WO2011016212A1 - 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル - Google Patents
非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル Download PDFInfo
- Publication number
- WO2011016212A1 WO2011016212A1 PCT/JP2010/004851 JP2010004851W WO2011016212A1 WO 2011016212 A1 WO2011016212 A1 WO 2011016212A1 JP 2010004851 W JP2010004851 W JP 2010004851W WO 2011016212 A1 WO2011016212 A1 WO 2011016212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- general formula
- phosphate ester
- trifluoroethyl
- containing phosphate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a fluorine-containing phosphate used as a flame retardant for a non-aqueous electrolyte. More specifically, the present invention relates to a fluorine-containing phosphate ester having a specific structure and excellent physical properties and characteristics as a non-aqueous electrolyte, a method for producing the same, a non-aqueous electrolyte including the same, and a non-aqueous secondary battery.
- Non-aqueous secondary batteries have high output density and high energy density, and are widely used as power sources for mobile phones and personal computers. In recent years, as a clean energy with low carbon dioxide emission, it has been actively researched as a power storage power source and a power source for electric vehicles.
- Non-aqueous secondary batteries include lithium secondary batteries, lithium ion secondary batteries, magnesium secondary batteries, and magnesium ion secondary batteries.
- a material containing a lithium-containing transition metal oxide as a main constituent is used for the positive electrode, and metallic lithium or a lithium alloy is used for the negative electrode, or
- a material mainly composed of a carbonaceous material typified by graphite is used. These are referred to as a lithium secondary battery and a lithium ion secondary battery, respectively.
- the positive electrode and the negative electrode are provided via a separator, and a non-aqueous electrolyte is filled between the positive electrode and the negative electrode as a medium in which Li ions move.
- a non-aqueous electrolyte such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a high dielectric constant organic solvent such as ethylene carbonate or dimethyl carbonate is widely used.
- these organic solvents are volatile and flammable, and are classified as flammable substances. For this reason, non-aqueous electrolytes that are not flammable are desired, especially for large non-aqueous secondary battery applications such as power storage power supplies and electric vehicle power supplies.
- a technique using a nonaqueous electrolyte solution has attracted attention.
- Patent Documents 1 and 2 For the purpose of making such non-aqueous electrolytes flame-retardant, addition of phosphate esters known as flame retardants for resin materials has been studied (Patent Documents 1 and 2).
- fluorine-containing phosphates having a fluorine atom in the ester side chain are known to have a high degree of flame retardancy, and there is a wide range of electrolyte compositions that can achieve both battery flame retardancy and battery function.
- Patent Literature 1 Non Patent Literature 1, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6).
- a non-patent document 2 reports a synthesis example of a fluorine-containing phosphate ester having both ester terminal group structures in the same molecule, CF 3 and CF 2 H.
- a fluorine-containing phosphate ester having such a specific structure there are no reports on basic physical properties required as a non-aqueous electrolyte such as viscosity, dielectric constant and surface tension, and a non-aqueous electrolyte using the same Or, there is no information about non-aqueous secondary batteries.
- the present invention has been made in view of these problems. That is, with respect to the fluorinated phosphate used in the electrolyte for non-aqueous secondary batteries, the fluorine-containing phosphate that exhibits high flame retardancy and provides high performance in battery performance such as high rate charge / discharge characteristics, and An object of the present invention is to provide a manufacturing method thereof, a non-aqueous electrolyte containing the same, and a non-aqueous secondary battery.
- a further object of the present invention is to provide a fluorine-containing phosphate ester having a high electrolyte dissolving power and capable of constructing a safer electrolyte composition.
- the inventors of the present invention have a specific structure-containing fluorine-containing phosphate ester having characteristics suitable for a non-aqueous electrolyte, a method for producing the same, and a method for producing the same.
- the present invention has been completed by finding a high-performance non-aqueous electrolyte and a non-aqueous secondary battery. That is, the present invention relates to the following gist.
- R represents an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group.
- a and B represent a hydrogen atom or a fluorine atom, and A and B are not the same.
- N and m are Each independently represents an integer from 1 to 8.
- n and m are each independently an integer of 1 to 4, and R is an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group ( The fluorine-containing phosphoric acid ester for nonaqueous electrolyte solutions as described in 1).
- n and m are each independently an integer of 1 to 4, and R is a methyl group, an ethyl group, a 2,2-difluoroethyl group, a 2,2,2-tri (1) characterized in that it is one kind selected from a fluoroethyl group, a 2,2,3,3-tetrafluoropropyl group, and a 2,2,3,3,3-pentafluoropropyl group Fluorine-containing phosphate for water electrolyte.
- the compound represented by the general formula (1) is bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl), which is not described in (1) Fluorine-containing phosphate for water electrolyte.
- the compound represented by the general formula (1) is bis (2,2,3,3-tetrafluoropropyl) phosphate (2,2,2-trifluoroethyl), which is not described in (1) Fluorine-containing phosphate for water electrolyte.
- the compound represented by the general formula (1) is bis (2,2,2-trifluoroethyl phosphate) (2,2-difluoroethyl), and is used for a nonaqueous electrolytic solution according to (1). Fluorine-containing phosphate ester.
- the compound represented by the general formula (1) is phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl as described in (1) Fluorine-containing phosphate for non-aqueous electrolyte.
- a nonaqueous electrolytic solution comprising the fluorine-containing phosphate ester according to any one of (1) to (7) and a lithium salt.
- a nonaqueous electrolytic solution comprising an organic solvent containing 3 to 60% by weight of the fluorine-containing phosphate ester according to any one of (1) to (7) and a lithium salt.
