WO2011016354A1 - 排熱回生システム - Google Patents

排熱回生システム Download PDF

Info

Publication number
WO2011016354A1
WO2011016354A1 PCT/JP2010/062506 JP2010062506W WO2011016354A1 WO 2011016354 A1 WO2011016354 A1 WO 2011016354A1 JP 2010062506 W JP2010062506 W JP 2010062506W WO 2011016354 A1 WO2011016354 A1 WO 2011016354A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
refrigerant
expander
pressure chamber
condenser
Prior art date
Application number
PCT/JP2010/062506
Other languages
English (en)
French (fr)
Inventor
和彦 川尻
稔 佐藤
和典 土野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112010003195T priority Critical patent/DE112010003195T5/de
Priority to JP2011525852A priority patent/JP4903296B2/ja
Priority to US13/378,841 priority patent/US8739532B2/en
Publication of WO2011016354A1 publication Critical patent/WO2011016354A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • F04C11/006Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present invention relates to an exhaust heat regeneration system that regenerates exhaust heat of cooling water in an engine of an automobile or the like as power by a Rankine cycle.
  • a conventional exhaust heat regeneration system includes a pump that pumps liquid refrigerant in a Rankine cycle, an expander that outputs mechanical energy by expansion of superheated steam refrigerant, a pump that drives a motor and power of the expander as a generator.
  • An integrated unit configured to be connected to a load machine that generates power using the refrigerant, and is provided with a high-pressure chamber through which the refrigerant discharged from the pump flows in the outer periphery of the pump, and the refrigerant expanded by the expander Fins that exchange heat with the refrigerant in the high-pressure chamber are provided (see, for example, Patent Document 1).
  • the conventional techniques have the following problems.
  • the expander outlet side passage serving as the working fluid outlet side of the expander is disposed in the vicinity of a part of the pump outlet side passage serving as the working fluid outlet side of the pump. This increases the heating amount of the working fluid on the inflow side of the expander and increases the expansion work in the expander.
  • heat is easily transferred to the pump side, and the pump temperature rises.
  • the liquid refrigerant (hereinafter sometimes simply referred to as the refrigerant) evaporates at the entrance (especially at the entrance), and it becomes difficult to pressurize and circulate the refrigerant, making the Rankine cycle inoperable. It was.
  • the present invention has been made to solve the above-described problems, and can prevent an increase in the temperature of the pump of the pump-integrated expander. If the pump temperature increases, The purpose is to obtain an exhaust heat regenerative system that can be cooled (in minutes) and can always be operated stably including restart.
  • An exhaust heat regeneration system includes an evaporator that cools engine coolant by heat exchange with a refrigerant, an expander that expands the refrigerant heated via the evaporator and generates a driving force,
  • An exhaust heat regeneration system comprising a condenser that cools and condenses the refrigerant that passes through the expander, and a pump that pumps the refrigerant cooled through the condenser to the evaporator, wherein the expander is a shaft Is connected to the pump, and the expander and the pump are built in the same housing to constitute a pump-integrated expander, and the pump has a refrigerant that flows to the evaporator circulates in the axial direction. It has a high-pressure chamber provided on the expander side.
  • the exhaust heat regeneration system according to the present invention can prevent a temperature rise of the pump of the pump-integrated expander and can perform a stable operation.
  • FIGS. 1 is a diagram showing a configuration of an exhaust heat regeneration system according to Embodiment 1 of the present invention.
  • the same reference numerals indicate the same or corresponding parts.
  • an engine 1 is an internal combustion engine that generates a driving force for driving an automobile.
  • the engine cooling water heated by the engine 1 passes through the cooling water circuit 2a, is cooled by the evaporator 3, and is used again for cooling the engine 1 through the cooling water circuit 2b.
  • the Rankine cycle 100 includes an evaporator 3 for cooling the engine coolant with the refrigerant, an expander 5 for expanding the refrigerant that has become high-temperature and high-pressure steam, and a condenser 6 for cooling and condensing the expanded refrigerant.
  • a pump 8 connected by the expander 5 and the output shaft 7, a first pipe 21 connecting the evaporator 3 and the expander 5, a second pipe 22 connecting the expander 5 and the condenser 6, and
  • the third pipe 23 is constituted by a fourth pipe 24 connecting the condenser 6 and the pump 8, and a fifth pipe 25 connecting the pump 8 and the evaporator 3.
  • the expander 5 and the pump 8 are integrated by a housing 4 a to form a pump-integrated expander 4, and are connected to a motor generator 9 via a shaft 7.
  • FIG. 2 is a diagram showing a detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 1 of the present invention.
  • FIG. 4A is a transverse sectional view
  • FIG. 4B is a longitudinal sectional view.
  • the figure (a) is a cross-sectional view of the pump which looked at the high pressure chamber side from the gear part among the longitudinal sections of the pump integrated expander shown in the figure (b).
  • the expander 5 is a scroll type expander, and is provided with a fixed scroll 51 and a turning scroll 52 connected via a shaft 7 and a bearing 71.
  • the fixed scroll 51 and the orbiting scroll 52 form an expansion chamber 53 that changes its volume and sucks and expands the refrigerant.
  • the refrigerant inlet 54 is connected to the first pipe 21, the expanded refrigerant is discharged to the low pressure space 55, and the outlet 56 of the low pressure space 55 is connected to the second pipe 22.
  • a bearing 72 and a seal 73 are shown.
  • the pump 8 is a gear-type pump, and a first gear 81 connected to the shaft 7 and a second gear 82 meshing with the first gear 81 are provided. Yes.
  • the low-pressure side refrigerant is pumped from the suction port 83 to the high-pressure side discharge port 84 as the first gear 81 and the second gear 82 rotate.
  • the suction port 83 is connected to the fourth pipe 24.
  • a high pressure chamber 87 formed in an annular shape between the first gear 81 and the second gear 82 and the expander 5 is connected to the discharge port 84 and connected to the fifth pipe 25 via the outlet 88.
  • the Rankine cycle 100 is filled with a refrigerant such as R134a.
  • the engine cooling water heated to about 90 ° C. to 100 ° C. by the engine 1 is cooled by the evaporator 3 through the cooling water circuit 2a.
  • the refrigerant is heated to become high-temperature and high-pressure steam at about 90 ° C.
  • the refrigerant that has become high-temperature and high-pressure steam passes through the first pipe 21, is sent to the expander 5, and generates power in the process of expanding in the expander 5.
  • the power obtained here is used for driving a car or generating power.
  • the refrigerant that has become steam at about 60 ° C. after expansion passes through the second pipe 22 and the third pipe 23 and is sent to the condenser 6 having a cooling function by a running wind, a fan, or the like when the car is running.
  • the condenser 6 cools and condenses, becomes a liquid of about 30 ° C., passes through the fourth pipe 24, and is sent to the pump 8.
  • the liquid refrigerant is pressurized by the pump 8, rises to about 30 ° C. by the heat of the adjacent expander 5, etc., and is sent to the evaporator 3 through the fifth pipe 25.
  • the refrigerant sent to the evaporator 3 cools the engine cooling water heated to about 90 ° C. to 100 ° C. by the engine 1 and becomes high-temperature and high-pressure steam of about 90 ° C.
  • the engine cooling water passes through the cooling water circuit 2b and is used again for cooling the engine 1, and the refrigerant repeats the above process to continuously operate the Rankine cycle 100.
  • a low-temperature refrigerant of about 30 ° C. discharged from the first gear 81 and the second gear 82 circulates inside the high-pressure chamber 87 formed annularly on the expander 5 side, The conduction of heat from the expander 5 to the first gear 81 and the second gear 82 constituting the pump 8 is cut off.
  • the first gear 81 and the second gear 82 can be kept at a low temperature and the refrigerant can be prevented from being heated and evaporated at the suction port 83, so that the Rankine cycle 100 can be continuously operated by exhaust heat from the engine 1.
  • power is generated by the expander 5 by the Rankine cycle 100 driven by exhaust heat from the engine 1, thereby assisting engine driving, power generation, and the like.
  • energy efficiency such as improving the fuel efficiency of automobiles.
  • the high pressure chamber 87 in which the refrigerant flowing into the pump 8 flows is provided with the first gear 81 and the second gear.
  • the gear 82 and the expander 5 it is possible to prevent the temperature of the pump 8 of the pump-integrated expander 4 from rising, and to perform a stable operation including restart.
  • the low-temperature refrigerant discharged from the pump 8 circulates inside the high-pressure chamber 87, and the expansion gear 5 supplies the first gear 81 and the second gear 82 that constitute the pump 8. Since the heat transmission is cut off, the first gear 81 and the second gear 82 can be kept at a low temperature, and heat evaporation of the refrigerant at the suction port 83 can be prevented, so that the Rankine cycle 100 is continued by exhaust heat from the engine 1. Can work.
  • the Rankine cycle 100 driven by exhaust heat from the engine 1 generates power in the expander 5 so that it can be used for engine driving assistance, power generation, and the like to improve the fuel efficiency of the vehicle. It leads to improvement.
  • FIG. 3 is a diagram showing a detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 2 of the present invention.
  • FIG. 4A is a transverse sectional view
  • FIG. 4B is a longitudinal sectional view.
  • the figure (a) is a cross-sectional view of the pump which looked at the low pressure chamber side from the gear part among the longitudinal sections of the pump-integrated expander shown in the figure (b).
  • the structure of the waste heat regeneration system which concerns on Example 2 of this invention is the same as that of said Example 1 except a pump integrated expander. Note that the pump-integrated expander of the second embodiment can also be applied to the exhaust heat regeneration system of each embodiment described below.
  • the pump 8 includes a low pressure chamber 85 between the first gear 81 and the second gear 82 and the expander 5.
  • a low pressure chamber 85 formed annularly on the expander 5 side with respect to the first gear 81 and the second gear 82 is connected to the suction port 83 and is connected to the fourth pipe 24 via the suction port 86. Further, the discharge port 84 is connected to the fifth pipe 25.
  • the low pressure chamber 85 is provided between the first gear 81 and the second gear 82 constituting the pump 8 and the expander 5, and the effect of cooling from the low pressure chamber 85 is obtained. It is done. Therefore, the first gear 81 and the second gear 82 can be kept at a low temperature and the refrigerant can be prevented from being heated and evaporated at the suction port 83, so that the Rankine cycle 100 can be continuously operated by the exhaust heat from the engine 1. Then, the Rankine cycle 100 driven by exhaust heat from the engine 1 generates power by the expander 5 to be used for engine driving assistance, power generation, etc., improving energy efficiency such as improving the fuel efficiency of the automobile. Leads to.
