、ピロリドンカルボン酸またはその誘導体、尿素またはその誘導体、N-アセチルグルコサミン、動植物性多糖類、コエンザイムQ10、ライスパウダー、ゼラチン、オリゴ糖、単糖類、サポニン類、植物性ペプタイド、リン脂質、セリシン、コンドロイチン、セラミド、アルブミン、コラーゲン、キチンおよびキトサン、植物・海藻抽出物類から選ばれた少なくとも1種であることを特徴とする請求項7に記載の有機無機複合粒子。
  9.  前記有機無機複合粒子の平均粒子径が、0.1~300μmの範囲にあることを特徴とする請求項1~8のいずれかに記載の有機無機複合粒子。
  10.  前記有機無機複合粒子が、前記無機酸化物粒子の表面に静電的結合させる前記高分子ゲル分子の量と該高分子ゲル分子を膨潤させる時間の長さによってその平均粒子径を制御したものであることを特徴とする請求項1~9のいずれかに記載の有機無機複合粒子。
  11.  粒子表面にカチオン電荷を有する無機酸化物粒子の表面に、アニオン性官能基と1個または2個以上の水酸基を分子内に有し、さらに収縮性と膨潤性により保水性を有する天然物由来の高分子ゲル分子を、粒子表面に静電的結合させた有機無機複合粒子の製造方法であって、
    (1) 前記高分子ゲル分子を含む溶液に、該高分子ゲル分子を収縮させることのできる溶媒を添加して撹拌する工程、
    (2) 前記工程(1)で得られた溶液に前記無機酸化物粒子を添加して撹拌することにより該無機酸化物粒子の表面に前記高分子ゲル分子を静電的結合させる工程、
    (3) 前記工程(2)で得られた分散液に、前記高分子ゲル分子を膨潤させることのできる溶媒を添加して撹拌することにより、前記無機酸化物粒子の表面に静電的結合した高分子ゲル分子を膨潤させる工程、
    (4) 前記工程(3)で得られた分散液を濾過して固形分を分離する工程、
    (5) 前記工程(4)で得られた固形分を乾燥する工程、
    を含むことを特徴とする有機無機複合粒子の製造方法。
  12.  前記高分子ゲル分子がヒアルロン酸であるとき、前記工程(1)で添加される溶媒が、アセトンであることを特徴とする請求項11に記載の有機無機複合粒子の製造方法。
  13.  前記高分子ゲル分子がヒアルロン酸であるとき、前記工程(3)で添加される溶媒が、水であることを特徴とする請求項11に記載の有機無機複合粒子の製造方法。
  14.  請求項1~10のいずれかに記載の有機無機複合粒子を、油脂類、ロウ類、炭化水素類、脂肪酸類、アルコール類、アルキルグリセリルエーテル類、エステル類、多価アルコール類、糖類、シリコーン油、架橋シリコーンゲルおよびフッ素油から選ばれた溶媒またはその混合溶媒に、0.001~50重量%の範囲で分散させてなる有機無機複合粒子分散液。
  15.  請求項1~10のいずれかに記載の有機無機複合粒子を0.001~40重量%の範囲で配合してなることを特徴とする化粧料。
  16.  前記化粧料が、スキンケア化粧料、ベースメークアップ化粧料、洗浄用化粧料、またはボディーケア化粧料であることを特徴とする請求項15に記載の化粧料。
PCT/JP2010/062958 2009-08-06 2010-07-30 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料 WO2011016404A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10806403.1A EP2462915B1 (en) 2009-08-06 2010-07-30 Organic-inorganic composite particles and process for production thereof, dispersion containing the particles, and cosmetic containing the particles
US13/388,711 US9011888B2 (en) 2009-08-06 2010-07-30 Organic-inorganic composite particles, process for producing the same, dispersion containing the particles, and cosmetic containing the particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-183914 2009-08-06
JP2009183914 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016404A1 true WO2011016404A1 (ja) 2011-02-10

Family

ID=43544300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062958 WO2011016404A1 (ja) 2009-08-06 2010-07-30 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料

Country Status (4)

Country Link
US (1) US9011888B2 (ja)
EP (1) EP2462915B1 (ja)
JP (1) JP5757698B2 (ja)
WO (1) WO2011016404A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388496A (zh) * 2014-12-18 2015-03-04 南京工业大学 一种酶法降解几丁质生产n-乙酰氨基葡萄糖的方法
WO2018135626A1 (ja) * 2017-01-23 2018-07-26 株式会社 資生堂 粉末含有組成物及びその製造方法、並びに化粧料
WO2020164529A1 (zh) * 2019-02-13 2020-08-20 璟轩科技有限公司 防晒复合颗粒及其制造方法、防晒配方

