WO2011013809A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2011013809A1
WO2011013809A1 PCT/JP2010/062923 JP2010062923W WO2011013809A1 WO 2011013809 A1 WO2011013809 A1 WO 2011013809A1 JP 2010062923 W JP2010062923 W JP 2010062923W WO 2011013809 A1 WO2011013809 A1 WO 2011013809A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
stator
coil
coil end
Prior art date
Application number
PCT/JP2010/062923
Other languages
English (en)
French (fr)
Inventor
逸郎 沢田
健一 中山
友彰 貝森
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP10804555.0A priority Critical patent/EP2461463B1/en
Priority to CN201080033859.2A priority patent/CN102474159B/zh
Priority to US13/387,055 priority patent/US9203273B2/en
Publication of WO2011013809A1 publication Critical patent/WO2011013809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a cooling structure for a rotating electric machine.
  • Rotational electricity mounted on a hybrid electric vehicle, an electric vehicle, or the like has a rotor and a stator around which a stator coil is wound arranged on the outer diameter side.
  • the insulating material used for the rotating electrical machine has an upper limit temperature that can ensure insulation performance, and the rotating electrical machine needs to be cooled so as not to exceed that temperature.
  • the liquid cooling method is an indirect cooling method in which cooling liquid is passed through a liquid cooling jacket provided on the outer diameter side of the stator core and the like, and cooling is performed via the liquid cooling jacket, and an insulating liquid such as oil is used for the stator coil, etc. It is divided into a direct cooling method in which the heat is directly applied to the heat generating part of the rotating electric machine.
  • the direct cooling method does not require a liquid cooling jacket, so the overall size of the rotating electrical machine can be reduced, and the cooling medium can be applied directly to the heat generating part, resulting in excellent cooling performance. Is adopted.
  • a cooling medium passage is provided on the outer peripheral side of the stator, the cooling medium is jetted from a discharge port opened in the cooling medium passage to the stator coil end, and cooling is performed on the surface of the stator coil end by the jet pressure and gravity.
  • a cooling device for cooling a coil by a medium is disclosed.
  • a rotating electrical machine includes a stator having a stator core and a stator coil, a rotor that rotates relative to the stator, a refrigerant supply port that supplies a cooling medium to a coil end protruding from the stator core, and a coil end. And a guide member for flowing the cooling medium supplied at the refrigerant supply port along the coil end.
  • the rotating shaft of the rotor is horizontally disposed, and the guide member is disposed at least on the inner peripheral side of the coil end above the horizontal plane including the rotating shaft.
  • the guide member may be provided in at least part of the outer peripheral side of the coil end below the horizontal plane including the rotation axis.
  • the guide member in the rotating electrical machine according to the first or second aspect, may be formed of insulating paper that insulates the stator core and the stator coil.
  • a guide groove for guiding the flow of the cooling medium in the circumferential direction may be formed on the surface of the guide member.
  • the stator coil is wound around the teeth of the stator core via a bobbin, and a collar extending in the rotational axis direction of the rotor is provided at the axial end of the bobbin.
  • the guide member may be formed by bending the end of the collar in the radial direction of the rotor.
  • the rotating shaft of the rotor is disposed horizontally, and is disposed radially inward of the coil end above the horizontal plane including the rotating shaft.
  • a rotating electrical machine includes a stator having a stator core and a stator coil, a rotor that rotates with respect to the stator, and a refrigerant supply port that supplies a cooling medium to a coil end protruding from the stator core.
  • a guide groove for guiding the cooling medium is formed on the outer peripheral surface and / or inner peripheral surface of the coil end.
  • the rotation shaft of the rotor is horizontally arranged, and a guide groove is formed on the outer peripheral surface of the coil end above the horizontal plane including the rotation shaft.
  • a guide groove may be formed on the inner peripheral surface of the coil end below the horizontal plane including the rotation axis.
  • the guide groove is preferably formed to be recessed on the surface of the coil end.
  • the guide groove is preferably formed by protruding an insulating rib on the surface of the coil end.
  • a rotating electrical machine includes a stator having a stator core and a stator coil, a rotor that rotates with respect to the stator, and a refrigerant supply port that supplies a cooling medium to a coil end protruding from the stator core.
  • the stator coil is configured by connecting a plurality of segment coils, and at the coil end, an insulating resin film is formed in at least a part of the gap between the connection end portions connecting the end portions of the segment coils, and the connection end portions and A guide member for flowing the cooling medium supplied from the refrigerant supply port along the coil end was formed by the insulating resin film.
  • the rotating shaft of the rotor is disposed horizontally, and is insulated from the inner periphery of the connection end of the coil segment above the horizontal plane including the rotating shaft.
  • the guide member may be formed by forming an insulating resin film on the outer periphery of the connection end of the coil segment below the horizontal plane including the rotation axis.
  • a rotating electrical machine includes a stator having a stator core and a stator coil, a rotor that rotates with respect to the stator, a refrigerant supply port that supplies a cooling medium to the coil end, and at least a part of the coil end. And a lid-like member capable of inflowing and discharging the cooling medium.
  • a rotating electrical machine includes a stator having a stator core and a stator coil, a rotor that rotates with respect to the stator, a refrigerant supply port that supplies an oil-based cooling medium to a coil end protruding from the stator core, and The inner peripheral surface and / or the outer peripheral surface of the coil end was applied with a paint having a higher lipophilicity than the tip surface.
  • the coil end of the stator coil can be uniformly cooled, and the cooling performance can be improved.
  • FIG. 1 is a perspective view showing a first embodiment of a rotating electrical machine according to the present invention.
  • FIG. 2 is a perspective sectional view of the rotating electrical machine of FIG.
  • FIG. 3 is a cooling system diagram of the rotating electrical machine of FIG.
  • FIG. 4 is a perspective view showing a second embodiment of the rotating electrical machine according to the present invention.
  • FIG. 5 is a perspective sectional view of the rotating electrical machine of FIG. 4.
  • FIG. 6 is a front view showing insulating paper used in the third embodiment of the rotating electrical machine according to the present invention.
  • 7 is a perspective view showing a rotating electrical machine in which a guide plate is formed by the insulating paper of FIG. FIG.
  • FIG. 8 is a partial perspective view of a cooling medium guide plate used in the fourth embodiment of the rotating electrical machine according to the present invention.
  • FIG. 9 is a perspective view showing a rotating electrical machine to which the guide plate of FIG. 8 is applied.
  • FIG. 10 is a partial perspective view showing a modification of the guide plate of FIG.
  • FIG. 11 is a partial perspective sectional view of a stator in a fifth embodiment of the rotating electrical machine according to the present invention.
  • 12 is a perspective view showing a rotating electric machine including the stator coil of FIG.
  • FIG. 13 is a perspective cross-sectional view of a stator in a sixth embodiment of the rotating electrical machine according to the present invention.
  • 14 is a partial perspective view and an exploded view of the stator of FIG. FIG.
  • FIG. 15 is a partial perspective cross-sectional view of a stator in a seventh embodiment of the rotating electrical machine according to the present invention.
  • FIG. 16 is a partial perspective sectional view of a stator in an eighth embodiment of the rotating electrical machine according to the present invention.
  • FIG. 17 is a perspective view showing a modification of the third embodiment of the rotating electrical machine according to the present invention.
  • FIG. 18 is a perspective view showing a modification of the third embodiment of the rotating electrical machine according to the present invention.
  • FIG. 19 is a perspective view showing a ninth embodiment of the rotating electrical machine according to the present invention.
  • FIG. 20 is a perspective view showing a tenth embodiment of the rotating electrical machine according to the present invention.
  • FIGS. 1, 2, and 3 are a perspective view, a perspective sectional view, and a cooling system diagram showing a first embodiment of a rotating electrical machine.
  • the rotating electrical machine 1 includes a housing 8, a stator core 21 accommodated in the housing 8, a stator coil 22, a rotor 3, and a rotating shaft 20 provided at the center of the rotor 3. .
  • the stator core 21 and the stator coil 22 constitute a stator.
  • the stator coil 22 is wound around a plurality of slots formed between a plurality of teeth (not shown) of the stator core 21. A coil portion protruding from the axial end of the slot is referred to as a coil end 22E.
  • the stator coil 22 is formed by winding a coil conductor, but the illustration of each coil is omitted for convenience.
  • guide members made of a thin plate material that is, guide plates 41 and 42 are provided.
  • a substantially semicircular guide plate 41 that opens downward is centered on the rotation shaft 20 along the upper half of the coil end 22 ⁇ / b> E. Is provided.
  • a substantially semicircular guide plate 42 is provided along the lower half portion of the coil end 22E with the rotation shaft 20 being the center and opening upward.
  • the guide plates 41 and 42 are thin plates and project from both end faces of the stator coil 21 substantially in parallel with the rotating shaft 20 of the rotating electrical machine 1.
  • the protruding length of the guide plates 41 and 42 is longer than the length of the coil end 22E protruding from the end surface of the stator core 21.