  • the temperature of the pump 8 of the pump-integrated expander 4 can be prevented from increasing, and a stable operation including restart can be performed.
  • the low-temperature refrigerant cooled by the condenser 6 circulates inside the low-pressure chamber 85, and is transferred from the expander 5 to the first gear 81 and the second gear 82 constituting the pump 8.
  • the first gear 81 and the second gear 82 can be kept at a low temperature, and the heat evaporation of the refrigerant at the suction port 83 can be prevented.
  • the Rankine cycle 100 driven by the exhaust heat from the engine 1 generates power by the expander 5 to be used for engine driving assistance or power generation, for example, to improve the fuel efficiency of the automobile and improve energy efficiency. Connected.
  • the pump-integrated expander 4 configured to include the expander 5 and the pump 8 in the same housing 4 a has been described.
  • a motor is provided between the expander 5 and the pump 8.
  • the generator 9 is built in, and both the high pressure chamber 87 and the low pressure chamber 85 may be provided between the pump 8 and the motor generator 9 instead of the high pressure chamber 87 or the high pressure chamber 87 or from the expander 5 side. Good.
  • a waste heat regeneration system according to Embodiment 3 of the present invention will be described with reference to FIGS.
  • the configuration of the exhaust heat regeneration system according to Embodiment 3 of the present invention is the same as that of Embodiment 1 shown in FIG. 1 except for the pump-integrated expander.
  • an engine 1 is an internal combustion engine that generates a driving force for driving an automobile.
  • the engine cooling water heated by the engine 1 passes through the cooling water circuit 2a, is cooled by the evaporator 3, and is used again for cooling the engine 1 through the cooling water circuit 2b.
  • the Rankine cycle 100 includes an evaporator 3 for cooling the engine coolant with the refrigerant, an expander 5 for expanding the refrigerant that has become high-temperature and high-pressure steam, and a condenser 6 for cooling and condensing the expanded refrigerant.
  • a pump 8 connected by the expander 5 and the output shaft 7, a first pipe 21 connecting the evaporator 3 and the expander 5, a second pipe 22 connecting the expander 5 and the condenser 6, and
  • the third pipe 23 is constituted by a fourth pipe 24 connecting the condenser 6 and the pump 8, and a fifth pipe 25 connecting the pump 8 and the evaporator 3.
  • the expander 5 and the pump 8 are integrated by a housing 4 a to form a pump-integrated expander 4, and are connected to a motor generator 9 via a shaft 7.
  • FIG. 4 is a diagram showing a detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 3 of the present invention.
  • FIG. 4A is a transverse sectional view
  • FIG. 4B is a longitudinal sectional view.
  • the figure (a) is a cross-sectional view of the pump which looked at the high pressure chamber side from the gear part among the longitudinal sections of the pump integrated expander shown in the figure (b).
  • the expander 5 is a scroll type expander, and is provided with a fixed scroll 51 and a turning scroll 52 connected via a shaft 7 and a bearing 71.
  • the fixed scroll 51 and the orbiting scroll 52 form an expansion chamber 53 that changes its volume and sucks and expands the refrigerant.
  • the refrigerant inlet 54 is connected to the first pipe 21, the expanded refrigerant is discharged to the low pressure space 55, and the outlet 56 of the low pressure space 55 is connected to the second pipe 22.
  • a bearing 72 and a seal 73 are shown.
  • the pump 8 is a gear-type pump, and a first gear 81 connected to the shaft 7 and a second gear 82 meshing with the first gear 81 are provided. Yes.
  • the low-pressure side refrigerant is pumped from the suction port 83 to the high-pressure side discharge port 84 as the first gear 81 and the second gear 82 rotate.
  • a low pressure chamber 85 formed annularly on the expander 5 side with respect to the first gear 81 and the second gear 82 is connected to the suction port 83 and is connected to the fourth pipe 24 via the suction port 86.
  • a high pressure chamber 87 formed in an annular shape between the low pressure chamber 85 and the expander 5 is connected to the discharge port 84 and connected to the fifth pipe 25 via the outlet 88.
  • the Rankine cycle 100 is filled with a refrigerant such as R134a.
  • the engine cooling water heated to about 90 ° C. to 100 ° C. by the engine 1 is cooled by the evaporator 3 through the cooling water circuit 2a.
  • the refrigerant is heated to become high-temperature and high-pressure steam at about 90 ° C.
  • the refrigerant that has become high-temperature and high-pressure steam passes through the first pipe 21, is sent to the expander 5, and generates power in the process of expanding in the expander 5.
  • the power obtained here is used for driving a car or generating power.
  • the refrigerant that has become steam at about 60 ° C. after expansion passes through the second pipe 22 and the third pipe 23 and is sent to the condenser 6 having a cooling function by a running wind, a fan, or the like when the car is running.
  • the condenser 6 cools and condenses, becomes a liquid of about 30 ° C., passes through the fourth pipe 24, and is sent to the pump 8.
  • the liquid refrigerant is pressurized by the pump 8, rises to about 30 ° C. by the heat of the adjacent expander 5, etc., and is sent to the evaporator 3 through the fifth pipe 25.
  • the refrigerant sent to the evaporator 3 cools the engine cooling water heated to about 90 ° C. to 100 ° C. by the engine 1 and becomes high-temperature and high-pressure steam of about 90 ° C.
  • the engine cooling water passes through the cooling water circuit 2b and is used again for cooling the engine 1, and the refrigerant repeats the above process to continuously operate the Rankine cycle 100.
  • a low-temperature refrigerant of about 30 ° C. discharged from the first gear 81 and the second gear 82 circulates inside the high-pressure chamber 87 formed annularly on the expander 5 side, The conduction of heat from the expander 5 to the first gear 81 and the second gear 82 constituting the pump 8 is cut off. Further, a refrigerant having a temperature lower than that of the pump discharge refrigerant cooled by the condenser 6 flows into the low pressure chamber 85 formed in an annular shape between the high pressure chamber 87 and the first gear 81 and the second gear 82. Thus, heat conduction to the first gear 81 and the second gear 82 constituting the pump 8 is further cut off and reduced.
  • the first gear 81 and the second gear 82 can be kept at a low temperature and the refrigerant can be prevented from being heated and evaporated at the suction port 83, so that the Rankine cycle 100 can be continuously operated by exhaust heat from the engine 1.
  • the Rankine cycle 100 driven by the exhaust heat from the engine 1 generates power in the expander 5, thereby assisting engine driving, power generation, and the like.
  • energy efficiency such as improving the fuel efficiency of automobiles.
  • the chamber 87 is configured to include the high pressure chamber 87 and the low pressure chamber 85 in this order from the expander 5 side, and it is possible to prevent a temperature rise of the pump 8 of the pump-integrated expander 4 and to be stable including restart. Can be performed.
  • FIG. 5 is a diagram showing a detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 4 of the present invention.
  • FIG. 4A is a transverse sectional view
  • FIG. 4B is a longitudinal sectional view.
  • the figure (a) is a cross-sectional view of the pump which looked at the high pressure chamber side from the gear part among the longitudinal sections of the pump integrated expander shown in the figure (b).
  • the structure of the waste heat regeneration system which concerns on Example 4 of this invention is the same as that of said Example 3 except a pump integrated expander.
  • the pump-integrated expander of the fourth embodiment can also be applied to the exhaust heat regeneration system of each of the embodiments described below.
  • the pump 8 is configured to include a low pressure chamber 85 on the opposite side of the expander 5 with respect to the first gear 81 and the second gear 82.
  • the first gear 81 and the second gear 82 constituting the pump 8 are sandwiched between the low pressure chamber 85 and the high pressure chamber 87, and an effect of cooling from both sides is obtained. Therefore, the first gear 81 and the second gear 82 can be kept at a low temperature and the refrigerant can be prevented from being heated and evaporated at the suction port 83, so that the Rankine cycle 100 can be continuously operated by the exhaust heat from the engine 1. Then, the Rankine cycle 100 driven by exhaust heat from the engine 1 generates power by the expander 5 to be used for engine driving assistance, power generation, etc., improving energy efficiency such as improving the fuel efficiency of the automobile. Leads to.
  • the temperature of the pump 8 of the pump-integrated expander 4 can be prevented from increasing, and a stable operation including restart can be performed.
  • FIG. 6 is a diagram showing a configuration of an exhaust heat regeneration system according to Embodiment 5 of the present invention.
  • FIG. 7 is a figure which shows the detailed structure of the pump integrated expander of the waste heat regeneration system which concerns on Example 5 of this invention.
  • FIG. 7A is a transverse sectional view
  • FIG. 7B is a longitudinal sectional view.
  • (A) is a cross-sectional view of the pump as seen from the gear portion in the longitudinal section of the pump-integrated expander shown in (b), with the high-pressure chamber and its outlet omitted. ing.
  • the pump 8 is connected to the condenser 6 through the sixth pipe 26, the on-off valve 11, the seventh pipe 27, and the third pipe 23, and is sucked into the low-pressure chamber 85. It is configured to be connected to the sixth pipe 26 via an outlet 89 formed on the opposite side (upper part of FIG. 7B) of the port 86 (lower part of FIG. 7B).
  • the low pressure chamber 85, the suction port 86, and the outlet 89 are indicated by broken lines.
  • the operation and effect of the Rankine cycle 100 during normal operation when the on-off valve 11 is closed is the same as in the third embodiment, and the Rankine cycle 100 driven by exhaust heat from the engine 1 causes the expander 5 to Generating power can be used for engine drive assistance and power generation, leading to improvements in energy efficiency, such as improving the fuel efficiency of automobiles.
  • the pump 8 is in the vicinity of the lowermost portion relative to the condenser 6 (here, the vicinity of the lowermost portion specifically refers to a lower portion of the entire height direction of the condenser 6 from 1/3 to the lower portion. ).
  • the on-off valve 11 is opened under the control of an electronic control unit (ECU: “Electronic Control Unit”) (not shown).
  • ECU Electronic Control Unit
  • the temperature of the pump 8 rises due to heat conduction from the expander 5 side and the refrigerant in the low-pressure chamber 85 evaporates, the evaporated vaporized refrigerant is connected to the sixth pipe 26 and the on-off valve 11 due to the density difference between the liquid and gas.
  • the refrigerant flows into the condenser 6 through the seventh pipe 27 and the third pipe 23, is cooled and liquefied, returns to the low pressure chamber 85, and is naturally circulated.
  • the low pressure chamber 85 is filled with the low-temperature liquid refrigerant.
  • the temperature of the pump 8 can be suppressed and the cooling can be efficiently performed without having an external power source.