- the fluorinated phosphate ester of the general formula (1) is (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl phosphate (14) An asymmetric fluorine-containing phosphate ester.
- An improved non-aqueous electrolyte and non-aqueous secondary battery are provided.
- a fluorine-containing phosphate ester having a high electrolyte dissolving power and capable of constructing a safer electrolyte solution composition is provided.
- FIG. 6 is a schematic cross-sectional view of non-aqueous secondary batteries used in Examples 18 to 26 and Comparative Examples 6 to 8.
- the fluorine-containing phosphoric acid ester for non-aqueous electrolyte of this invention is represented by the said General formula (1). That is, when at least one of the ester side chains has a terminal CF 3 structure and at least one has a terminal CF 2 H structure, and the structures of the three ester side chains are all different, the two are the same There is a case.
- the former case is called an asymmetric type fluorine-containing phosphate ester because it has no symmetry plane, and the latter case is called a low symmetry type fluorine-containing phosphate ester because it has only one symmetry plane.
- the fluorine-containing phosphate ester of the present invention has a fluorine atom content of 30% or more by weight.
- the fluorine atom content in the fluorine-containing phosphate is less than 30 wt%, it is not preferable because the non-aqueous electrolyte or the non-aqueous secondary battery containing the fluorine-containing phosphate is insufficient.
- the fluorine-containing phosphate ester exhibits excellent properties as a non-aqueous electrolyte in addition to high flame retardancy, and a high rate of non-aqueous secondary batteries using this High performance in charge / discharge characteristics.
- the fluorine-containing phosphate ester has such a specific structure, the solubility of the electrolyte is remarkably improved, and a highly safe electrolyte solution composition can be constructed.
- n and m are each independently an integer of 1 to 8.
- n and m are preferably 1 to 4.
- R is an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group.
- it is preferably an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group
- R is a methyl group, an ethyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group. More preferably, it is one selected from the group 2,2,3,3-tetrafluoropropyl group and 2,2,3,3,3-pentafluoropropyl group.
- fluorine-containing phosphate esters include bis (2,2,2-trifluoroethyl phosphate) (2,2-difluoroethyl), bis (2,2,2-trifluoroethyl phosphate) ( 2,2,3,3-tetrafluoropropyl), bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3,4,4,5,5-octafluoropentyl), phosphorus Bis (2,2,2-trifluoroethyl) acid (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl), bis (2,2 phosphate , 2-trifluoroethyl) (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononyl), bisphosphate ( 2,2-difluoroethyl) (2,2,2-trifluoroethyl), bis (2,2 phosphate) 3,3-tetrafluor
- fluorine-containing phosphates bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl), bis (2,2,3,3-phosphate) Tetrafluoropropyl) (2,2,2-trifluoroethyl), bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) and phosphoric acid (2,2,2-trifluoro) Ethyl) (2,2,3,3-tetrafluoropropyl) methyl is preferred from the viewpoint of battery performance.
- these fluorine-containing phosphate esters have high purity, and it is particularly desirable that the content of protic compounds such as water, acid, alcohol, etc. is less than 30 ppm.
- these fluorine-containing phosphoric acid esters may be used alone or in combination of one or more for the non-aqueous electrolyte.
- the fluorine-containing phosphoric acid ester of the general formula (1) of the present invention is prepared, for example, according to the methods described in J. Fluor. Chem., 113, 65 (2002) and J. Fluor. Chem., 106, 153 (2000). Can be synthesized according to Scheme 1.
- the case where the alcohol of the general formula (3) is the same as the fluorinated alcohol of the general formula (2) or the general formula (6) is a method for synthesizing a low symmetric fluorine-containing phosphate ester.
- the case where the alcohol of the formula (3) is not identical to the fluorinated alcohols of the general formula (2) and the general formula (6) is a method for synthesizing the asymmetric type fluorinated phosphoric acid ester.
- A represents a hydrogen atom or a fluorine atom
- n represents an integer of 1 to 8.
- fluorinated alcohols include 2,2-difluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol.
- a solvent may be used in the first step.
- the solvent is preferably an aprotic solvent, alkanes such as hexane and heptane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, ethers such as diethyl ether and tetrahydrofuran, Examples thereof include ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, nitriles such as acetonitrile and propionitrile, and amides such as dimethylformamide and dimethylacetamide.
- the amount of these solvents used is the total amount of the raw materials phosphorus trichloride, t-butanol, the fluorinated alcohol of the general formula (2) and the alcohol of the general formula (3).
- the fluorine-containing phosphate ester of the general formula (1) is obtained in a high yield, characterized in that the weight ratio is 0 to 1 times.
- the amount of t-butanol used in the first step is 0.5 to 2 times the molar ratio of phosphorus trichloride, and the amount of the fluorinated alcohol of the general formula (2) and the alcohol of the general formula (3)
- the amount used is 0.5 to 4 times the molar ratio of phosphorus trichloride.
- the mixing order of the raw materials is not particularly limited. Usually, after mixing phosphorus trichloride and t-butanol, the alcohols of the general formula (2) and the general formula (3) are added.
- the reaction temperature is ⁇ 20 to 100 ° C., and the reaction time is 10 minutes to 100 hours.
- the produced fluorine-containing phosphite of the general formula (4) can be used in the second step as purified or unpurified.
- the fluorine-containing phosphite of the general formula (4) produced in the first step is reacted with molecular chlorine.
- the same solvent as in the first step can be used, but the amount of solvent used is 0 to 1 times by weight with respect to the total amount of the fluorine-containing phosphite of formula (4) and molecular chlorine. Is desirable.
- the amount of molecular chlorine used relative to the fluorine-containing phosphite of the general formula (4) is 0.8 to 2 times in molar ratio.