  • the upper guide plate 41 extends along the inner circumference of the stator coil 22 and has a width W1 that is substantially equal to the inner circumference diameter of the stator coil 22.
  • the lower guide plate 42 extends along the outer periphery of the stator coil 22 and has a width W2 that is substantially equal to the outer diameter of the stator coil 22.
  • the width W1 is smaller than the width W2.
  • Fig. 3 shows the cooling system of the rotating electrical machine 1.
  • the cooling medium RF is sent to the cooling medium supply pipe 11 by the pump 9.
  • the cooling medium supply pipe 11 is routed to above the coil end 22E.
  • the cooling medium RF is injected from above from the refrigerant supply port 11A, which is the refrigerant discharge port of the cooling medium supply pipe 11, toward the upper portion of the coil end 22E.
  • the jetted cooling medium RF is transmitted to the coil end 22E of the stator coil 22 by the jet pressure and gravity, and falls to the oil pan 10 below the rotating electrical machine 1.
  • the cooling medium RF that has fallen into the oil pan 10 is sent out again to the cooling medium supply pipe 11 by the pump 9.
  • the cooling medium RF injected from the cooling medium supply pipe 11 flows along the outer periphery of the coil end 22E from the upper part of the coil end 22E, and cools the coil end 22E. Further, the cooling medium RF flows along the outer peripheral surface of the upper guide plate 41, and then flows into the inner peripheral surface of the lower guide plate 42, and thereafter the coil end along the inner peripheral surface of the guide plate 42. It flows to the lower end of 22E. Since the cooling medium RF flows through the guide plates 41 and 42 while contacting the coil end 22E, the coil end 22E can be further cooled.
  • the cooling medium RF flows along the coil end 22E by the guide plates 41 and 42. That is, the cooling medium RF flows down to the lower end portion of the coil end 22E without leaving the guide plates 41 and 42. As a result, the temperature of the stator coil 22 does not increase locally, and the cooling performance of the rotating electrical machine can be improved.
  • the flow of the cooling medium RF along the guide plates 41 and 42 is much gentler than the conventional vertical flow along the coil end 22E, and the cooling medium RF is relatively long.
  • the stator coil 22 is contacted. That is, the guide plates 41 and 42 can guide and hold the cooling medium RF to increase the cooling efficiency of the stator coil 22 and can reduce the increase in the maximum temperature of the rotating electrical machine.
  • the rotating electrical machine of the first embodiment can be effectively cooled without consuming unnecessary energy.
  • the cooling effect can be enhanced by sealing the periphery of the coil end with a case and immersing the coil end in a cooling medium, the size and weight of the rotating electrical machine increase.
  • the periphery of the coil end is not sealed with the case, and the size reduction of the rotating electrical machine is not hindered.
  • the rotating electrical machine according to the first embodiment can be modified as follows. (1) In FIGS. 1 to 3, both guide plates 41 and 42 for the cooling medium are installed, but either one may be used. (2) The guide plates 41 and 42 are provided at both ends in the axial direction of the coil end 22E, but may be provided only at one of the ends. (3) Although the cooling medium is pumped by the pump 9 in FIG. 3, a configuration in which the cooling medium is dropped from the upper part of the rotating electrical machine 1 by gravity can also be employed.
  • Embodiment- 4 and 5 show a second embodiment of the rotating electrical machine according to the present invention.
  • 4 and 5 are a perspective view and a perspective sectional view showing the second embodiment.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the shapes of the guide plates 41 and 42 in the first embodiment are changed. That is, the guide plates 41 and 42 in the first embodiment are a single thin plate protruding in the axial direction of the rotating shaft 20.
  • L-shaped guide plates 141 and 142 corresponding to the guide plates 41 and 42 in the first embodiment are provided.
  • the L-shaped guide plate 141 has an L-shaped cross section by combining a thin plate 41A having a length in the rotation axis direction and a thin plate 41R having a length from the tip thereof toward the radially outer side of the stator coil 22. It is formed into a mold.
  • the L-shaped guide plate 142 has an L-shaped cross section by a combination of a thin plate 42A having a length in the rotation axis direction and a thin plate 42R having a length from the tip toward the inside in the radial direction of the stator coil 22. It is formed into a mold.
  • the cooling medium RF injected from above the rotating electrical machine flows along the coil end 22E and flows along the L-shaped flow guide plate 141 and the L-shaped guide plate 142. That is, the cooling medium RF flows in the space 41S formed by the L-shaped guide plate 141 and the coil end 22E.
  • the space 41S is a flow path having a substantially rectangular cross section that opens in the outer peripheral direction of the rotating electrical machine.
  • the cooling medium RF flows in a space 42S formed by the L-shaped guide plate 142 and the coil end 22E.
  • the space 42S is a channel having a substantially rectangular cross section that opens in the inner circumferential direction.
  • the same operational effects as those of the first embodiment can be obtained. Furthermore, the following effects can be obtained. (1) Since both sides in the axial direction of the spaces 41S and 42S are closed, the cooling medium RF flows in the circumferential direction while immersing the coil end 22E without detaching sideways in the middle. As a result, the cooling efficiency can be further increased as compared with the first embodiment, and a portion where the cooling performance of the stator coil 22 is locally poor does not occur, so that the maximum temperature rise of the rotating electrical machine can be reduced.
  • At least one of the L-shaped guide plates 141 and 142 may be provided, or the guide plates 141 and 142 may be provided only at one end portion in the axial direction of the coil end 22E.
  • the cooling medium RF may be configured to be pumped by the pump 9 or may be configured to be dropped by gravity.
  • FIG. 6 is an insulating paper 5 for ensuring electrical insulation between the stator core 21 and the stator coil 22
  • FIG. 7 is a perspective view showing the rotating electrical machine 1 in which guide plates 241 and 242 are formed by the insulating paper 5.
  • the a direction corresponds to the circumferential direction of the stator
  • the b direction corresponds to the rotation axis direction.
  • the dimension c corresponds to the thickness s of the stator core 21.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the guide plates 241 and 242 are formed by mounting the insulating paper 5 on the inner and outer circumferences of the stator coil 22. That is, as shown in FIG. 7, each of the guide plates 241 and 242 provided on the coil end 22E of the rotating electrical machine 1 is formed by the insulating paper 5 shown in FIG.
  • a plurality of horizontally long rectangular holes 51 are arranged at equal intervals in the vertical direction at the center of the rectangular insulating paper 5.
  • a portion between adjacent hole portions 51 is a slot insertion portion 52.
  • Overhang portions 53 constituting guide plates 241 and 242 are provided on both outer sides of each hole portion 51.
  • the width c of the hole 51 and the slot insertion portion 52 corresponds to the axial length of teeth and slots (not shown), and the width d of the projecting portion 53 is the length that the guide plates 241 and 242 protrude from the stator coil end 22E. Equivalent to.
  • the tooth portion of the stator core 21 is inserted into the hole portion 51, and the slot insertion portion 52 is inserted into the slot of the stator core 21. More specifically, in the lower half of the rotating electrical machine 1, the insulating paper 5 is attached to the outermost diameter (slot bottom) of the stator core 21 to form the guide plate 241, and the stator core 21 is formed in the upper half.
  • a guide plate 242 is formed by mounting the insulating paper 5 on the innermost diameter (slot opening side) of the slot.
  • the insulating paper 5 functions as an insulating material that insulates the stator core 21 and the stator coil 22, and also serves as the guide plates 241 and 242.
  • the insulating paper 5 functions as an insulating material that insulates the stator core 21 and the stator coil 22, and also serves as the guide plates 241 and 242.
  • the rotating electrical machine of the third embodiment can be modified as follows.
  • the insulating paper 5 does not necessarily have to be insulating paper as long as desired electrical insulation performance can be ensured, and may be, for example, a resin plate.
  • the guide plates 241 and 242 can have the same shape as that of the second embodiment. Thereby, the same effects as those of the second embodiment can be obtained.
  • the cooling effect can be enhanced by providing holes 53 a in the insulating paper 5 forming the guide plate 241 and smoothing the flow of the cooling medium RF.
  • ribs 54 extending in the circumferential direction may be provided on the overhanging portion 53 of the insulating paper 5 forming the guide plates 241 and 242 of the third embodiment.
  • the cooling effect can be enhanced by holding and guiding the cooling medium RF on the guide plates 241 and 242 and smoothing the flow.
  • the ribs 54 may be formed with an angle with respect to the circumferential direction.
  • FIG. 8 is a perspective view showing details of the surface of the guide plate 341 (342), and FIG. 9 is a perspective view showing the rotating electrical machine 1 to which the guide plates 341 and 342 are applied.
  • the a direction corresponds to the circumferential direction of the stator
  • the b direction corresponds to the axial direction of the rotating shaft 20.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a plurality of ribs 43 extending in the circumferential direction are formed in parallel in the circumferential direction.
  • the guide plate 341 may be provided with the rib 43 on the outer peripheral surface, and the guide plate 342 may be provided with the rib 43 on the inner peripheral surface.
  • the guide plate 341 is illustrated as shown in the figure.
  • 342 are provided with ribs 43 on both sides.
  • the same operational effects as those of the first embodiment can be obtained. Furthermore, the following effects can be obtained.
