WO2011016212A1 - 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル - Google Patents

非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル Download PDF

Info

Publication number
WO2011016212A1
WO2011016212A1 PCT/JP2010/004851 JP2010004851W WO2011016212A1 WO 2011016212 A1 WO2011016212 A1 WO 2011016212A1 JP 2010004851 W JP2010004851 W JP 2010004851W WO 2011016212 A1 WO2011016212 A1 WO 2011016212A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
general formula
phosphate ester
trifluoroethyl
containing phosphate
Prior art date
Application number
PCT/JP2010/004851
Other languages
English (en)
French (fr)
Inventor
英之 三村
憲太郎 河野
久雄 江口
孝太郎 迫田
雅裕 青木
Original Assignee
東ソー・エフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー・エフテック株式会社 filed Critical 東ソー・エフテック株式会社
Priority to JP2011525779A priority Critical patent/JP5802556B2/ja
Priority to US13/380,658 priority patent/US20120094190A1/en
Priority to CN201080034542.0A priority patent/CN102473964B/zh
Priority to KR1020127000817A priority patent/KR101689661B1/ko
Publication of WO2011016212A1 publication Critical patent/WO2011016212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a fluorine-containing phosphate used as a flame retardant for a non-aqueous electrolyte. More specifically, the present invention relates to a fluorine-containing phosphate ester having a specific structure and excellent physical properties and characteristics as a non-aqueous electrolyte, a method for producing the same, a non-aqueous electrolyte including the same, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries have high output density and high energy density, and are widely used as power sources for mobile phones and personal computers. In recent years, as a clean energy with low carbon dioxide emission, it has been actively researched as a power storage power source and a power source for electric vehicles.
  • Non-aqueous secondary batteries include lithium secondary batteries, lithium ion secondary batteries, magnesium secondary batteries, and magnesium ion secondary batteries.
  • a material containing a lithium-containing transition metal oxide as a main constituent is used for the positive electrode, and metallic lithium or a lithium alloy is used for the negative electrode, or
  • a material mainly composed of a carbonaceous material typified by graphite is used. These are referred to as a lithium secondary battery and a lithium ion secondary battery, respectively.
  • the positive electrode and the negative electrode are provided via a separator, and a non-aqueous electrolyte is filled between the positive electrode and the negative electrode as a medium in which Li ions move.
  • a non-aqueous electrolyte such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a high dielectric constant organic solvent such as ethylene carbonate or dimethyl carbonate is widely used.
  • these organic solvents are volatile and flammable, and are classified as flammable substances. For this reason, non-aqueous electrolytes that are not flammable are desired, especially for large non-aqueous secondary battery applications such as power storage power supplies and electric vehicle power supplies.
  • a technique using a nonaqueous electrolyte solution has attracted attention.
  • Patent Documents 1 and 2 For the purpose of making such non-aqueous electrolytes flame-retardant, addition of phosphate esters known as flame retardants for resin materials has been studied (Patent Documents 1 and 2).
  • fluorine-containing phosphates having a fluorine atom in the ester side chain are known to have a high degree of flame retardancy, and there is a wide range of electrolyte compositions that can achieve both battery flame retardancy and battery function.
  • Patent Literature 1 Non Patent Literature 1, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6).
  • a non-patent document 2 reports a synthesis example of a fluorine-containing phosphate ester having both ester terminal group structures in the same molecule, CF 3 and CF 2 H.
  • a fluorine-containing phosphate ester having such a specific structure there are no reports on basic physical properties required as a non-aqueous electrolyte such as viscosity, dielectric constant and surface tension, and a non-aqueous electrolyte using the same Or, there is no information about non-aqueous secondary batteries.
  • the present invention has been made in view of these problems. That is, with respect to the fluorinated phosphate used in the electrolyte for non-aqueous secondary batteries, the fluorine-containing phosphate that exhibits high flame retardancy and provides high performance in battery performance such as high rate charge / discharge characteristics, and An object of the present invention is to provide a manufacturing method thereof, a non-aqueous electrolyte containing the same, and a non-aqueous secondary battery.
  • a further object of the present invention is to provide a fluorine-containing phosphate ester having a high electrolyte dissolving power and capable of constructing a safer electrolyte composition.
  • the inventors of the present invention have a specific structure-containing fluorine-containing phosphate ester having characteristics suitable for a non-aqueous electrolyte, a method for producing the same, and a method for producing the same.
  • the present invention has been completed by finding a high-performance non-aqueous electrolyte and a non-aqueous secondary battery. That is, the present invention relates to the following gist.
  • R represents an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group.
  • a and B represent a hydrogen atom or a fluorine atom, and A and B are not the same.
  • N and m are Each independently represents an integer from 1 to 8.
  • n and m are each independently an integer of 1 to 4, and R is an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group ( The fluorine-containing phosphoric acid ester for nonaqueous electrolyte solutions as described in 1).
  • n and m are each independently an integer of 1 to 4, and R is a methyl group, an ethyl group, a 2,2-difluoroethyl group, a 2,2,2-tri (1) characterized in that it is one kind selected from a fluoroethyl group, a 2,2,3,3-tetrafluoropropyl group, and a 2,2,3,3,3-pentafluoropropyl group Fluorine-containing phosphate for water electrolyte.
  • the compound represented by the general formula (1) is bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl), which is not described in (1) Fluorine-containing phosphate for water electrolyte.
  • the compound represented by the general formula (1) is bis (2,2,3,3-tetrafluoropropyl) phosphate (2,2,2-trifluoroethyl), which is not described in (1) Fluorine-containing phosphate for water electrolyte.
  • the compound represented by the general formula (1) is bis (2,2,2-trifluoroethyl phosphate) (2,2-difluoroethyl), and is used for a nonaqueous electrolytic solution according to (1). Fluorine-containing phosphate ester.
  • the compound represented by the general formula (1) is phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl as described in (1) Fluorine-containing phosphate for non-aqueous electrolyte.
  • a nonaqueous electrolytic solution comprising the fluorine-containing phosphate ester according to any one of (1) to (7) and a lithium salt.
  • a nonaqueous electrolytic solution comprising an organic solvent containing 3 to 60% by weight of the fluorine-containing phosphate ester according to any one of (1) to (7) and a lithium salt.
  • the fluorinated phosphate ester of the general formula (1) is (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl phosphate (14) An asymmetric fluorine-containing phosphate ester.
  • An improved non-aqueous electrolyte and non-aqueous secondary battery are provided.
  • a fluorine-containing phosphate ester having a high electrolyte dissolving power and capable of constructing a safer electrolyte solution composition is provided.
  • FIG. 6 is a schematic cross-sectional view of non-aqueous secondary batteries used in Examples 18 to 26 and Comparative Examples 6 to 8.
  • the fluorine-containing phosphoric acid ester for non-aqueous electrolyte of this invention is represented by the said General formula (1). That is, when at least one of the ester side chains has a terminal CF 3 structure and at least one has a terminal CF 2 H structure, and the structures of the three ester side chains are all different, the two are the same There is a case.
  • the former case is called an asymmetric type fluorine-containing phosphate ester because it has no symmetry plane, and the latter case is called a low symmetry type fluorine-containing phosphate ester because it has only one symmetry plane.
  • the fluorine-containing phosphate ester of the present invention has a fluorine atom content of 30% or more by weight.
  • the fluorine atom content in the fluorine-containing phosphate is less than 30 wt%, it is not preferable because the non-aqueous electrolyte or the non-aqueous secondary battery containing the fluorine-containing phosphate is insufficient.