- the reaction temperature is ⁇ 20 to 100 ° C., and the reaction time is 10 minutes to 100 hours.
- the produced fluorine-containing chlorophosphate of the general formula (5) can be used in the third step in purified or unpurified form.
- the fluorine-containing chlorophosphate of the general formula (5) produced in the second step is reacted with the fluorine-containing alcohol of the general formula (6) in the presence of a Lewis acid catalyst.
- a Lewis acid catalyst a metal halide is desirable, and examples thereof include lithium chloride, magnesium chloride, calcium chloride, boron chloride, aluminum chloride, iron chloride, titanium chloride and the like.
- m in the formula represents an integer of 1 to 8
- B represents a fluorine atom or a hydrogen atom.
- a in the general formula (2) is a fluorine atom
- B in the general formula (6) is a hydrogen atom
- examples of the fluorinated alcohol in the general formula (6) include 2,2-difluoroethanol.
- a in the general formula (2) is a hydrogen atom
- B in the general formula (6) is a fluorine atom
- examples of the fluorinated alcohol in the general formula (6) include 2,2,2-trimethyl.
- the amount of the Lewis acid catalyst used is 0.01 to 0.5 times in molar ratio to the fluorine-containing chlorophosphate of the general formula (5).
- the amount of the fluorinated alcohol of the general formula (6) used is 0.5 to 2 times in molar ratio with respect to the fluorinated chlorophosphate of the general formula (5).
- the reaction temperature is ⁇ 20 to 200 ° C., and the reaction time is 10 minutes to 100 hours.
- the produced fluorine-containing phosphate ester of the general formula (1) can be isolated by a known extraction method, distillation method or the like.
- the above-mentioned fluorine-containing phosphate ester may be used alone as an electrolyte solvent, or may be used as a mixture with another organic solvent.
- organic solvent used here include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and fluoroethylene carbonate, cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, and propiolactone, and dimethyl carbonate.
- Chain carbonates such as diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, chain esters such as methyl acetate, methyl butyrate, ethyl trifluoroacetate, diisopropyl ether, tetrahydrofuran , Dioxolane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, perfluorobutyl methyl ether, 2,2,2-trifluoroethyl- Ethers such as 1,1,2,2-tetrafluoroethyl ether and 2,2,3,3-tetrafluoropropyl-1,1,2,2-tetrafluoroethyl ether, and nitriles such as acetonitrile and benzonitrile Or a mixture of two or more thereof.
- chain esters such as methyl acetate, methyl butyrate, e
- the amount of fluorine-containing phosphate added to the organic solvent when mixed with these organic solvents is 3 to 60%, preferably 5 to 40% by weight.
- the amount added is less than 3% by weight, the flame retardant effect of the electrolyte solution is not sufficient, and when the amount added is large, the flame retardant effect is high, but when it exceeds 60%, the battery performance deteriorates. May bring.
- the electrolyte salt constituting the non-aqueous electrolyte a lithium salt, a magnesium salt, or the like that is stable in a wide potential region can be used.
- the electrolyte salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , Mg (ClO 4 ) 2 , Mg (CF 3 SO 3 ) 2 , Mg (N (CF 3 SO 2 ) 2 ) 2 and the like. These may be used alone or in combination of two or more.
- the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably in the range of 0.5 to 2.5 mol / L.
- the nonaqueous secondary battery of the present invention uses a nonaqueous electrolytic solution having the above composition, and is a battery comprising at least a positive electrode, a negative electrode, and a separator.
- the negative electrode material examples include lithium metal and lithium alloy in the case of a lithium secondary battery, and carbon materials capable of doping and dedoping lithium ions can be used in the case of a lithium ion secondary battery.
- a carbon material may be graphite or amorphous carbon, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be used.
- metallic magnesium and a magnesium alloy can be mentioned.
- Positive electrode materials include reversible electrolytic polymerization such as transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5 , conductive polymers such as transition metal sulfides, polyaniline and polypyrrole, and disulfide compounds.
- transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5
- conductive polymers such as transition metal sulfides, polyaniline and polypyrrole, and disulfide compounds.
- a compound to be depolymerized, a composite oxide composed of lithium and a transition metal such as LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiFeO 2 , LiFePO 4 , or a composite oxide composed of magnesium and a transition metal is used. It comes out.
- a microporous membrane or the like is used, and it is preferable that the thickness is in the range of 10 ⁇ m to 20 ⁇ m and the porosity is 35% to 50%.
- materials include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
- fluorine resins such as a polymer and a vinylidene fluoride-ethylene copolymer.
- the shape, form, etc. of the non-aqueous secondary battery of the present invention are not particularly limited, and can be arbitrarily selected within the scope of the present invention, such as a cylindrical shape, a square shape, a coin shape, a card shape, and a large size. it can.
- Example 1 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) 340 g of phosphorus trichloride and 184 g of t-butyl alcohol, 2,2,2-tri After mixing 496 g of fluoroethanol at 0 ° C., the mixture was reacted at 60 ° C. for 3 hours. Subsequently, it cooled to 0 degreeC and 193g of chlorine gas was blown in in 6 hours. Next, 9.4 g of magnesium chloride and 409 g of 2,2,3,3-tetrafluoropropanol were added to the reaction solution and reacted at 130 ° C. for 4 hours.
- Example 3 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) 244 g of 2,2-difluoroethanol instead of 409 g of 2,2,3,3-tetrafluoropropanol
- the same operation as in Example 1 was carried out except that bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) was obtained in an amount of 616 g.