  • (1) The cooling medium RF is guided by the ribs 43 and smoothly flows in the circumferential direction.
  • the refrigerant is supplied to both ends in the circumferential direction of the guide plate 341, and further to the guide plate 342. It can be guided to the lowest end. Thereby, the cooling performance can be improved.
  • the cooling medium RF is more than the L-shaped flow path having a smooth surface. The flow can be easily controlled, and the effect of improving the cooling performance can be obtained.
  • the rotating electrical machine of the fourth embodiment can be modified as follows. (1) In FIG. 8, the ribs 43 are installed in parallel with the circumferential direction (a direction) of the stator coil 22, but as shown in FIG. 10, the ribs 43 are installed in a direction having a certain angle with the a direction. You may do it.
  • FIG. 11 is a part of a perspective cross section of a stator of a rotating electrical machine according to the fifth embodiment
  • FIG. 12 is a perspective view of the rotating electrical machine.
  • the above-described guide plate is not provided, and the function of holding and guiding the cooling medium RF is imparted to the coil end 22E of the stator coil 22 itself.
  • a guide groove 23 extending in the circumferential direction is formed (recessed) on the inner peripheral surface of the coil end 22E.
  • the guide groove 23 is provided on the surface of the coil conductor.
  • it can be formed by a method such as forming an indentation by pressing a jig on the surface of the coil conductor.
  • the cooling medium RF is in contact with the inner periphery of the coil end 22E for a long time without leaving the coil end 22E, so that an effect of improving the cooling performance can be obtained.
  • stator coil 22 itself with the holding and guiding functions of the cooling medium RF, the guide plates 41 and 42 become unnecessary, the number of parts is reduced, and the manufacturing cost is reduced.
  • the rotating electrical machine of the fifth embodiment can be modified as follows. (1) In FIG. 11 and FIG. 12, the guide groove 23 is formed on the inner peripheral surface of the stator coil end 22, but the guide groove 23 is formed on the outer periphery of the theta coil end 22 or formed on both the inner and outer periphery. May be.
  • the guide groove 23 is formed in the circumferential direction, but may be formed with an angle in the circumferential direction.
  • FIG. 13 is a perspective sectional view of a stator in a sixth embodiment of the rotating electrical machine according to the present invention
  • FIG. 14 is a partial perspective view and an exploded view of the stator of FIG.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the rotating electrical machine according to the present embodiment is intended for a rotating electrical machine that uses a divided stator core configured by connecting a plurality of core blocks in the circumferential direction, and the stator winding method is concentrated winding. A part of the bobbin to be wound is used as a guide plate.
  • the stator core 21 of the rotating electrical machine 1 is configured by connecting a plurality of stator core blocks 21B shown in FIG. 14 in the circumferential direction.
  • the stator core block 21B includes a core part CB and a tooth part TB, and a stator coil 22 is wound around the tooth part TB via a bobbin 6.
  • the bobbin 6 is divided into two, and each of the pair of bobbins 6 is inserted from both ends of the tooth portion 24 in the rotation axis direction.
  • a stator coil 22 is obtained by winding a coil conductor around a bobbin 6 inserted into the tooth portion 24 a predetermined number of times.
  • the protrusion part 21a and the recessed part 21b are provided in the circumferential direction both end surface of the core part CB.
  • a pair of upper and lower collars 61 extending in the axial direction of the stator coil 22 are formed at both ends of the bobbin 6 (up and down direction in FIG. 14).
  • the cross-section L is obtained by bending the collar 61 on the distal end side of the teeth in the outer diameter direction of the rotating electrical machine, as in the second embodiment.
  • a character-shaped guide plate 441 is formed.
  • the tip of the collar 61 on the teeth base side is bent in the direction of the inner diameter of the rotating electrical machine, so that the guide having an L-shaped cross section is provided as in the second embodiment.
  • a plate 442 is formed.
  • the coil conductor is wound around the bobbin 6, it is difficult to wind the stator coil 22 around the bobbin 6 when the collar 61 is bent. Therefore, after the stator coil 22 is wound, the collar of the bobbin 6 is wound. The tip of 61 is bent. In addition, the both ends of a coil conductor are pulled out from each core block 21B, and the both ends of the adjacent in-phase coil conducting wire are connected by a connection coil.
  • a collar 61 whose tip is bent in the outer diameter direction of the rotating electrical machine is disposed on the inner peripheral side of the stator coil 22 above the horizontal plane including the rotating shaft 20.
  • a flange 61 whose tip is bent in the inner diameter direction of the rotating electrical machine is disposed on the outer peripheral side of the stator coil 22 and is bent inward in the radial direction.
  • the same operational effects as those of the first and second embodiments can be achieved.
  • the guide plates 441 and 442 can be formed by increasing the bobbin 6 which is an existing part without increasing the number of parts and without increasing the manufacturing cost.
  • the rotating electrical machine of the sixth embodiment can be implemented by being modified as follows. (1) Only the flange 61 on the inner peripheral side may be bent toward the outer diameter side, or only the flange 61 on the outer peripheral side may be bent toward the inner diameter side.
  • FIG. 15 is a partial perspective cross-sectional view of a stator in a seventh embodiment of the rotating electrical machine according to the present invention.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the present embodiment is intended for a rotating electrical machine in which the winding method of the stator is distributed winding, and a resin film is formed by filling an insulating resin in a gap between segment coil ends adjacent to each other in the circumferential direction.
  • the guide plates 441 and 442 are formed by continuation of the resin film.
  • the stator core 21 is provided with slots 21S in the axial direction, and segment coils 22U are inserted into the slots 21S.
  • Each end 22UE of the segment coil 22U inserted in the adjacent slot 21S of the same phase protrudes from the axial end surface 21F of the stator core 21 and is connected to each other at the coil end.
  • a resin film PM made of an insulating resin such as varnish is formed in the gap 22G between the end portions 22UE of the segment coil 22U adjacent in the circumferential direction.
  • the resin film PM and the end portion 22UE are continuously integrated to form a cooling medium guide member similar to the guide plates 41 and 42 of the first embodiment.
  • a method of filling the varnish or the like with the lower side of the gap 22G covered with a jig and removing the jig after the varnish or the like is cured is adopted.
  • the same operational effects as those of the first embodiment can be achieved.
  • the process of forming the resin film PM by varnish increases, a separate member is unnecessary. Therefore, the cooling medium guide member having the same function as the guide plates 41 and 42 can be formed without increasing the number of parts and without increasing the manufacturing cost.
  • the resin film PM is formed on the outermost diameter side of the adjacent segment coil 22UE, but the resin film PM may be formed on the innermost diameter side. Further, the position where the resin film PM is formed may be changed, for example, in the upper half and the lower half of the rotating electrical machine depending on the position in the circumferential direction.
  • FIG. 16 is a partial perspective sectional view of the stator in the eighth embodiment of the rotating electrical machine according to the present invention.
  • the same or corresponding parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • insulative ribs 25 project from the inner peripheral surface of the coil end 22E in place of the guide groove 23 in the fifth embodiment.
  • a method is used in which a resin mold is placed in close contact with the inner peripheral surface of the coil end 22E, and an insulating resin is poured into the coil end 22E to be cured.
  • FIG. 19 is a perspective view showing a ninth embodiment of the rotating electrical machine according to the present invention.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a lid-like member that covers at least a part of the coil end 22E is provided.
  • the lower half of the coil end 22E is covered with a semi-annular lid member 70, and the cooling medium RF flowing down along the coil end 22E from the upper half of the coil end 22E is covered with the lid. It flows into the shaped member 70 and is held by the lid shaped member 70.
  • a discharge hole 71 is formed in the lower part of the lid-like member 70, and the cooling medium RF held in the lid-like member 70 is discharged after the coil end 22E is sufficiently cooled. Thereby, the cooling performance is enhanced.
  • FIG. 20 is a perspective view showing a tenth embodiment of the rotating electrical machine according to the present invention.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the flow of the cooling medium RF is improved by applying paint to the surface of the coil end 22E.
  • paint an example using an oil-based cooling medium RF and a lipophilic paint will be described.
  • a lipophilic paint is applied to the side surface 22ES of the coil end 22E, and the oil-based cooling medium RF is guided along the side surface 22ES. That is, the side surface ES of the coil end 22E was applied with a paint having a higher lipophilicity than the tip surface. As a result, the flow of the cooling medium RF can be improved and the cooling effect can be enhanced by an extremely simple measure.
  • a highly lipophilic paint may be applied to the inner peripheral surface and the outer peripheral surface of the coil end 22E, or may be applied only to one surface.
  • the coolant flow may be further improved by applying a hydrophilic paint to the tip surface 22ET of the coil end 22E.
  • the rotating electrical machine of the inner rotor has been described, but the present invention can also be applied to the rotating electrical machine of the outer rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口と、コイルエンドの少なくとも一部に沿って設けられ、冷媒供給口で供給された冷却媒体をコイルエンドに沿って流すための案内部材とを備える。