  • the operation of the pump 8 is possible, and the exhaust heat regeneration system can be operated stably.
  • the opening / closing valve 11 is opened when the operation of the Rankine cycle 100 is stopped, and the opening / closing valve 11 is closed when the engine 1 starts or the operation of the Rankine cycle 100 starts.
  • the chamber 87 is configured to include the high-pressure chamber 87 and the low-pressure chamber 85 in this order from the expander 5 side, and the low-pressure chamber 85 and the condenser 6 are configured so that the refrigerant can circulate through the on-off valve 11. Therefore, it is possible to prevent the temperature of the pump 8 of the pump-integrated expander 4 from rising, and when the temperature of the pump 8 rises, the pump 8 can be quickly cooled and stable operation including restart can be performed. Yes.
  • FIG. 8 is a diagram showing a configuration of an exhaust heat regeneration system according to Embodiment 6 of the present invention.
  • the sixth embodiment has a configuration in which the second pump 12 is provided in the sixth pipe 26 in addition to the configuration of the fifth embodiment.
  • Control of the opening / closing of the on-off valve 11 and the operation of the second pump 12 is performed by measuring the refrigerant pressure and temperature at the inlet of the pump 8, the temperature of the casing of the pump 8 and the vicinity thereof, or the refrigerant flow rate and the operating frequency of the pump 8. This can be easily implemented by providing a sensor which performs the correlation between the stop of the operation of the Rankine cycle 100 and these relationships.
  • FIG. 8 shows a case where a temperature sensor 31 for measuring the temperature of the refrigerant in the vicinity of the inlet of the pump 8 and a pressure sensor 32 for measuring the pressure of the fourth pipe 24 connected to the same position are installed.
  • a temperature sensor 31 for example, a thermistor or a thermocouple
  • the pressure sensor 32 for example, a resistance strain gauge type pressure sensor can be considered.
  • FIG. 9 is a flowchart showing the operation of the exhaust heat regeneration system according to Embodiment 6 of the present invention.
  • FIG. 9 is a flowchart of the system operation using measured values of the temperature T P and the pressure P of the refrigerant in the vicinity of the inlet of the pump 8 by the temperature sensor 31 and the pressure sensor 32.
  • T P and the pressure P of the refrigerant in the vicinity of the inlet of the pump 8 by the temperature sensor 31 and the pressure sensor 32.
  • the ECU (not shown) measures the temperature T P and the pressure P of the refrigerant in the vicinity of the inlet of the pump 8 using the temperature sensor 31 and the pressure sensor 32 (step 101).
  • the saturated vapor temperature TL at the pressure P of the refrigerant used is calculated (step 102).
  • T L -T P is a value larger than a preset temperature difference ⁇ T SET (YES)
  • the on-off valve 11 is closed, the engine 1 is started to start operation, and the Rankine cycle 100 is operated. Power is generated by the expander 5 (step 103).
  • the temperature sensor 31 and the pressure sensor 32 repeatedly measure the refrigerant temperature T P and pressure P in the vicinity of the inlet of the pump 8 at predetermined intervals, so that T L ⁇ T P Is equal to or smaller than a preset temperature difference ⁇ T SET , the on-off valve 11 is opened, the second pump 12 is operated, and the refrigerant in the low pressure chamber 85 is sent to the condenser 6 (step 111). 113, 115, 116).
  • the refrigerant is efficiently cooled by the condenser 6 without going through the process of being heated by the evaporator 3 and returned to the pump 8, and since the refrigerant is not sent to the evaporator 3, the expander 5 has a high temperature. The refrigerant will not circulate.
  • T L -T P becomes larger than the temperature difference [Delta] T SET set in advance
  • the opening and closing valve 11 stops the operation of the second pump 12 as well as closed, the engine 1 and the Rankine cycle 100 again normal
  • the driving operation is continued (steps 113 and 114).
  • ⁇ T SET is theoretically 0 ° C. or higher, and as small as possible, high Rankine cycle efficiency can be obtained. However, it is usually set to about 5 ° C. for stable operation.
  • FIG. 10 is a diagram showing another configuration of the exhaust heat regeneration system according to Embodiment 6 of the present invention.
  • the flow rate sensor 33 is installed at an arbitrary position of the fifth pipe 25 and measures the flow rate of the refrigerant flowing through the fifth pipe 25.
  • the frequency sensor 34 detects the number of rotations per unit time of the output shaft 7 connected to the pump 8.
  • the refrigerant flow rate can be uniquely calculated from the operation frequency of the pump 8.
  • the error (Q 0 -Q) / Q 0 between the flow rate Q measured by the flow rate sensor 33 and the flow rate Q 0 calculated from the frequency measured by the frequency sensor 34 is larger than the preset flow rate error ⁇ Q SET.
  • T L -T P becomes a value equal to or smaller than the preset temperature difference ⁇ T SET by the opening / closing control of the opening / closing valve 11 based on the pressure and temperature of the refrigerant and the operation control of the second pump 12.
  • ⁇ Q SET is normally set to a value larger than about 0.05.
  • FIG. 11 shows a Mollier diagram when R134a is used as the refrigerant.
  • the pressure and temperature are known, it is possible to determine the three states of the refrigerant at that time, that is, the state of the liquid state, the gaseous state, or the mixed state of the liquid and the gas.
  • the pressure P when R134a is used as the refrigerant the refrigerant temperature T P near the inlet of the pump 8, and the saturated vapor temperature T L at the pressure P.
  • FIG. 11 it can be easily judged that this relationship is a relationship as shown in the figure corresponding to a specific refrigerant (here, R134a).
  • the Rankine cycle 100 can always be stably operated by cooling the pump 8 in advance.
  • the pump 8 can uniquely calculate and evaluate the flow rate based on the operation frequency from the characteristics.
  • the flow rate calculated from the operating frequency and the measured value of the refrigerant flow rate circulating through the Rankine cycle 100 substantially coincide with each other. In this case, it is determined that the pump 8 has reached a high temperature, the pump 8 can be cooled, and the Rankine cycle 100 can be stably operated.
  • the so-called skilled person can use the correlation between the radiator temperature and the fluid temperature. If there is, it is easy to know. It is needless to say that the position at which the sensor is provided is a design problem and varies depending on the engine structure and the like.
  • the refrigerant is circulated through the low pressure chamber 85 and the condenser 6 of the pump 8, so that a remarkable cooling effect of the pump 8 can be exhibited.
  • the pump 8 can usually be cooled in a short time within one minute. Therefore, even when the control is performed based on the measurement values of these sensors, the pump 8 can respond instantaneously. Does not cause engine damage due to seizure.
  • the second pump 12 is provided in the sixth pipe 26 .
  • the second pump 12 may be provided in the seventh pipe 27 and has the same effect.
  • the second pump 12 is provided to forcibly circulate the refrigerant between the low pressure chamber 85 and the condenser 6. This makes it possible to efficiently cool the pump 8 that constitutes the Rankine cycle regardless of whether the engine 1 and the Rankine cycle 100 are operated, and more effectively the temperature of the pump 8 of the pump-integrated expander 4. The rise can be prevented, and when the temperature of the pump 8 rises, the pump 8 can be quickly cooled and a stable operation including restart can be performed.
  • FIG. 12 is a diagram showing a configuration of an exhaust heat regeneration system according to Embodiment 7 of the present invention.
  • Example 7 the three-way valve 13 which switches the refrigerant
  • the operation and effect of the Rankine cycle 100 during normal operation in which the refrigerant discharged from the pump 8 is sent to the evaporator 3 via the three-way valve 13 is the same as that in the third embodiment, and the exhaust heat from the engine 1
  • the Rankine cycle 100 driven by the power generator generates power by the expander 5 and is used for assisting engine driving, power generation, etc., leading to improvement in energy efficiency such as improvement in fuel efficiency of the automobile.
  • the three-way valve 13 is switched so that the fifth pipe 25 connected to the pump 8 and the seventh pipe 27 and the third pipe 23 connected to the condenser 6 are circulated and discharged from the pump 8.
  • the refrigerant is efficiently cooled by the condenser 6 without going through the process of being heated by the evaporator 3, returned to the pump 8, and further added to the evaporator 3. Since no refrigerant is sent to the expander 5, high-temperature refrigerant does not circulate in the expander 5. Therefore, there is no temperature rise of the pump 8 due to the influence of the heating of the expander 5, and the pump 8 is cooled very efficiently. In this case, since the power by Rankine cycle 100 cannot be obtained, pump 8 is driven by motor generator 9 connected to output shaft 7 or the like.
  • the three-way valve 13 is switched.
  • the pump 8 can be cooled efficiently, so that the pump 8 can be operated in a short time, the Rankine cycle 100 can be operated stably for a long time, and the fuel efficiency of the vehicle is improved. Etc., leading to further energy efficiency improvements.
  • the Rankine cycle 100 is also stopped correspondingly, and the temperature of the pump 8 is increased.
  • the three-way valve 13 is switched to switch the pump 8.
  • the switching control of the three-way valve 13 here is similar to the opening / closing control of the opening / closing valve 11 in the sixth embodiment, and the refrigerant pressure and temperature at the inlet of the pump 8 and the temperature of the casing of the pump 8 or the vicinity thereof.
  • it can be easily implemented by providing a sensor for measuring the flow rate of the refrigerant and the operating frequency of the pump 8 and correlating the stoppage of the Rankine cycle 100 with these relationships.
  • the refrigerant discharged from the pump 8 by switching the three-way valve 13 is sent to the condenser 6, Since it is configured to be cooled and circulate to the pump 8, it is possible to prevent the temperature of the pump 8 of the pump-integrated expander 4 from rising, and when the temperature of the pump 8 rises, it can be cooled quickly. Stable operation including restart is possible.
  • FIG. 13 is a diagram showing a configuration of an exhaust heat regeneration system according to Embodiment 8 of the present invention.
  • FIG. 14 is a diagram showing a detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 9 of the present invention.
  • FIG. 15 is a diagram showing another detailed configuration of the pump-integrated expander of the exhaust heat regeneration system according to Embodiment 9 of the present invention.
  • FIGS. 14 (b) and 15 (b) are vertical cross-sectional views.
  • (A) is a cross-sectional view of the pump as seen from the gear portion in the longitudinal section of the pump-integrated expander shown in (b), with the high-pressure chamber and its outlet omitted. ing.
  • the low pressure chamber 85 and the high pressure chamber 87 of the pump 8 are configured by annular flow paths.
  • the low pressure chamber 85 is configured by a spiral flow path.
  • the low pressure chamber 85 may be configured by an elliptical flow path that is installed only in the vicinity of the gear of the pump 8.