  • the fluorine-containing phosphate ester exhibits excellent properties as a non-aqueous electrolyte in addition to high flame retardancy, and a high rate of non-aqueous secondary batteries using this High performance in charge / discharge characteristics.
  • the fluorine-containing phosphate ester has such a specific structure, the solubility of the electrolyte is remarkably improved, and a highly safe electrolyte solution composition can be constructed.
  • n and m are each independently an integer of 1 to 8.
  • n and m are preferably 1 to 4.
  • R is an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group.
  • it is preferably an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group
  • R is a methyl group, an ethyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group. More preferably, it is one selected from the group 2,2,3,3-tetrafluoropropyl group and 2,2,3,3,3-pentafluoropropyl group.
  • fluorine-containing phosphate esters include bis (2,2,2-trifluoroethyl phosphate) (2,2-difluoroethyl), bis (2,2,2-trifluoroethyl phosphate) ( 2,2,3,3-tetrafluoropropyl), bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3,4,4,5,5-octafluoropentyl), phosphorus Bis (2,2,2-trifluoroethyl) acid (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl), bis (2,2 phosphate , 2-trifluoroethyl) (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononyl), bisphosphate ( 2,2-difluoroethyl) (2,2,2-trifluoroethyl), bis (2,2 phosphate) 3,3-tetrafluor
  • fluorine-containing phosphates bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl), bis (2,2,3,3-phosphate) Tetrafluoropropyl) (2,2,2-trifluoroethyl), bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) and phosphoric acid (2,2,2-trifluoro) Ethyl) (2,2,3,3-tetrafluoropropyl) methyl is preferred from the viewpoint of battery performance.
  • these fluorine-containing phosphate esters have high purity, and it is particularly desirable that the content of protic compounds such as water, acid, alcohol, etc. is less than 30 ppm.
  • these fluorine-containing phosphoric acid esters may be used alone or in combination of one or more for the non-aqueous electrolyte.
  • the fluorine-containing phosphoric acid ester of the general formula (1) of the present invention is prepared, for example, according to the methods described in J. Fluor. Chem., 113, 65 (2002) and J. Fluor. Chem., 106, 153 (2000). Can be synthesized according to Scheme 1.
  • the case where the alcohol of the general formula (3) is the same as the fluorinated alcohol of the general formula (2) or the general formula (6) is a method for synthesizing a low symmetric fluorine-containing phosphate ester.
  • the case where the alcohol of the formula (3) is not identical to the fluorinated alcohols of the general formula (2) and the general formula (6) is a method for synthesizing the asymmetric type fluorinated phosphoric acid ester.
  • A represents a hydrogen atom or a fluorine atom
  • n represents an integer of 1 to 8.
  • fluorinated alcohols include 2,2-difluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol.
  • a solvent may be used in the first step.
  • the solvent is preferably an aprotic solvent, alkanes such as hexane and heptane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, ethers such as diethyl ether and tetrahydrofuran, Examples thereof include ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, nitriles such as acetonitrile and propionitrile, and amides such as dimethylformamide and dimethylacetamide.
  • the amount of these solvents used is the total amount of the raw materials phosphorus trichloride, t-butanol, the fluorinated alcohol of the general formula (2) and the alcohol of the general formula (3).
  • the fluorine-containing phosphate ester of the general formula (1) is obtained in a high yield, characterized in that the weight ratio is 0 to 1 times.
  • the amount of t-butanol used in the first step is 0.5 to 2 times the molar ratio of phosphorus trichloride, and the amount of the fluorinated alcohol of the general formula (2) and the alcohol of the general formula (3)
  • the amount used is 0.5 to 4 times the molar ratio of phosphorus trichloride.
  • the mixing order of the raw materials is not particularly limited. Usually, after mixing phosphorus trichloride and t-butanol, the alcohols of the general formula (2) and the general formula (3) are added.
  • the reaction temperature is ⁇ 20 to 100 ° C., and the reaction time is 10 minutes to 100 hours.
  • the produced fluorine-containing phosphite of the general formula (4) can be used in the second step as purified or unpurified.
  • the fluorine-containing phosphite of the general formula (4) produced in the first step is reacted with molecular chlorine.
  • the same solvent as in the first step can be used, but the amount of solvent used is 0 to 1 times by weight with respect to the total amount of the fluorine-containing phosphite of formula (4) and molecular chlorine. Is desirable.
  • the amount of molecular chlorine used relative to the fluorine-containing phosphite of the general formula (4) is 0.8 to 2 times in molar ratio.
  • the reaction temperature is ⁇ 20 to 100 ° C., and the reaction time is 10 minutes to 100 hours.
  • the produced fluorine-containing chlorophosphate of the general formula (5) can be used in the third step in purified or unpurified form.
  • the fluorine-containing chlorophosphate of the general formula (5) produced in the second step is reacted with the fluorine-containing alcohol of the general formula (6) in the presence of a Lewis acid catalyst.
  • a Lewis acid catalyst a metal halide is desirable, and examples thereof include lithium chloride, magnesium chloride, calcium chloride, boron chloride, aluminum chloride, iron chloride, titanium chloride and the like.
  • m in the formula represents an integer of 1 to 8
  • B represents a fluorine atom or a hydrogen atom.
  • a in the general formula (2) is a fluorine atom
  • B in the general formula (6) is a hydrogen atom
  • examples of the fluorinated alcohol in the general formula (6) include 2,2-difluoroethanol.
  • a in the general formula (2) is a hydrogen atom
  • B in the general formula (6) is a fluorine atom
  • examples of the fluorinated alcohol in the general formula (6) include 2,2,2-trimethyl.
  • the amount of the Lewis acid catalyst used is 0.01 to 0.5 times in molar ratio to the fluorine-containing chlorophosphate of the general formula (5).
  • the amount of the fluorinated alcohol of the general formula (6) used is 0.5 to 2 times in molar ratio with respect to the fluorinated chlorophosphate of the general formula (5).
  • the reaction temperature is ⁇ 20 to 200 ° C., and the reaction time is 10 minutes to 100 hours.
  • the produced fluorine-containing phosphate ester of the general formula (1) can be isolated by a known extraction method, distillation method or the like.
  • the above-mentioned fluorine-containing phosphate ester may be used alone as an electrolyte solvent, or may be used as a mixture with another organic solvent.
  • organic solvent used here include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and fluoroethylene carbonate, cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, and propiolactone, and dimethyl carbonate.
  • Chain carbonates such as diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, chain esters such as methyl acetate, methyl butyrate, ethyl trifluoroacetate, diisopropyl ether, tetrahydrofuran , Dioxolane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, perfluorobutyl methyl ether, 2,2,2-trifluoroethyl- Ethers such as 1,1,2,2-tetrafluoroethyl ether and 2,2,3,3-tetrafluoropropyl-1,1,2,2-tetrafluoroethyl ether, and nitriles such as acetonitrile and benzonitrile Or a mixture of two or more thereof.
  • chain esters such as methyl acetate, methyl butyrate, e
  • the amount of fluorine-containing phosphate added to the organic solvent when mixed with these organic solvents is 3 to 60%, preferably 5 to 40% by weight.
  • the amount added is less than 3% by weight, the flame retardant effect of the electrolyte solution is not sufficient, and when the amount added is large, the flame retardant effect is high, but when it exceeds 60%, the battery performance deteriorates. May bring.
  • the electrolyte salt constituting the non-aqueous electrolyte a lithium salt, a magnesium salt, or the like that is stable in a wide potential region can be used.
  • the electrolyte salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , Mg (ClO 4 ) 2 , Mg (CF 3 SO 3 ) 2 , Mg (N (CF 3 SO 2 ) 2 ) 2 and the like. These may be used alone or in combination of two or more.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably in the range of 0.5 to 2.5 mol / L.
  • the nonaqueous secondary battery of the present invention uses a nonaqueous electrolytic solution having the above composition, and is a battery comprising at least a positive electrode, a negative electrode, and a separator.
  • the negative electrode material examples include lithium metal and lithium alloy in the case of a lithium secondary battery, and carbon materials capable of doping and dedoping lithium ions can be used in the case of a lithium ion secondary battery.
