JP4817972B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP4817972B2
JP4817972B2 JP2006155071A JP2006155071A JP4817972B2 JP 4817972 B2 JP4817972 B2 JP 4817972B2 JP 2006155071 A JP2006155071 A JP 2006155071A JP 2006155071 A JP2006155071 A JP 2006155071A JP 4817972 B2 JP4817972 B2 JP 4817972B2
Authority
JP
Japan
Prior art keywords
refrigerant
working chamber
refrigeration cycle
suction
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006155071A
Other languages
English (en)
Other versions
JP2007322095A (ja
Inventor
敬三 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006155071A priority Critical patent/JP4817972B2/ja
Publication of JP2007322095A publication Critical patent/JP2007322095A/ja
Application granted granted Critical
Publication of JP4817972B2 publication Critical patent/JP4817972B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクルを形成する冷凍サイクル装置に関し、特に超臨界冷媒を用いた蒸気圧縮式冷凍装置の効率を向上させる技術に関する。
従来の一般的な蒸気圧縮式冷凍装置を、図12に示す。図12の蒸気圧縮式冷凍装置は、圧縮機501、放熱器502、膨張弁503および蒸発器504から構成される。これらの要素は配管により連結され、冷媒が図示の白抜き矢印のように循環する。
上記蒸気圧縮式冷凍装置の運転原理は次の通りである。冷媒蒸気の圧力および温度は圧縮機501によって増大される。次いで、その冷媒蒸気が放熱器502に入り、そこで冷却される。この後、高圧冷媒は膨張弁503により蒸発圧力に絞られ、蒸発器504において気化し、蒸発器504の周囲から熱を吸収する。そして、蒸発器504の出口を通って冷媒蒸気は圧縮機501に戻る。この冷媒には、例えば、オゾン層を破壊せず地球温暖化係数の小さい二酸化炭素が用いられることがある。
ただし、二酸化炭素を冷媒とする蒸気圧縮式冷凍装置は、フロンを冷媒とする冷凍装置に比べ、エネルギー効率を示すCOP(coefficient of performance)が低く、同等の冷凍能力を考えた場合、フロンを冷媒とする冷凍装置より多くの電力が必要になる。そのため、多くの化石燃料がエネルギーとして必要になり、冷媒自体の地球温暖化係数が小さくても、結果的に多くの二酸化炭素が排出される。そこで、蒸気圧縮式冷凍装置のCOPを向上させるために、いくつかの提案がなされている。
一つの提案として、冷凍装置の運転状況に応じて冷凍サイクルを最適化する技術がある。冷凍サイクルの高圧(圧縮後の冷媒の圧力)が冷媒の臨界圧力以上となる冷凍装置では、特許文献1に開示されているように、最も高いCOPの得られる冷凍サイクルの高圧が運転状態に応じて定まる。そこで、COPが最高となるように冷凍サイクルの高圧を設定するために、冷媒回路に設けられた膨張弁の開度や、膨張機をバイパスする冷媒量を変更する調節弁の開度を調節している。その際、この種の冷凍装置では、放熱器の出口において、冷媒の圧力を圧力センサで、冷媒の温度を温度センサでそれぞれ検出し、得られた検出値に基づいて膨張弁や調節弁の開度調節を行っている。
他の一つの提案として、冷媒の膨張力を圧縮機の動力として直接利用する技術がある。そのような技術を採用した冷凍装置の例を、図13に示す。この冷凍装置において、原動機605によって駆動される圧縮機構601により、圧縮された冷媒が放熱器602で冷却される。その後、冷媒は、膨張比制御手段603が取り付けられた膨張機604を通過する際に膨張し、シャフト27を介して圧縮機構601を駆動する。膨張機604内で膨張した冷媒は、蒸発器606内で外部より吸熱して気化した後、再び圧縮機構601へ戻る。このような構成の冷凍装置では、膨張機604を使用することにより、冷媒の膨張力で圧縮機構601を補助駆動するため、総合的に使用されるエネルギー量は低減され、それによりCOPを向上させている。
すなわち、図14のモリエル線図に示すように、膨張弁を膨張手段として用いた場合には、冷媒は等エンタルピー膨張するが、膨張機を用いることにより等エントロピー膨張する(図中の点線表示)。膨張機で回収した動力を利用することで、総合効率を向上させることができる。
また、冷凍サイクルを最適化する技術は、図13に示す冷凍装置にも適用される。図13の冷凍装置では、放熱器602の出口側の冷媒状態を温度センサ611および圧力センサ612で検出している。温度センサ611と圧力センサ612からの信号を元に、演算手段610は、膨張比制御手段603を制御する。このようにすれば、冷凍サイクルの高圧が最適化されてCOPが向上する。
特開2000−234814号公報 特開2004−3692号公報
ところが、冷凍サイクルの高圧を圧力センサで測定することが、技術的側面および経済的側面の両側面で難しい。例えば、二酸化炭素を冷媒に用いた冷凍サイクルの高圧は数MPaと大きく、こうした圧力範囲で使用できる小型の圧力センサは非常に高価である。また、圧力センサを配管に備え付ける場合には、冷媒漏洩の可能性があり、システムの信頼性が低くなってしまう問題もある。こうした問題があるので、冷凍サイクルの高圧を知るために圧力センサを使用することが、必ずしも適切であるとはいえない。