Abstract

 ポンプ一体型膨張機のポンプの温度上昇を防止できる排熱回生システムを得る。冷媒との熱交換によりエンジン冷却水を冷却する蒸発器と、蒸発器を経由し加熱された冷媒を膨張させて駆動力を発生する膨張機と、膨張機を経由する冷媒を冷却し凝縮させる凝縮器と、凝縮器を経由し冷却された冷媒を蒸発器へ圧送するポンプとを備え、膨張機が軸によりポンプと連結され、膨張機及びポンプが同一の筐体内に内蔵されてポンプ一体型膨張機が構成され、ポンプは、蒸発器へ吐出する冷媒が流通し、軸方向において膨張機側に設けられた高圧室、又は凝縮器から流入する冷媒が流通し、軸方向において膨張機側に設けられた低圧室を有する。

Description

排熱回生システム
 この発明は、自動車等のエンジンにおける冷却水の排熱をランキンサイクルにより動力等として回生する排熱回生システムに関するものである。
 従来の排熱回生システムは、ランキンサイクル中の液体冷媒を圧送するポンプと、過熱蒸気冷媒の膨張によって機械的エネルギーを出力する膨張機と、モータとしてポンプを駆動すると共に発電機として膨張機の動力を利用して発電を行う負荷機とが連結して構成される一体ユニットであって、ポンプの外周部にポンプから吐出された冷媒が流通する高圧室が設けられ、膨張機で膨張した冷媒と高圧室の冷媒とが熱交換するフィンが設けられている(例えば、特許文献1参照)。
特開2007-231855号公報
 しかしながら、従来技術には、以下のような課題がある。特許文献1記載の従来の排熱回生システムでは、膨張機の作動流体出口側となる膨張機出口側通路を、ポンプの作動流体出口側となるポンプ出口側通路の一部の近傍に配置したことにより、膨張機の流入側となる作動流体の加熱量を増加させ、膨張機での膨張仕事を増加させる構造としているが、ポンプ側に熱が伝わりやすくなりポンプの温度が上昇することで、ポンプ(特にその入り口)で液体冷媒(以下、単に冷媒と記載する場合がある)が蒸発気化し、冷媒を昇圧して循環させることが困難となるためランキンサイクルが動作不能になるという問題点があった。
 排熱回生システムの運転動作中は、ポンプ内を流通する冷媒による冷却効果を得ることも可能であるが、冷媒循環量が減少した場合、特に運転を停止させると冷媒による冷却効果が無くなるため、ポンプの温度が上昇し、ポンプ一体型膨張機全体の温度が低下するまで数時間以上もランキンサイクルを再度、動作させることができないという問題点もあった。
 本発明は、前記のような課題を解決するためになされたものであり、ポンプ一体型膨張機のポンプの温度上昇を防止できるとともに、ポンプ温度が上昇した場合には、速やかに(例えば、数分程度で)冷却することができ、再起動も含めて常に安定して運転可能な排熱回生システムを得ることを目的とする。
 この発明に係る排熱回生システムは、冷媒との熱交換によりエンジン冷却水を冷却する蒸発器と、前記蒸発器を経由し加熱された冷媒を膨張させて駆動力を発生する膨張機と、前記膨張機を経由する冷媒を冷却し凝縮させる凝縮器と、前記凝縮器を経由し冷却された冷媒を前記蒸発器へ圧送するポンプとを設けた排熱回生システムであって、前記膨張機が軸により前記ポンプと連結され、前記膨張機及び前記ポンプが同一の筐体内に内蔵されてポンプ一体型膨張機が構成され、前記ポンプは、前記蒸発器へ吐出する冷媒が流通し、軸方向において前記膨張機側に設けられた高圧室を有するものである。
 この発明に係る排熱回生システムは、ポンプ一体型膨張機のポンプの温度上昇を防止できるとともに、安定した動作を行うことができる。
この発明の実施例1に係る排熱回生システムの構成を示す図である。 この発明の実施例1に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例2に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例3に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例4に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例5に係る排熱回生システムの構成を示す図である。 この発明の実施例5に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例6に係る排熱回生システムの構成を示す図である。 この発明の実施例6に係る排熱回生システムの動作を示すフローチャートである。 この発明の実施例6に係る排熱回生システムの別の構成を示す図である。 この発明の実施例6に係る排熱回生システムの冷媒にR134aを用いた場合のモリエル線図である。 この発明の実施例7に係る排熱回生システムの構成を示す図である。 この発明の実施例8に係る排熱回生システムの構成を示す図である。 この発明の実施例9に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。 この発明の実施例9に係る排熱回生システムのポンプ一体型膨張機の別の詳細構成を示す図である。
 この発明の実施例1~実施例9について以下説明する。
 この発明の実施例1に係る排熱回生システムについて図1及び図2を参照しながら説明する。図1は、この発明の実施例1に係る排熱回生システムの構成を示す図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
 図1において、エンジン1は、自動車走行用駆動力を発生させる内燃機関である。このエンジン1により加熱されたエンジン冷却水は、冷却水回路2aを通り蒸発器3で冷却され、冷却水回路2b通り再びエンジン1の冷却に利用される。
 また、ランキンサイクル100は、冷媒によりエンジン冷却水を冷却するための蒸発器3と、高温高圧の蒸気となった冷媒を膨張する膨張機5と、膨張された冷媒を冷却し凝縮する凝縮器6と、膨張機5と出力軸7により連結されたポンプ8と、蒸発器3と膨張機5とを接続する第一配管21と、膨張機5と凝縮器6とを接続する第二配管22及び第三配管23と、凝縮器6とポンプ8とを接続する第四配管24と、ポンプ8と蒸発器3とを接続する第五配管25とから構成される。
 膨張機5とポンプ8は、筐体4aで一体化されてポンプ一体型膨張機4を構成し、軸7を介してモータージェネレーター9と接続されている。
 図2は、この発明の実施例1に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。同図(a)は横断面図、同図(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から高圧室側を見たポンプの横断面図である。
 図2(b)において、膨張機5は、スクロール型膨張機であり、固定スクロール51と、軸7及び軸受け71を介して接続される旋回スクロール52とが設けられている。容積が変化し冷媒を吸込み膨張させる膨張室53を固定スクロール51と旋回スクロール52とで形成する。冷媒の吸入口54は第一配管21に接続され、膨張後の冷媒は低圧空間55に排出され、この低圧空間55の出口56は第二配管22に接続される。なお、軸受け72及びシール73が図示されている。
 一方、図2(a)及び(b)において、ポンプ8は、ギア式ポンプであり、軸7に接続された第一ギア81と、第一ギア81にかみ合う第二ギア82とが設けられている。低圧側の冷媒は、吸入口83から第一ギア81と第二ギア82の回転に伴い高圧側の吐出口84に圧送される。吸入口83は、第四配管24と接続される。第一ギア81及び第二ギア82と膨張機5との間に環状に形成される高圧室87は、吐出口84に接続され、出口88を介して第五配管25と接続される。
 つぎに、この実施例1に係る排熱回生システムの動作について図面を参照しながら説明する。
 通常運転時のランキンサイクル100の動作について説明する。ランキンサイクル100内には、例えば、R134aのような冷媒が充填されている。エンジン1により通常90℃~100℃程度にまで加熱されたエンジン冷却水は、冷却水回路2aを通り蒸発器3で冷却される。この過程で、冷媒は加熱され約90℃の高温高圧の蒸気となる。高温高圧の蒸気となった冷媒は、第一配管21を通り、膨張機5に送られ、膨張機5で膨張する過程で動力を発生する。ここで得られた動力は、自動車の駆動用や発電などに利用される。
 膨張後に約60℃の蒸気となった冷媒は、第二配管22及び第三配管23を通り、自動車走行時の走行風やファン等による冷却機能を有する凝縮器6に送られる。この凝縮器6で冷却され凝縮し、約30℃の液体となり、第四配管24を通りポンプ8に送られる。
 液体状態の冷媒は、ポンプ8により昇圧され、隣接した膨張機5の熱などにより約30数度℃に上昇して第五配管25を通って蒸発器3に送られる。蒸発器3に送られた冷媒は、エンジン1により通常90℃~100℃程度にまで加熱されたエンジン冷却水を冷却するとともに自身は約90℃の高温高圧の蒸気となる。エンジン冷却水は冷却水回路2bを通り再びエンジン1の冷却に利用されるとともに、冷媒は上記過程を繰り返し、ランキンサイクル100を継続動作させる。
 膨張機5には約90℃の高温高圧の蒸気となった冷媒が流入し、60℃程度の冷媒蒸気が低圧空間55に吐出される。このため、筐体4aの膨張機5側は通常60℃以上の高温となる。
 一方、一体化されたポンプ8には、膨張機5側に環状に形成される高圧室87内部を第一ギア81及び第二ギア82から吐出された30℃程度の低温の冷媒が循環し、膨張機5からポンプ8を構成する第一ギア81と第二ギア82への熱の伝導を遮断する。その結果、第一ギア81と第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるため、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。
 このような構成をとる実施例1に係る排熱回生システムでは、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることで、エンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 この実施例1によれば、ポンプ8と膨張機5の筐体4aが一体化された排熱回生システムにおいて、ポンプ8に流入する冷媒が流通する高圧室87を、第一ギア81及び第二ギア82と膨張機5の間に備えるように構成されるとともに、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、再起動も含めて安定した動作が行える。