  • a carbon material may be graphite or amorphous carbon, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be used.
  • metallic magnesium and a magnesium alloy can be mentioned.
  • Positive electrode materials include reversible electrolytic polymerization such as transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5 , conductive polymers such as transition metal sulfides, polyaniline and polypyrrole, and disulfide compounds.
  • transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5
  • conductive polymers such as transition metal sulfides, polyaniline and polypyrrole, and disulfide compounds.
  • a compound to be depolymerized, a composite oxide composed of lithium and a transition metal such as LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiFeO 2 , LiFePO 4 , or a composite oxide composed of magnesium and a transition metal is used. It comes out.
  • a microporous membrane or the like is used, and it is preferable that the thickness is in the range of 10 ⁇ m to 20 ⁇ m and the porosity is 35% to 50%.
  • materials include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • fluorine resins such as a polymer and a vinylidene fluoride-ethylene copolymer.
  • the shape, form, etc. of the non-aqueous secondary battery of the present invention are not particularly limited, and can be arbitrarily selected within the scope of the present invention, such as a cylindrical shape, a square shape, a coin shape, a card shape, and a large size. it can.
  • Example 1 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) 340 g of phosphorus trichloride and 184 g of t-butyl alcohol, 2,2,2-tri After mixing 496 g of fluoroethanol at 0 ° C., the mixture was reacted at 60 ° C. for 3 hours. Subsequently, it cooled to 0 degreeC and 193g of chlorine gas was blown in in 6 hours. Next, 9.4 g of magnesium chloride and 409 g of 2,2,3,3-tetrafluoropropanol were added to the reaction solution and reacted at 130 ° C. for 4 hours.
  • Example 3 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) 244 g of 2,2-difluoroethanol instead of 409 g of 2,2,3,3-tetrafluoropropanol
  • the same operation as in Example 1 was carried out except that bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) was obtained in an amount of 616 g.
  • Example 5 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) Phosphorus trichloride 340 g of dichloromethane 650 g of solution and t-butyl alcohol 184 g of dichloromethane 325 g A solution of 325 g of 2,2,2-trifluoroethanol 496 in dichloromethane was mixed at 0 ° C. and reacted at 60 ° C. for 3 hours. Subsequently, it cooled to 0 degreeC and 193g of chlorine gas was blown in in 6 hours.
  • the low symmetric type or asymmetric type fluorinated phosphate ester of the present invention has remarkably improved electrolyte solubility with respect to the symmetric type fluorinated phosphate ester.
  • Examples 13 to 17 and Comparative Examples 4 to 5 Flume retarding performance of fluorine-containing phosphate ester
  • Bis (2,2,2-trifluoroethyl phosphate) (2,2,3,3-tetrafluoropropyl) phosphate is added to a 1: 1: 1 volume ratio mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate.
  • LiPF 6 was dissolved at a rate of 1 mol / L to obtain a non-aqueous electrolyte a.
  • Bis (2,2,2-trifluoroethyl phosphate) (2,2,3,3-tetrafluoropropyl) phosphate is added to a 1: 1: 1 volume ratio mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. After adding 10% by weight, LiPF 6 was dissolved at a rate of 1 mol / L to obtain a non-aqueous electrolyte b.
  • Bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) of the present invention having a fluorine content of 30% by weight or more, bis (2,2,3,3) phosphate 3-tetrafluoropropyl) (2,2,2-trifluoroethyl), bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) and phosphoric acid (2,2,2- In the non-aqueous electrolyte containing trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl, the test piece did not burn, whereas dimethyl phosphate (fluorine content less than 30% by weight) In the case of a non-aqueous electrolyte containing 2,2,2-trifluoroethyl) and trimethyl phosphate, the test piece burned.
  • Examples 18 to 26, Comparative Examples 6 to 8 Evaluation of battery performance of nonaqueous secondary battery containing fluorine-containing phosphate ester
  • a non-aqueous secondary battery as shown in the sectional view of FIG. 1 was prepared.
  • the negative electrode 1 was obtained by applying a mixture of graphite and polyvinylidene fluoride N-methyl-2-pyrrolidone to a current collector 2 made of copper foil, drying, and then press-molding (thickness 0. 1 mm)
  • the positive electrode 3 was obtained by applying a mixture of LiCoO 2, acetylene black and N-methyl-2-pyrrolidone to the current collector 4 made of aluminum foil, drying, and then pressure molding (thickness 0. 0 mm). 1 mm).
  • the materials constituting these negative electrode 1 and positive electrode 3 were laminated via a porous separator 5 (thickness 16 ⁇ m, porosity 50%) made of polyethylene.
  • a non-aqueous electrolyte for such a battery bis (2,2,2-trifluoroethyl phosphate) (2,2) is added to a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate are mixed at a volume ratio of 1: 1: 1. 2,3,3-tetrafluoropropyl) in a solvent mixed at a ratio of 20% by weight, LiPF 6 was dissolved at a ratio of 1.0 mol / L, and this was impregnated between the positive electrode and the negative electrode.
  • the metal resin composite film 6 was thermally welded and sealed.
  • This non-aqueous secondary battery was designated as A1.
  • phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3- (3-) was added to a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 1: 1.
  • a solution prepared by dissolving LiPF 6 at a ratio of 1.0 mol / L in a solvent in which tetrafluoropropyl) methyl was mixed at a ratio of 20% by weight was impregnated and sealed.
  • This non-aqueous secondary battery was designated as D.
  • tris (2,2,3,3-tetrafluoropropyl) phosphate was mixed at a weight ratio of 20% in a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 1: 1.
  • a solution prepared by dissolving LiPF 6 at a rate of 1.0 mol / L in a solvent mixed at a rate of 1.0 was impregnated and sealed. This non-aqueous secondary battery was designated as F1.
  • tris phosphate (2,2,2) was added to a solvent in which ethylene carbonate and 2,2,2-trifluoroethyl-1,1,2,2-tetrafluoroethyl ether were mixed at a volume ratio of 1: 1. (3,3-tetrafluoropropyl) was added to a solvent mixed with 30% by weight of LiPF 6 at a rate of 1.0 mol / L, and LiPF 6 was not dissolved and a large amount of precipitates were formed. .
  • the initial discharge capacity and high-rate discharge capacity of the nonaqueous secondary batteries A1, A2, A3, A4, A5, B, C1, C2 and D of the present invention and comparative nonaqueous secondary batteries E and F1 are measured. It was.
  • the initial discharge capacity was a constant current constant voltage charge with a current of 10 mA and a final voltage of 4.2 V at 20 ° C., and then a constant current discharge with a current of 2 mA and a final voltage of 2.7 V was performed at 20 ° C. to obtain an initial discharge capacity. .
  • the high rate discharge capacity is a constant current and constant voltage charge of 10 mA current and a final voltage of 4.2 V at 20 ° C., and then a constant current discharge of 30 mA current and a final voltage of 2.7 V is performed at 20 ° C. It was set as the discharge capacity.
  • the results are shown in Table 4.
  • the non-aqueous secondary battery of the present invention containing a fluorine-containing phosphate having a specific structure as an electrolytic solution exhibited a high high rate discharge capacity.
  • non-aqueous secondary battery C1 of the present invention and the comparative non-aqueous secondary battery E were subjected to constant current and constant voltage charging with a current of 2 mA and a final voltage of 4.2 V, and constant current discharge with a current of 2 mA and a final voltage of 2.7 V. The test was repeated 200 times to test the cycle life of the battery.
  • the ratio of the 200th discharge capacity to the initial discharge capacity (capacity maintenance ratio) of the nonaqueous secondary battery C of the present invention was 94%.
  • the comparative non-aqueous secondary battery F had a ratio of the 200th discharge capacity to the initial discharge capacity (capacity maintenance ratio) of 89%.
  • Negative electrode 2 Current collector 3: Positive electrode 4: Current collector 5: Porous separator 6: Metal resin composite film 7: Positive electrode terminal 8: Negative electrode terminal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 【課題】 非水系二次電池用の電解液の難燃化に用いられる含フッ素リン酸エステルに関して、高度な難燃性を有し、高率充放電特性等の電池性能において高性能を与える含フッ素リン酸エステル及びその製造方法、これを含む非水電解液及び非水系二次電池を提供する。 更には、電解質の溶解力が高く、より安全性の高い電解液組成を構築可能な含フッ素リン酸エステルを提供する。 【解決手段】 一般式(1)(式中、Rは炭素数1~10のアルキル基又は含フッ素アルキル基を表す。A及びBは、水素原子またはフッ素原子を表し、且つAとBは非同一である。n、mは、それぞれ独立に1~8の整数を表す。)で表され、且つフッ素原子の含有率が重量比で30%以上である非水電解液用の含フッ素リン酸エステル。