確かに、圧力センサを使用せずに冷凍サイクルの高圧を見出す方法が無いわけではない。例えば、特開2004−3692号公報に記載されている冷凍装置では、電動機の消費電力と、蒸発器における冷媒の蒸発温度と、冷凍サイクルの高圧との相関関係を予めシミュレーションや実験で調べてテーブル化(データベース化)しておき、そのテーブルを参照することで冷凍サイクルの高圧を推定している。
しかしながら、現実の冷凍装置では、冷媒量のバラツキや各種損失の影響が非常に大きいので、上記文献に開示されているテーブル方式では圧力推定精度を高めにくい。
そこで、本発明は、膨張機と圧縮機がシャフトで連結されている膨張機一体型圧縮機を用いた冷凍サイクル装置において、圧力センサを使用せずとも、冷凍サイクル効率を高精度で最大化できるようにすることを目的とする。
すなわち、本発明は、
冷媒を圧縮する圧縮機構、圧縮機構に動力を与える電動機、冷媒を膨張させる吸入容積可変型の2段ロータリ式膨張機構、および圧縮機構と膨張機構とを連結するシャフトを有する膨張機一体型圧縮機と、
冷媒を冷却する放熱器と、
冷媒を蒸発させる蒸発器と、
電動機に流れる電流である電動機電流を検出する電流検出手段と、
蒸発器における冷媒の蒸発温度を検出する第1温度検出手段と、
電動機の回転数を検出する回転数検出手段と、
放熱器の出口における冷媒の温度を検出する第2温度検出手段と、
電流検出手段、第1温度検出手段、回転数検出手段および第2温度検出手段による検出結果に基づいて、膨張機構の吸入容積を変更する制御を行う制御手段と、
を備え、
膨張機構は、吸入側作動室と吐出側作動室とを形成する第1シリンダと、吸入側作動室と吐出側作動室とを形成する第2シリンダと、第1シリンダの吸入側作動室に冷媒を吸入させる第1吸入孔と、第1シリンダの吐出側作動室と第2シリンダの吸入側作動室とを連通して一つの作動室を形成する連通孔と、第2シリンダの吐出側作動室から冷媒を吐出させる吐出孔と、当該膨張機構の吸入容積を変化させる容積可変機構と、を有し、
容積可変機構は、シャフトの中心軸を回転中心とする回転が可能で、かつ第1シリンダの吸入側作動室に冷媒を吸入させる第2吸入孔を有する可動部を含み、
第1吸入孔と第1シリンダの吸入側作動室との接続位置が固定されており、第2吸入孔と第1シリンダの吸入側作動室との接続位置が可変であり、
制御手段は、検出結果に基づき、可動部を回転させて第1シリンダの吸入側作動室に対する第2吸入孔の接続位置を制御することで、膨張機構の吸入容積を変更する、冷凍サイクル装置を提供する。
上記本発明は、冷媒の膨張力をシャフトのトルクに変換して圧縮機構に直接伝達する膨張機一体型圧縮機を用いた冷凍サイクル装置である。膨張機一体型圧縮機は、圧縮機構と膨張機構がシャフトで連結されているので、両者が同期して作動する。したがって、何ら対策を講じない場合には、圧縮機構の入口での冷媒の密度と、膨張機構の入口での冷媒の密度との比が一定となる。密度比が一定というこの制約は、冷凍サイクルの自由な制御を阻害する。密度比一定のこの制約を回避しつつ冷凍サイクルを最適化する方法は、主に2通りある。一つめは、膨張機構の吸入容積を変化させる方法である。二つめは、膨張機構に対して並列となるようにバイパス回路を設け、そのバイパス回路上に膨張弁を配置し、その膨張弁の開度を変化させる方法である。
本発明の前者は、上記一つめの方法を採用し、電動機電流、冷媒の蒸発温度、電動機の回転数および放熱器の出口温度に基づいて膨張機の吸入容積を変化させる。このようにすれば、冷凍サイクルの高圧を測定する圧力センサを使用せずに、冷凍サイクル効率が最大となるように冷凍サイクルの高圧を制御することが可能となる。圧力センサを使用しないので、低コストで、かつ冷媒漏洩の可能性が低い、高信頼性の冷凍サイクル装置を実現できる。さらに、電動機電流、冷媒の蒸発温度、電動機の回転数および放熱器の出口温度という検出結果によるため、冷凍サイクル効率を高精度にて最大化することができる。
以下、本発明の実施形態について図面を参照しつつ説明する。
図1は、本発明に係る冷凍サイクル装置を示すブロック図である。冷凍サイクル装置100は、膨張機一体型圧縮機120、放熱器108および蒸発器110を備えている。膨張機一体型圧縮機120、放熱器108および蒸発器110が主配管103で接続されることにより冷媒回路が形成されている。膨張機一体型圧縮機120は、冷媒を圧縮する圧縮機構20、圧縮機構20に動力を与える電動機12、冷媒を膨張させる膨張機構40、および圧縮機構20と膨張機構40を一体に連結するシャフト13を備えている。膨張機構40は、作動流体(以下、冷媒に代表させる)が膨張する際の膨張力をトルクに変換してシャフト13に与え、電動機12によるシャフト13の回転駆動をアシストする。すなわち、冷媒の膨張エネルギーを膨張機構40にて回収し、圧縮機構20を駆動する電動機12の動力に重畳する仕組みになっている。
冷凍サイクル装置100で使用する冷媒の種類は特に限定されないが、例えば、冷凍サイクルの高圧が臨界圧力以上となる二酸化炭素を挙げることができる。二酸化炭素は、オゾン層を破壊せず地球温暖化係数が小さいためフロンに替わる冷媒として好適である。
圧縮機構20および膨張機構40は同一容器内に配置されている。膨張機構40は、容積可変機構128を有し、吸入容積を任意に変更可能な構成となっている。膨張機構40の吸入容積を変更すると冷媒の膨張比が変化するので、圧縮機構20の入口での冷媒の密度と、膨張機構40の入口での冷媒の密度との比(密度比)を変化させることが可能である。密度比を変化させることができれば、冷凍サイクル効率を最大化する制御の自由度が高まる。
冷凍サイクル装置100は、さらに、インバータ102、第1コントローラ104および第2コントローラ106を備えている。インバータ102は、電動機12の駆動を制御するマイクロコンピュータ等の制御系を含むインバータユニットとして構成され、直流を所定の周波数の交流に変換して電動機12に与えることにより、電動機12の回転数を所定の値に制御する。第2コントローラ106は、マイクロコンピュータを中心に構成され、冷凍サイクル効率を最大化するべく、膨張機構40の吸入容積を変更する制御を行う制御手段として機能する。第1コントローラ104は、冷凍サイクル効率を最大化するために必要な冷凍サイクルの高圧を推定する圧力推定手段として機能する。第2コントローラ106は、第1コントローラ104が求めた推定圧力値を取得する。