- Example 5 Synthesis of bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) Phosphorus trichloride 340 g of dichloromethane 650 g of solution and t-butyl alcohol 184 g of dichloromethane 325 g A solution of 325 g of 2,2,2-trifluoroethanol 496 in dichloromethane was mixed at 0 ° C. and reacted at 60 ° C. for 3 hours. Subsequently, it cooled to 0 degreeC and 193g of chlorine gas was blown in in 6 hours.
- the low symmetric type or asymmetric type fluorinated phosphate ester of the present invention has remarkably improved electrolyte solubility with respect to the symmetric type fluorinated phosphate ester.
- Examples 13 to 17 and Comparative Examples 4 to 5 Flume retarding performance of fluorine-containing phosphate ester
- Bis (2,2,2-trifluoroethyl phosphate) (2,2,3,3-tetrafluoropropyl) phosphate is added to a 1: 1: 1 volume ratio mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate.
- LiPF 6 was dissolved at a rate of 1 mol / L to obtain a non-aqueous electrolyte a.
- Bis (2,2,2-trifluoroethyl phosphate) (2,2,3,3-tetrafluoropropyl) phosphate is added to a 1: 1: 1 volume ratio mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. After adding 10% by weight, LiPF 6 was dissolved at a rate of 1 mol / L to obtain a non-aqueous electrolyte b.
- Bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) of the present invention having a fluorine content of 30% by weight or more, bis (2,2,3,3) phosphate 3-tetrafluoropropyl) (2,2,2-trifluoroethyl), bis (2,2,2-trifluoroethyl) phosphate (2,2-difluoroethyl) and phosphoric acid (2,2,2- In the non-aqueous electrolyte containing trifluoroethyl) (2,2,3,3-tetrafluoropropyl) methyl, the test piece did not burn, whereas dimethyl phosphate (fluorine content less than 30% by weight) In the case of a non-aqueous electrolyte containing 2,2,2-trifluoroethyl) and trimethyl phosphate, the test piece burned.
- Examples 18 to 26, Comparative Examples 6 to 8 Evaluation of battery performance of nonaqueous secondary battery containing fluorine-containing phosphate ester
- a non-aqueous secondary battery as shown in the sectional view of FIG. 1 was prepared.
- the negative electrode 1 was obtained by applying a mixture of graphite and polyvinylidene fluoride N-methyl-2-pyrrolidone to a current collector 2 made of copper foil, drying, and then press-molding (thickness 0. 1 mm)
- the positive electrode 3 was obtained by applying a mixture of LiCoO 2, acetylene black and N-methyl-2-pyrrolidone to the current collector 4 made of aluminum foil, drying, and then pressure molding (thickness 0. 0 mm). 1 mm).
- the materials constituting these negative electrode 1 and positive electrode 3 were laminated via a porous separator 5 (thickness 16 ⁇ m, porosity 50%) made of polyethylene.
- a non-aqueous electrolyte for such a battery bis (2,2,2-trifluoroethyl phosphate) (2,2) is added to a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate are mixed at a volume ratio of 1: 1: 1. 2,3,3-tetrafluoropropyl) in a solvent mixed at a ratio of 20% by weight, LiPF 6 was dissolved at a ratio of 1.0 mol / L, and this was impregnated between the positive electrode and the negative electrode.
- the metal resin composite film 6 was thermally welded and sealed.
- This non-aqueous secondary battery was designated as A1.
- phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3- (3-) was added to a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 1: 1.
- a solution prepared by dissolving LiPF 6 at a ratio of 1.0 mol / L in a solvent in which tetrafluoropropyl) methyl was mixed at a ratio of 20% by weight was impregnated and sealed.
- This non-aqueous secondary battery was designated as D.
- tris (2,2,3,3-tetrafluoropropyl) phosphate was mixed at a weight ratio of 20% in a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 1: 1: 1.
- a solution prepared by dissolving LiPF 6 at a rate of 1.0 mol / L in a solvent mixed at a rate of 1.0 was impregnated and sealed. This non-aqueous secondary battery was designated as F1.
- tris phosphate (2,2,2) was added to a solvent in which ethylene carbonate and 2,2,2-trifluoroethyl-1,1,2,2-tetrafluoroethyl ether were mixed at a volume ratio of 1: 1. (3,3-tetrafluoropropyl) was added to a solvent mixed with 30% by weight of LiPF 6 at a rate of 1.0 mol / L, and LiPF 6 was not dissolved and a large amount of precipitates were formed. .
- the initial discharge capacity and high-rate discharge capacity of the nonaqueous secondary batteries A1, A2, A3, A4, A5, B, C1, C2 and D of the present invention and comparative nonaqueous secondary batteries E and F1 are measured. It was.
- the initial discharge capacity was a constant current constant voltage charge with a current of 10 mA and a final voltage of 4.2 V at 20 ° C., and then a constant current discharge with a current of 2 mA and a final voltage of 2.7 V was performed at 20 ° C. to obtain an initial discharge capacity. .
- the high rate discharge capacity is a constant current and constant voltage charge of 10 mA current and a final voltage of 4.2 V at 20 ° C., and then a constant current discharge of 30 mA current and a final voltage of 2.7 V is performed at 20 ° C. It was set as the discharge capacity.
- the results are shown in Table 4.
- the non-aqueous secondary battery of the present invention containing a fluorine-containing phosphate having a specific structure as an electrolytic solution exhibited a high high rate discharge capacity.
- non-aqueous secondary battery C1 of the present invention and the comparative non-aqueous secondary battery E were subjected to constant current and constant voltage charging with a current of 2 mA and a final voltage of 4.2 V, and constant current discharge with a current of 2 mA and a final voltage of 2.7 V. The test was repeated 200 times to test the cycle life of the battery.