Description

非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル
 本発明は、非水電解液の難燃剤として用いられる含フッ素リン酸エステルに関する。より詳細には、特定構造を有し、非水電解液としての物性及び特性に優れた含フッ素リン酸エステル及びその製造方法、これを含む非水電解液及び非水系二次電池に関する。
 非水系二次電池は、高出力密度、高エネルギー密度を有し、携帯電話、パーソナルコンピューター等の電源として汎用されている。また、近年は、二酸化炭素排出量の少ないクリーンなエネルギーとして、電力貯蔵用電源、電気自動車用電源として、盛んに研究されている。
 非水系二次電池としては、リチウム二次電池、リチウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池等が知られている。例えば、リチウム二次電池、リチウムイオン二次電池の場合は、正極にリチウム含有遷移金属酸化物を主要構成成分とする材料が用いられ、負極には金属リチウムまたはリチウム合金が用いられる場合、あるいは、グラファイトに代表される炭素質材料を主要構成成分とする材料が用いられる場合等がある。これらは、それぞれリチウム二次電池、リチウムイオン二次電池と称される。正極、負極は、セパレータを介して設けられ、正極、負極間は、Liイオンが移動する媒体として、非水電解液が満たされる。この非水電解液としては、六フッ化リン酸リチウム(LiPF)等の電解質が、エチレンカーボネートやジメチルカーボネート等の高誘電率の有機溶媒に溶解されたものが広く用いられている。ここで、これら有機溶媒は、揮発性、引火性を有しており、引火性物質に分類される溶媒である。このため、特に電力貯蔵用電源や電気自動車用電源等の大型の非水系二次電池の用途には、引火のおそれがない非水電解液が望まれており、難燃性もしくは自己消火性を有する非水電解液を用いる技術が注目されている。
 このような非水電解液の難燃化の目的にて、樹脂材料の難燃化剤として知られているリン酸エステル類の添加が検討されている(特許文献1、2)。特に、エステル側鎖にフッ素原子を有する含フッ素リン酸エステル類は、高度な難燃性を有することが知られており、電池の難燃化と電池機能の両立可能な電解液組成幅が広く、有望な材料である(非特許文献1、特許文献3、特許文献4、特許文献5、特許文献6)。
 一方、非水系二次電池を電気自動車用電源等として使用するには、安全性のみならず、高い電池性能を発揮することが要求される。このため、含フッ素リン酸エステルの構造についても工夫がなされ、特許文献3、特許文献4ではエステル基末端の構造がすべてCF3である含フッ素リン酸エステル、特許文献5、特許文献6ではエステル基末端の構造がすべてCF2Hである含フッ素リン酸エステルが検討されている。しかし、いずれの含フッ素リン酸エステルを含む電池も、高率充放電特性等の電池性能において十分な特性が得られていない。
 また、電池をより高度に難燃化するためには、電解液中における鎖状カーボネート等の低引火点溶媒の含量を低くするかあるいは使用しないことが望ましい。この場合、電解液中の電解質濃度を維持するために含フッ素リン酸エステルの電解質の溶解力が重要となるが、この点においても特許文献3、特許文献4、特許文献5および特許文献6の含フッ素リン酸エステルは十分でなかった。
 一方、同一分子内のエステル末端基構造がCF3とCF2Hの両方を有する含フッ素リン酸エステルは、非特許文献2において合成例が報告されている。しかしながら、このような特定構造の含フッ素リン酸エステルに関して、粘度、誘電率及び表面張力等の非水電解液として必要となる基本物性に関しては報告されておらず、これを使用した非水電解液または非水系二次電池については全く知られていない。
 更には、同一分子内のエステル末端基構造がCF3とCF2Hの両方を有し、且つ3つのエステル側鎖の構造がすべて異なる非対称型含フッ素リン酸エステルについては、合成例も全く報告がない。
特開平8-22839号公報 特開平11-260401号公報 特開平8-088023号公報 特開2007-258067号公報 特開2007-141760号公報 特開2008-21560号公報
J. Electrochem. Soc., 149, A1079(2002) J. Fluor. Chem., 106, 153(2000)
 本発明はこれらの課題に鑑みてなされたものである。即ち、非水系二次電池用の電解液に用いられる含フッ素リン酸エステルに関して、高度な難燃性を示し、且つ高率充放電特性等の電池性能において高性能を与える含フッ素リン酸エステル及びその製造方法、これを含む非水電解液及び非水系二次電池を提供することを目的とする。
 更には、電解質の溶解力が高く、より安全性の高い電解液組成を構築可能な含フッ素リン酸エステルを提供することを目的とする。
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、非水電解液に適した特性を有する特定構造の含フッ素リン酸エステル及びその収率の高い製造方法、これを含有する高性能な非水電解液及び非水系二次電池を見出し、本発明を完成させたものである。即ち、本発明は下記の要旨に係るものである。
(1) 一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは炭素数1~10のアルキル基又は含フッ素アルキル基を表す。A及びBは、水素原子またはフッ素原子を表し、且つAとBは非同一である。n、mは、それぞれ独立に1~8の整数を表す。)
で表され、且つフッ素原子の含有率が重量比で30%以上である非水電解液用の含フッ素リン酸エステル。
(2) 一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つ、Rが炭素数1~4のアルキル基または含フッ素アルキル基であることを特徴とする(1)に記載の非水電解液用の含フッ素リン酸エステル。
(3) 一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つRが、メチル基、エチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基から選ばれる1種であることを特徴とする(1)に記載の非水電解液用の含フッ素リン酸エステル。
(4) 一般式(1)で表される化合物がリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)である(1)に記載の非水電解液用の含フッ素リン酸エステル。
(5) 一般式(1)で表される化合物がリン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)である(1)に記載の非水電解液用の含フッ素リン酸エステル。
(6) 一般式(1)で表される化合物がリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)である(1)に記載の非水電解液用の含フッ素リン酸エステル。
(7) 一般式(1)で表される化合物が、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである(1)に記載の非水電解液用の含フッ素リン酸エステル。
(8) (1)~(7)のいずれか1項に記載の含フッ素リン酸エステルを含有する非水電解液。
(9) (1)~(7)のいずれか1項に記載の含フッ素リン酸エステルとリチウム塩を含有する非水電解液。
(10) (1)~(7)のいずれか1項に記載の含フッ素リン酸エステルを重量比で3~60%含有する有機溶媒とリチウム塩を含む非水電解液。
(11) (1)~(7)のいずれか1項に記載の含フッ素リン酸エステルを重量比で5~40%含有する有機溶媒とリチウム塩を含む非水電解液。
(12) (8)~(11)のいずれか1項に記載の非水電解液を用いた非水系二次電池。
(13) 下記3段階の反応により一般式(1)の含フッ素リン酸エステルを製造する方法であって、少なくとも工程1)において、溶媒を原料の総量に対して重量比で0~1倍量使用することを特徴とする含フッ素リン酸エステルの製造方法。
1)三塩化リン、t-ブタノール、下記一般式(2)
 A(CFCHOH  (2)
(式中、Aは水素原子またはフッ素原子、nは1~8の整数を表す。)
で表される含フッ素アルコール及び下記一般式(3)
 ROH (3)
(Rは炭素数1~10のアルキル基または含フッ素アルキル基を表す。)
で表されるアルコールを反応させ、下記一般式(4)
Figure JPOXMLDOC01-appb-C000002
(式中、A、n及びRは前記定義に同じ。)
で表される含フッ素ホスファイトを生成させる。
2)一般式(4)の含フッ素ホスファイトと分子状塩素を反応させて、下記一般式(5)
Figure JPOXMLDOC01-appb-C000003
(式中、A、n及びRは前記定義に同じ。)
で表される含フッ素クロロホスフェートを生成させる。
3)ルイス酸触媒存在下、一般式(5)の含フッ素クロロホスフェートと下記一般式(6)
B(CFCHOH  (6)
(式中、Bは水素原子またはフッ素原子を表す。但し、Bは式(2)のAと非同一である。mは1~8の整数を表す。)
で表される含フッ素アルコールを反応させて、前記一般式(1)の含フッ素リン酸エステルを生成させる。
(14) 一般式(1)において、RがCH(CFAあるいはCH(CFBいずれとも非同一である非対称型含フッ素リン酸エステル。
(15) 一般式(1)の含フッ素リン酸エステルが、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである(14)に記載の非対称型含フッ素リン酸エステル。
 本発明によれば、高度な難燃性と高率充放電特性等の電池性能において高性能を与える特定構造の非水電解液用の含フッ素リン酸エステル及びその製造方法、これを含む性能が改善された非水電解液及び非水系二次電池が提供される。
 更には、電解質の溶解力が高く、より安全性の高い電解液組成を構築可能な含フッ素リン酸エステルが提供される。
実施例18~26及び比較例6~8で使用した非水系二次電池の模式断面図である。
 以下にさらに詳細に本発明を説明する。
 本発明の非水電解液用の含フッ素リン酸エステルは、前記一般式(1)で表される。即ち、エステル側鎖の少なくとも一つが末端CF3構造を有し、且つ少なくとも一つが末端CF2H構造を有しており、3つのエステル側鎖の構造がすべて異なる場合と、2つが同一である場合がある。前者の場合は対称面をもたないため非対称型含フッ素リン酸エステルと称し、後者の場合は対称面を1個のみ有するため低対称型含フッ素リン酸エステルと称する。且つ、本発明の含フッ素リン酸エステルは、フッ素原子の含有率が重量比で30%以上である。含フッ素リン酸エステル中のフッ素原子の含有率が30wt%未満の場合、含フッ素リン酸エステルを含有する非水電解液または非水系二次電池の不燃化が不十分であるため好ましくない。
 含フッ素リン酸エステルが、このような特定構造を有することにより、高度な難燃性に加え、非水電解液としての優れた特性が発揮され、これを用いた非水系二次電池が高率充放電特性等において高性能を示す。
 更には含フッ素リン酸エステルが、このような特定構造を有することにより、電解質の溶解性が著しく向上し、安全性の高い電解液組成の構築が可能となる。
 一般式(1)において、n、mは、それぞれ独立に1~8の整数である。特にn、mは1~4であることが好ましい。また、Rは炭素数1~10のアルキル基または含フッ素アルキル基である。特に、炭素数1~4のアルキル基または含フッ素アルキル基であることが好ましく、更には、Rが、メチル基、エチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基から選ばれる1種であることがより好ましい。
 このような含フッ素リン酸エステルとして、例えば、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3,4,4,5,5-オクタフルオロペンチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニル)、リン酸ビス(2,2-ジフルオロエチル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,3,3,3-ペンタフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,3,3,4,4,5,5,5-ノナフルオロペンチル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプチル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノニル)、リン酸(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)メチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)エチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)ヘキシル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)オクチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)デシル等を挙げることができる。これら含フッ素リン酸エステルのうち、特にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルが電池性能の点で好ましい。