冷凍サイクル装置100は、さらに、電動機12に流れる電流である電動機電流を検出する電流センサ122(電流検出手段)と、蒸発器110内に配置されて当該蒸発器110における冷媒の蒸発温度を検出する第1温度センサ124(第1温度検出手段)と、放熱器108と膨張機構40との間に配置されて放熱器108の出口における冷媒の温度を検出する第2温度センサ126(第2温度検出手段)とを備えている。電流センサ122は、u相、v相およびw相のうちの少なくとも2相の相電流を個別に検出する構成になっている。温度センサ124,126は、サーミスタや熱電対によって構成されている。
各温度センサ124,126からの信号は、図示しないA/D変換回路で2値化されてコントローラ104,106に入力される。同様に、電流センサ122からの信号は、図示しないA/D変換回路で2値化されて第1コントローラ104およびインバータ102に入力される。さらに、第1コントローラ104は、第1温度センサ124より得られる蒸発温度から冷凍サイクルの低圧を見出すとともに、電動機12の電流値、冷凍サイクルの低圧および電動機12の回転数に基づき、冷凍サイクルの高圧を推定する。
冷凍サイクルの低圧側となる蒸発器110においては、冷媒が気液2相流の状態であるため、蒸発温度と圧力とが1対1で対応している。したがって、例えば、蒸発温度と圧力とが対応付けられたテーブルをメモリに格納しておき、このテーブルを必要に応じて参照すれば、蒸発温度から冷凍サイクルの低圧を容易に見出すことができる。電動機12の回転数は、インバータ102から電動機12の回転数を特定可能なデータを取得することによって知ることができる。
このように、第1コントローラ104は、電流センサ122、第1温度センサ124および電動機12の回転数検出手段としてのインバータ102による検出結果に基づいて、冷凍サイクルの高圧を推定する圧力推定手段としての役割を担う。
一方、第2コントローラ106は、放熱器108の出口における冷媒の温度から、冷凍サイクル効率を最大にする最適な高圧を求める。放熱器108の出口における冷媒の温度は、第2温度センサ126が検出する。図2の特性図に示すように、冷凍サイクル効率が最大になる高圧は、放熱器108の出口における冷媒の温度に対応して定まる。そのため、冷凍サイクル効率の最大化には、冷凍サイクルの高圧が必要となる。本実施形態の冷凍サイクル装置100においては、第1コントローラ104が求めた推定圧力値を用い、冷凍サイクル効率が最大となるように、膨張機構40の吸入容積を変化させる。
2つのコントローラ104,106が実現するべき各機能、すなわち、冷凍サイクルの高圧を推定する機能や、冷凍サイクル効率を最大にする最適圧力値を算出する機能に対応するプログラムモジュールは、これらのコントローラ104,106が備えるメモリに格納されている。コントローラ104,106は、各プログラムを必要に応じて呼び出して実行することにより、各機能を実現する。なお、2つのコントローラ104,106は、一方を他方に兼用させることができる。さらに、これらコントローラ104,106の一方または両方を、例えば、インバータ102の制御系に兼用させることができる。
次に、膨張機一体型圧縮機120について詳しく説明する。
図3に示すのは、図1に示す膨張機一体型圧縮機の縦断面図である。膨張機一体型圧縮機120は、密閉容器11と、その内部の上側に配置されたスクロール式の圧縮機構20と、下側に配置された2段ロータリ式の膨張機構40と、圧縮機構20と膨張機構40との間に配置された電動機12と、それら圧縮機構20、膨張機構40および電動機12を連結するシャフト13とを備えている。
スクロール式の圧縮機構20は、固定スクロール21、旋回スクロール22、オルダムリング23、軸受部材24、マフラー25、吸入管26および吐出管27を備えている。シャフト13の偏心軸13aに嵌合され、かつ、オルダムリング23により自転運動を拘束された旋回スクロール22は、渦巻き形状のラップ22aが、固定スクロール21のラップ21aと噛み合いながら、シャフト13の回転に伴って旋回運動を行い、ラップ21a,22aの間に形成される三日月形状の作動室28が外側から内側に移動しながら容積を縮小することにより、吸入管26から吸入された冷媒を圧縮する。圧縮された冷媒は、固定スクロール21の中央部に設けた吐出孔21b、マフラー25の内側空間25a、ならびに固定スクロール21および軸受部材24を貫通する流路29をこの順に経由して、密閉容器11の内部空間11aへと吐出される。内部空間11aに吐出された冷媒は、内部空間11aに滞留する間に、混入した潤滑用のオイルを重力や遠心力などにより分離された後、吐出管27から放熱器108に向けて吐出される。
2段ロータリ式の膨張機構40は、第1シリンダ41と、第1シリンダ41よりも厚みのある第2シリンダ42と、これらシリンダ41,42を仕切る中板43とを備えている。第1シリンダ41には、シャフト13の偏心部13bと嵌合し、第1シリンダ41の中で偏心回転運動する第1ピストン44と、第1シリンダ41のベーン溝に往復動可能に保持され、一方の端部が第1ピストン44に接する第1ベーン46と、第1ベーン46の他方の端部に接し、第1ベーン46を第1ピストン44へと付勢する第1ばね48と、が配置されている。同様に、第2シリンダ42には、シャフト13の偏心部13cと嵌合し、第2シリンダ42の中で偏心回転運動する第2ピストン45と、第2シリンダ42のベーン溝に往復動可能に保持され、一方の端部が第2ピストン45に接する第2ベーン47と、第2ベーン47の他方の端部に接し、第2ベーン47を第2ピストン45へと付勢する第2ばね49と、が配置されている。