Description

回転電機
 本発明は、回転電機の冷却構造に関する。
 ハイブリッド電気自動車や電気自動車などに搭載される回転電気は、ロータと、その外径側に配置されステータコイルが巻き回されたステータとを有する。
 回転電機により車両に駆動力を与える際は、ステータコイルに電流を流してロータに回転力を付与する。また、回転電機により発電する時にはロータの回転によりステータコイルに発生する電流を取り出す。
 このとき、ステータコイルやステータコアには回転電機の損失に起因する発熱が生じる。回転電機に用いられる絶縁材料には、絶縁性能を確保できる上限温度があり、その温度を超えないようにするために、回転電機を冷却する必要がある。
 回転電機の冷却には、冷却媒体に空気を用いる空冷方式と、冷却媒体に液体を用いる液冷方式とがある。このうち液冷方式は、ステータコアの外径側等に設けた液冷ジャケットに冷却液を流し、液冷ジャケットを介して冷却を行う間接冷却方式と、油など絶縁性のある液体をステータコイルなどの回転電機の発熱部位に直接かけて冷却する直接冷却方式とに分けられる。
 直接冷却方式では、液冷ジャケットが必要ないため回転電機全体の大きさを小さくでき、また発熱部位に直接冷却媒体をかけることができるため冷却性能が優れており、多くの回転電機において直接冷却方式が採用されている。
 例えば、特許文献1にはステータの外周側に冷却媒体通路を設け、冷却媒体通路にあけた吐出口からステータコイルエンドに冷却媒体を噴射し、噴出圧力および重力によりステータコイルエンドの表面を流れる冷却媒体によって、コイルを冷却する冷却装置が開示されている。
日本国特開2005-253263号公報
 しかし、特許文献1の冷却装置では、冷却媒体の一部は、振動や重力により途中でコイル表面から離脱し冷却に寄与しない。すなわち、コイルエンドの周方向位置により冷却性能に差が生じ、局所的にコイル温度が上昇する恐れがある。
 本発明の第1の態様による回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口と、コイルエンドの少なくとも一部に沿って設けられ、冷媒供給口で供給された冷却媒体をコイルエンドに沿って流すための案内部材とを備える。
 本発明の第2の態様は、第1の態様による回転電機において、ロータの回転軸を水平に配置し、回転軸を含む水平面内よりも上側では、案内部材をコイルエンドの内周側の少なくとも一部に設けるとともに、回転軸を含む水平面内よりも下側では、案内部材をコイルエンドの外周側の少なくとも一部に設けてもよい。
 本発明の第3の態様は、第1または第2の態様による回転電機において、案内部材を、ステータコアとステータコイルとを絶縁する絶縁紙によって形成してもよい。
 本発明の第4の態様は、第1から第3の態様による回転電機において、案内部材の表面に冷却媒体の流れを周方向に導くための案内溝を形成してもよい。
 本発明の第5の態様は、第1の態様による回転電機において、ステータコイルはステータコアのティースにボビンを介して巻き回され、ボビンの軸方向端部にはロータの回転軸方向に延びるつばが形成され、つばの端部をロータの径方向に折り曲げて案内部材を形成してもよい。
 本発明の第6の態様は、第5の態様による回転電機において、ロータの回転軸を水平に配置し、回転軸を含む水平面内よりも上側では、コイルエンドの径方向内側に配置されているつばを径方向外側に折り曲げて案内部材を形成し、回転軸を含む水平面内よりも下側では、コイルエンドの径方向外側に配置されているつばを径方向内側に折り曲げて案内部材を形成してもよい。
 本発明の第7の態様による回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口とを有し、コイルエンドの外周面および/または内周面に、冷却媒体を案内する案内溝を形成した。
 本発明の第8の態様は、第7の態様による回転電機において、ロータの回転軸を水平に配置し、回転軸を含む水平面内よりも上側では、コイルエンドの外周表面に案内溝を形成するとともに、回転軸を含む水平面内よりも下側では、コイルエンドの内周表面に案内溝を形成してもよい。
 本発明の第9の態様は、第7または第8の態様による回転電機において、案内溝は、コイルエンドの表面に凹設されて形成されていることが好ましい。
 本発明の第10の態様は、第7または第8の態様による回転電機において、案内溝は、コイルエンドの表面に絶縁性のリブを突設することによって形成されていることが好ましい。
 本発明の第11の態様による回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口とを有し、ステータコイルは複数のセグメントコイルを接続して構成され、コイルエンドにおいて、セグメントコイルの端部同士を接続する接続端部の隙間の少なくとも一部に絶縁性樹脂膜を形成し、接続端部および絶縁性樹脂膜によって、冷媒供給口で供給された冷却媒体をコイルエンドに沿って流すための案内部材を形成した。
 本発明の第12の態様は、第11の態様による回転電機において、ロータの回転軸を水平に配置し、回転軸を含む水平面内よりも上側では、コイルセグメントの接続端部の内周に絶縁性樹脂膜を形成するとともに、回転軸を含む水平面内よりも下側では、コイルセグメントの接続端部の外周に絶縁性樹脂膜を形成することにより、案内部材を形成してもよい。
 本発明の第13の態様による回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、コイルエンドに冷却媒体を供給する冷媒供給口と、コイルエンドの少なくとも一部を覆うとともに、冷却媒体流入および排出が可能な蓋状部材とを備える。
 本発明の第14の態様による回転電機は、ステータコアとステータコイルとを有するステータと、ステータに対して回転するロータと、ステータコアから突き出したコイルエンドに油系の冷却媒体を供給する冷媒供給口とを有し、コイルエンドの内周面および/または外周面を、先端面に比較して親油性の高い材料の塗料で塗布した。
 本発明によれば、ステータコイルのコイルエンドを均一に冷却し、冷却性能を向上することができる。
図1は、本発明による回転電機の第1の実施の形態を示す斜視図。 図2は、図1の回転電機の斜視断面図。 図3は、図1の回転電機の冷却系統図。 図4は、本発明による回転電機の第2の実施の形態を示す斜視図。 図5は、図4の回転電機の斜視断面図。 図6は、本発明による回転電機の第3の実施の形態に用いる絶縁紙を示す正面図。 図7は、図6の絶縁紙により案内板を形成した回転電機を示す斜視図。 図8は、本発明による回転電機の第4の実施の形態に用いる冷却媒体案内板の部分斜視図。 図9は、図8の案内板を適用した回転電機を示す斜視図。 図10は、図8の案内板の変形例を示す部分斜視図。 図11は、本発明による回転電機の第5の実施の形態におけるステータの部分斜視断面図。 図12は、図11のステータコイルを備えた回転電機を示す斜視図。 図13は、本発明による回転電機の第6の実施の形態におけるステータの斜視断面図。 図14は、図13のステータの部分斜視図と分解図。 図15は、本発明による回転電機の第7の実施の形態におけるステータの部分斜視断面図。 図16は、本発明による回転電機の第8の実施の形態におけるステータの部分斜視断面図。 図17は、本発明による回転電機の第3の実施の形態の変形例を示す斜視図。 図18は、本発明による回転電機の第3の実施の形態の変形例を示す斜視図。 図19は、本発明による回転電機の第9の実施の形態を示す斜視図。 図20は、本発明による回転電機の第10の実施の形態を示す斜視図。
―第1の実施の形態―
 本発明による回転電機の第1の実施の形態を図1~図3に示す。図1、図2、図3は回転電機の第1の実施の形態を示す斜視図、斜視断面図および冷却系統図である。
 第1の実施の形態の回転電機1は、ハウジング8と、ハウジング8内に収容されたステータコア21と、ステータコイル22と、ロータ3と、ロータ3の中心に設けられた回転軸20とを備える。ステータコア21とステータコイル22でステータを構成する。ステータコイル22は、ステータコア21の図示しない複数のティースの間に形成される複数のスロットに巻き回される。スロットの軸方向端部から突出するコイル部分をコイルエンド22Eと呼ぶ。ステータコイル22はコイル導体を巻回したものであるが、便宜上、一本一本のコイルは図示を省略している。
 ステータコイル22におけるコイルエンド22Eの軸方向両端部には、薄板状の素材で形成した案内部材、すなわち案内板41,42が設けられている。具体的には、回転軸20を含む水平面よりも上側では、コイルエンド22Eの上半部に沿って、回転軸20を中心としつつ、下方に向かって開口する略半円状の案内板41が設けられている。回転軸20を含む水平面よりも下側では、コイルエンド22Eの下半部に沿って、回転軸20を中心としつつ、上方に向かって開口する略半円状の案内板42が設けられている。
 案内板41、42は薄板よりなり、回転電機1の回転軸20と平行に略水平にステータコイル21の両端面から突出する。案内板41、42の突出長さは、コイルエンド22Eがステータコア21の端面から突出する長さよりも長い。上側の案内板41はステータコイル22の内周に沿っており、ステータコイル22の内周直径と略等しい幅W1を有する。下側の案内板42はステータコイル22の外周に沿っており、ステータコイル22の外周直径と略等しい幅W2を有する。幅W1は幅W2よりも小さい。
 図3に回転電機1の冷却系統を示す。冷却媒体RFはポンプ9により冷却媒体供給管11に送られる。冷却媒体供給管11はコイルエンド22Eの上方まで引き回されている。冷却媒体RFは、冷却媒体供給管11の冷媒吐出し口である冷媒供給口11Aから、コイルエンド22Eの上部に向けて、上方から噴射される。噴出された冷却媒体RFは、その噴射圧力および重力によりステータコイル22のコイルエンド22Eを伝い、回転電機1の下部のオイルパン10に落ちる。オイルパン10に落ちた冷却媒体RFは、ポンプ9により再び冷却媒体供給管11に送り出される。
 冷却媒体供給管11から噴射された冷却媒体RFは、コイルエンド22Eの上部からコイルエンド22Eの外周側を伝わって流れ、コイルエンド22Eを冷却する。また、冷却媒体RFは、上側の案内板41の外周面に沿って流れ、その後、下側の案内板42の内周面に流れ込み、以後、案内板42の内周面に沿って、コイルエンド22Eの下端部まで流れる。冷却媒体RFがコイルエンド22Eに接しながら案内板41,42を流れるので、コイルエンド22Eをさらに冷却することができる。