- the ratio of the 200th discharge capacity to the initial discharge capacity (capacity maintenance ratio) of the nonaqueous secondary battery C of the present invention was 94%.
- the comparative non-aqueous secondary battery F had a ratio of the 200th discharge capacity to the initial discharge capacity (capacity maintenance ratio) of 89%.
- Negative electrode 2 Current collector 3: Positive electrode 4: Current collector 5: Porous separator 6: Metal resin composite film 7: Positive electrode terminal 8: Negative electrode terminal
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
で表され、且つフッ素原子の含有率が重量比で30%以上である非水電解液用の含フッ素リン酸エステル。
1)三塩化リン、t-ブタノール、下記一般式(2)
A(CF2)nCH2OH (2)
(式中、Aは水素原子またはフッ素原子、nは1~8の整数を表す。)
で表される含フッ素アルコール及び下記一般式(3)
ROH (3)
(Rは炭素数1~10のアルキル基または含フッ素アルキル基を表す。)
で表されるアルコールを反応させ、下記一般式(4)
で表される含フッ素ホスファイトを生成させる。
2)一般式(4)の含フッ素ホスファイトと分子状塩素を反応させて、下記一般式(5)
で表される含フッ素クロロホスフェートを生成させる。
3)ルイス酸触媒存在下、一般式(5)の含フッ素クロロホスフェートと下記一般式(6)
B(CF2)mCH2OH (6)
(式中、Bは水素原子またはフッ素原子を表す。但し、Bは式(2)のAと非同一である。mは1~8の整数を表す。)
で表される含フッ素アルコールを反応させて、前記一般式(1)の含フッ素リン酸エステルを生成させる。
三塩化リン 340gとt-ブチルアルコール 184g、2,2,2-トリフルオロエタノール 496gを0℃で混合した後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 193gを6時間で吹き込んだ。次に、反応液に塩化マグネシウム 9.4g、2,2,3,3-テトラフルオロプロパノール 409gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル) 743gを得た。
1H-NMR(400MHz、CDCl3)δ 5.92(tt,1H),4.39~4.51(m,6H)
19F-NMR(376MHz、CDCl3)δ -76.01(t,6F),-125.15(t,2F),-137.97(d,2F)
EI-MS m/z 357[M-F]+,356[M-HF]+,275,245,225,165,163,143,115,95,83,69,64,51,33
三塩化リン 340gとt-ブチルアルコール 184g、2,2,3,3-テトラフルオロプロパノール 660gを0℃で反応させた後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 196gを6時間で吹き込んだ。次に、反応液に塩化マグネシウム 9.4g、2,2,2-トリフルオロエタノール 310gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル) 765gを得た。
EI-MS m/z 389[M-F]+,388[M-HF]+,307,277,257,227,195,163,155,143,115,95,83,69,64,51,33
2,2,3,3-テトラフルオロプロパノール 409gに代えて、2,2-ジフルオロエタノール 244gを用いた以外は実施例1と同様の操作を行い、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル) 616gを得た。
1H-NMR(400MHz、CDCl3)δ 5.97(tt,1H),4.38~4.46(m,4H),4.23~4.33(m,3H)
19F-NMR(376MHz、CDCl3)δ -75.99(t,6F),-127.67(dt,2F)
EI-MS m/z 307[M-F]+,306[M-HF]+,275,263,245,225,207,165,163,143,115,83,69,64,51,33
三塩化リン 137gとt-ブチルアルコール 75g、2,2,2-トリフルオロエタノール 110g、2,2,3,3-テトラフルオロプロパノール 145gを0℃で混合した後、60℃で5時間反応させた。次いで、0℃まで冷却し、塩素ガス 78gを2時間で吹き込んだ。次に、反応液に塩化マグネシウム 3.8g、メタノール 39gを加え、50℃で2時間反応させた。冷却後、反応液に水 281g及び炭酸水素ナトリウム 31gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル 55gを得た。
1H-NMR(400MHz、CDCl3)δ 5.94(tt,1H),4.35~4.46(m,4H),3.87(d,3H)
19F-NMR(376MHz、CDCl3)δ -76.01(t,3F),-125.58(td,2F),-138.44(d,2F)
EI-MS m/z 289[M-F]+,288[M-HF]+,258,257,207,177,127,117,97,79,69,64,51,33
三塩化リン 340gのジクロロメタン 650gの溶液とt-ブチルアルコール 184gのジクロロメタン 325gの溶液、2,2,2-トリフルオロエタノール 496のジクロロメタン 325gの溶液を0℃で混合した後、60℃で3時間反応させた。次いで、0℃まで冷却し、塩素ガス 193gを6時間で吹き込んだ。次に、溶媒を減圧留去後、濃縮液に塩化マグネシウム 9.4g、2,2,3,3-テトラフルオロプロパノール 409gを加え、130℃で4時間反応させた。冷却後、反応液に水 500g及び炭酸水素ナトリウム 16gを加えて攪拌後、水層を除去した。有機層を蒸留精製し、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル) 626gを得た。
実施例1で得られたリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、実施例2で得られたリン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、実施例3で得られたリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)、及び実施例4で得られたリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル及び比較の含フッ素リン酸エステルとして、リン酸トリス(2,2,3,3-テトラフルオロプロピル)についてそれぞれ粘度(ウベローデ粘度計、20℃)、誘電率を測定した。結果を表1に示す。
リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル及び比較の含フッ素リン酸エステルとして、リン酸トリス(2,2,3,3-テトラフルオロプロピル)及びリン酸トリス(2,2,2-トリフルオロエチル)について、それぞれ20℃にてLiPF6を添加し、6時間20℃で攪拌し溶解させた。不溶のLiPF6を濾別後、溶液の19F-NMR分析によりLiPF6溶解度を求めた。結果を表2に示す。
エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比1:1:1の混合液に、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を20重量%添加後、LiPF6を1モル/Lの割合で溶解させ非水電解液aとした。