 なお、これら含フッ素リン酸エステルは、高純度であることが望ましく、特に、水、酸、アルコール等のプロトン性化合物の含有量がそれぞれ30ppm未満であることが望ましい。また、これらの含フッ素リン酸エステルは、単独または1種以上を混合して非水電解液に用いてもよい。
 次に、これらの特定構造を有する含フッ素リン酸エステルの製造法を説明する。本発明の一般式(1)の含フッ素リン酸エステルは、例えば、J. Fluor. Chem.,113,65(2002)及びJ. Fluor. Chem., 106, 153(2000)に記載の方法に従い、スキーム1により合成することができる。
Figure JPOXMLDOC01-appb-C000004
 ここで、一般式(3)のアルコールが、一般式(2)または一般式(6)の含フッ素アルコールのいずれかと同一の場合が、低対称型含フッ素リン酸エステルの合成法であり、一般式(3)のアルコールが、一般式(2)および一般式(6)の含フッ素アルコールと非同一の場合が非対称型含フッ素リン酸エスエルの合成法となる。
 第一の工程において、一般式(2)の含フッ素アルコールは、Aは水素原子またはフッ素原子を表し、nは1~8の整数を表す。このような含フッ素アルコールとして、2,2-ジフルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノナノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノナノール等を挙げることができる。一般式(3)のアルコールは炭素数1~10の非フッ素または含フッ素アルコールであり、一般式(2)または一般式(6)の含フッ素アルコールと同一または非同一である。一般式(3)のアルコールの例として、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、n-ヘキサノール、n-オクタノール、n-デカノール、2,2-ジフルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノナノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノナノール等を挙げることができる。
 また、第一の工程は溶媒を使用してもよい。溶媒としては、非プロトン性溶媒が望ましく、ヘキサン、ヘプタン等のアルカン類、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロメタン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類等を挙げることができる。特に、本発明では、少なくとも第一の工程において、これら溶媒の使用量を、原料である三塩化リン、t-ブタノール、一般式(2)の含フッ素アルコール及び一般式(3)のアルコールの総量に対し重量比で0~1倍とすることを特徴として高収率で一般式(1)の含フッ素リン酸エステルを得るものである。
 第一の工程における、t-ブタノールの使用量は、三塩化リンに対してモル比で0.5~2倍であり、一般式(2)の含フッ素アルコール及び一般式(3)のアルコールの使用量は、それぞれ三塩化リンに対してモル比で0.5~4倍である。原料の混合順は特に制限されないが、通常、三塩化リンとt-ブタノールを混合後、一般式(2)及び一般式(3)のアルコールを添加する。反応温度は-20~100℃、反応時間は10分~100時間である。反応終了後、生成した一般式(4)の含フッ素ホスファイトを精製または未精製にて第二の工程に使用することができる。
 第二の工程においては、第一の工程で生成した一般式(4)の含フッ素ホスファイトと分子状塩素を反応させる。本工程においても第一の工程同様の溶媒を使用できるが、溶媒の使用量は原料である一般式(4)の含フッ素ホスファイトと分子状塩素の総量に対して重量比で0~1倍とすることが望ましい。一般式(4)の含フッ素ホスファイトに対する分子状塩素の使用量はモル比で0.8~2倍である。反応温度は-20~100℃、反応時間は10分~100時間である。反応終了後、生成した一般式(5)の含フッ素クロロホスフェートを精製または未精製にて第三の工程に使用することができる。
 第三の工程においては、第二の工程で生成した一般式(5)の含フッ素クロロホスフェートをルイス酸触媒の存在下、一般式(6)の含フッ素アルコールと反応させる。本工程においても第一の工程同様の溶媒を使用できるが、溶媒の使用量は原料である一般式(5)の含フッ素クロロホスフェート、ルイス酸及び一般式(6)の含フッ素アルコールとの総量に対して重量比で0~1倍とすることが望ましい。ルイス酸触媒としては、金属ハロゲン化物が望ましく、一例として、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化ホウ素、塩化アルミニウム、塩化鉄、塩化チタン等を挙げることができる。一般式(6)の含フッ素アルコールは、式中のmは1~8の整数を表し、Bはフッ素原子または水素原子を表す。ここで、一般式(2)のAがフッ素原子の場合は、一般式(6)のBは水素原子であり、一般式(6)の含フッ素アルコールの例としては、2,2-ジフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノナノール等を挙げることができる。逆に一般式(2)のAが水素原子の場合は、一般式(6)のBはフッ素原子であり、一般式(6)の含フッ素アルコールの例としては、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール、2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプタノール、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノナノール等を挙げることができる。また、ルイス酸触媒の使用量は、一般式(5)の含フッ素クロロホスフェートに対しモル比で0.01~0.5倍である。一般式(6)の含フッ素アルコールの使用量は、一般式(5)の含フッ素クロロホスフェートに対しモル比で0.5~2倍である。反応温度は-20~200℃、反応時間は10分~100時間である。
 反応終了後、公知の抽出法、蒸留法等により、生成した一般式(1)の含フッ素リン酸エステルを単離することができる。
 次に本発明の特定構造の含フッ素リン酸エステルを含有する非水電解液、及びこれを含有する非水系二次電池について説明する。
 上述の含フッ素リン酸エステルは、単独で電解液溶媒として使用してもよいし、他の有機溶媒と混合して用いてもよい。この際の有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート等の環状カーボネート、γ-ブチロラクトン、γ-バレロラクトン、プロピオラクトン等の環状エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル、トリフルオロ酢酸エチル等の鎖状エステル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキソラン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、パーフルオロブチルメチルエーテル、2,2,2-トリフルオロエチル-1,1,2,2-テトラフルオロエチルエーテル、2,2,3,3-テトラフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類等の単独又はそれら2種以上の混合物等を挙げることができる。特にこれらの有機溶媒と混合する場合の有機溶媒に対する含フッ素リン酸エステルの添加量は、重量比で3~60%、好ましくは5~40%である。添加量が重量比で3%未満の場合は、電解液の難燃化効果が十分でなく、添加量が多い方が難燃化効果が高いが、60%を超える場合は、電池性能の低下をもたらす場合がある。
 非水電解液を構成する電解質塩としては、広電位領域において安定であるリチウム塩やマグネシウム塩等が使用できる。このような電解質塩として、例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、Mg(ClO、Mg(CFSO、Mg(N(CFSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、電池の高率充放電特性を良好なものとするため、非水電解液における電解質塩の濃度は0.5~2.5mol/Lの範囲とすることが望ましい。
 本発明の非水系二次電池は、上記組成の非水電解液を使用するものであり、少なくとも正極、負極、セパレータから成る電池である。
 負極材料として例えばリチウム二次電池の場合は、金属リチウム、リチウム合金を挙げることができ、リチウムイオン二次電池の場合は、リチウムイオンをドープ・脱ドープが可能な炭素材料を用いることができる。このような炭素材料としてはグラファイトでも非晶質炭素でもよく、活性炭、炭素繊維、カーボンブラック、メソカーボンマイクロビーズなどあらゆる炭素材料を用いることができる。また、マグネシウム二次電池の場合は、金属マグネシウム、マグネシウム合金を挙げることができる。
 正極材料としては、MoS2、TiS2、MnO2、V25等の遷移金属酸化物、遷移金属硫化物、ポリアニリン、ポリピロールなどの導電性高分子、ジスルフィド化合物のように可逆的に電解重合、解重合する化合物あるいはLiCoO2、LiMnO2、LiMn24、LiNiO2、LiFeO、LiFePOなどのリチウムと遷移金属からなる複合酸化物、あるいはマグネシウムと遷移金属からなる複合酸化物等を用いることがでる。
 また、セパレータとしては、微多孔性膜等が用いられ、厚さ10μm~20μm、空孔率35%~50%の範囲内であることが好ましい。材料としては、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-エチレン共重合体等のフッ素系樹脂を挙げることができる。
 なお、本発明の非水系二次電池の形状、形態等は特に限定されるものではなく、円筒型、角型、コイン型、カード型、大型など本発明の範囲内で任意に選択することができる。
 以下に実施例を用いて本発明を詳細に説明するが、本発明はこの実施例によって限定されるものではない。
実施例1 リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)の合成
 三塩化リン 340gとt-ブチルアルコール 184g、2,2,2-トリフルオロエタノール 496gを0℃で混合した後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 193gを6時間で吹き込んだ。次に、反応液に塩化マグネシウム 9.4g、2,2,3,3-テトラフルオロプロパノール 409gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル) 743gを得た。
H-NMR(400MHz、CDCl)δ 5.92(tt,1H),4.39~4.51(m,6H)
19F-NMR(376MHz、CDCl)δ -76.01(t,6F),-125.15(t,2F),-137.97(d,2F)
EI-MS m/z 357[M-F]+,356[M-HF]+,275,245,225,165,163,143,115,95,83,69,64,51,33
実施例2 リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)の合成
 三塩化リン 340gとt-ブチルアルコール 184g、2,2,3,3-テトラフルオロプロパノール 660gを0℃で反応させた後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 196gを6時間で吹き込んだ。次に、反応液に塩化マグネシウム 9.4g、2,2,2-トリフルオロエタノール 310gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル) 765gを得た。
EI-MS m/z 389[M-F]+,388[M-HF]+,307,277,257,227,195,163,155,143,115,95,83,69,64,51,33