 このような第1の実施の形態の回転電機によれば、以下の作用効果を奏することができる。
(1)冷却媒体RFは案内板41、42によりコイルエンド22Eに沿って流れる。すなわち、冷却媒体RFは案内板41、42から離脱せずにコイルエンド22Eの下端部まで流れ落ちる。その結果、ステータコイル22の温度が局所的に高くなることがなく、回転電機の冷却性能を向上することができる。
(2)案内板41、42に沿った冷却媒体RFの流れは、コイルエンド22Eに沿った従来の鉛直方向の流れに比較して、遙かに緩やかであり、冷却媒体RFは比較的長時間、ステータコイル22に接触する。すなわち、案内板41、42は冷却媒体RFを案内、保持して、ステータコイル22の冷却効率を高めることができ、回転電機の最大温度の上昇を小さくすることができる。
(3)上側の案内板41の幅W1が、下側の案内板42の幅W2よりも小さいので、案内板41で収集された冷却媒体RFの大部分を案内板42に流入することができるので、ステータコイル22を効率的に冷却することができる。
(4)冷却媒体噴射量を増大する等、冷却所要動力を増大すれば冷却性能は向上するが、エネルギ節減が重要課題となっている現状にはそぐわない。しかし、第1の実施の形態の回転電機によれば、無駄なエネルギを消費することなく、回転電機を効果的に冷却することができる。
(5)コイルエンドの周囲をケースで密封して、コイルエンドを冷却媒体に浸すことによって冷却効果を高めることはできるが、回転電機のサイズ、重量が増大する。しかし、第1の実施の形態による回転電機によれば、コイルエンドの周囲をケースで密閉することが無く、回転電機の小型化を阻害することがない。
 第1の実施の形態の回転電機を以下のように変形して実施することができる。
(1)、図1~図3では、冷却媒体の案内板41および42を両方設置しているが、いずれか一方でも構わない。
(2)案内板41および42は、コイルエンド22Eの軸方向両端に設けたが、いずれかの端部にのみ設けてもよい。
(3)図3では冷却媒体をポンプ9により圧送しているが、回転電機1の上部から重力により冷却媒体を滴下する構成も採用できる。
-第2の実施の形態- 
 本発明による回転電機の第2の実施の形態を図4および図5に示す。図4、図5は第2の実施の形態を示す斜視図および斜視断面図である。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し説明を省略する。
 第2の実施の形態は、第1の実施の形態における案内板41および42の形状を変更したものである。すなわち、第1の実施の形態における案内板41、42は、回転軸20の軸方向に突出する一枚の薄板であった。第2の実施の形態では、第1の実施の形態における案内板41、42に対応するL字状案内板141と142とを設けている。
 L字状案内板141は、回転軸方向にある長さを持つ薄板41Aと、その先端から、ステータコイル22の径方向外側に向かってある長さを持つ薄板41Rとの組み合わせにより、断面L字型に形成されている。L字状案内板142は、回転軸方向にある長さを持つ薄板42Aと、その先端から、ステータコイル22の径方向内側に向かってある長さを持つ薄板42Rとの組み合わせにより、断面L字型に形成されている。
 回転電機の上方から噴射された冷却媒体RFは、コイルエンド22Eに沿って流れるとともに、L字状流案内板141およびL字状案内板142に沿って流れる。すなわち、冷却媒体RFは、L字状案内板141とコイルエンド22Eによって形成される空間41S内を流れる。空間41Sは回転電機の外周方向に開口する断面略長方形状の流路である。また冷却媒体RFは、L字状案内板142とコイルエンド22Eによって形成される空間42S内を流れる。空間42Sは、内周方向に開口する断面略長方形状の流路である。
 このような第2の実施の形態の回転電機によれば、第1の実施の形態と同様の作用効果を奏することができるとともに。さらに以下の作用効果を奏することができる。
(1)空間41S、42Sは軸方向両側が塞がれているので、冷却媒体RFは、中途で側方に離脱することなく、コイルエンド22Eを浸しつつ周方向に流れる。この結果、第1の実施の形態よりも一層冷却効率を高めることができ、局所的にステータコイル22の冷却性能が悪い箇所が生じないため、回転電機の最大温度上昇を小さくすることができる。
 なお、第1の実施の形態と同様、L字状案内板141、142の少なくとも一方を設けてもよいし、案内板141,142をコイルエンド22Eの軸方向の一端部にのみ設けてもよい。冷却媒体RFをポンプ9により圧送するように構成してもよいし、重力により滴下させるように構成してもよい。
-第3の実施の形態-
 本発明による回転電機の第3の実施の形態を図6、図7により説明する。
 図6はステータコア21とステータコイル22との間の電気絶縁性を確保するための絶縁紙5、図7は絶縁紙5によって案内板241、242を形成した回転電機1を示す斜視図である。図6において、a方向がステータの周方向に相当し、b方向が回転軸方向に相当する。また寸法cがステータコア21の厚みsに相当する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 第3の実施の形態は、絶縁紙5をステータコイル22の内外周に装着して案内板241,242を形成したものである。すなわち、図7に示すように、回転電機1のコイルエンド22Eに設けられる案内板241、242のそれぞれは、図6に示す絶縁紙5によって形成される。
 図6に示すように、矩形形状の絶縁紙5の中央部には、複数の横長長方形状の穴部51が縦方向に等間隔で並列されている。隣接する穴部51の間の部分はスロット嵌入部52である。各穴部51の両外側には案内板241,242を構成する張り出し部53が設けられている。穴部51、スロット嵌入部52の幅cは図示しないティースおよびスロットの軸方向長さに相当し、張り出し部53の幅dは、案内板241,242がステータコイルエンド22Eから突出する長さに相当する。
 穴部51には、ステータコア21のティース部が挿通され、スロット嵌入部52は、ステータコア21のスロット内に嵌入される。より具体的には、回転電機1の下半部では、ステータコア21のスロットの最外径(スロット底部)に絶縁紙5を装着して案内板241を形成し、上半部にはステータコア21のスロットの最内径(スロット開放側)に絶縁紙5を装着して案内板242を形成している。
 このような第3の実施の形態の回転電機によれば、第1の実施の形態と同様の作用効果を奏することができるとともに。さらに以下の作用効果を奏することができる。
(1)絶縁紙5は、ステータコア21とステータコイル22とを絶縁する絶縁材として機能し、案内板241、242を兼ねる。その結果、案内板241、242として別段の部材を用意する必要がないので、部品点数を増やすことなく冷却媒体RFの案内板241、242を形成できるという効果が得られる。
 第3の実施の形態の回転電機を以下のように変形して実施することができる。
(1)絶縁紙5は、所望する電気絶縁性能を確保できれば、必ずしも絶縁紙である必要はなく、例えば樹脂板などでも構わない。
(2)絶縁紙5をステータコア21のスロットに設置し、ステータコイル22を巻き回した後に、張り出し部53における所定長さの側端部を、ステータコア21の内径側または外径側へ折り曲げることにより、案内板241、242を第2の実施の形態と同様の形状とすることができる。これによって、第2の実施の形態と同様の効果を奏することができる。
(3)図17に示すように、案内板241を形成する絶縁紙5に、孔53aを設け、冷却媒体RFの流れを円滑にすることにより、冷却効果を高めることができる。
(4)図18に示すように、第3の実施の形態の案内板241、242を形成する絶縁紙5の張り出し部53に、周方向に延びるリブ54を設けてもよい。案内板241、242上において、冷却媒体RFを保持、案内し、流れを円滑にすることにより、冷却効果を高めることができる。なお、リブ54を周方向に対してある角度を持って形成してもよい。
-第4の実施の形態―
 本発明による回転電機の第4の実施の形態を図8、図9により説明する。
 図8は、案内板341(342)の表面の詳細を示す斜視図、図9は案内板341、342を適用した回転電機1を示す斜視図である。図8において、a方向がステータの周方向に相当し、b方向が回転軸20の軸方向に相当する。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 案内板341(342)の表面には、周方向に延在される複数のリブ43が周方向に並列して形成されている。案内板341は外周面にリブ43を設け、案内板342は内周面にリブ43を設ければよいが、案内板341,342を共通部品とする場合には、図示のように案内板341,342の両面にリブ43が設けられることになる。
 このような第4の実施の形態の回転電機によれば、第1の実施の形態と同様の作用効果を奏することができるとともに。さらに以下の作用効果を奏することができる。
(1)冷却媒体RFはリブ43によって案内されて、周方向に円滑に流れる。これにより、第2の実施の形態のように、軸方向への冷媒の離脱防止機能を有する薄板41R、42Rを設けることなく、冷媒を案内板341の周方向両端部、さらには案内板342の最下端部まで導くことができる。これによって、冷却性能を向上することができる。
(2)第2の実施の形態同様、案内板341,342の軸方向先端部を折りまげてL字状流路を形成した場合、平滑な表面のL字状流路よりも冷却媒体RFの流れを制御しやすくなり、冷却性能を向上する効果が得られる。
(3)すなわち、第4の実施の形態は、第1、第2の実施の形態の効果に加え、冷却媒体RFの流れの制御が容易になることにより、冷却性能を向上する効果が得られる。
 第4の実施の形態の回転電機を以下のように変形して実施することができる。
(1)図8では、リブ43をステータコイル22の周方向(a方向)と平行に設置しているが、図10に示すように、リブ43をa方向とある角度を持った方向に設置しても良い。
-第5の実施の形態-
 本発明による回転電機の第5の実施の形態を図11、図12により説明する。
 図11は第5の実施の形態による回転電機のステータの斜視断面の一部、図12は同回転電機の斜視図を示している。