図1の断面図に示すような非水系二次電池を作成した。負極1は、グラファイトとポリフッ化ビニリデンのN-メチル-2-ピロリドンの混合物を、銅箔からなる集電体2への塗布、乾燥後、加圧成型により得たものであり(厚さ0.1mm)、正極3はLiCoO2とアセチレンブラック及びN-メチル-2-ピロリドンの混合物をアルミ箔からなる集電体4への塗布、乾燥後、加圧成型により得たものである(厚さ0.1mm)。これら負極1、正極3を構成する物質は、ポリエチレンから成る多孔質セパレータ5(厚さ16μm、空孔率50%)を介して積層した。このような電池の非水電解液として、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネートを体積比1:1:1で混合した溶媒にリン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)を重量比で20%の割合で混合した溶媒にLiPF6を1.0モル/Lの割合で溶解させたものを用い、これを正極、負極間に含浸させ金属樹脂複合フィルム6を熱溶着させ封止した。この非水系二次電池をA1とした。
2:集電体
3:正極
4:集電体
5:多孔質セパレータ
6:金属樹脂複合フィルム
7:正極端子
8:負極端子
Claims (15)
- 一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つ、Rが炭素数1~4のアルキル基または含フッ素アルキル基であることを特徴とする請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 一般式(1)において、n、mがそれぞれ独立に1~4の整数であり、且つRが、メチル基、エチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基から選ばれる1種であることを特徴とする請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 一般式(1)で表される化合物が、リン酸ビス(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 一般式(1)で表される化合物が、リン酸ビス(2,2,3,3-テトラフルオロプロピル)(2,2,2-トリフルオロエチル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 一般式(1)で表される化合物がリン酸ビス(2,2,2-トリフルオロエチル)(2,2-ジフルオロエチル)である請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 一般式(1)で表される化合物が、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである請求項1に記載の非水電解液用の含フッ素リン酸エステル。
- 請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを含む非水電解液。
- 請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルとリチウム塩を含む非水電解液。
- 請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを重量比で3~60%含有する有機溶媒とリチウム塩を含む非水電解液。
- 請求項1~請求項7のいずれか1項に記載の含フッ素リン酸エステルを重量比で5~40%含有する有機溶媒とリチウム塩を含む非水電解液。
- 請求項8~11のいずれか1項に記載の非水電解液を用いた非水系二次電池。
- 下記3段階の反応により一般式(1)の含フッ素リン酸エステルを製造する方法であって、少なくとも工程1)において、溶媒を原料の総量に対して重量比で0~1倍量使用することを特徴とする含フッ素リン酸エステルの製造方法。
1)三塩化リン、t-ブタノール、下記一般式(2)
A(CF2)nCH2OH (2)
(式中、Aは水素原子またはフッ素原子、nは1~8の整数を表す。)
で表される含フッ素アルコール及び下記一般式(3)
ROH (3)
(Rは炭素数1~10のアルキル基または含フッ素アルキル基を表す。)
で表されるアルコールを反応させ、下記一般式(4)
で表される含フッ素ホスファイトを生成させる。
2)一般式(4)の含フッ素ホスファイトと分子状塩素を反応させて、下記一般式(5)
で表される含フッ素クロロホスフェートを生成させる。
3)ルイス酸触媒存在下、一般式(5)の含フッ素クロロホスフェートと下記一般式(6)
B(CF2)mCH2OH (6)
(式中、Bは水素原子またはフッ素原子を表す。但し、Bは式(2)のAと非同一である。mは1~8の整数を表す。)
で表される含フッ素アルコールを反応させて、前記一般式(1)の含フッ素リン酸エステルを生成させる。 - 一般式(1)において、RがCH2(CF2)nAあるいはCH2(CF2)mBいずれとも非同一である非対称型含フッ素リン酸エステル。
- 一般式(1)の含フッ素リン酸エステルが、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチルである請求項14に記載の非対称型含フッ素リン酸エステル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011525779A JP5802556B2 (ja) | 2009-08-04 | 2010-07-30 | 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル |
US13/380,658 US20120094190A1 (en) | 2009-08-04 | 2010-07-30 | Asymmetric and/or low-symmetric fluorine-containing phosphate for non-aqueous electrolyte solution |
CN201080034542.0A CN102473964B (zh) | 2009-08-04 | 2010-07-30 | 非水电解液用的非对称型和/或低对称型含氟磷酸酯 |
KR1020127000817A KR101689661B1 (ko) | 2009-08-04 | 2010-07-30 | 비수 전해액용의 비대칭형 및/또는 저대칭형 함불소 인산에스테르 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009181436 | 2009-08-04 | ||
JP2009-181436 | 2009-08-04 | ||
JP2009-274816 | 2009-12-02 | ||
JP2009274816 | 2009-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016212A1 true WO2011016212A1 (ja) | 2011-02-10 |
Family
ID=43544122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004851 WO2011016212A1 (ja) | 2009-08-04 | 2010-07-30 | 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120094190A1 (ja) |
JP (1) | JP5802556B2 (ja) |
KR (1) | KR101689661B1 (ja) |
CN (1) | CN102473964B (ja) |
WO (1) | WO2011016212A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011113822A (ja) * | 2009-11-27 | 2011-06-09 | Gs Yuasa Corp | 非水電解質二次電池 |