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886020B2 (ja) * 2011-12-14 2016-03-16 三菱鉛筆株式会社 水性美爪料組成物
RU2654517C2 (ru) * 2013-06-24 2018-05-21 Абб Швайц Аг Материал, включающий в себя восстановленный оксид графена, устройство, включающее в себя этот материал, и способ производства этого материала
KR102292422B1 (ko) 2013-09-06 2021-08-20 롬 앤드 하아스 컴패니 균일한 다층 폴리머 코팅물을 갖는 산화금속 입자
CN104431946A (zh) * 2013-09-17 2015-03-25 巴斯克制药公司 营养性增甜剂组合物
KR102546232B1 (ko) * 2016-08-10 2023-06-21 리써치 트라이앵글 인스티튜트 메조다공성 물질들 내에서 금속 유기 골격들의 고체-상태 결정화 방법들 및 그의 하이브리드 물질들
US20190383712A9 (en) * 2017-07-31 2019-12-19 Abbvie Inc. High Throughput Methods for Screening Chemical Reactions Using Reagent-Coated Bulking Agents
CN107596381B (zh) * 2017-09-21 2019-03-26 重庆市人民医院 一种透明质酸介导合成修饰铈纳米量子点的方法及其产品和应用
US11701307B2 (en) 2018-03-30 2023-07-18 Jgc Catalysts And Chemicals Ltd. Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
CN109486046B (zh) * 2018-10-31 2021-04-02 东华大学 一种分散染料/聚苯乙烯/二氧化硅复合粒子的制备方法
CN109985584B (zh) * 2019-04-23 2021-09-21 河北工业大学 一种可调控的草莓状二氧化硅-有机杂化复合微球的制备方法
JP2021014412A (ja) 2019-07-10 2021-02-12 三菱鉛筆株式会社 液体化粧料組成物
CN111253781B (zh) * 2020-03-13 2021-08-24 广东工业大学 一种复合改性钛白粉及其制备方法和应用
KR20220001259A (ko) * 2020-06-29 2022-01-05 (주)아모레퍼시픽 표면처리된 무기입자, 이의 제조방법, 이의 분산액 및 이를 포함하는 화장료 조성물
CN112194234B (zh) * 2020-09-30 2022-12-13 新兴远建(天津)新材料科技有限公司 一种基于高分子复合物原理的微纳米颗粒收集方法
CN112645426B (zh) * 2020-10-29 2022-04-15 南开大学 一种改性纳米硫化亚铁复合材料及其制备方法与应用
JPWO2022172790A1 (ja) * 2021-02-10 2022-08-18
KR20220148575A (ko) * 2021-04-29 2022-11-07 (주)아모레퍼시픽 유무기 복합분체 및 이를 포함하는 조성물
CN116251037A (zh) * 2021-12-09 2023-06-13 华熙生物科技股份有限公司 水解透明质酸钠自组装结构及其制备方法和应用
WO2023214201A1 (en) 2022-05-03 2023-11-09 Abdula Kurkayev Method of obtaining stable suspensions of heterocrystals of titanium dioxide and particles of silicon dioxide and stable suspensions obtained by this method for initiation of active form of oxygen in body at use in medical forms
CN115786900B (zh) * 2022-12-05 2023-06-23 武汉铁路职业技术学院 一种用于铁路轨道预埋件的钝化液及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169712A (ja) * 1986-01-21 1987-07-25 Pola Chem Ind Inc メ−クアツプ化粧料
JPS62209011A (ja) * 1986-03-10 1987-09-14 Kanebo Ltd 化粧料
JPS63199273A (ja) 1987-02-12 1988-08-17 Miyoshi Kasei:Kk 保湿性粉体および化粧料
JPH03153612A (ja) * 1989-11-10 1991-07-01 Mikimoto Seiyaku Kk 化粧料
JPH10251122A (ja) * 1997-03-07 1998-09-22 Shiseido Co Ltd 酵素複合体及びこれを配合した化粧料
JPH11166127A (ja) * 1997-05-30 1999-06-22 Shipley Co Llc 染料を組み入れた顔料及びその製品
JP2002255744A (ja) * 2001-02-26 2002-09-11 Kose Corp 化粧料用粉体及びそれを含有するメーキャップ化粧料
JP2003012460A (ja) 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd 樹脂被覆球状多孔質粒子、その製造方法、および該粒子を配合した化粧料
JP2003063932A (ja) 2001-08-24 2003-03-05 Catalysts & Chem Ind Co Ltd 化粧料用改質無機微粒子およびそれを配合した化粧料
JP2005126426A (ja) * 2003-09-30 2005-05-19 Kao Corp デオドラント組成物
JP2006045491A (ja) 2004-07-01 2006-02-16 Erubu:Kk 機能性材料、機能性材料の製造方法並びにその機能性材料を用いた、機能性部材及び環境改質装置
JP2006052299A (ja) 2004-08-11 2006-02-23 Catalysts & Chem Ind Co Ltd 鱗片状複合粒子およびこれを配合した化粧料
JP2007284483A (ja) 2006-04-13 2007-11-01 Daito Kasei Kogyo Kk 吸湿性顔料およびそれを含有する化粧料
JP2008007536A (ja) * 2006-06-27 2008-01-17 Toshiki Pigment Kk 複合粒子及びこれを配合した化粧料
JP2009143825A (ja) * 2007-12-12 2009-07-02 Shiseido Co Ltd 表面処理粉体及びそれを配合した化粧料
JP2009155211A (ja) * 2007-12-25 2009-07-16 Pola Chem Ind Inc 毛穴補正用の化粧料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500676A (en) * 1983-12-15 1985-02-19 Biomatrix, Inc. Hyaluronate modified polymeric articles
US5118727A (en) * 1991-03-13 1992-06-02 E. I. Du Pont De Nemours And Company Stable mixtures of colloidal silica and a film-forming polymer
US7501136B2 (en) 2003-09-30 2009-03-10 Kao Corporation Deodorant composition
US7601704B2 (en) * 2003-11-03 2009-10-13 University Of North Texas Process for synthesizing oil and surfactant-free hyaluronic acid nanoparticles and microparticles
US8097229B2 (en) * 2006-01-17 2012-01-17 Headwaters Technology Innovation, Llc Methods for manufacturing functionalized inorganic oxides and polymers incorporating same
EP2033619A1 (de) 2007-08-24 2009-03-11 Basf Se Verfahren zum Dispergieren von ionischen Nanopartikeln