 第5の実施の形態は、上述した案内板を設けず、ステータコイル22のコイルエンド22Eそれ自体に冷却媒体RFを保持、案内する機能を付与している。
 図11、図12に示すように、コイルエンド22Eの内周表面には、周方向に延びる案内溝23が形成(凹設)されている。上述したようにステータコイル22はコイル導体をスロットに巻き回して構成されているから、案内溝23は、コイル導体の表面に設けられる。たとえば、コイル導体の表面に治具を圧接して圧痕を形成する等の方法で形成することができる。
 このような第5の実施の形態の回転電機によれば、以下のような作用効果を奏することができる。
(1)ステータコイル22に向かって噴射され、コイルエンド22Eの内周に到達した冷却媒体RFは、案内溝23によって案内されつつ、コイルエンド22Eの内周に沿って流れる。これによって、冷却媒体RFは、コイルエンド22Eから離脱することなく、コイルエンド22Eの内周に長時間接触するので、冷却性能を向上する効果が得られる。
(2)ステータコイル22それ自体に冷却媒体RFの保持、案内機能をもたせることによって、案内板41、42は不要となり、部品点数が減少し、製造原価低減につながる。
 第5の実施の形態の回転電機を以下のように変形して実施することができる。
(1)図11、図12では、ステータコイルエンド22の内周表面に案内溝23を形成しているが、テータコイルエンド22の外周に案内溝23を形成し、あるいは内外周の両方に形成してもよい。
(2)図11、図12では、案内溝23を円周方向に形成しているが、円周方向にある角度を持って形成してもよい。
-第6の実施の形態-
 本発明による回転電機の第6の実施の形態を図13および図14により説明する。
 図13は、本発明による回転電機の第6の実施の形態におけるステータの斜視断面図、図14は、図13のステータの部分斜視図と分解図である。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 本実施の形態による回転電機は、複数のコアブロックを円周方向に連結して構成した分割式ステータコアを用い、かつ、ステータの巻線方式が集中巻である回転電機を対象とし、ステータコイルを巻き回すボビンの一部を案内板として利用するものである。
 図13に示すように、回転電機1のステータコア21は、図14に示す複数のステータコアブロック21Bを円周方向に連結して構成されている。ステータコアブロック21Bは、コア部CBとティース部TBとからなり、ティース部TBにはボビン6を介してステータコイル22が巻き回されている。ボビン6は2分割され、一対のボビン6のそれぞれは、ティース部24の回転軸方向両端から挿入される。ティース部24に挿入したボビン6にコイル導体を所定回数巻き回したものがステータコイル22である。なお、コア部CBの円周方向両端面には突部21aと凹部21bが設けられている。
 ボビン6の両端(図14の上下方向)には、ステータコイル22の軸方向に延びる上下一対のつば61が形成されている。一方のつば61、すなわち、回転軸20を含む水平面よりも上側のボビン6では、ティース先端側のつば61を回転電機外径方向に折り曲げることにより、第2の実施の形態と同様に、断面L字型の案内板441が形成される。回転軸20を含む水平面よりも下側のボビン6では、ティース基部側のつば61の先端部を回転電機内径方向に折り曲げることによって、第2の実施の形態と同様に、断面L字型の案内板442が形成される。
 ボビン6にはコイル導体が巻き回されるが、つば61を折り曲げた状態では、ステータコイル22をボビン6に巻回すことが困難になるので、ステータコイル22を巻き回した後、ボビン6のつば61の先端部を折り曲げる。なお、各コアブロック21Bからコイル導体の両端部が引き出され、隣り合う同相のコイル導線の両端部同士が接続コイルで接続される。
 図13に示すように、回転軸20を含む水平面よりも上側では、先端が回転電機外径方向に折り曲げられたつば61がステータコイル22の内周側に配置されている。一方、回転軸20を含む水平面よりも下側では、先端が回転電機内径方向に折り曲げられたつば61がステータコイル22の外周側に配置され、かつ径方向内側に折り曲げられる。
 第6の実施の形態の回転電機によれば、第1および第2の実施の形態と同様の作用効果を奏することができる。また、既存の部品であるボビン6の改良によって、部品点数を増やすことなく、製造原価を増加することなく、案内板441、442を形成することができる。
 第6の実施の形態の回転電機を以下のように変形して実施することができる。
(1)内周側のつば61のみを外径側に向けて折り曲げ、あるいは、外周側のつば61のみを内径側に折り曲げてもよい。
(2)必ずしも、一定領域のつば61を全て折り曲げる必要はなく、間欠的な折り曲げ、一部の折り曲げを省略する等、多様な組み合わせが可能である。
-第7の実施の形態-
 本発明による第7の実施の形態を図15により説明する。
 図15は、本発明による回転電機の第7の実施の形態におけるステータの部分斜視断面図である。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 本実施の形態はステータの巻線方式が分布巻きである回転電機を対象とし、周方向に隣接するセグメントコイル端部の隙間に絶縁性樹脂を充填して樹脂膜を形成し、セグメントコイル端部と樹脂膜との連続によって、案内板441、442を形成するものである。
 ステータコア21には、軸方向にスロット21Sが設けられ、各スロット21S内には、セグメントコイル22Uが挿入されている。同相の隣り合うスロット21Sにそれぞれ挿入されたセグメントコイル22Uのそれぞれの端部22UEは、ステータコア21の軸方向端面21Fから突出しており、コイルエンド部において、互いに接続されている。
 周方向に隣接するセグメントコイル22Uの端部22UEの隙間22Gには、ワニス等の絶縁性樹脂よりなる樹脂膜PMが形成されている。樹脂膜PMと端部22UEとが連続して一体化され、第1実施の形態の案内板41、42と同様な冷却媒体の案内部材が形成されている。
 樹脂膜PMの形成に際しては、隙間22Gの下側を治具によって塞いだ状態で、ワニス等を充填し、ワニス等が硬化した後に、治具を除去する等の方法を採用する。
 第7の実施の形態の回転電機によれば、第1の実施の形態と同様の作用効果を奏することができる。また、ワニスによる樹脂膜PMを形成する工程は増えるものの、別部材が不要である。したがって、部品点数を増やすことなく、製造原価を増加せることなく、案内板41、42と同等の機能を有する冷却媒体案内部材を形成することができる。
 図15では、隣接するセグメントコイル22UEの最外径側に樹脂膜PMを形成しているが、最内径側に樹脂膜PMを形成しても構わない。また、周方向の位置により、たとえば、回転電機の上半分と下半分で樹脂膜PMの形成位置を変更しても構わない。
-第8の実施の形態-
 本発明による回転電機の第8の実施の形態を図16により説明する。
 図16は、本発明による回転電機の第8の実施の形態におけるステータの部分斜視断面図である。なお、図中、第5の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 本実施の形態による回転電機では、第5の実施の形態における案内溝23に代えて、コイルエンド22Eの内周面に絶縁性のリブ25を突設するものである。リブ25の形成に際しては、コイルエンド22Eの内周面に樹脂型を密着して設置し、絶縁性樹脂を流し込んで、硬化させる等の方法が使用される。
 本実施の形態による回転電機によれば、第5の実施の形態と同様の作用効果を奏することができる。
―第9の実施の形態-―
 本発明による回転電機の第9の実施の形態を図19により説明する。
 図19は、本発明による回転電機の第9の実施の形態を示す斜視図である。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 本実施の形態は、コイルエンド22Eの少なくとも一部を覆う蓋状部材を設けるようにしたものである。
 図19に示すように、コイルエンド22Eの下半部は半円環状の蓋状部材70によって覆われ、コイルエンド22Eの上半部から、コイルエンド22Eに沿って流下した冷却媒体RFは、蓋状部材70内に流入し、蓋状部材70によって保持される。蓋状部材70には、その下部に排出孔71が穿設され、蓋状部材70内に保持された冷却媒体RFは、コイルエンド22Eを充分冷却した後に、排出される。これによって、冷却性能が高められる。
-第10の実施の形態-
 次に、本発明による回転電機の第10の実施の形態を図20により説明する。
 図20は、本発明による回転電機の第10の実施の形態を示す斜視図である。なお、図中、第1の実施の形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
 第10の実施の形態は、コイルエンド22Eの表面への塗料塗布により、冷却媒体RFの流れを改良するようにしたものである。ここでは、油系の冷却媒体RFおよび親油性の塗料を用いる例を説明する。
 図20に示すように、コイルエンド22Eの側面22ESには、親油性の塗料が塗布され、油系の冷却媒体RFは側面22ESに沿って案内される。すなわち、コイルエンド22Eの側面ESは、先端面に比較して親油性の高い材料の塗料で塗布した。これによって、極めて簡易な対策によって、冷却媒体RFの流れを改善でき、冷却効果を高めることができる。
 なお、次のように変形しても良い。
(1)コイルエンド22Eの内周面および外周面に親油性の高い塗料を塗布してもよい
し、一方の面にのみ塗布してもよい。
(2)コイルエンド22Eの先端面22ETに親水性の塗料を塗布することにより、さらに冷媒の流れを改善してもよい。
(3)コイルエンド22Eの先端面22ETに親水性の塗料を塗布し、側面22ESへの親油性の塗料の塗布を省略することも可能である。
 以上の実施の形態ではインナーロータの回転電機について説明したが、本発明をアウターロータの回転電機に適用することもできる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 本出願は日本国特許出願2009-178119号(2009年7月30日出願)を基礎として、その内容は引用文としてここに組み込まれる。
 