JP2013131293A (ja) * | 2011-12-20 | 2013-07-04 | Shin Kobe Electric Mach Co Ltd | 非水電解液及びそれを用いたリチウムイオン二次電池 |
JP2013218963A (ja) * | 2012-04-11 | 2013-10-24 | Gs Yuasa Corp | 非水電解質電池 |
EP2677591A1 (en) * | 2012-03-02 | 2013-12-25 | Nec Corporation | Secondary battery |
JP2015043290A (ja) * | 2013-08-26 | 2015-03-05 | 株式会社Gsユアサ | 非水電解質二次電池 |
WO2015075811A1 (ja) * | 2013-11-22 | 2015-05-28 | 株式会社日立製作所 | リチウムイオン二次電池用電解質液 |
JP2015204152A (ja) * | 2014-04-11 | 2015-11-16 | Dic株式会社 | 非水電解液及びこれを用いたリチウムイオン二次電池 |
JP2016139611A (ja) * | 2015-01-23 | 2016-08-04 | 東ソ−・エフテック株式会社 | 非水電解液及びそれを用いた非水系二次電池 |
WO2016175217A1 (ja) * | 2015-04-30 | 2016-11-03 | 日本電気株式会社 | 二次電池用電解液及び二次電池 |
JP2017004603A (ja) * | 2015-06-04 | 2017-01-05 | 東ソ−・エフテック株式会社 | 非水電解液およびそれを用いた非水系二次電池 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6216715B2 (ja) * | 2012-06-15 | 2017-10-18 | 東ソ−・エフテック株式会社 | LiPF6の安定化方法、熱安定性に優れた非水系二次電池用電解液及び熱安定性に優れた非水系二次電池 |
CN104364861B (zh) * | 2012-08-10 | 2017-08-08 | 日本贵弥功株式会社 | 阻燃性电解电容器 |
JP5813800B2 (ja) | 2013-03-26 | 2015-11-17 | 株式会社東芝 | 非水電解質電池および電池パック |
US10164291B2 (en) * | 2014-05-08 | 2018-12-25 | Lynntech, Inc. | Electrolyte for electrochemical energy storage devices |
CN104022309A (zh) * | 2014-05-28 | 2014-09-03 | 武汉大学 | 电解液阻燃剂、含有该阻燃剂的电解液及二次锂离子电池 |
EP3435472B1 (en) * | 2014-07-07 | 2021-04-28 | Daikin Industries, Ltd. | Liquid electrolyte comprising an alkali metal salt of a phosphate compound |
US10381686B2 (en) * | 2014-07-18 | 2019-08-13 | Nec Corporation | Electrolyte solution and secondary battery using same |
JP6342287B2 (ja) * | 2014-10-08 | 2018-06-13 | 住友電気工業株式会社 | ナトリウムイオン二次電池用電解質およびナトリウムイオン二次電池 |
US20190363396A1 (en) * | 2016-09-14 | 2019-11-28 | Nec Corporation | Lithium secondary battery |
CN107317050B (zh) * | 2017-06-02 | 2019-05-03 | 周阳 | 一种双八氟戊氧基磷酸锂及包含其的锂离子电池非水电解液和锂离子电池 |
CN107285293B (zh) * | 2017-06-12 | 2019-06-18 | 上海如鲲新材料有限公司 | 一种用二氟磷酸酯制备二氟磷酸锂的方法 |
CN112542614A (zh) * | 2020-06-09 | 2021-03-23 | 杉杉新材料(衢州)有限公司 | 一种高电压锂离子电池非水电解液及其锂离子电池 |
CN111883840B (zh) * | 2020-08-04 | 2024-03-05 | 苏州建德一方能源科技有限公司 | 一种锂电子电池阻燃电解液添加剂 |
KR20230060027A (ko) * | 2021-10-27 | 2023-05-04 | 솔브레인 주식회사 | 비대칭형 포스페이트계 화합물의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238821A (ja) * | 2002-02-21 | 2003-08-27 | Sunstar Eng Inc | ポリマー固体電解質用難燃性組成物 |
JP2007258067A (ja) * | 2006-03-24 | 2007-10-04 | Gs Yuasa Corporation:Kk | 非水電解質電池 |
JP2008021560A (ja) * | 2006-07-13 | 2008-01-31 | Daikin Ind Ltd | 非水系電解液 |
WO2009035085A1 (ja) * | 2007-09-12 | 2009-03-19 | Daikin Industries, Ltd. | 電解液 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69531901T2 (de) * | 1994-07-07 | 2004-08-05 | Mitsui Chemicals, Inc. | Nichtwässrige Elektrolytlösungen und diese Elektrolytlösungen enthaltende Zellen |
JP3369310B2 (ja) | 1994-07-07 | 2003-01-20 | 三井化学株式会社 | 非水電解液及び非水電解液電池 |
JP3821495B2 (ja) | 1994-09-16 | 2006-09-13 | 三井化学株式会社 | 非水電解液および非水電解液電池 |
JP4463333B2 (ja) | 1998-03-11 | 2010-05-19 | 三井化学株式会社 | 非水電解液及び非水電解液二次電池 |
CN1306645C (zh) * | 2004-02-10 | 2007-03-21 | 中国科学院上海微系统与信息技术研究所 | 含有机磷化合物的锂离子电池电解液及组成的电池 |
JP4972915B2 (ja) | 2005-11-22 | 2012-07-11 | 株式会社Gsユアサ | 非水電解質電池 |
JP5748193B2 (ja) * | 2009-09-29 | 2015-07-15 | Necエナジーデバイス株式会社 | 二次電池 |
-
2010
- 2010-07-30 CN CN201080034542.0A patent/CN102473964B/zh active Active
- 2010-07-30 WO PCT/JP2010/004851 patent/WO2011016212A1/ja active Application Filing
- 2010-07-30 JP JP2011525779A patent/JP5802556B2/ja active Active
- 2010-07-30 KR KR1020127000817A patent/KR101689661B1/ko active IP Right Grant
- 2010-07-30 US US13/380,658 patent/US20120094190A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238821A (ja) * | 2002-02-21 | 2003-08-27 | Sunstar Eng Inc | ポリマー固体電解質用難燃性組成物 |