膨張機構40は、さらに、第1および第2シリンダ41,42ならびに中板43を狭持するように配置された上側端板73および下側端板51を備えている。上側端板73および中板43は第1シリンダ41を上下から狭持し、中板43および下側隔壁51は第2シリンダ42を上下から狭持する。上側端板73、中板43および下側端板51による狭持により、第1シリンダ41および第2シリンダ42内には、ピストン44,45の回転に応じて容積が変化する作動室が形成される。上側端板73および下側端板51は、圧縮機構20の軸受部材24とともにシャフト13を回転可能に保持する軸受部材としても機能する。膨張機構40も、圧縮機構20と同様、マフラー52と、吸入管53と、吐出管54とを備えている。
図4A,図4Bに示すように、第1シリンダ41の内側には、第1ピストン44および第1ベーン46により区画された、吸入側の作動室55aおよび吐出側の作動室55bが、第2シリンダ42の内側には、第2ピストン45および第2ベーン47により区画された、吸入側の作動室56aおよび吐出側の作動室56bがそれぞれ形成される。第1シリンダ41の吐出側の作動室55bと、第2シリンダ42の吸入側の作動室56aとは、中板43に設けられた連通孔43aにより連通しており、一つの作動室として機能する。高圧の冷媒は、作動室55aに流入した後、作動室55bと作動室56aから形成される作動室においてシャフト13を回転させながら膨張して低圧になる。
上側端板73は、固定部71と可動部72とを備えている。図5Aに示すように、固定部71は、貫通孔71fを有し、貫通孔71fは、円筒凹面71aと、円筒凹面71aと同じ中心軸70を有し、円筒凹面71aよりも小さな内径を有する円筒凹面71bと、これら円筒凹面71a,71bを接続する段差面71cとによって囲まれている。なお、流体機械を組み立てると、中心軸70はシャフト13の中心軸となる。
固定部71は、吸入管53からの冷媒を導く流入路71dと、流入路71dからの分岐路である流入路71eとをさらに備えている。図3および図4Aに示すように、流入路71eに連通する流路として、第1シリンダ41には、流入路41aおよび第1吸入孔41bが設けられており、第1吸入孔41bは、第1シリンダ41内の吸入側の作動室55aに連通している。
図5Bに示すように、上側端板73の可動部72は、シャフト13を回転可能に保持するための貫通孔72aを有し、その外周に、固定部71の円筒凹面71aに当接する円筒凸面72bと、固定部71の円筒凹面71bに当接する円筒凸面72cと、これら円筒凸面72b,72cの間において固定部71の段差面71cに当接する段差面72gと、を備えている。上側端板73の可動部72の円筒凸面72cには、この面72cを周方向に周回する歯車72eが設けられている。可動部72は、円筒凸面72b上を周方向に沿って周回する流路溝72dと、流路溝72dに接続された第2吸入孔72fとをさらに備えている。図3および図4Aに示すように、第2吸入孔72fは、第1シリンダ41内の吸入側の作動室55aに連通している。
図5Cに示すように、固定部71と可動部72とは、固定部71の貫通孔71fに可動部71が回転可能に嵌め込まれて一体化される。固定部71の段差面71cと可動部72の段差面72gとは、互いに当接して、可動部72が固定部71より上側に抜け出るのを防止する。固定部71の下端面と可動部72の下端面とは、同一平面を構成し、この平面が第1シリンダ41の上方の隔壁を構成する。
可動部72を回転させると、第2吸入孔72fは、シャフト13の中心軸70との間の距離を一定に保持しながら、中心軸70を回転中心として回転移動する。可動部72の回転は、第1シリンダ41の吸入側の作動室55aにおける第2吸入孔72の位置の相対的変化をもたらす。すなわち、第1吸入孔41bと第1シリンダ41の吸入側の作動室55aとの接続位置が固定されているのに対し、第2吸入孔72fと作動室55aとの接続位置は可変である。後述するように、第2吸入孔72fの接続位置の変更が、膨張機一体型圧縮機における密度比一定の制約の回避を可能とする。
図5A,5B,5Cを参照して説明したように、第2吸入孔72fは、冷媒が最初に流入する第1シリンダ41のシリンダの端面を閉塞する端板73に設けるとよい。簡単な構成で移動可能な第2吸入孔72fを構成できるためである。また、上側端板73のシリンダ41側は平面であるため、端板73を複数の部品で構成しても加工精度を高めることは容易である。
また、上記で説明したように、端板73の少なくとも一部を、シャフト13を回転中心とする回転が可能な可動部72とし、可動部72に第2吸入孔72fを設けることが好ましい。第2吸入孔72fの移動範囲を大きく確保することが容易になるためである。
図3に示すように、上側端板73の固定部71には、可動部72の歯車72eと噛み合う歯車75と、歯車75を駆動する回転電動機76とがさらに設置されている。歯車72e,75を介して、可動部72は回転電動機76により駆動される。回転電動機76は、密閉容器11の外部に設けられた、可動部72の回転角度を制御するコントローラに接続され、このコントローラからの制御信号を受けて可動部72を回転させ、第2吸入孔72fの作動室55aへの接続位置を制御する。回転電動機76としてステッピングモータやサーボモータを用いると、第2吸入孔72fの位置を高精度に制御することが可能となる。第2吸入孔72fの位置を制御可能ということは、膨張機構40の吸入容積を制御可能であることを意味する。本実施形態において、可動部72の回転角度を制御するコントローラは、図1に示す第2コントローラ106に兼用させている。もちろん、第1コントローラ104に兼用させてもよいし、専用のコントローラを別途設けてもよい。
可動部72の回転角度と膨張機構40の吸入容積Vexpとの対応関係は、設計の段階で調査することができる。したがって、両者の対応関係を記述したデータベースが第2コントローラ106のメモリに格納される。例えば、回転電動機76としてステッピングモータを用いる場合には、ステップ角により可動部72の回転角度を特定することができる。回転電動機76としてエンコーダ内蔵型のサーボモータを用いる場合には、エンコーダからの出力で可動部72の回転角度を特定することができる。第2コントローラ106は、冷凍サイクル装置100の運転中に特定しうる可動部72の回転角度と、予め準備された上記データベースより、正確な膨張機構40の吸入容積Vexpを知ることができる。