Claims (14)

  1.  ステータコアとステータコイルとを有するステータと、
     前記ステータに対して回転するロータと、
     前記ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口と、
     前記コイルエンドの少なくとも一部に沿って設けられ、前記冷媒供給口で供給された冷却媒体を前記コイルエンドに沿って流すための案内部材とを備える回転電機。
  2.  請求項1に記載の回転電機において、
     前記ロータの回転軸を水平に配置し、
     前記回転軸を含む水平面内よりも上側では、前記案内部材を前記コイルエンドの内周側の少なくとも一部に設けるとともに、前記回転軸を含む水平面内よりも下側では、前記案内部材を前記コイルエンドの外周側の少なくとも一部に設けた回転電機。
  3.  請求項1または請求項2に記載の回転電機において、
     前記案内部材を、前記ステータコアと前記ステータコイルとを絶縁する絶縁紙によって形成した回転電機。
  4.  請求項1乃至3のいずれか1項に記載の回転電機において、
     前記案内部材の表面に前記冷却媒体の流れを周方向に導くための案内溝を形成したことを回転電機。
  5.  請求項1に記載の回転電機において、
     前記ステータコイルは前記ステータコアのティースにボビンを介して巻き回され、
     前記ボビンの軸方向端部には前記ロータの回転軸方向に延びるつばが形成され、
     前記つばの端部を前記ロータの径方向に折り曲げて前記案内部材を形成した回転電機。
  6.  請求項5に記載の回転電機において、
     前記ロータの回転軸を水平に配置し、
     前記回転軸を含む水平面内よりも上側では、前記コイルエンドの径方向内側に配置されている前記つばを径方向外側に折り曲げて前記案内部材を形成し、
     前記回転軸を含む水平面内よりも下側では、前記コイルエンドの径方向外側に配置されている前記つばを径方向内側に折り曲げて前記案内部材を形成した回転電機。
  7.  ステータコアとステータコイルとを有するステータと、
     前記ステータに対して回転するロータと、
     前記ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口とを有し、
     前記コイルエンドの外周面および/または内周面に、前記冷却媒体を案内する案内溝を形成した回転電機。
  8.  請求項7に記載の回転電機において、
     前記ロータの回転軸を水平に配置し、
     前記回転軸を含む水平面内よりも上側では、前記コイルエンドの外周表面に前記案内溝を形成するとともに、前記回転軸を含む水平面内よりも下側では、前記コイルエンドの内周表面に前記案内溝を形成した回転電機。
  9.  請求項7または8に記載の回転電機において、
     前記案内溝は、前記コイルエンドの表面に凹設されて形成されている回転電機。
  10.  請求項7または8に記載の回転電機において、
     前記案内溝は、前記コイルエンドの表面に絶縁性のリブを突設することによって形成されている回転電機。
  11.  ステータコアとステータコイルとを有するステータと、
     前記ステータに対して回転するロータと、
     前記ステータコアから突出したコイルエンドに冷却媒体を供給する冷媒供給口とを有し、
     前記ステータコイルは複数のセグメントコイルを接続して構成され、
     前記コイルエンドにおいて、セグメントコイルの端部同士を接続する接続端部の隙間の少なくとも一部に絶縁性樹脂膜を形成し、
     前記接続端部および前記絶縁性樹脂膜によって、前記冷媒供給口で供給された冷却媒体を前記コイルエンドに沿って流すための案内部材を形成した回転電機。
  12.  請求項11に記載の回転電機において、
     前記ロータの回転軸を水平に配置し、
     前記回転軸を含む水平面内よりも上側では、前記コイルセグメントの接続端部の内周に前記絶縁性樹脂膜を形成するとともに、前記回転軸を含む水平面内よりも下側では、前記コイルセグメントの接続端部の外周に前記絶縁性樹脂膜を形成することにより、前記案内部材を形成した回転電機。
  13.  ステータコアとステータコイルとを有するステータと、
     前記ステータに対して回転するロータと、
     前記コイルエンドに冷却媒体を供給する冷媒供給口と、
     前記コイルエンドの少なくとも一部を覆うとともに、冷却媒体流入および排出が可能な蓋状部材とを備える回転電機。
  14.  ステータコアとステータコイルとを有するステータと、
     前記ステータに対して回転するロータと、
     前記ステータコアから突き出したコイルエンドに油系の冷却媒体を供給する冷媒供給口とを有し、
     前記コイルエンドの内周面および/または外周面を、先端面に比較して親油性の高い材料の塗料で塗布した回転電機。
     
PCT/JP2010/062923 2009-07-30 2010-07-30 回転電機 WO2011013809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10804555.0A EP2461463B1 (en) 2009-07-30 2010-07-30 Rotating electric machine
CN201080033859.2A CN102474159B (zh) 2009-07-30 2010-07-30 旋转电机
US13/387,055 US9203273B2 (en) 2009-07-30 2010-07-30 Rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-178119 2009-07-30
JP2009178119A JP5386263B2 (ja) 2009-07-30 2009-07-30 回転電機

Publications (1)

Publication Number Publication Date
WO2011013809A1 true WO2011013809A1 (ja) 2011-02-03

Family

ID=43529460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062923 WO2011013809A1 (ja) 2009-07-30 2010-07-30 回転電機