JP2007258067A (ja) * | 2006-03-24 | 2007-10-04 | Gs Yuasa Corporation:Kk | 非水電解質電池 |
JP2008021560A (ja) * | 2006-07-13 | 2008-01-31 | Daikin Ind Ltd | 非水系電解液 |
WO2009035085A1 (ja) * | 2007-09-12 | 2009-03-19 | Daikin Industries, Ltd. | 電解液 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011113822A (ja) * | 2009-11-27 | 2011-06-09 | Gs Yuasa Corp | 非水電解質二次電池 |
JP2013131293A (ja) * | 2011-12-20 | 2013-07-04 | Shin Kobe Electric Mach Co Ltd | 非水電解液及びそれを用いたリチウムイオン二次電池 |
US9012093B2 (en) | 2012-03-02 | 2015-04-21 | Nec Corporation | Secondary battery |
EP2677591A1 (en) * | 2012-03-02 | 2013-12-25 | Nec Corporation | Secondary battery |
JP2014056837A (ja) * | 2012-03-02 | 2014-03-27 | Nec Corp | 二次電池 |
EP2677591A4 (en) * | 2012-03-02 | 2014-10-22 | Nec Corp | SECONDARY BATTERY |
JP2013218963A (ja) * | 2012-04-11 | 2013-10-24 | Gs Yuasa Corp | 非水電解質電池 |
JP2015043290A (ja) * | 2013-08-26 | 2015-03-05 | 株式会社Gsユアサ | 非水電解質二次電池 |
WO2015075811A1 (ja) * | 2013-11-22 | 2015-05-28 | 株式会社日立製作所 | リチウムイオン二次電池用電解質液 |
JP2015204152A (ja) * | 2014-04-11 | 2015-11-16 | Dic株式会社 | 非水電解液及びこれを用いたリチウムイオン二次電池 |
JP2016139611A (ja) * | 2015-01-23 | 2016-08-04 | 東ソ−・エフテック株式会社 | 非水電解液及びそれを用いた非水系二次電池 |
WO2016175217A1 (ja) * | 2015-04-30 | 2016-11-03 | 日本電気株式会社 | 二次電池用電解液及び二次電池 |
JP2017004603A (ja) * | 2015-06-04 | 2017-01-05 | 東ソ−・エフテック株式会社 | 非水電解液およびそれを用いた非水系二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20120094190A1 (en) | 2012-04-19 |
JP5802556B2 (ja) | 2015-10-28 |
KR101689661B1 (ko) | 2016-12-26 |
JPWO2011016212A1 (ja) | 2013-01-10 |
KR20120047898A (ko) | 2012-05-14 |
CN102473964B (zh) | 2014-07-16 |
CN102473964A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5802556B2 (ja) | 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル | |
JP5484078B2 (ja) | 含フッ素リン酸エステルアミドを含む非水電解液 | |
JP6260735B1 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5679719B2 (ja) | 非水電解液用の高純度含フッ素リン酸エステル | |
KR101131707B1 (ko) | 디플루오로인산리튬의 제조방법 및 이를 사용한 비수전해액 전지 | |
EP2408051B1 (en) | Electrolyte for electrochemical device, electrolyte solution using same, and nonaqueous electrolyte battery | |
TWI590510B (zh) | 電池用非水電解液、化合物、高分子電解質、及鋰二次電池 | |
JP2019102459A (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
JP6738815B2 (ja) | 非水電解液及び非水電解液二次電池 | |
WO2014203912A1 (ja) | 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物 | |
WO2016013480A1 (ja) | 非水電解液二次電池、非水電解液及び化合物 | |
WO2012117852A1 (ja) | 二次電池用非水電解液および非水電解液二次電池 | |
WO2019111983A1 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
JP6647211B2 (ja) | 非水電解液二次電池 | |
EP2752933B1 (en) | Battery electrolyte and method for producing same, and battery comprising electrolyte | |
JP5897869B2 (ja) | 新規フルオロシラン化合物 | |
JP2012074135A (ja) | ジフルオロエチルエーテルを含有する非水電解液 | |
WO2016208738A1 (ja) | 非水系電解液用添加剤及びその製法、非水系電解液、非水系電解液二次電池 | |
JP5877109B2 (ja) | リン含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス | |
JP4961714B2 (ja) | ペンタフルオロフェニルオキシ化合物、それを用いた非水電解液及びリチウム二次電池 | |
JP6681721B2 (ja) | 非水電解液及びそれを用いた非水系二次電池 | |
TWI598292B (zh) | 五氟化磷之製造方法、六氟化磷酸鋰之製造方法、六氟化磷酸鋰、電池用非水電解液及鋰二次電池 | |
WO2022025241A1 (ja) | 非水電解液及びそれを用いた蓄電デバイス | |
JP5421803B2 (ja) | リチウムイオン二次電池電解液用添加材 | |
JP2008123898A (ja) | 電池用非水電解液及びそれを備えた非水電解液電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080034542.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806212 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011525779 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380658 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127000817 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10806212 Country of ref document: EP Kind code of ref document: A1 |