実施例3 リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)の合成
 2,2,3,3-テトラフルオロプロパノール 409gに代えて、2,2-ジフルオロエタノール 244gを用いた以外は実施例1と同様の操作を行い、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル) 616gを得た。
H-NMR(400MHz、CDCl)δ 5.97(tt,1H),4.38~4.46(m,4H),4.23~4.33(m,3H)
19F-NMR(376MHz、CDCl)δ -75.99(t,6F),-127.67(dt,2F)
EI-MS m/z 307[M-F]+,306[M-HF]+,275,263,245,225,207,165,163,143,115,83,69,64,51,33
実施例4 リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルの合成
 三塩化リン 137gとt-ブチルアルコール 75g、2,2,2-トリフルオロエタノール 110g、2,2,3,3-テトラフルオロプロパノール 145gを0℃で混合した後、60℃で5時間反応させた。次いで、0℃まで冷却し、塩素ガス 78gを2時間で吹き込んだ。次に、反応液に塩化マグネシウム 3.8g、メタノール 39gを加え、50℃で2時間反応させた。冷却後、反応液に水 281g及び炭酸水素ナトリウム 31gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル 55gを得た。
H-NMR(400MHz、CDCl)δ 5.94(tt,1H),4.35~4.46(m,4H),3.87(d,3H)
19F-NMR(376MHz、CDCl)δ -76.01(t,3F),-125.58(td,2F),-138.44(d,2F)
EI-MS m/z 289[M-F]+,288[M-HF]+,258,257,207,177,127,117,97,79,69,64,51,33
実施例5 リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)の合成
 三塩化リン 340gのジクロロメタン 650gの溶液とt-ブチルアルコール 184gのジクロロメタン 325gの溶液、2,2,2-トリフルオロエタノール 496のジクロロメタン 325gの溶液を0℃で混合した後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 193gを6時間で吹き込んだ。次に、溶媒を減圧留去後、濃縮液に塩化マグネシウム 9.4g、2,2,3,3-テトラフルオロプロパノール 409gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル) 626gを得た。
実施例6~9、比較例1(含フッ素リン酸エステルの物性)
 実施例1で得られたリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、実施例2で得られたリン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、実施例3で得られたリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)、及び実施例4で得られたリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル及び比較の含フッ素リン酸エステルとして、リン酸トリス(2,2,3,3-テトラフルオロプロピル)についてそれぞれ粘度(ウベローデ粘度計、20℃)、誘電率を測定した。結果を表1に示す。
 本発明のリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルは、リン酸トリス(2,2,3,3-テトラフルオロプロピル)に比較し、改善された粘度、誘電率を有することが確認された。
Figure JPOXMLDOC01-appb-T000001
実施例10~12、比較例2~3(含フッ素リン酸エステルの電解質の溶解度)
 リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル及び比較の含フッ素リン酸エステルとして、リン酸トリス(2,2,3,3-テトラフルオロプロピル)及びリン酸トリス(2,2,2-トリフルオロエチル)について、それぞれ20℃にてLiPFを添加し、6時間20℃で攪拌し溶解させた。不溶のLiPFを濾別後、溶液の19F-NMR分析によりLiPF溶解度を求めた。結果を表2に示す。
 本発明の低対称型あるいは非対称型含フッ素リン酸エステルは、対称型含フッ素リン酸エステルに対して著しく向上した電解質の溶解性を有することが確認された。
Figure JPOXMLDOC01-appb-T000002
実施例13~17、比較例4~5(含フッ素リン酸エステルの難燃化性能)
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液aとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を10重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液bとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)を20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液cとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)を20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液dとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルを20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液eとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ジメチル(2,2,2-トリフルオロエチル)を20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液fとした。
 エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸トリメチルを20重量%添加後、LiPFを1モル/Lの割合で溶解させ非水電解液gとした。次にガラスフィルターに各電解液を染み込ませた試験片を10秒間試験炎にさらし,その後試験炎を遠ざけ、燃焼の様子を目視により観察した。結果を表3に示す。フッ素含量が30重量%以上である本発明のリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルを含有する非水系電解液は試験片が燃焼しなかったのに対し、フッ素含量が30重量%未満であるリン酸ジメチル(2,2,2-トリフルオロエチル)及びリン酸トリメチルを含有する非水電解液の場合は試験片の燃焼が起こった。
Figure JPOXMLDOC01-appb-T000003
実施例18~26、比較例6~8(含フッ素リン酸エステルを含む非水系二次電池の電池性能の評価)
 図1の断面図に示すような非水系二次電池を作成した。負極1は、グラファイトとポリフッ化ビニリデンのN-メチル-2-ピロリドンの混合物を、銅箔からなる集電体2への塗布、乾燥後、加圧成型により得たものであり(厚さ0.1mm)、正極3はLiCoO2とアセチレンブラック及びN-メチル-2-ピロリドンの混合物をアルミ箔からなる集電体4への塗布、乾燥後、加圧成型により得たものである(厚さ0.1mm)。これら負極1、正極3を構成する物質は、ポリエチレンから成る多孔質セパレータ5(厚さ16μm、空孔率50%)を介して積層した。このような電池の非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを正極、負極間に含浸させ金属樹脂複合フィルム6を熱溶着させ封止した。この非水系二次電池をA1とした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で10%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をA2とした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で30%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をA3とした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で50%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をA4とした。
 非水電解液として、エチレンカーボネート及び2,2,3,3-テトラフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテルを体積比2:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で30%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をA5とした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)を重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をBとした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)を重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をC1とした。
 非水電解液として、エチレンカーボネート、2,2,2-トリフルオロエチル-1,1,2,2-テトラフルオロエチルエーテルを体積比2:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)を重量比で30%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をC2とした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルを重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をDとした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸トリス(2,2,2-トリフルオロエチル)を重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をEとした。
 非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸トリス(2,2,3,3-テトラフルオロプロピル)を重量比で20%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で溶解させたものを用い、これを含浸させ封入した。この非水系二次電池をF1とした。
 非水電解液として、エチレンカーボネート、2,2,2-トリフルオロエチル-1,1,2,2-テトラフルオロエチルエーテルを体積比1:1で混合した溶媒にリン酸トリス(2,2,3,3-テトラフルオロプロピル)を重量比で30%の割合で混合した溶媒にLiPFを1.0モル/Lの割合で添加したところ、LiPFが溶解せず多量の析出物を生じた。対称型の含フッ素リン酸エステルはLiPFの溶解性が十分でないため、低粘度溶媒を、低引火点の鎖状カーボネートから不燃性の含フッ素エーテルに変更して安全性を更に高めようとした場合、電解液の構築が困難であった。
 本発明の非水系二次電池A1、A2、A3、A4、A5、B、C1、C2及びD、比較の非水系二次電池E及びF1について、初期放電容量、高率放電容量の測定を行った。初期放電容量は、20℃において、電流10mA、終止電圧4.2Vの定電流定電圧充電した後、20℃において、電流2mA、終止電圧2.7Vの定電流放電を行い、初期放電容量とした。また、高率放電容量は、20℃において、電流10mA、終止電圧4.2Vの定電流定電圧充電した後、20 ℃ において、電流30mA、終止電圧2.7Vの定電流放電をおこない、高率放電容量とした。結果を表4に示す。特定構造の含フッ素リン酸エステルを電解液として含有する本発明の非水系二次電池は、高い高率放電容量を示した。
Figure JPOXMLDOC01-appb-T000004
 