以上の説明から分かるように、図1に示す膨張機構40の容積可変機構128は、第2吸入孔72fが形成された可動部72および固定部71を備えた上側端板73と、可動部72を回転させる回転電動機76と、回転電動機76を駆動して可動部72の回転角度を制御するコントローラ(本実施形態では第2コントローラ106)によって構成することができる。
図3に示すように、吸入管53から膨張機構40に流入した冷媒は、上側端板73の固定部71の流入路71dから二つの経路に分かれて作動室55aに流入する。第1経路は、固定部71内の流入路71d、分岐流入路71e、第1シリンダ41内の流入路41a、第1吸入孔41bを経由する経路である。第2経路は、固定部71内の流入路71d、可動部72の流路溝72d、第2吸入孔72fを経由する経路である。このように、膨張機構40では、吸気管53から最初の作動室55aに、作動室55aとの接続位置が固定された第1吸入孔41bと、作動室55aとの接続位置が可変である第2吸入孔72fとを経由して、冷媒を供給する。これら2つの経路には、開閉可能な電磁弁や差圧弁などの流量制御機構を配置する必要はない。
第1シリンダ41に吸入された冷媒は、第2シリンダ42を経由し、下側端板51に設けられた吐出孔51a、マフラー52の内部空間52a、第1および第2シリンダ41,42を貫通する流路57、をこの順に経由して吐出管54から蒸発器110に向けて吐出される。
図6A,図6Bおよび図6Cに、第1吸入孔41bおよび第2吸入孔72fの位置を示す。第2吸入孔72fの位置は、シャフト13を中心とした第1ベーン46の位置を基準とする角度φにより表示して、20°(図6A)、90°(図6B)、180°(図6C)にそれぞれ調整されている。角度φは、正確には、第1ベーン46と第1ピストン44との接点とシャフト13の中心軸70とを結ぶ第1直線80を、中心軸70を中心として、シャフト13の回転方向(図示した例では時計回り)について、第2吸入孔72fとシャフト13の中心軸70とを結ぶ第2直線90にまで回転させるときの角度である。この表記方法に従うと、図示した例では、第1吸入孔41bは20°の位置に固定されている。また、吐出孔51aは、第2シリンダ42における同様の表記において、340°の位置に固定されている。これに対し、第2吸入孔72fの位置は、0°から360°の間で任意に設定できる。
図7Aに、第2吸入孔72fの角度φが90°の場合の第1シリンダ41の動作原理図を、図7Bに、上記に対応する第2シリンダ42の動作原理図をそれぞれ示す。ここでは、シャフト13の回転角θを、第1シリンダ41と第1ピストン44との接点が、第1ベーン46に位置するいわゆる上死点にあるときを0°とし、シャフト13の回転方向である時計回りを正として表示する。
θ=0°以降に生成する作動室55aに、θ=20°以降において第1吸入孔41bから冷媒が流入する。θ=90°以降は、第1吸入孔41bおよび第2吸入孔72fから作動室55aに冷媒が流入する。θ=360°を過ぎると、作動室55aは作動室55bとなり、かつ、連通孔43aを介して第2シリンダ42の作動室56aと連通する。さらにシャフト13が回転すると、θ=380°(図示せず)において、第1シリンダ41と第1ピストン44との接点が第1吸入孔41bを通過し、作動室55bと第1吸入孔41bとの連通が断たれる。従来の2段ロータリ式の膨張機構では、この時点で冷媒の吸入過程が終了する。
これに対し、本実施形態の膨張機構40には、第2吸入孔72fが設置されているため、θ=380°に至っても、第2吸入孔72fからの冷媒の流入が継続する。この膨張機構40では、θ=450°になり、第1シリンダ41と第1ピストン44との接点が第2吸入孔72fを通過して作動室55bと第2吸入孔72fとの連通が断たれた時点で、冷媒の吸入過程が終了する。
吸入過程が終了すると、冷媒の膨張過程が開始される。シャフト13がさらに回転すると、作動室55bの容積は減少するが、第1シリンダ41よりも第2シリンダ42が厚いため、作動室56aの容積はそれ以上の割合で増加する。その結果、シャフト13の回転に伴い、作動室55bと作動室56aの容積の和は増大し、冷媒は膨張する。θ=700°(図示せず)に至ると、第2シリンダ42と第2ピストン45の接点が吐出孔51aを通過し、作動室56aが吐出孔51aと連通する。この時点で、膨張過程は終了する。
膨張過程が終了すると、冷媒の吐出過程が開始される。θ=720°において、作動室55bは消滅、作動室56aは作動室56bとなり、さらに、シャフト13が回転するにつれて、作動室56bの容積が減少し、冷媒が吐出孔51aから吐き出される。θ=1080°で作動室56bは消滅し、吐出過程が終了する。
図8Aに、シャフト13の回転角θと、吸入から吐出に至る各過程の移行時点との関係を、第2吸入孔72fの角度φが20°,90°,180°の場合について示す。上記説明から明らかなように、吸入過程が終了するシャフト13の回転角θは、第1シリンダ41と第1ピストン44との接点が2回目に第2吸入孔72fを通過する際の角度となる。この角度は、θ=(360+φ)と表すことができる。したがって、第2吸入孔72fの角度φが大きくなるにつれて、吸入過程から膨張過程へと移行するタイミングが遅くなり、吸入過程が長くなって膨張過程が短くなる。すなわち、吸入過程が行われる時間の長さに対する膨張過程が行われる時間の長さの比が小さくなる。
図8Bに、シャフト13の回転角θと作動室容積との関係を示す。冷媒は、作動室55a、作動室55b、作動室56a、作動室56bの順に移動するが、その過程で作動室の容積は正弦波曲線状に変化する。図中に、第2吸入孔72fの角度φが20°,90°,180°の場合の吸入過程終了時の作動室の容積である吸入容積Vesφと、吐出過程開始時の作動室の容積である吐出容積Vedを示す。φの増加とともに吸入容積Vesφは増加するが、φによらず吐出容積Vedは一定である。
以上のように、本実施形態では、従来の2段ロータリ式の膨張機構40に設けられていた固定された第1吸入孔41bに加え、移動可能な第2吸入孔72fを設けることにより、作動室55a,55b,56a,56bの吸入過程終了時の容積である吸入容積Vesφを可変とした。これにより、圧縮機構20と膨張機構40の入口側の冷媒の密度比(Vcs/Vesφ)を制御することが可能となる。