 この実施例1に係る排熱回生システムでは、高圧室87内部をポンプ8から吐出された低温の冷媒が循環し、膨張機5からポンプ8を構成する第一ギア81及び第二ギア82への熱の伝導を遮断するため、第一ギア81及び第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるため、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。また、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることで、エンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 この発明の実施例2に係る排熱回生システムについて図3を参照しながら説明する。図3は、この発明の実施例2に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。同図(a)は横断面図、同図(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から低圧室側を見たポンプの横断面図である。なお、この発明の実施例2に係る排熱回生システムの構成は、ポンプ一体型膨張機を除いて、上記の実施例1と同様である。なお、この実施例2のポンプ一体型膨張機は、以下で説明する各実施例の排熱回生システムにも適用できる。
 図3において、実施例2では、ポンプ8は、第一ギア81及び第二ギア82と膨張機5の間に低圧室85を備えた構成となっている。第一ギア81と第二ギア82に対して膨張機5側に環状に形成される低圧室85は、吸入口83に接続され、吸入口86を介して第四配管24と接続される。また、吐出口84は、第五配管25と接続される。
 この実施例2に係る排熱回生システムでは、ポンプ8を構成する第一ギア81及び第二ギア82と膨張機5の間に低圧室85を備える構成とし、低圧室85から冷却する効果が得られる。そのため、第一ギア81と第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるので、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。そして、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることでエンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 この実施例2によれば、上記の実施例1と同様に、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、再起動も含めて安定した動作が行える。
 この実施例2に係る排熱回生システムでは、低圧室85内部を凝縮器6で冷却された低温の冷媒が循環し、膨張機5からポンプ8を構成する第一ギア81及び第二ギア82への熱の伝導を遮断するため、第一ギア81及び第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるため、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。また、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることでエンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等エネルギー効率の改善につながる。
 上記の実施例1及び2では、膨張機5とポンプ8を同一の筐体4aに内蔵されるように構成したポンプ一体型膨張機4について説明したが、膨張機5とポンプ8の間にモータージェネレーター9を内蔵し、ポンプ8とモータージェネレーター9の間に、高圧室87、あるいは高圧室87に代えて低圧室85、あるいは膨張機5側から高圧室87と低圧室85の両方を設けてもよい。
 この発明の実施例3に係る排熱回生システムについて図1及び図4を参照しながら説明する。この発明の実施例3に係る排熱回生システムの構成は、ポンプ一体型膨張機を除いて、上記の図1に示す実施例1と同様である。
 図1において、エンジン1は、自動車走行用駆動力を発生させる内燃機関である。このエンジン1により加熱されたエンジン冷却水は、冷却水回路2aを通り蒸発器3で冷却され、冷却水回路2b通り再びエンジン1の冷却に利用される。
 また、ランキンサイクル100は、冷媒によりエンジン冷却水を冷却するための蒸発器3と、高温高圧の蒸気となった冷媒を膨張する膨張機5と、膨張された冷媒を冷却し凝縮する凝縮器6と、膨張機5と出力軸7により連結されたポンプ8と、蒸発器3と膨張機5とを接続する第一配管21と、膨張機5と凝縮器6とを接続する第二配管22及び第三配管23と、凝縮器6とポンプ8とを接続する第四配管24と、ポンプ8と蒸発器3とを接続する第五配管25とから構成される。
 膨張機5とポンプ8は、筐体4aで一体化されてポンプ一体型膨張機4を構成し、軸7を介してモータージェネレーター9と接続されている。
 図4は、この発明の実施例3に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。同図(a)は横断面図、同図(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から高圧室側を見たポンプの横断面図である。
 図4(b)において、膨張機5は、スクロール型膨張機であり、固定スクロール51と、軸7及び軸受け71を介して接続される旋回スクロール52とが設けられている。容積が変化し冷媒を吸込み膨張させる膨張室53を固定スクロール51と旋回スクロール52とで形成する。冷媒の吸入口54は第一配管21に接続され、膨張後の冷媒は低圧空間55に排出され、この低圧空間55の出口56は第二配管22に接続される。なお、軸受け72及びシール73が図示されている。
 一方、図4(a)及び(b)において、ポンプ8は、ギア式ポンプであり、軸7に接続された第一ギア81と、第一ギア81にかみ合う第二ギア82とが設けられている。低圧側の冷媒は、吸入口83から第一ギア81と第二ギア82の回転に伴い高圧側の吐出口84に圧送される。第一ギア81と第二ギア82に対して膨張機5側に環状に形成される低圧室85は、吸入口83に接続され、吸入口86を介して第四配管24と接続される。低圧室85と膨張機5との間に環状に形成される高圧室87は、吐出口84に接続され、出口88を介して第五配管25と接続される。
 つぎに、この実施例3に係る排熱回生システムの動作について図面を参照しながら説明する。
 通常運転時のランキンサイクル100の動作について説明する。ランキンサイクル100内には、例えば、R134aのような冷媒が充填されている。エンジン1により通常90℃~100℃程度にまで加熱されたエンジン冷却水は、冷却水回路2aを通り蒸発器3で冷却される。この過程で、冷媒は加熱され約90℃の高温高圧の蒸気となる。高温高圧の蒸気となった冷媒は、第一配管21を通り、膨張機5に送られ、膨張機5で膨張する過程で動力を発生する。ここで得られた動力は、自動車の駆動用や発電などに利用される。
 膨張後に約60℃の蒸気となった冷媒は、第二配管22及び第三配管23を通り、自動車走行時の走行風やファン等による冷却機能を有する凝縮器6に送られる。この凝縮器6で冷却され凝縮し、約30℃の液体となり、第四配管24を通りポンプ8に送られる。
 液体状態の冷媒は、ポンプ8により昇圧され、隣接した膨張機5の熱などにより約30数度℃に上昇して第五配管25を通って蒸発器3に送られる。蒸発器3に送られた冷媒は、エンジン1により通常90℃~100℃程度にまで加熱されたエンジン冷却水を冷却するとともに自身は約90℃の高温高圧の蒸気となる。エンジン冷却水は冷却水回路2bを通り再びエンジン1の冷却に利用されるとともに、冷媒は上記過程を繰り返し、ランキンサイクル100を継続動作させる。
 膨張機5には約90℃の高温高圧の蒸気となった冷媒が流入し、60℃程度の冷媒蒸気が低圧空間55に吐出される。このため、筐体4aの膨張機5側は通常60℃以上の高温となる。
 一方、一体化されたポンプ8には、膨張機5側に環状に形成される高圧室87内部を第一ギア81及び第二ギア82から吐出された30℃程度の低温の冷媒が循環し、膨張機5からポンプ8を構成する第一ギア81と第二ギア82への熱の伝導を遮断する。さらに、高圧室87と第一ギア81及び第二ギア82との間に環状に形成された低圧室85には、凝縮器6で冷却された上記ポンプ吐出冷媒より低温の冷媒が流入するように構成され、これにより、さらにポンプ8を構成する第一ギア81と第二ギア82への熱の伝導を遮断低減する。その結果、第一ギア81と第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるため、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。
 このような構成をとる実施例3に係る排熱回生システムでは、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることで、エンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 この実施例3によれば、ポンプ8と膨張機5の筐体4aが一体化された排熱回生システムにおいて、ポンプ8に流入する冷媒が流通する低圧室85と吐出される冷媒が流通する高圧室87とを膨張機5側から高圧室87、低圧室85の順で備えるように構成されるとともに、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、再起動も含めて安定した動作が行える。