  また、本発明の非水系二次電池C1及び比較の非水系二次電池Eについて、電流2mA、終止電圧4.2Vの定電流定電圧充電、電流2mA、終止電圧2.7Vの定電流放電を200回繰り返し行い電池のサイクル寿命について試験した。
 本発明の非水系二次電池Cは200回目放電容量の初回の放電容量に対する比(容量維持率)が94%であった。
 比較の非水系二次電池Fは200回目放電容量の初回の放電容量に対する比(容量維持率)が89%であった。
 この結果から、本発明の非水系二次電池は、高い高率充放電特性のみならず、改善された良好なサイクル寿命を有することが示される。
 本発明の特定構造の含フッ素リン酸エステルを非水電解液に含有することにより、高率充放電特性等の電池性能が改善された非水系二次電池が得られ、極めて有用である。
 1:負極
 2:集電体
 3:正極
 4:集電体
 5:多孔質セパレータ
 6:金属樹脂複合フィルム
 7:正極端子
 8:負極端子

Claims (15)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは炭素数1~10のアルキル基又は含フッ素アルキル基を表す。A及びBは、水素原子またはフッ素原子を表し、且つAとBは非同一である。n、mは、それぞれ独立に1~8の整数を表す。)
    で表され、且つフッ素原子の含有率が重量比で30%以上である非水電解液用の含フッ素リン酸エステル。
  2. 一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つ、Rが炭素数1~4のアルキル基または含フッ素アルキル基であることを特徴とする請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  3.  一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つRが、メチル基、エチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基から選ばれる1種であることを特徴とする請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  4.  一般式(1)で表される化合物が、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  5. 一般式(1)で表される化合物が、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  6.  一般式(1)で表される化合物がリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  7.  一般式(1)で表される化合物が、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである請求項1に記載の非水電解液用の含フッ素リン酸エステル。
  8.  請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを含む非水電解液。
  9.  請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルとリチウム塩を含む非水電解液。
  10.  請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを重量比で3~60%含有する有機溶媒とリチウム塩を含む非水電解液。
  11.  請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを重量比で5~40%含有する有機溶媒とリチウム塩を含む非水電解液。
  12.  請求項8~11のいずれか1項に記載の非水電解液を用いた非水系二次電池。
  13. 下記3段階の反応により一般式(1)の含フッ素リン酸エステルを製造する方法であって、少なくとも工程1)において、溶媒を原料の総量に対して重量比で0~1倍量使用することを特徴とする含フッ素リン酸エステルの製造方法。
    1)三塩化リン、t-ブタノール、下記一般式(2)
     A(CFCHOH  (2)
    (式中、Aは水素原子またはフッ素原子、nは1~8の整数を表す。)
    で表される含フッ素アルコール及び下記一般式(3)
     ROH (3)
    (Rは炭素数1~10のアルキル基または含フッ素アルキル基を表す。)
    で表されるアルコールを反応させ、下記一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、A、n及びRは前記定義に同じ。)
    で表される含フッ素ホスファイトを生成させる。
    2)一般式(4)の含フッ素ホスファイトと分子状塩素を反応させて、下記一般式(5)
    Figure JPOXMLDOC01-appb-C000007
    (式中、A、n及びRは前記定義に同じ。)
    で表される含フッ素クロロホスフェートを生成させる。
    3)ルイス酸触媒存在下、一般式(5)の含フッ素クロロホスフェートと下記一般式(6)
    B(CFCHOH  (6)
    (式中、Bは水素原子またはフッ素原子を表す。但し、Bは式(2)のAと非同一である。mは1~8の整数を表す。)
    で表される含フッ素アルコールを反応させて、前記一般式(1)の含フッ素リン酸エステルを生成させる。
  14.  一般式(1)において、RがCH(CFAあるいはCH(CFBいずれとも非同一である非対称型含フッ素リン酸エステル。
  15.  一般式(1)の含フッ素リン酸エステルが、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである請求項14に記載の非対称型含フッ素リン酸エステル。
PCT/JP2010/004851 2009-08-04 2010-07-30 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル WO2011016212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011525779A JP5802556B2 (ja) 2009-08-04 2010-07-30 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル
US13/380,658 US20120094190A1 (en) 2009-08-04 2010-07-30 Asymmetric and/or low-symmetric fluorine-containing phosphate for non-aqueous electrolyte solution
CN201080034542.0A CN102473964B (zh) 2009-08-04 2010-07-30 非水电解液用的非对称型和/或低对称型含氟磷酸酯
KR1020127000817A KR101689661B1 (ko) 2009-08-04 2010-07-30 비수 전해액용의 비대칭형 및/또는 저대칭형 함불소 인산에스테르

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009181436 2009-08-04
JP2009-181436 2009-08-04
JP2009-274816 2009-12-02
JP2009274816 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011016212A1 true WO2011016212A1 (ja) 2011-02-10

Family

ID=43544122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004851 WO2011016212A1 (ja) 2009-08-04 2010-07-30 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル

Country Status (5)