Country Status (5)

Country Link
US (1) US9203273B2 (ja)
EP (1) EP2461463B1 (ja)
JP (1) JP5386263B2 (ja)
CN (1) CN102474159B (ja)
WO (1) WO2011013809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003559A1 (ja) * 2017-06-27 2019-01-03 日立オートモティブシステムズ株式会社 回転電機のステータ、回転電機、及び回転電機のステータの製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
JP2013013229A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 回転電機用ステータ
JP2013013228A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 回転電機用ステータ
JP2013013227A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 回転電機用ステータ
JP5706793B2 (ja) 2011-09-20 2015-04-22 日立建機株式会社 発電電動機とこれを用いた電動車両
JP5942714B2 (ja) * 2012-09-07 2016-06-29 株式会社デンソー 回転電機
JP2014117034A (ja) * 2012-12-07 2014-06-26 Toshiba Corp 固定子、および回転電機
JP6105387B2 (ja) * 2013-05-22 2017-03-29 株式会社日本自動車部品総合研究所 回転電機
DE102014110299A1 (de) * 2014-07-22 2016-01-28 Feaam Gmbh Elektrische Maschine
JP5847258B1 (ja) * 2014-08-28 2016-01-20 三菱電機株式会社 回転電機
US10326336B2 (en) * 2016-06-30 2019-06-18 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US10468920B2 (en) * 2016-09-01 2019-11-05 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US10622868B2 (en) * 2017-03-29 2020-04-14 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US10560002B2 (en) 2017-03-29 2020-02-11 Ford Global Technologies, Llc Coolant flow distribution using coating materials
KR102452689B1 (ko) * 2017-09-26 2022-10-11 현대자동차주식회사 오일 코일순환방식 모터 및 친환경차량
JP6957552B2 (ja) * 2019-04-23 2021-11-02 本田技研工業株式会社 回転電機
DE102019113091A1 (de) * 2019-05-17 2020-11-19 Valeo Siemens Eautomotive Germany Gmbh Führungsvorrichtung für ein Wicklungsköpfe einer elektrische Maschine umfließendes Kühlfluid und elektrische Maschine
KR20210026357A (ko) * 2019-08-30 2021-03-10 현대자동차주식회사 냉각 시스템을 가지는 모터
DE102019217540A1 (de) * 2019-09-06 2021-03-11 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Stator eines Kältemittelantriebs
JP6881692B1 (ja) * 2019-12-24 2021-06-02 株式会社明電舎 回転電機の冷却構造
DE102020112048A1 (de) 2020-05-05 2021-11-11 Schaeffler Technologies AG & Co. KG Stator und elektrische Rotationsmaschine
JP7444042B2 (ja) * 2020-12-16 2024-03-06 トヨタ自動車株式会社 回転電機のステータおよびステータの冷却構造
US11955852B2 (en) * 2021-07-06 2024-04-09 GM Global Technology Operations LLC Oleophilic surface treatments for enhanced heat-transfer characteristics of electric machines
US11817765B2 (en) * 2021-08-13 2023-11-14 GM Global Technology Operations LLC Oleophobic surface treatments for windage loss reduction and improved heat transfer properties of electric machines
EP4160877A1 (en) 2021-10-04 2023-04-05 Scania CV AB Electric rotating machine and method and vehicle comprising electric machine

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293952A (ja) * 1986-06-10 1987-12-21 Fuji Electric Co Ltd 直接液体冷却式回転電機のコイルエンド絶縁
JP2001119883A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 車両用交流発電機
JP2004040924A (ja) * 2002-07-04 2004-02-05 Nissan Motor Co Ltd 回転電機の冷却構造
JP2004215358A (ja) * 2002-12-27 2004-07-29 Toyota Motor Corp 多相モータ装置
JP2005012961A (ja) * 2003-06-20 2005-01-13 Toyota Motor Corp 回転電機における固定子のコイルエンド構造
JP2005130588A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 回転電機のコイルエンド冷却構造と回転電機の製造方法
JP2005253263A (ja) 2004-03-08 2005-09-15 Toyota Motor Corp 電動機の冷却装置
JP2005323416A (ja) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2006005984A (ja) * 2004-06-15 2006-01-05 Honda Motor Co Ltd モータ
JP2006033915A (ja) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd 電動機の冷却装置
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
JP2006311750A (ja) * 2005-04-28 2006-11-09 Nissan Motor Co Ltd 回転電機の冷却装置
JP2007336677A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 回転電機および車両
US20090184592A1 (en) * 2008-01-17 2009-07-23 Shinya Sano Rotating electric machine
JP2009178119A (ja) 2008-01-31 2009-08-13 Shimano Inc 電動リールのモータ制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109947A (en) * 1959-06-26 1963-11-05 Gen Electric Cooling system for dynamoelectric machines
US4797588A (en) * 1987-12-14 1989-01-10 Sundstrand Corporation Stator cooling for dynamoelectric machine
JP2004336883A (ja) * 2003-05-07 2004-11-25 Mitsubishi Electric Corp 車両用交流発電機
CN1853770A (zh) * 2005-04-27 2006-11-01 李兆辉 可吸附水中油份的改性吸附剂及制备方法和吸附装置
JP2009118615A (ja) * 2007-11-05 2009-05-28 Mitsuba Corp ブラシレスモータ
US8378550B2 (en) * 2010-09-10 2013-02-19 Remy Technologies, L.L.C. Electric machine including a stator having a stator sleeve and method of cooling a stator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293952A (ja) * 1986-06-10 1987-12-21 Fuji Electric Co Ltd 直接液体冷却式回転電機のコイルエンド絶縁
JP2001119883A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 車両用交流発電機
JP2004040924A (ja) * 2002-07-04 2004-02-05 Nissan Motor Co Ltd 回転電機の冷却構造
JP2004215358A (ja) * 2002-12-27 2004-07-29 Toyota Motor Corp 多相モータ装置
JP2005012961A (ja) * 2003-06-20 2005-01-13 Toyota Motor Corp 回転電機における固定子のコイルエンド構造
JP2005130588A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 回転電機のコイルエンド冷却構造と回転電機の製造方法
JP2005253263A (ja) 2004-03-08 2005-09-15 Toyota Motor Corp 電動機の冷却装置
JP2005323416A (ja) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2006005984A (ja) * 2004-06-15 2006-01-05 Honda Motor Co Ltd モータ
JP2006033915A (ja) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd 電動機の冷却装置
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
JP2006311750A (ja) * 2005-04-28 2006-11-09 Nissan Motor Co Ltd 回転電機の冷却装置
JP2007336677A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 回転電機および車両
US20090184592A1 (en) * 2008-01-17 2009-07-23 Shinya Sano Rotating electric machine
JP2009178119A (ja) 2008-01-31 2009-08-13 Shimano Inc 電動リールのモータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461463A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003559A1 (ja) * 2017-06-27 2019-01-03 日立オートモティブシステムズ株式会社 回転電機のステータ、回転電機、及び回転電機のステータの製造方法
US10505426B2 (en) 2017-06-27 2019-12-10 Hitachi Automotive Systems, Ltd. Dynamo-electric machine

Also Published As

Publication number Publication date
JP2011035992A (ja) 2011-02-17
EP2461463B1 (en) 2019-04-10
EP2461463A4 (en) 2017-05-10
CN102474159A (zh) 2012-05-23
US20120161555A1 (en) 2012-06-28
JP5386263B2 (ja) 2014-01-15
CN102474159B (zh) 2014-10-15
US9203273B2 (en) 2015-12-01
EP2461463A1 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5386263B2 (ja) 回転電機
EP2242164B1 (en) Rotating electric machine
JP6526647B2 (ja) 回転電機
JP2010259145A (ja) 回転電機
JP7139969B2 (ja) 回転電機
JP2013038929A (ja) 回転電機
WO2017082023A1 (ja) 回転電機
JP2016086478A (ja) 回転電機のステータ
JP2018152957A (ja) 回転電機
JP5955437B1 (ja) 回転電機
JP2017192201A (ja) 回転電機のステータ
JP2016049007A (ja) 回転電機
JP5560773B2 (ja) ステータ
JP2019161948A (ja) 回転電機
JP5330860B2 (ja) 回転電機
JP2014117034A (ja) 固定子、および回転電機
JP5997598B2 (ja) 回転電機
JP2016127681A (ja) 回転電機のステータ
JP5788055B1 (ja) 車両用回転電機
JP5988840B2 (ja) 回転電機の固定子
KR101055009B1 (ko) 발전기 및 전동기
JP7487644B2 (ja) 回転電機の冷却構造
JP2014100038A (ja) 回転電機の固定子
JP2019154197A (ja) 回転電機
CN211908502U (zh) 一种定子散热结构及电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033859.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010804555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387055

Country of ref document: US