 この発明の実施例4に係る排熱回生システムについて図5を参照しながら説明する。図5は、この発明の実施例4に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。同図(a)は横断面図、同図(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から高圧室側を見たポンプの横断面図である。なお、この発明の実施例4に係る排熱回生システムの構成は、ポンプ一体型膨張機を除いて、上記の実施例3と同様である。なお、この実施例4のポンプ一体型膨張機は、以下で説明する各実施例の排熱回生システムにも適用できる。
 図5において、実施例4では、ポンプ8は、第一ギア81及び第二ギア82に対して膨張機5の反対側に低圧室85を備えた構成となっている。
 この実施例4に係る排熱回生システムでは、ポンプ8を構成する第一ギア81及び第二ギア82を低圧室85と高圧室87とで挟み込む構成とし、両側から冷却する効果が得られる。そのため、第一ギア81と第二ギア82を低温に保持でき、その吸入口83での冷媒の加熱蒸発を防止できるので、エンジン1からの排熱によりランキンサイクル100を継続して動作できる。そして、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることでエンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 この実施例4によれば、上記の実施例3と同様に、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、再起動も含めて安定した動作が行える。
 この発明の実施例5に係る排熱回生システムについて図6及び図7を参照しながら説明する。図6は、この発明の実施例5に係る排熱回生システムの構成を示す図である。また、図7は、この発明の実施例5に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。図7(a)は横断面図、図7(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から高圧室側を見たポンプの横断面図であり、高圧室とその出口を省略している。
 図6及び図7において、実施例5では、ポンプ8が、第六配管26と開閉弁11と第七配管27と第三配管23を介して凝縮器6とを接続され、低圧室85の吸入口86(図7(b)の下部)の反対側(図7(b)の上部)に形成された出口89を介して第六配管26と接続された構成となっている。なお、図7(a)では、低圧室85、吸入口86及び出口89を破線で示す。
 開閉弁11を閉じた場合の通常運転時のランキンサイクル100の動作と効果は、上記の実施例3と同じであり、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることでエンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 次に、エンジン1が停止した場合の動作について説明する。
 図6において、ポンプ8は、凝縮器6に対して相対的に最下部近傍(ここで最下部近傍とは、具体的には凝縮器6の高さ方向全体の下方1/3から下を指す)となるように設置される。
 エンジン1の停止に伴い、ランキンサイクル100が停止した場合には、図示しない電子制御装置(ECU: Electronic Control Unit)の制御により、開閉弁11を開ける。膨張機5側からの熱伝導によりポンプ8の温度が上昇し、低圧室85内部の冷媒が蒸発気化すると、蒸発気化した冷媒は、液体と気体の密度差により第六配管26と開閉弁11と第七配管27と第三配管23を介して凝縮器6に流入し、冷却液化し、再び低圧室85に戻り自然循環し、低圧室85が低温の液冷媒で満たされる。したがって、この発明の実施例5に係る排熱回生システムでは、外部に動力源を持たなくても、ポンプ8の昇温を抑制すると共に効率良く冷却することができため、ランキンサイクル100の再起動時には、ポンプ8の運転動作が可能であり、安定して排熱回生システムを動作させることができる。
 ここでの開閉弁11の開閉制御は、ランキンサイクル100の動作停止とともに開閉弁11を開け、エンジン1の始動、あるいはランキンサイクル100の動作開始とともに開閉弁11を閉じる。
 この実施例5によれば、ポンプ8と膨張機5の筐体4aが一体化された排熱回生システムにおいて、ポンプ8に流入する冷媒が流通する低圧室85と吐出される冷媒が流通する高圧室87とを膨張機5側から高圧室87、低圧室85の順で備えるように構成されるとともに、低圧室85と凝縮器6とを開閉弁11を介して冷媒が循環可能なように構成しているので、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、ポンプ8の温度が上昇した場合には、速やかに冷却することができ、再起動も含めて安定した動作が行える。
 この発明の実施例6に係る排熱回生システムについて図8から図11までを参照しながら説明する。図8は、この発明の実施例6に係る排熱回生システムの構成を示す図である。
 図8において、実施例6では、上記の実施例5の構成に加えて、第六配管26に第二ポンプ12を設けた構成となっている。
 開閉弁11の開閉と第二ポンプ12の動作の制御は、ポンプ8の入口の冷媒の圧力と温度、ポンプ8の筐体や近傍の温度、あるいは冷媒の流量とポンプ8の運転周波数等を計測するセンサーを設け、ランキンサイクル100の動作停止とこれらの関係の相関をとることで容易に実施可能である。
 図8には、ポンプ8の入口近傍の冷媒の温度を測定する温度センサー31と、同位置に接続する第四配管24の圧力を測定する圧力センサー32を設置した場合を示す。温度センサー31としては、例えばサーミスタあるいは熱電対、圧力センサー32としては、例えば抵抗ひずみゲージ式圧力センサーなどが考えられる。
 図9は、この発明の実施例6に係る排熱回生システムの動作を示すフローチャートである。この図9は、温度センサー31と圧力センサー32によるポンプ8の入口近傍の冷媒の温度TPと圧力Pの測定値を用いたシステム動作のフローチャートである。以下、図9を用いてシステム制御の具体的一例を説明する。
 先ず、図示しないECUは、温度センサー31と圧力センサー32により、ポンプ8の入口近傍の冷媒の温度TPと圧力Pとを測定する(ステップ101)。使用冷媒の圧力Pにおける飽和蒸気温度TLを算定する(ステップ102)。TL-TPがあらかじめ設定した温度差ΔTSETよりも大きい値である場合(YES)、開閉弁11を閉とし、エンジン1を始動し運転を開始するとともに、ランキンサイクル100を動作させて、膨張機5により動力を発生する(ステップ103)。
 一方、ポンプ8の入口近傍の冷媒の温度TPが上昇し、TL-TPがあらかじめ設定した温度差ΔTSET以下の値である場合(NO)、開閉弁11を開とし、第二ポンプ12を動作させ、低圧室85内の冷媒が凝縮器6に送られる状態にする(ステップ103、106、107)。この場合、冷媒は蒸発器3で加熱される工程を経ずに、効率よく凝縮器6で冷却されて低圧室85に戻るとともに、蒸発器3には冷媒が送られないため膨張機5には高温の冷媒が循環してくることが無い。
 そのため、膨張機5の加熱の影響によるポンプ8の温度上昇も無く、ポンプ8は非常に効率良く冷却される。その後、温度センサー31と圧力センサー32によるポンプ8の入口近傍の冷媒の温度TPと圧力Pとの測定を所定間隔で繰り返し、TL-TPがあらかじめ設定した温度差ΔTSETよりも大きい値となると、エンジン1を始動、運転する。
 また、エンジン1とランキンサイクル100が運転動作中も、温度センサー31と圧力センサー32によるポンプ8の入口近傍の冷媒の温度TPと圧力Pとの測定を所定間隔で繰り返し、TL-TPがあらかじめ設定した温度差ΔTSET以下の値となった場合、開閉弁11を開とし、第二ポンプ12を動作させ、低圧室85内の冷媒が凝縮器6に送られる状態にする(ステップ111~113、115、116)。この場合、冷媒は蒸発器3で加熱される工程を経ずに、効率よく凝縮器6で冷却されてポンプ8に戻るとともに、蒸発器3には冷媒が送られないため膨張機5には高温の冷媒が循環してくることが無い。
 そのため、膨張機5の加熱の影響によるポンプ8の温度上昇も無く、ポンプ8は非常に効率良く冷却される。再び、TL-TPがあらかじめ設定した温度差ΔTSETよりも大きい値になると、開閉弁11を閉とすると共に第二ポンプ12の動作を停止し、再びエンジン1とランキンサイクル100は通常の運転動作を継続する(ステップ113、114)。ここで、ΔTSETは理論上0℃以上で、可能な限り小さい方が高いランキンサイクル効率を得ることができるが、安定動作のため通常、5℃程度に設定される。
 なお、短時間で切り替える設定をとり、蒸発器3には冷媒が送られない時間を短時間にする方がエンジン冷却水の上昇する時間を短時間に抑えることが可能であり、エンジン1への負担も少ない。なお、このようなシステム制御を行うことにより、エンジン冷却水の温度に多少の揺らぎが生じることが想定されるが、安全な温度内での制御を行うことにより、特にエンジン1に影響を与えることにはならないことは言うまでもない。
 以上の説明では、冷媒の圧力と温度に基づく開閉弁11の開閉と第二ポンプ12の運転制御例を示したが、図10で示すように、冷媒の流量とポンプ8の運転周波数をそれぞれ流量センサー33及び周波数センサー34で計測し、これらの値に基づき制御を行うことも可能である。
 図10は、この発明の実施例6に係る排熱回生システムの別の構成を示す図である。図10において、流量センサー33は、第五配管25の任意の位置に設置され、第五配管25内を流れる冷媒の流量を測定する。また、周波数センサー34は、ポンプ8に連結された出力軸7の単位時間当たりの回転数を検出する。
 通常、ポンプ8の運転周波数から冷媒流量は一意的に算定可能である。流量センサー33により計測された流量Qと、周波数センサー34により計測された周波数から算定される流量Q0との誤差(Q0-Q)/Q0より、あらかじめ設定した流量誤差ΔQSETよりも大きな値となる場合に、ポンプ8が高温になったと判断する。上述した冷媒の圧力と温度に基づく開閉弁11の開閉制御と第二ポンプ12の運転制御でTL-TPがあらかじめ設定した温度差ΔTSET以下の値となった場合と同様に判断し、図9に示すフローチャートと同様に運転することが可能となる。その他のシステム制御の方法は、上述した冷媒の圧力と温度に基づくシステム制御の方法と同様であるため、説明を省略する。ここで、ΔQSETは、通常0.05程度より大きな値に設定される。