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169712A (ja) * 1986-01-21 1987-07-25 Pola Chem Ind Inc メ−クアツプ化粧料
JPS62209011A (ja) * 1986-03-10 1987-09-14 Kanebo Ltd 化粧料
JPS63199273A (ja) 1987-02-12 1988-08-17 Miyoshi Kasei:Kk 保湿性粉体および化粧料
JPH03153612A (ja) * 1989-11-10 1991-07-01 Mikimoto Seiyaku Kk 化粧料
JPH10251122A (ja) * 1997-03-07 1998-09-22 Shiseido Co Ltd 酵素複合体及びこれを配合した化粧料
JPH11166127A (ja) * 1997-05-30 1999-06-22 Shipley Co Llc 染料を組み入れた顔料及びその製品
JP2002255744A (ja) * 2001-02-26 2002-09-11 Kose Corp 化粧料用粉体及びそれを含有するメーキャップ化粧料
JP2003012460A (ja) 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd 樹脂被覆球状多孔質粒子、その製造方法、および該粒子を配合した化粧料
JP2003063932A (ja) 2001-08-24 2003-03-05 Catalysts & Chem Ind Co Ltd 化粧料用改質無機微粒子およびそれを配合した化粧料
JP2005126426A (ja) * 2003-09-30 2005-05-19 Kao Corp デオドラント組成物
JP2006045491A (ja) 2004-07-01 2006-02-16 Erubu:Kk 機能性材料、機能性材料の製造方法並びにその機能性材料を用いた、機能性部材及び環境改質装置
JP2006052299A (ja) 2004-08-11 2006-02-23 Catalysts & Chem Ind Co Ltd 鱗片状複合粒子およびこれを配合した化粧料
JP2007284483A (ja) 2006-04-13 2007-11-01 Daito Kasei Kogyo Kk 吸湿性顔料およびそれを含有する化粧料
JP2008007536A (ja) * 2006-06-27 2008-01-17 Toshiki Pigment Kk 複合粒子及びこれを配合した化粧料
JP2009143825A (ja) * 2007-12-12 2009-07-02 Shiseido Co Ltd 表面処理粉体及びそれを配合した化粧料
JP2009155211A (ja) * 2007-12-25 2009-07-16 Pola Chem Ind Inc 毛穴補正用の化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2462915A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388496A (zh) * 2014-12-18 2015-03-04 南京工业大学 一种酶法降解几丁质生产n-乙酰氨基葡萄糖的方法
CN104388496B (zh) * 2014-12-18 2017-12-22 南京工业大学 一种酶法降解几丁质生产n‑乙酰氨基葡萄糖的方法
WO2018135626A1 (ja) * 2017-01-23 2018-07-26 株式会社 資生堂 粉末含有組成物及びその製造方法、並びに化粧料
CN110177842A (zh) * 2017-01-23 2019-08-27 株式会社资生堂 含粉末组合物及其制造方法以及化妆品
US20190358131A1 (en) * 2017-01-23 2019-11-28 Shiseido Company, Ltd. Powder-containing composition, production method therefor, and cosmetic preparation
CN110177842B (zh) * 2017-01-23 2021-11-05 株式会社资生堂 含粉末组合物及其制造方法以及化妆品
WO2020164529A1 (zh) * 2019-02-13 2020-08-20 璟轩科技有限公司 防晒复合颗粒及其制造方法、防晒配方