次に、冷凍サイクル効率を最大化する制御について説明する。
図1に示すように、インバータ102により駆動される電動機12とシャフト13で結合された圧縮機構20により冷媒が圧縮される。圧縮された高圧の冷媒は放熱器108で冷却され、膨張機構40を通過する。このとき冷媒は膨張機構40内で膨張して低圧となり、蒸発器110内で外部より吸熱して気化した後、再び圧縮機構20へ戻る。
インバータ102は、電流センサ122により検出される電流値を使用して、磁極位置に同期させて電動機12の駆動を制御する。インバータ102から電動機12に出力される交流の周波数は、電動機12の回転数に対応するため、電動機12の回転数に関するデータは、インバータ102に常時保有されるデータとなっている。つまり、インバータ102は、電動機12の回転数を検出する回転数検出手段としての役割も担っている。電動機12が同期機でなく誘導機である場合、インバータ102は、例えば、各相の巻線の誘起電圧値から電動機12の回転数を推定し、推定結果をメモリに格納する。もちろん、エンコーダ等の回転数検出器を用いて電動機12の回転数を検出するようにしてもよい。
第1コントローラ104の動作について説明する。
圧力推定手段としての第1コントローラ104は、電流センサ122が検出する電流値、第1温度センサ124が検出する蒸発温度およびインバータ102から取得する電動機12の回転数に基づいて、冷凍サイクルの高圧を推定する。冷凍サイクルの高圧を推定する演算は、下記原理(i)(ii)を利用するものである。この手法によれば、圧力センサを用いなくとも、冷凍サイクルの高圧を正確に推定することが可能である。こうして求めた高圧を用いれば、冷凍サイクル効率の最大化を高精度で行えるようになる。
(i)冷媒の膨張力によってシャフト13に加わるトルクTexp(以下、膨張機トルクという)が、圧縮機構20に加わるトルクTcomp(以下、圧縮機トルクという)から電動機12がシャフト13に加えるトルクTmot(以下、電動機トルクという)を減じた値に等しいこと。
(ii)膨張機トルクTexpが、冷凍サイクルの高圧および低圧と、電動機12の回転数とに応じて定まること。
上記の原理(i)は、下記(式1)で表される。
mot=Tcomp−Texp ・・・(式1)
電動機トルクTmotは、電流センサ122によって検出される電動機電流Icompと、電動機12に固有のトルク定数Ktとを用いて、下記(式2)から求まる。
mot=Kt×Icomp ・・・(式2)
ここで用いる電動機電流Icompは、相電流実効値の31/2倍に相当する。
一方、冷凍サイクルの低圧Psと、膨張機トルクTexpと、膨張機構40の吸入容積Vexpと、断熱係数kと、冷凍サイクルの高圧Pdと、電動機12の回転数fとの間には、下記(式3)の関係式が成り立つ。
exp=k/(k−1)×Ps×Vexp×{(Pd/Ps)(k-1)/k−1}/(2πf) ・・・(式3)
冷凍サイクルの低圧Psは、冷媒が気液2相流の状態であるため、前述したように、飽和温度と圧力との関係を用いて、蒸発器110の蒸発温度より蒸発圧力として求めることができる。断熱係数kは、冷媒の定圧比熱Cpと定積比熱Cvの比であり、予め与えられる定数である。電動機12の回転数fを特定するためのデータは、インバータ102が常時持っており、インバータ102から第1コントローラ104に与えられる。膨張機構40の吸入容積Vexpを特定するためのデータは、容積可変機構128を制御する第2コントローラ106から第1コントローラ104に与えられる。こうして第1コントローラ104は、回転数fおよび吸入容積Vexpを特定するためのデータを定期的に取得する。
同様に、冷凍サイクルの低圧Psと、圧縮機トルクTcompと、圧縮機構20の吸入容積Vcompと、断熱係数kと、冷凍サイクルの高圧Pdと、電動機12の回転数fとの間には、下記(式4)の関係式が成り立つ。(式4)の右辺において、冷凍サイクルの高圧Pd以外は既知の値となる。
comp=k/(k−1)×Ps×Vcomp×{(Pd/Ps)(k-1)/k−1}/(2πf) ・・・(式4)
以上に示した(式2)、(式3)および(式4)を(式1)に代入することにより、冷凍サイクルの高圧Pdを求める(推定する)ことができる。
次に、第2コントローラ106の動作について説明する。図9は、第2コントローラ106が定期的に実行する制御のフローチャートである。
ステップ101において、第2コントローラ106は、第1コントローラ104が推定した推定圧力値(冷凍サイクルの高圧Pd)を読み込む。次に、ステップ102において、第2温度センサ126から検出信号を取得して放熱器108の出口における冷媒の温度を見出し、その温度に対応する冷凍サイクルの高圧の最適値(最適圧力値)を求める。ステップ101とステップ102の順序は、この逆であってもよい。
次に、ステップ103において、現在の推定圧力値が、最適圧力値より大か小かを判断する。推定圧力値が最適圧力値よりも大きい場合には、ステップ104に進み、膨張機構40の吸入容積を拡大する制御を行う。これにより、膨張機構40の入口と出口の圧力差が低減され、冷凍サイクルの高圧が低下して最適圧力値に近づく。
一方、推定圧力値が最適圧力値よりも小さい場合には、ステップ105に進み、膨張機構40の吸入容積を縮小する制御を行う。これにより、膨張機構40の入口と出口の圧力差が増大し、冷凍サイクルの高圧が上昇して最適圧力値に近づく。こうした制御が行われることにより、放熱器108の出口における冷媒の圧力(冷凍サイクルの高圧)は、冷凍サイクル効率を最大にするような圧力に制御される。
以上に説明した実施形態では、放熱器108の出口における冷媒の温度に応じて定まる最適圧力値に、推定圧力値が近づくように制御が行われるが、最適圧力値に代えて、予め定めた限界圧力値を用いて同様の制御を行ってもよい。例えば、第1コントローラ104による推定圧力値が所定の限界圧力値を超えた場合には、その推定圧力値が限界圧力値以下となるように、推定圧力値に応じて、膨張機構40の吸入容積を変更する制御を行う。具体的には、推定圧力値が限界圧力値を超えた場合には、膨張機構40の吸入容積を拡大する制御を行う。このようにしても、冷凍サイクル効率を高めることができる。