 図11は、冷媒にR134aを用いた場合のモリエル線図を示す。図11において、圧力と温度がわかると、そのときの冷媒の3つの状態、すなわち液体状、気体状、または液体と気体が混合した状態のどの状態であるかを判定することが可能となる。図9で示した冷媒の圧力と温度に基づくシステム制御の方法において、例えば冷媒にR134aを用いた場合の圧力P、ポンプ8の入口近傍の冷媒の温度TP及び圧力Pにおける飽和蒸気温度TLの関係は、図11を用いれば、具体的な冷媒(ここでは、R134a)に対応して図中に示すような関係であることが容易に判断できる。
 一般的なシステム制御の方法では、冷媒が気体の状態あるいは液体と気体が混合した状態であると判断されると、ポンプ8が高温であると判断することができる。また、たとえ冷媒の状態が液体状の状態であっても、ポンプ8が高温と判断されるまでの尤度、すなわち、ポンプ8で冷媒が蒸発気化する温度までの尤度を計測値との差を評価することで可能となる。そこで、あらかじめ設定した温度に達した時点で、前もってポンプ8を冷却することにより、常に安定してランキンサイクル100を動作運転することが可能となる。
 また、ポンプ8は、上記説明のとおり、その特性から運転周波数に基づき一意的に、流量を算定評価することができる。正常にランキンサイクル100が運転される場合には、運転周波数から算定された流量とランキンサイクル100を循環する冷媒流量の測定値とは、ほぼ一致するため、あらかじめ設定した両者の流量差設定値以上になった場合に、ポンプ8が高温となったと判断して、ポンプ8を冷却することが可能となり、安定してランキンサイクル100を動作運転することが可能となる。
 なお、上記のポンプ8の入口近傍の冷媒の温度等、それらの値を直接計測することが困難な場合であっても、ラジエータ温度と流体温度の相関関係等を利用して、いわゆる当業者であれば容易に知りえる。また、センサーをどの位置に設けるかは設計上の問題であり、エンジン構造等により異なることは言うまでもない。
 この発明の実施例6に係る排熱回生システムでは、ポンプ8の低圧室85と凝縮器6を冷媒が循環するようにしたことで、ポンプ8の著しい冷却効果を発揮させることができる。これにより、ポンプ8は通常1分以内の短時間で冷却可能であり、そのため、これらのセンサーによる計測値をもとに制御を行った場合であっても、瞬時に対応可能となり、ピストンなどの焼き付き等によるエンジン破損を起こさない。
 なお、以上の説明では、第六配管26に第二ポンプ12を設けた場合を説明したが、第七配管27に第二ポンプ12を設けても良く、同様な効果を有する。
 また、以上の説明では、開閉弁11と第二ポンプ12を併用した場合を説明したが、第二ポンプ12にギア式ポンプなどのような容積型ポンプを用いることにより第二ポンプ12の停止により冷媒の流動を停止できるため、開閉弁11を除去しても良く、同様な効果を有する。
 この実施例6によれば、上記の各実施例と同様の効果を奏するとともに、さらに、第二ポンプ12を備えたことにより強制的に低圧室85と凝縮器6との間で冷媒を循環させることが可能となり、エンジン1とランキンサイクル100の動作の有無に係わらず、効率的にランキンサイクルを構成するポンプ8の冷却が可能となり、より効果的にポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、ポンプ8の温度が上昇した場合には、速やかに冷却することができ、再起動も含めて安定した動作が行える。
 この発明の実施例7に係る排熱回生システムについて図12を参照しながら説明する。図12は、この発明の実施例7に係る排熱回生システムの構成を示す図である。
 図12において、実施例7では、ポンプ8と蒸発器3とを接続する第五配管25の途中に冷媒の流路を切り替える三方弁13を設け、ポンプ8が第五配管25と三方弁13と第七配管27を介して凝縮器6とを接続された構成となっている。
 ポンプ8から吐出された冷媒が三方弁13を介して蒸発器3に送られる通常運転時時のランキンサイクル100の動作と効果は、上記の実施例3と同じであり、エンジン1からの排熱により駆動されるランキンサイクル100により、膨張機5で動力を発生させることでエンジン駆動の補助や発電などに利用し、自動車の燃費が向上する等のエネルギー効率の改善につながる。
 次に、ポンプ8の温度が上昇し、ポンプ8の入口で冷媒が蒸発気化し冷媒を昇圧して循環させることが困難となり、ランキンサイクル100が動作不能時の動作について説明する。
 このような場合、三方弁13を、ポンプ8に接続された第五配管25と、凝縮器6に接続された第七配管27及び第三配管23が流通するように切り替えて、ポンプ8から吐出された冷媒が全て凝縮器6に送られることにより、冷媒は蒸発器3で加熱される工程を経ずに効率よく凝縮器6で冷却されてポンプ8に戻るとともに、さらに加えて、蒸発器3には冷媒が送られないため膨張機5には高温の冷媒が循環してくることが無い。そのため、膨張機5の加熱の影響によるポンプ8の温度上昇も無く、ポンプ8は非常に効率良く冷却される。この場合、ランキンサイクル100による動力は得られないため、ポンプ8は出力軸7に連結されたモータージェネレーター9などにより駆動される。
 このようにポンプ8の温度が上昇し、ポンプ8の入口で冷媒が蒸発気化し冷媒を昇圧して循環させることが困難となり、ランキンサイクル100が動作不能となった場合に、三方弁13を切り替えて運転することにより、効率良くポンプ8を冷却することで、短時間でポンプ8の運転動作が可能となり、ランキンサイクル100を長時間安定して動作させることが可能となり、自動車の燃費が向上する等、更なるエネルギー効率の改善につながる。
 さらに、例えばエンジン1が停止し、それに対応してランキンサイクル100も動作停止し、ポンプ8の温度が上昇した場合が想定されるが、このような場合においても、三方弁13を切り替えてポンプ8から吐出された冷媒が凝縮器6に流通可能なようにすることで、効率よく冷却された冷媒がポンプ8を循環するため、速やかに(通常、数分程度)ポンプ8近傍は冷却され、その後、エンジン1を再起動したときに、三方弁13によりポンプ8から吐出された冷媒が蒸発器3に流通可能となるように切り替えることにより、エンジン1の始動時からランキンサイクル100が停止するような状況が回避され、効率よくランキンサイクル100を動作させることが可能となる。
 なお、ここでの、三方弁13の切り替え制御は、上記の実施例6における開閉弁11の開閉制御と同様に、ポンプ8の入口の冷媒の圧力と温度、ポンプ8の筐体または近傍の温度、あるいは冷媒の流量とポンプ8の運転周波数等を計測するセンサーを設け、ランキンサイクル100の動作停止とこれらの関係の相関をとることで容易に実施可能である。
 この実施例7によれば、ポンプ8と膨張機5の筐体4aが一体化された排熱回生システムにおいて、三方弁13の切り替えによりポンプ8から吐出された冷媒が凝縮器6に送られ、冷却されポンプ8に循環するように構成されているので、ポンプ一体型膨張機4のポンプ8の温度上昇を防止できるとともに、ポンプ8の温度が上昇した場合には、速やかに冷却することができ、再起動も含めて安定した動作が行える。
 この発明の実施例8に係る排熱回生システムについて図13を参照しながら説明する。図13は、この発明の実施例8に係る排熱回生システムの構成を示す図である。
 上記の各実施例では、ランキンサイクル100の出力軸7にモータージェネレーター9を連結し、膨張機5の出力で発電、あるいは強制的に膨張機5とポンプ8を駆動する構成を説明した。実施例8では、図13に示すように、モータージェネレーター9の代わりに、出力軸7に設けられた第一プーリー41と、エンジン1のエンジン出力軸42に設けられた第二プーリー43とをベルト44を介して接続し、膨張機5の出力を連結されたエンジン1の駆動補助に利用したり、エンジン1の出力で強制的にポンプ8と膨張機5を駆動したりする構成としてもよい。
 この発明の実施例9に係る排熱回生システムについて図14及び図15を参照しながら説明する。図14は、この発明の実施例9に係る排熱回生システムのポンプ一体型膨張機の詳細構成を示す図である。また、図15は、この発明の実施例9に係る排熱回生システムのポンプ一体型膨張機の別の詳細構成を示す図である。
 図14及び図15の(a)は横断面図、図14及び図15の(b)は縦断面図である。同図(a)は、同図(b)に示すポンプ一体型膨張機の縦断面のうち、ギア部分から高圧室側を見たポンプの横断面図であり、高圧室とその出口を省略している。
 上記の各実施例では、ポンプ8の低圧室85と高圧室87を環状の流路で構成した場合を説明したが、図14に示すように、低圧室85を螺旋状の流路で構成したり、図15に示すように、低圧室85をポンプ8のギア近傍のみに設置される楕円状の流路で構成したりしてもよい。
 なお、上記の各実施例では、ポンプ8にギア式ポンプを用いた場合を説明したが、ギア式ポンプと同じタイプの容積型ポンプであるベーン式ポンプや、トロコイド式ポンプなどを用いても良く、同様な効果を有する。
 1 エンジン、2a 冷却水回路、2b 冷却水回路、3 蒸発器、4 ポンプ一体型膨張機、4a 筐体、5 膨張機、6 凝縮器、7 軸、8 ポンプ、9 モータージェネレーター、11 開閉弁、12 第二ポンプ、13 三方弁、21 第一配管、22 第二配管、23 第三配管、24 第四配管、25 第五配管、26 第六配管、27 第七配管、31 温度センサー、32 圧力センサー、33 流量センサー、34 周波数センサー、41 第一プーリー、42 エンジン出力軸、43 第二プーリー、44 ベルト、51 固定スクロール、52 旋回スクロール、53 膨張室、54 吸入口、55 低圧空間、56 出口、81 第一ギア、82 第二ギア、83 吸入口、84 吐出口、85 低圧室、86 吸入口、87 高圧室、88 出口、89 出口、100 ランキンサイクル。