Country Link
US (1) US20120094190A1 (ja)
JP (1) JP5802556B2 (ja)
KR (1) KR101689661B1 (ja)
CN (1) CN102473964B (ja)
WO (1) WO2011016212A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113822A (ja) * 2009-11-27 2011-06-09 Gs Yuasa Corp 非水電解質二次電池
JP2013131293A (ja) * 2011-12-20 2013-07-04 Shin Kobe Electric Mach Co Ltd 非水電解液及びそれを用いたリチウムイオン二次電池
JP2013218963A (ja) * 2012-04-11 2013-10-24 Gs Yuasa Corp 非水電解質電池
EP2677591A1 (en) * 2012-03-02 2013-12-25 Nec Corporation Secondary battery
JP2015043290A (ja) * 2013-08-26 2015-03-05 株式会社Gsユアサ 非水電解質二次電池
WO2015075811A1 (ja) * 2013-11-22 2015-05-28 株式会社日立製作所 リチウムイオン二次電池用電解質液
JP2015204152A (ja) * 2014-04-11 2015-11-16 Dic株式会社 非水電解液及びこれを用いたリチウムイオン二次電池
JP2016139611A (ja) * 2015-01-23 2016-08-04 東ソ−・エフテック株式会社 非水電解液及びそれを用いた非水系二次電池
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
JP2017004603A (ja) * 2015-06-04 2017-01-05 東ソ−・エフテック株式会社 非水電解液およびそれを用いた非水系二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216715B2 (ja) * 2012-06-15 2017-10-18 東ソ−・エフテック株式会社 LiPF6の安定化方法、熱安定性に優れた非水系二次電池用電解液及び熱安定性に優れた非水系二次電池
CN104364861B (zh) * 2012-08-10 2017-08-08 日本贵弥功株式会社 阻燃性电解电容器
JP5813800B2 (ja) 2013-03-26 2015-11-17 株式会社東芝 非水電解質電池および電池パック
US10164291B2 (en) * 2014-05-08 2018-12-25 Lynntech, Inc. Electrolyte for electrochemical energy storage devices
CN104022309A (zh) * 2014-05-28 2014-09-03 武汉大学 电解液阻燃剂、含有该阻燃剂的电解液及二次锂离子电池
EP3435472B1 (en) * 2014-07-07 2021-04-28 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
US10381686B2 (en) * 2014-07-18 2019-08-13 Nec Corporation Electrolyte solution and secondary battery using same
JP6342287B2 (ja) * 2014-10-08 2018-06-13 住友電気工業株式会社 ナトリウムイオン二次電池用電解質およびナトリウムイオン二次電池
US20190363396A1 (en) * 2016-09-14 2019-11-28 Nec Corporation Lithium secondary battery
CN107317050B (zh) * 2017-06-02 2019-05-03 周阳 一种双八氟戊氧基磷酸锂及包含其的锂离子电池非水电解液和锂离子电池
CN107285293B (zh) * 2017-06-12 2019-06-18 上海如鲲新材料有限公司 一种用二氟磷酸酯制备二氟磷酸锂的方法
CN112542614A (zh) * 2020-06-09 2021-03-23 杉杉新材料(衢州)有限公司 一种高电压锂离子电池非水电解液及其锂离子电池
CN111883840B (zh) * 2020-08-04 2024-03-05 苏州建德一方能源科技有限公司 一种锂电子电池阻燃电解液添加剂
KR20230060027A (ko) * 2021-10-27 2023-05-04 솔브레인 주식회사 비대칭형 포스페이트계 화합물의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238821A (ja) * 2002-02-21 2003-08-27 Sunstar Eng Inc ポリマー固体電解質用難燃性組成物
JP2007258067A (ja) * 2006-03-24 2007-10-04 Gs Yuasa Corporation:Kk 非水電解質電池
JP2008021560A (ja) * 2006-07-13 2008-01-31 Daikin Ind Ltd 非水系電解液
WO2009035085A1 (ja) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. 電解液

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69531901T2 (de) * 1994-07-07 2004-08-05 Mitsui Chemicals, Inc. Nichtwässrige Elektrolytlösungen und diese Elektrolytlösungen enthaltende Zellen
JP3369310B2 (ja) 1994-07-07 2003-01-20 三井化学株式会社 非水電解液及び非水電解液電池
JP3821495B2 (ja) 1994-09-16 2006-09-13 三井化学株式会社 非水電解液および非水電解液電池
JP4463333B2 (ja) 1998-03-11 2010-05-19 三井化学株式会社 非水電解液及び非水電解液二次電池
CN1306645C (zh) * 2004-02-10 2007-03-21 中国科学院上海微系统与信息技术研究所 含有机磷化合物的锂离子电池电解液及组成的电池
JP4972915B2 (ja) 2005-11-22 2012-07-11 株式会社Gsユアサ 非水電解質電池
JP5748193B2 (ja) * 2009-09-29 2015-07-15 Necエナジーデバイス株式会社 二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238821A (ja) * 2002-02-21 2003-08-27 Sunstar Eng Inc ポリマー固体電解質用難燃性組成物
JP2007258067A (ja) * 2006-03-24 2007-10-04 Gs Yuasa Corporation:Kk 非水電解質電池
JP2008021560A (ja) * 2006-07-13 2008-01-31 Daikin Ind Ltd 非水系電解液
WO2009035085A1 (ja) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. 電解液

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113822A (ja) * 2009-11-27 2011-06-09 Gs Yuasa Corp 非水電解質二次電池
JP2013131293A (ja) * 2011-12-20 2013-07-04 Shin Kobe Electric Mach Co Ltd 非水電解液及びそれを用いたリチウムイオン二次電池
US9012093B2 (en) 2012-03-02 2015-04-21 Nec Corporation Secondary battery
EP2677591A1 (en) * 2012-03-02 2013-12-25 Nec Corporation Secondary battery
JP2014056837A (ja) * 2012-03-02 2014-03-27 Nec Corp 二次電池
EP2677591A4 (en) * 2012-03-02 2014-10-22 Nec Corp SECONDARY BATTERY
JP2013218963A (ja) * 2012-04-11 2013-10-24 Gs Yuasa Corp 非水電解質電池
JP2015043290A (ja) * 2013-08-26 2015-03-05 株式会社Gsユアサ 非水電解質二次電池
WO2015075811A1 (ja) * 2013-11-22 2015-05-28 株式会社日立製作所 リチウムイオン二次電池用電解質液
JP2015204152A (ja) * 2014-04-11 2015-11-16 Dic株式会社 非水電解液及びこれを用いたリチウムイオン二次電池
JP2016139611A (ja) * 2015-01-23 2016-08-04 東ソ−・エフテック株式会社 非水電解液及びそれを用いた非水系二次電池
WO2016175217A1 (ja) * 2015-04-30 2016-11-03 日本電気株式会社 二次電池用電解液及び二次電池
JP2017004603A (ja) * 2015-06-04 2017-01-05 東ソ−・エフテック株式会社 非水電解液およびそれを用いた非水系二次電池

Also Published As

Publication number Publication date
US20120094190A1 (en) 2012-04-19
JP5802556B2 (ja) 2015-10-28
KR101689661B1 (ko) 2016-12-26
JPWO2011016212A1 (ja) 2013-01-10
KR20120047898A (ko) 2012-05-14
CN102473964B (zh) 2014-07-16
CN102473964A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5802556B2 (ja) 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル
JP5484078B2 (ja) 含フッ素リン酸エステルアミドを含む非水電解液
JP6260735B1 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5679719B2 (ja) 非水電解液用の高純度含フッ素リン酸エステル
KR101131707B1 (ko) 디플루오로인산리튬의 제조방법 및 이를 사용한 비수전해액 전지
EP2408051B1 (en) Electrolyte for electrochemical device, electrolyte solution using same, and nonaqueous electrolyte battery
TWI590510B (zh) 電池用非水電解液、化合物、高分子電解質、及鋰二次電池
JP2019102459A (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6738815B2 (ja) 非水電解液及び非水電解液二次電池
WO2014203912A1 (ja) 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
WO2012117852A1 (ja) 二次電池用非水電解液および非水電解液二次電池
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6647211B2 (ja) 非水電解液二次電池
EP2752933B1 (en) Battery electrolyte and method for producing same, and battery comprising electrolyte
JP5897869B2 (ja) 新規フルオロシラン化合物
JP2012074135A (ja) ジフルオロエチルエーテルを含有する非水電解液
WO2016208738A1 (ja) 非水系電解液用添加剤及びその製法、非水系電解液、非水系電解液二次電池
JP5877109B2 (ja) リン含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP4961714B2 (ja) ペンタフルオロフェニルオキシ化合物、それを用いた非水電解液及びリチウム二次電池
JP6681721B2 (ja) 非水電解液及びそれを用いた非水系二次電池
TWI598292B (zh) 五氟化磷之製造方法、六氟化磷酸鋰之製造方法、六氟化磷酸鋰、電池用非水電解液及鋰二次電池
WO2022025241A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP5421803B2 (ja) リチウムイオン二次電池電解液用添加材
JP2008123898A (ja) 電池用非水電解液及びそれを備えた非水電解液電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034542.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13380658

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127000817

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806212

Country of ref document: EP

Kind code of ref document: A1