(第2実施形態)
冷凍サイクルの高圧を推定し、冷凍サイクル効率を最大化する制御は、容積可変機構を有さない膨張機一体型圧縮機を用いた冷凍サイクル装置にも採用できる。
図10に示す冷凍サイクル装置101は、容積可変機構128に代えて、膨張弁132が配置された副回路を備えている。膨張弁132が配置された副回路は、放熱器108と膨張機構40との間で主循環回路から分岐し、膨張機構40と蒸発器との間で主循環回路に合流する冷媒回路であり、膨張弁132と副配管130によって構成される。主循環回路は、膨張機一体型圧縮機131、放熱器108、蒸発器110、およびそれらの要素を相互に接続する主配管103によって構成される冷媒回路である。膨張弁132は、膨張機構40に対して並列となるように副回路上に配置されている。この膨張弁132の開度を変化させると、膨張機構40に流れる冷媒の量が変化する。つまり、膨張機構40の吸入容積を変化させるのと同じ効果が得られる。
図10の冷凍サイクル装置101に用いられている膨張機一体型圧縮機131は、吸入容積可変型でないという点でのみ第1実施形態の膨張機一体型圧縮機120(図3)と相違し、他の点は共通である。また、第1コントローラ104が冷凍サイクルの高圧を推定する手順についても、膨張機構40の吸入容積が一定となる他は第1実施形態と同一である。
相違点としては、膨張機構40の吸入容積を変化させる制御に代えて、膨張弁132の開度を変化させる制御を行う点である。具体的には、第1コントローラ104が推定した推定圧力値が冷凍サイクル効率を最大にする最適圧力値に近づくように、膨張弁132の開度を制御する。図11のフローチャートは、その制御の手順を示している。
図11のステップ201,202,203は、図9で説明した通りである。ステップ203において、推定圧力値が最適圧力値よりも大きいと判断した場合、第2コントローラ106は、ステップ204に進み、膨張弁132の開度を大きくする制御を行う。これにより、膨張機構40の入口と出口の圧力差が低減され、結果として、冷凍サイクルの高圧が低下して最適圧力値に近づく。
一方、推定圧力値が最適圧力値よりも小さい場合には、ステップ205に進み、膨張弁132の開度を小さくする制御を行う。これにより、膨張機構40の入口と出口の圧力差が増大し、冷凍サイクルの高圧が上昇して最適圧力値に近づく。こうした制御が行われることにより、冷凍サイクルの高圧は、冷凍サイクル効率を最大にするような圧力に制御される。
本発明に係る冷凍サイクル装置は、高効率、高信頼性、かつ低コストであり、空気調和機、給湯機、各種乾燥機、冷凍冷蔵庫等に好適に採用できる。
本発明に係る冷凍サイクル装置のブロック図 放熱器の出口における冷媒の圧力および温度、ならびに冷凍サイクル効率の関係を示すCO2冷媒の特性図 膨張機一体型圧縮機の縦断面図 図3のD1−D1断面図 図3のD2−D2断面図 上側端板の固定部の半断面斜視図 上側端板の可動部の斜視図 固定部と可動部とを一体化した上側端板の半断面斜視図 第1吸入孔と第2吸入孔の位置関係を説明する第1シリンダの平面図 図6Aと同様の平面図 図6Aと同様の平面図 第1シリンダの動作原理図 第2シリンダの動作原理図 シャフトの回転角と作動室の各行程との関係を示す図 シャフトの回転角と作動室容積との関係を示す図 冷凍サイクル効率を最大化する制御のフローチャート 第2実施形態の冷凍サイクル装置のブロック図 冷凍サイクル効率を最大化するために図10の冷凍サイクル装置で実施される制御のフローチャート 従来の蒸気圧縮式冷凍装置を示すブロック図 膨張機を用いた従来の冷凍空調装置を示すブロック図 冷凍サイクルにおけるCO2冷媒の状態を表すモリエル線図
符号の説明
12 電動機
13 シャフト
20 圧縮機構
40 膨張機構
100,101 冷凍サイクル装置
102 インバータ(回転数検出手段)
103 主配管
104 第1コントローラ(圧力推定手段)
106 第2コントローラ(制御手段)
108 放熱器
110 蒸発器
120,131 膨張機一体型圧縮機
122 電流センサ(電流検出手段)
124 第1温度センサ(第1温度検出手段)
126 第2温度センサ(第2温度検出手段)
128 容積可変機構
130 副配管
132 膨張弁

Claims (3)

  1. 冷媒を圧縮する圧縮機構、前記圧縮機構に動力を与える電動機、前記冷媒を膨張させる吸入容積可変型の2段ロータリ式膨張機構、および前記圧縮機構と前記膨張機構とを連結するシャフトを有する膨張機一体型圧縮機と、
    前記冷媒を冷却する放熱器と、
    前記冷媒を蒸発させる蒸発器と、
    前記電動機に流れる電流である電動機電流を検出する電流検出手段と、
    前記蒸発器における前記冷媒の蒸発温度を検出する第1温度検出手段と、
    前記電動機の回転数を検出する回転数検出手段と、
    前記放熱器の出口における前記冷媒の温度を検出する第2温度検出手段と、
    前記電流検出手段、前記第1温度検出手段、前記回転数検出手段および前記第2温度検出手段による検出結果に基づいて、前記膨張機構の吸入容積を変更する制御を行う制御手段と、
    を備え、
    前記膨張機構は、吸入側作動室と吐出側作動室とを形成する第1シリンダと、吸入側作動室と吐出側作動室とを形成する第2シリンダと、前記第1シリンダの前記吸入側作動室に冷媒を吸入させる第1吸入孔と、前記第1シリンダの前記吐出側作動室と前記第2シリンダの前記吸入側作動室とを連通して一つの作動室を形成する連通孔と、前記第2シリンダの前記吐出側作動室から冷媒を吐出させる吐出孔と、当該膨張機構の吸入容積を変化させる容積可変機構と、を有し、
    前記容積可変機構は、前記シャフトの中心軸を回転中心とする回転が可能で、かつ前記第1シリンダの前記吸入側作動室に冷媒を吸入させる第2吸入孔を有する可動部を含み、
    前記第1吸入孔と前記第1シリンダの前記吸入側作動室との接続位置が固定されており、前記第2吸入孔と前記第1シリンダの前記吸入側作動室との接続位置が可変であり、