Claims (10)

  1.  冷媒との熱交換によりエンジン冷却水を冷却する蒸発器と、
     前記蒸発器を経由し加熱された冷媒を膨張させて駆動力を発生する膨張機と、
     前記膨張機を経由する冷媒を冷却し凝縮させる凝縮器と、
     前記凝縮器を経由し冷却された冷媒を前記蒸発器へ圧送するポンプとを備えた排熱回生システムであって、
     前記膨張機が軸により前記ポンプと連結され、前記膨張機及び前記ポンプが同一の筐体内に内蔵されてポンプ一体型膨張機が構成され、
     前記ポンプは、
      前記蒸発器へ吐出する冷媒が流通し、軸方向において前記膨張機側に設けられた高圧室を有する
     ことを特徴とする排熱回生システム。
  2.  前記ポンプは、ギア式の場合には、前記高圧室を挟むように軸方向において前記膨張機側とは反対側に設けられた、冷媒を昇圧するギア部をさらに有する
     ことを特徴とする請求項1記載の排熱回生システム。
  3.  冷媒との熱交換によりエンジン冷却水を冷却する蒸発器と、
     前記蒸発器を経由し加熱された冷媒を膨張させて駆動力を発生する膨張機と、
     前記膨張機を経由する冷媒を冷却し凝縮させる凝縮器と、
     前記凝縮器を経由し冷却された冷媒を前記蒸発器へ圧送するポンプとを備えた排熱回生システムであって、
     前記膨張機が軸により前記ポンプと連結され、前記膨張機及び前記ポンプが同一の筐体内に内蔵されてポンプ一体型膨張機が構成され、
     前記ポンプは、
      前記凝縮器から流入する冷媒が流通し、軸方向において前記膨張機側に設けられた低圧室を有する
     ことを特徴とする排熱回生システム。
  4.  前記ポンプは、ギア式の場合には、前記低圧室を挟むように軸方向において前記膨張機側とは反対側に設けられた、冷媒を昇圧するギア部をさらに有する
     ことを特徴とする請求項3記載の排熱回生システム。
  5.  冷媒との熱交換によりエンジン冷却水を冷却する蒸発器と、
     前記蒸発器を経由し加熱された冷媒を膨張させて駆動力を発生する膨張機と、
     前記膨張機を経由する冷媒を冷却し凝縮させる凝縮器と、
     前記凝縮器を経由し冷却された冷媒を前記蒸発器へ圧送するポンプとを備えた排熱回生システムであって、
     前記膨張機が軸により前記ポンプと連結され、前記膨張機及び前記ポンプが同一の筐体内に内蔵されてポンプ一体型膨張機が構成され、
     前記ポンプは、
      前記蒸発器へ吐出する冷媒が流通し、軸方向において前記膨張機側に設けられた高圧室と、
      前記凝縮器から流入する冷媒が流通し、前記高圧室を挟むように軸方向において前記膨張機側とは反対側に設けられた低圧室とを有する
     ことを特徴とする排熱回生システム。
  6.  前記ポンプは、ギア式の場合には、前記低圧室を挟むように軸方向において前記高圧室側とは反対側に設けられた、冷媒を昇圧するギア部をさらに有する
     ことを特徴とする請求項5記載の排熱回生システム。
  7.  前記ポンプは、ギア式の場合には、軸方向において前記高圧室と前記低圧室の間に設けられた、冷媒を昇圧するギア部をさらに有する
     ことを特徴とする請求項5記載の排熱回生システム。
  8.  前記ポンプは、前記凝縮器に対して相対的に最下部近傍となるように設置され、
     前記ポンプの低圧室から前記凝縮器へ冷媒を流す第1の配管と、
     前記凝縮器から前記ポンプの低圧室へ冷媒を流す第2の配管と、
     前記第1の配管の途中に設けられた開閉弁とをさらに備え、
     エンジンが停止した場合には、前記低圧室から前記第1の配管を経て前記凝縮器へ、かつ前記凝縮器から前記第2の配管を経て前記低圧室へ冷媒が循環可能になるように前記開閉弁が開けられる
     ことを特徴とする請求項5から請求項7までのいずれかに記載の排熱回生システム。
  9.  前記ポンプの低圧室から前記凝縮器へ冷媒を流す第1の配管と、
     前記凝縮器から前記ポンプの低圧室へ冷媒を流す第2の配管と、
     前記第1の配管の途中に設けられた第二ポンプとをさらに備え、
     前記ポンプが所定の温度より高くなった場合には、前記低圧室から前記第1の配管を経て前記凝縮器へ、かつ前記凝縮器から前記第2の配管を経て前記低圧室へ冷媒が循環可能になるように前記第二ポンプが動作させられる
     ことを特徴とする請求項5から請求項7までのいずれかに記載の排熱回生システム。
  10.  前記ポンプの高圧室から送出された冷媒が前記蒸発器または前記凝縮器のいずれかに流通するための切り替え制御可能な三方弁をさらに備え、
     前記ポンプが所定の温度より高くなった場合には、前記ポンプの高圧室から送出された冷媒が前記凝縮器のみに流通可能となるように前記三方弁が切り替えられる
     ことを特徴とする請求項5から請求項7までのいずれかに記載の排熱回生システム。
PCT/JP2010/062506 2009-08-05 2010-07-26 排熱回生システム WO2011016354A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010003195T DE112010003195T5 (de) 2009-08-05 2010-07-26 Abgaswärme- Regenerationssystem
JP2011525852A JP4903296B2 (ja) 2009-08-05 2010-07-26 排熱回生システム
US13/378,841 US8739532B2 (en) 2009-08-05 2010-07-26 Exhaust heat regeneration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009182289 2009-08-05
JP2009-182289 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016354A1 true WO2011016354A1 (ja) 2011-02-10

Family

ID=43544250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062506 WO2011016354A1 (ja) 2009-08-05 2010-07-26 排熱回生システム

Country Status (4)

Country Link
US (1) US8739532B2 (ja)
JP (1) JP4903296B2 (ja)
DE (1) DE112010003195T5 (ja)
WO (1) WO2011016354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103413A1 (ja) * 2012-12-28 2014-07-03 株式会社 豊田自動織機 複合流体機械

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102170132B1 (ko) * 2014-11-12 2020-10-27 한온시스템 주식회사 차량의 열원을 이용한 발전 시스템
DE102016225826A1 (de) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Außenzahnradmaschine
FR3070725B1 (fr) * 2017-09-06 2019-08-30 IFP Energies Nouvelles Turbopompe cinetique avec un dispositif de variation de vitesse pour un circuit ferme, en particulier de type a cycle de rankine, notamment pour un vehicule automobile
FR3080892B1 (fr) 2018-05-04 2020-04-03 Exoes Pompe a engrenages pour la circulation d’un fluide
CN112780362B (zh) * 2020-12-30 2023-07-28 国网黑龙江省电力有限公司供电服务中心 一种基于电源分级控制的低温环境电能高效利用系统与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231855A (ja) * 2006-03-01 2007-09-13 Denso Corp 膨張機およびその制御装置
JP2008157152A (ja) * 2006-12-25 2008-07-10 Denso Corp ランキンサイクル

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636706A (en) * 1969-09-10 1972-01-25 Kinetics Corp Heat-to-power conversion method and apparatus
US5214932A (en) * 1991-01-25 1993-06-01 Abdelmalek Fawzy T Hermetically sealed electric driven gas compressor - expander for refrigeration
JP3985023B2 (ja) * 2001-03-19 2007-10-03 彰三 勝倉 ポンプ装置
JP4014583B2 (ja) 2003-06-20 2007-11-28 株式会社デンソー 流体機械
JP4027295B2 (ja) * 2003-10-02 2007-12-26 本田技研工業株式会社 ランキンサイクル装置における凝縮器の液面位置制御装置
JP2005155336A (ja) * 2003-11-20 2005-06-16 Denso Corp ランキンサイクルおよび熱サイクル
US7421853B2 (en) * 2004-01-23 2008-09-09 York International Corporation Enhanced manual start/stop sequencing controls for a stream turbine powered chiller unit
DE102005051428B4 (de) * 2004-10-29 2015-05-28 Denso Corporation Abwärmenutzungsvorrichtung
JP2006188156A (ja) * 2005-01-06 2006-07-20 Denso Corp 蒸気圧縮式冷凍機
DE102006009211B4 (de) * 2005-03-02 2015-06-11 Denso Corporation Fluidpumpe und Fluidmaschine
JP4493531B2 (ja) 2005-03-25 2010-06-30 株式会社デンソー 膨張機付き流体ポンプおよびそれを用いたランキンサイクル
JP4706451B2 (ja) 2005-11-17 2011-06-22 株式会社豊田自動織機 一体ユニット
US7895839B2 (en) * 2005-12-07 2011-03-01 Steven Richard Miller Combined circulation condenser
US7870733B2 (en) * 2005-12-21 2011-01-18 Denso Corporation Fluid machine for rankine cycle
EP2128384B1 (en) * 2007-01-15 2011-12-14 Panasonic Corporation Expander-integrated compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231855A (ja) * 2006-03-01 2007-09-13 Denso Corp 膨張機およびその制御装置
JP2008157152A (ja) * 2006-12-25 2008-07-10 Denso Corp ランキンサイクル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103413A1 (ja) * 2012-12-28 2014-07-03 株式会社 豊田自動織機 複合流体機械

Also Published As

Publication number Publication date
US8739532B2 (en) 2014-06-03
JPWO2011016354A1 (ja) 2013-01-10
JP4903296B2 (ja) 2012-03-28
US20120090317A1 (en) 2012-04-19
DE112010003195T5 (de) 2012-07-12

Similar Documents

Publication Publication Date Title
JP4493531B2 (ja) 膨張機付き流体ポンプおよびそれを用いたランキンサイクル
JP4903296B2 (ja) 排熱回生システム
KR101482879B1 (ko) 동력 발생 장치 및 이 장치의 운전 방법
US8613193B2 (en) Vehicle waste heat recovery device
US20110088394A1 (en) Waste heat regeneration system
JP2007255327A (ja) 膨張機制御装置
JP2006017108A (ja) 熱サイクル装置
JP4689498B2 (ja) 膨張機およびその制御装置
JP4684882B2 (ja) 流体機械
JP4606840B2 (ja) 複合流体機械およびそれを用いた冷凍装置
JP2005248809A (ja) 流体機械
JP5721676B2 (ja) 補助動力発生装置及びこの装置の運転方法
JP2006342793A (ja) 流体機械
JP2006349211A (ja) 複合サイクル装置およびその制御方法
JP2008157152A (ja) ランキンサイクル
JP4575844B2 (ja) 回転機械
US9574446B2 (en) Expander for recovery of thermal energy from a fluid
JP2005061260A (ja) 廃熱回収システム
JP4463660B2 (ja) 冷凍装置
JP4985665B2 (ja) 排熱回生システム
JP4711884B2 (ja) 回転出力発生装置
JP4549884B2 (ja) 流体機械
JP4817972B2 (ja) 冷凍サイクル装置
JP5452361B2 (ja) 廃熱回生システム
EP2744989A1 (en) Compression and energy-recovery unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13378841

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100031959

Country of ref document: DE

Ref document number: 112010003195

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806353

Country of ref document: EP

Kind code of ref document: A1