Also Published As

Publication number Publication date
EP2462915A1 (en) 2012-06-13
EP2462915B1 (en) 2014-12-24
US9011888B2 (en) 2015-04-21
JP5757698B2 (ja) 2015-07-29
JP2011051972A (ja) 2011-03-17
US20120128748A1 (en) 2012-05-24
EP2462915A4 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5757698B2 (ja) 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料
JP5631530B2 (ja) 表面平滑性を備えた多孔質シリカ系粒子、その製造方法および該多孔質シリカ系粒子を配合してなる化粧料
KR101191268B1 (ko) 하이드로겔을 형성할 수 있는 고분자를 이용한 자외선차단제용 나노무기입자를 함유하는 캡슐 조성물 및 이의 제조방법
JP6019218B2 (ja) 多孔質樹脂粒子、その製造方法、分散液およびその用途
JP2006045491A (ja) 機能性材料、機能性材料の製造方法並びにその機能性材料を用いた、機能性部材及び環境改質装置
US11701307B2 (en) Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
KR20130139830A (ko) 판상 산화세륨과 그 집합체인 꽃잎 형상 산화세륨 분말체, 그 제조 방법, 피복 처리한 판상 산화세륨과 그 집합체인 꽃잎 형상 산화 산화세륨 분말체, 및 화장료
CN107613950A (zh) 皮脂吸附剂以及含有该皮脂吸附剂的化妆料
CN113574097A (zh) 生物降解性树脂颗粒、含有该颗粒的生物降解性树脂颗粒群及其用途
WO2018225310A1 (ja) 粉体改質剤および複合粉体、ならびにメイクアップ化粧料
KR101026589B1 (ko) 수팽윤성 점토 광물 적층 분체, 염료-수팽윤성 점토 광물복합체, 및 이를 함유하는 조성물
US10624822B2 (en) Composite powder in which jade powder particles are impregnated in porous polymer, cosmetic composition containing same and manufacturing method for same
JP6436578B2 (ja) ポリエステル系樹脂粒子、その製造方法及びその用途
WO2013161553A1 (ja) 表面修飾無機酸化物微粒子、及び該微粒子を含有するサンスクリーン化粧料
JP2019178257A (ja) 有機無機複合粒子、及び化粧料
JP4473667B2 (ja) ハイドロキシアパタイト粒子結合合成樹脂多孔性粒子及び外用剤、化粧料
JP3107987B2 (ja) 保湿性複合粒子およびその製造方法
JP2005041827A (ja) ハイドロキシアパタイト粒子結合合成樹脂多孔性粒子及び外用剤、化粧料
KR101022989B1 (ko) 폴리카프로락톤이 표면 코팅된 폴리메틸메타아크릴레이트 혼성 안료 제조 방법
JP2006143666A (ja) 水性ゲル状組成物及びこれを含有する水性ゲル状化粧料。
JP5663778B2 (ja) 結晶性複合粉末及びその製造方法
WO2014123111A1 (ja) 表面修飾無機酸化物微粒子の製造方法
Zhao Silica/polymer composite materials: synthesis, characterization and applications
WO2021214300A1 (en) Composition comprising a fibrous material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13388711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010806403

Country of ref document: EP