    前記制御手段は、前記検出結果に基づき、前記可動部を回転させて前記第1シリンダの前記吸入側作動室に対する前記第2吸入孔の接続位置を制御することで、前記膨張機構の吸入容積を変更する、冷凍サイクル装置。
  2. 前記電流検出手段、前記第1温度検出手段、前記回転数検出手段および前記第2温度検出手段による検出結果に基づいて、冷凍サイクルの高圧を推定する圧力推定手段をさらに備え、
    前記制御手段は、前記圧力推定手段による推定圧力値が冷凍サイクル効率を最大にする最適圧力値に近づくように、前記膨張機構の吸入容積を変更する制御を行う、請求項1記載の冷凍サイクル装置。
  3. 前記圧力推定手段は、前記冷媒の膨張力によって前記シャフトに加わるトルク(Texp)が、前記圧縮機構に加わるトルク(Tcomp)から前記電動機が前記シャフトに加えるトルク(Tmot)を減じた値に等しく、かつ、冷凍サイクルの高圧および低圧と、前記回転数とに応じて定まることを利用した演算により、冷凍サイクルの高圧を推定する、請求項2記載の冷凍サイクル装置。
JP2006155071A 2006-06-02 2006-06-02 冷凍サイクル装置 Expired - Fee Related JP4817972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155071A JP4817972B2 (ja) 2006-06-02 2006-06-02 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155071A JP4817972B2 (ja) 2006-06-02 2006-06-02 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2007322095A JP2007322095A (ja) 2007-12-13
JP4817972B2 true JP4817972B2 (ja) 2011-11-16

Family

ID=38855070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155071A Expired - Fee Related JP4817972B2 (ja) 2006-06-02 2006-06-02 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP4817972B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278496B2 (ja) 2011-03-25 2013-09-04 株式会社豊田自動織機 車両用排熱回収装置
CN110762912A (zh) * 2019-11-28 2020-02-07 广东美的制冷设备有限公司 运行控制方法、压缩空气换热系统以及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191851U (ja) * 1987-12-09 1989-06-16
JP2000234814A (ja) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
JP2003013863A (ja) * 2001-06-29 2003-01-15 Toyota Industries Corp 容量可変型圧縮機の容量制御装置
JP2004003692A (ja) * 2002-05-30 2004-01-08 Daikin Ind Ltd 冷凍装置
JP4410980B2 (ja) * 2002-09-19 2010-02-10 三菱電機株式会社 冷凍空調装置
JP3963940B2 (ja) * 2004-04-27 2007-08-22 松下電器産業株式会社 ヒートポンプ装置

Also Published As

Publication number Publication date
JP2007322095A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
US20110138831A1 (en) Refrigeration cycle apparatus
JP2008106738A (ja) ロータリ圧縮機およびヒートポンプシステム
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP6000452B2 (ja) ヒートポンプ装置
US20120151948A1 (en) Refrigeration cycle apparatus
KR100747496B1 (ko) 로터리 압축기 및 그 제어방법 그리고 이를 이용한공기조화기
JPWO2009028632A1 (ja) ロータリ式圧縮機及び冷凍サイクル装置
JP4118291B2 (ja) 容量可変圧縮機及びその起動運転方法
JP5036593B2 (ja) 冷凍サイクル装置
WO2011148453A1 (ja) 二段回転式圧縮機及びヒートポンプ装置
JP2000241033A (ja) 蒸気圧縮式冷凍装置
JP4903296B2 (ja) 排熱回生システム
JP4817972B2 (ja) 冷凍サイクル装置
JP4642673B2 (ja) 冷凍サイクル装置
JP2006029085A (ja) 空気調和機及びそれに用いられるロータリ圧縮機
JP5414811B2 (ja) 容積型膨張機及びこの容積型膨張機を用いた冷凍サイクル装置
JP2699723B2 (ja) 逆止弁装置を備えた2段圧縮冷凍装置
JP2006266171A (ja) 容積形流体機械
JP4744331B2 (ja) ヒートポンプ装置
JP2008157152A (ja) ランキンサイクル
JP2003201963A (ja) 密閉形圧縮機
JP2000249411A (ja) 蒸気圧縮式冷凍装置
JP4575844B2 (ja) 回転機械
JP2013096602A (ja) 冷凍サイクル装置
WO2020144728A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees