WO2011013560A1 - ベータ型ゼオライト及びその製造方法 - Google Patents

ベータ型ゼオライト及びその製造方法 Download PDF

Info

Publication number
WO2011013560A1
WO2011013560A1 PCT/JP2010/062270 JP2010062270W WO2011013560A1 WO 2011013560 A1 WO2011013560 A1 WO 2011013560A1 JP 2010062270 W JP2010062270 W JP 2010062270W WO 2011013560 A1 WO2011013560 A1 WO 2011013560A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
zeolite
beta
reaction mixture
beta zeolite
Prior art date
Application number
PCT/JP2010/062270
Other languages
English (en)
French (fr)
Inventor
慶治 板橋
達也 大久保
佳大 上村
Original Assignee
日本化学工業株式会社
国立大学法人東京大学
チャイキッティスィン ワッチャロップ
シャンムガム パラニ エランゴバン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社, 国立大学法人東京大学, チャイキッティスィン ワッチャロップ, シャンムガム パラニ エランゴバン filed Critical 日本化学工業株式会社
Priority to US13/387,631 priority Critical patent/US8282908B2/en
Priority to KR1020127001995A priority patent/KR101697804B1/ko
Priority to CN201080043059.9A priority patent/CN102712489B/zh
Priority to EP10804306.8A priority patent/EP2457872B1/en
Publication of WO2011013560A1 publication Critical patent/WO2011013560A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method for producing beta-type zeolite that does not use an organic compound as a beta-type zeolite and a structure-directing agent.
  • Synthetic zeolite is crystalline aluminosilicate and has uniform angstrom-sized pores due to its crystal structure. Taking advantage of this feature, synthetic zeolite is industrially used as a molecular sieve adsorbent that adsorbs only molecules having a specific size, an adsorbent separation agent that adsorbs molecules with strong affinity, or a catalyst base.
  • One of such zeolites, beta-type zeolite is currently used in large quantities all over the world as a catalyst in the petrochemical industry and as an adsorbent for treating automobile exhaust gas.
  • the feature of beta-type zeolite is that it has 12-membered ring pores in the three-dimensional direction as described in Non-Patent Document 1 below. Further, an X-ray diffraction diagram showing the structural features is described in Non-Patent Document 2 below.
  • tetraethylammonium ion as a structure directing agent (hereinafter abbreviated as “SDA”).
  • SDA structure directing agent
  • a beta zeolite having a SiO 2 / Al 2 O 3 ratio of 10 to 400 can be obtained.
  • compounds containing tetraethylammonium ions are expensive, and most of them are decomposed after the crystallization of beta zeolite is completed, so that they cannot be recovered and reused. Therefore, the beta zeolite produced by this method is expensive.
  • Non-Patent Document 4 a method for synthesizing beta zeolite that does not use organic SDA has been recently proposed in Non-Patent Document 4.
  • a beta zeolite synthesized using tetraethylammonium ions is calcined to remove organic components and used as a seed crystal. This is added to a sodium aluminosilicate reaction mixture containing no organic matter, and hydrothermally treated. Crystallization is performed by performing However, in this method, since beta-type zeolite synthesized using tetraethylammonium ions is calcined and used as seed crystals, the amount of SDA used is reduced, but tetraethylammonium ions as SDA are always required.
  • composition of the sodium aluminosilicate reaction mixture is only an example in which the numerical values are limited. Therefore, although the composition of the synthesized beta zeolite is not specified, it is considered that only a fixed value is obtained.
  • Patent Document 4 by the author of Non-Patent Document 4 discloses the SiO 2 / Al 2 O 3 ratio of the seed crystal, and the composition of the sodium aluminosilicate reaction mixture is not a point composition but a narrow point. It is described as a range.
  • the disclosure of Patent Document 4 is basically the same technology as that of Non-Patent Document 4, and the composition range of the reaction mixture is narrow, so the SiO 2 / Al 2 O 3 ratio of beta-type zeolite is limited. Limited to a limited range.
  • zeolites having a wide SiO 2 / Al 2 O 3 ratio range are desirable.
  • establishment of conditions capable of stirring synthesis is desired.
  • the object of the present invention is to eliminate the disadvantages of the prior art described above and to obtain a beta zeolite with a wide SiO 2 / Al 2 O 3 ratio, particularly a low zeolite with a low SiO 2 / Al 2 O 3 ratio. It is to provide a method for producing a beta-type zeolite that does not use organic SDA, which can reduce the environmental burden as much as possible by establishing conditions under which stirring and synthesis can be performed for mass production.
  • the present inventors have found that the above object can be achieved by producing a beta zeolite by a specific production procedure.
  • the present invention is a beta zeolite having a SiO 2 / Al 2 O 3 ratio of 10 to 16,
  • the BET specific surface area measured in the sodium-type state is 500 to 700 m 2 / g
  • the micropore specific surface area is 350 to 500 m 2 / g
  • the micropore volume is 0.15 to 0.25 cm 3 / g.
  • the present invention provides a beta-type zeolite characterized by
  • reaction mixture Added to the reaction mixture in a proportion of 0.1 to 20% by weight with respect to the components; (3) To provide a method for producing a beta zeolite, wherein the reaction mixture to which the seed crystal is added is hermetically heated at 100 to 200 ° C.
  • a beta zeolite having a high BET specific surface area, a high micropore specific surface area and a high micropore volume despite the low SiO 2 / Al 2 O 3 ratio is provided.
  • a beta zeolite having a wide SiO 2 / Al 2 O 3 ratio can be easily obtained.
  • the environmental load can be reduced as much as possible without using organic SDA as much as possible in the production of beta zeolite.
  • FIG. 1 is a process diagram for carrying out the production method of the present invention.
  • FIG. 2 is a scanning electron microscope image of a beta zeolite having a SiO 2 / Al 2 O 3 ratio for seed crystal of 24.0 synthesized in the reference example.
  • FIG. 3 is a scanning electron microscope image of a beta zeolite having a SiO 2 / Al 2 O 3 ratio for seed crystal of 18.4 synthesized in the reference example.
  • FIG. 4 is a scanning electron microscope image of a beta zeolite having a SiO 2 / Al 2 O 3 ratio for seed crystal of 14.0 synthesized in the reference example.
  • FIG. 1 is a process diagram for carrying out the production method of the present invention.
  • FIG. 2 is a scanning electron microscope image of a beta zeolite having a SiO 2 / Al 2 O 3 ratio for seed crystal of 24.0 synthesized in the reference example.
  • FIG. 3 is a scanning electron microscope image of a beta zeolite having a SiO 2
  • FIG. 5 is an X-ray diffraction pattern after calcining a beta zeolite having a SiO 2 / Al 2 O 3 ratio for seed crystal of 24.0 synthesized in the reference example.
  • 6 is an X-ray diffraction pattern of the beta zeolite obtained in Example 1.
  • FIG. 7 is a scanning electron microscope image of the beta zeolite obtained in Example 1.
  • FIG. 8 is a scanning electron microscope image of the beta zeolite obtained in Example 6.
  • FIG. 9 is a scanning electron microscope image of the beta zeolite obtained in Example 16.
  • FIG. 10 is an X-ray diffraction pattern of the beta zeolite obtained in Example 18.
  • FIG. 11 is an X-ray diffraction pattern of the beta zeolite obtained in Example 19.
  • FIG. 11 is a scanning electron microscope image of the beta zeolite obtained in Example 19.
  • FIG. 13 is a scanning electron microscope image of the beta zeolite obtained in Example 26.
  • FIG. 14 is an X-ray diffraction pattern of the beta zeolite evaluated in Example 27.
  • FIG. 15 is an X-ray diffraction pattern of the beta zeolite evaluated in Example 28.
  • FIG. 16 is an X-ray diffraction pattern of the beta zeolite evaluated in Example 29.
  • the beta zeolite of the present invention is characterized by having a high BET specific surface area, a high micropore specific surface area, and a high micropore volume, despite being aluminum-rich with a low SiO 2 / Al 2 O 3 ratio.
  • Beta-type zeolites having a low SiO 2 / Al 2 O 3 ratio have been known so far, but such beta-type zeolites were not high in BET specific surface area, micropore specific surface area, and micropore volume.
  • the SiO 2 / Al 2 O 3 ratio has to be increased.
  • the beta zeolite of the present invention has an SiO 2 / Al 2 O 3 ratio of 10 to 16, preferably 10 to 14, and is rich in aluminum.
  • Such an aluminum-rich beta-type zeolite of the present invention has a BET specific surface area measured in the sodium-type state of 500 to 700 m 2 / g, preferably 550 to 700 m 2 / g.
  • the micropore specific surface area measured in a sodium type state has a high value of 350 to 500 m 2 / g, preferably 380 to 500 m 2 / g.
  • the micropore volume measured in the sodium type state has a high value of 0.15 to 0.25 cm 3 / g, preferably 0.18 to 0.25 cm 3 / g.
  • the beta-type zeolite of the present invention includes a sodium-type zeolite, and further includes a sodium-type zeolite ion-exchanged with protons to form an H + type.
  • the beta zeolite is of the H + type, the measurement of the specific surface area and the like is performed after the proton is replaced with sodium ions.
  • the sodium type beta zeolite is dispersed in an aqueous ammonium salt solution such as ammonium nitrate, and the sodium ions in the zeolite are replaced with ammonium ions. By calcining this ammonium type beta zeolite, an H + type beta zeolite can be obtained.
  • the aluminum-rich beta zeolite of the present invention having the above-mentioned physical properties is suitably produced by a production method described later.
  • the reason why the above-described physical properties can be achieved is that the use of the production method can suppress the occurrence of defects that may occur in the crystal structure of the obtained beta zeolite.
  • the details are not clear.
  • the beta-type zeolite of the present invention is particularly suitable as an exhaust gas purification catalyst for an internal combustion engine such as a gasoline engine or a diesel engine, an adsorption separation agent in various industrial fields, a catalyst in the petrochemical industry, etc., taking advantage of its physical properties. Used.
  • the beta zeolite of the present invention is excellent in the trap of hydrocarbons discharged at the cold start of the internal combustion engine and the release of trapped hydrocarbons, as illustrated in the examples described later.
  • the temperature of the three-way catalyst is not high enough at the cold start of the gasoline engine or diesel engine.
  • exhaust gas at the cold start can be trapped by the catalyst, and emission of exhaust gas can be suppressed.
  • hydrocarbons trapped in the catalyst containing the beta zeolite of the present invention are released, and the released hydrocarbons reach the operating temperature. Purified by the reached three-way catalyst.
  • the beta zeolite of the present invention is surprisingly superior in hydrocarbon trapping performance after hydrothermal treatment than immediately after its synthesis. A decrease in the trap performance of hydrocarbons due to the heat received after the cold start is effectively prevented.
  • the beta zeolite of the present invention is used as a purification catalyst for exhaust gas, it is preferably used in an H + type state.
  • FIG. 1 the conventional synthesis method of beta zeolite using organic SDA is performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>.
  • the methods disclosed in Patent Document 4 and Non-Patent Document 4 are performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 9>. .
  • Patent Document 4 In the methods described in Patent Document 4 and Non-Patent Document 4, the use of seed crystals is essential, and SDA called tetraethylammonium ion is essential for the production of seed crystals. Moreover, in order to use the beta-type zeolite obtained by the method of patent document 4 and nonpatent literature 4 as a seed crystal, it is necessary to remove a tetraethylammonium ion by high temperature baking.
  • the first method is the same ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 9> as the method described in Patent Document 4 and the like.
  • the SiO 2 / Al 2 O 3 ratio of the seed crystal and the composition of the reaction mixture are different from the methods described in Patent Document 4 and Non-Patent Document 4. Therefore, according to the present invention, beta-type zeolite having a wide range of SiO 2 / Al 2 O 3 ratio can be produced.
  • the second method is a method performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 7>, ⁇ 6>, ⁇ 9>.
  • a seed crystal having a low SiO 2 / Al 2 O 3 ratio can be effectively used by standing and heating after aging.
  • the operation of aging is not shown in Patent Document 4 and Non-Patent Document 4.
  • the third method is a method performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 7>, ⁇ 8>, ⁇ 9>.
  • the SiO 2 / Al 2 O 3 ratio of the seed crystal and the reaction mixture composition are different from those described in Patent Document 4 and Non-Patent Document 4.
  • the aging and stirring operations performed by this method are not shown in Patent Document 4 and Non-Patent Document 4.
  • the aging and stirring operations are a new method necessary for mass production of beta zeolite. The reason is that a large pressurized container is necessary for mass production, and a stirring operation is indispensable to keep the internal temperature of such a pressurized container uniform. However, if stirring is performed without aging operation, impurities are accompanied and the purity tends to decrease.
  • the following three orders are also possible.
  • the SiO 2 / Al 2 O 3 ratio of the seed crystal and the composition of the reaction mixture are different from the methods described in Patent Document 4 and Non-Patent Document 4.
  • the beta zeolite obtained by the method of the present invention is used as a seed crystal to be used. That is, in these three production methods, seed crystals can be used repeatedly, and thus organic SDA is essentially not used.
  • these three production methods can be said to be methods for producing a beta zeolite by a green process that has an extremely low environmental load. For the first time by these production methods, “green beta zeolite” is produced.
  • the method of the present invention will be described in further detail.
  • the method in the order of ⁇ 1>, ⁇ 2>, and ⁇ 3> in FIG. 1 is the same as the conventional method using organic SDA, and is disclosed in many known information such as Patent Documents 1 to 3 and Non-Patent Document 3.
  • the methods and conditions are as follows.
  • Patent Document 4 the SiO 2 / Al 2 O 3 ratio range of the seed crystal is limited to a narrow range of 22-25.
  • one of the features of the present invention is the SiO 2 / Al 2 O 3 ratio of the seed crystal indicated by ⁇ 4> in FIG.
  • Non-Patent Document 3 describes a method of synthesizing a beta zeolite having a SiO 2 / Al 2 O 3 ratio of 10 or more using SDA.
  • Beta-type zeolite having a seed crystal SiO 2 / Al 2 O 3 ratio of less than 8 is generally not used because it is extremely difficult to synthesize. If the SiO 2 / Al 2 O 3 ratio of the seed crystal exceeds 30, the product tends to be ZSM-5 regardless of the composition of the reaction mixture.
  • the seed crystal is added in an amount of 0.1 to 20% by weight based on the silica component contained in the reaction mixture. The amount added is preferably small, but is determined in consideration of the reaction rate and the effect of suppressing impurities. A preferred addition amount is 1 to 20% by weight, and a more preferred addition amount is 1 to 10% by weight.
  • the average particle size of the beta type zeolite seed crystals used in the production method of the present invention is 150 nm or more, preferably 150 to 1000 nm, and more preferably 200 to 600 nm.
  • the size of the zeolite crystals obtained by the synthesis is generally not uniform, and it is not difficult to determine the crystal particle size having a certain degree of particle size distribution and having the maximum frequency.
  • the average particle diameter refers to the maximum particle diameter of crystals in observation with a scanning electron microscope.
  • Beta-type zeolite using organic SDA generally has a small average particle size and is generally in the range of 100 nm to 1000 nm. However, the particle diameter is unclear due to the aggregation of small particles, or there are those exceeding 1000 nm.
  • beta zeolite having an average particle size of 150 nm or more is used as a seed crystal. Since the beta zeolite obtained by the method of the present invention also has an average particle size in this range, it can be suitably used as a seed crystal.
  • the reaction mixture to which the seed crystal is added is obtained by mixing a silica source, an alumina source, an alkali source, and water so as to have a composition represented by the molar ratio shown below. If the composition of the reaction mixture is outside this range, the intended beta zeolite cannot be obtained.
  • Patent Document 4 and Non-Patent Document 4 the SiO 2 / Al 2 O 3 ratio of the produced beta zeolite is not described, but the SiO 2 / Al 2 O 3 ratio of the reaction mixture is limited to a narrow range. Therefore, it is considered that the SiO 2 / Al 2 O 3 ratio of the produced beta zeolite is also in a narrow range.
  • the method of the present invention a wide since the range using a reaction mixture having a SiO 2 / Al 2 O 3 ratio of, even wider range of SiO 2 / Al 2 O 3 ratio of beta zeolite to produce.
  • a beta type zeolite having a low SiO 2 / Al 2 O 3 ratio can also be obtained.
  • silica source used for obtaining the reaction mixture having the above molar ratio examples include silica itself and silicon-containing compounds capable of generating silicate ions in water. Specific examples include wet method silica, dry method silica, colloidal silica, sodium silicate, aluminosilicate gel, and the like. These silica sources can be used alone or in combination of two or more. Among these silica sources, it is preferable to use silica (silicon dioxide) in that a zeolite can be obtained without unnecessary by-products.
  • alumina source for example, a water-soluble aluminum-containing compound can be used. Specific examples include sodium aluminate, aluminum nitrate, and aluminum sulfate.
  • Aluminum hydroxide is also a suitable alumina source. These alumina sources can be used alone or in combination of two or more. Of these alumina sources, it is preferable to use sodium aluminate or aluminum hydroxide because zeolite can be obtained without unnecessary by-products (for example, sulfate, nitrate, etc.).
  • the alkali source for example, sodium hydroxide can be used.
  • sodium silicate is used as the silica source or sodium aluminate is used as the alumina source
  • sodium which is an alkali metal component contained therein is simultaneously regarded as NaOH and is also an alkali component.
  • NaOH sodium hydroxide
  • the method of adding the raw materials when preparing the reaction mixture may be a method that facilitates obtaining a uniform reaction mixture.
  • a uniform reaction mixture can be obtained by adding and dissolving an alumina source in an aqueous sodium hydroxide solution at room temperature, then adding a silica source and stirring and mixing.
  • the seed crystals are added with mixing with the silica source or after the silica source is added. Thereafter, stirring and mixing are performed so that the seed crystals are uniformly dispersed.
  • the temperature at which the reaction mixture is prepared and generally the reaction may be performed at room temperature (20 to 25 ° C.).
  • the reaction mixture containing seed crystals is placed in a closed container and heated to react to crystallize the beta zeolite.
  • This reaction mixture does not contain organic SDA.
  • One method for performing crystallization is heating by standing method without aging as shown in Patent Document 4 and Non-Patent Document 4 ( ⁇ 4>, ⁇ 5>, ⁇ 6> ⁇ 9> procedure).
  • aging refers to an operation of maintaining the temperature at a temperature lower than the reaction temperature for a certain period of time. In aging, generally, it is left without stirring. It is known that effects such as prevention of by-product impurities, enabling heating under stirring without by-product impurities, and increasing the reaction rate can be achieved by aging. However, the mechanism of action is not always clear.
  • the temperature and time for aging are set so that the above-mentioned effects are maximized.
  • aging is preferably performed at 20 to 80 ° C., more preferably 20 to 60 ° C., and preferably in the range of 2 hours to 1 day.
  • the three methods described below are methods for producing a beta zeolite by the green process, which is a feature of the present invention. According to these three methods, infinite self-reproduction using the beta-type zeolite obtained by the present invention as a seed crystal is possible, and a production process using no organic SDA is possible. That is, a method in the order ⁇ 10>, ⁇ 5>, ⁇ 6>, ⁇ 9>, a method in the order ⁇ 10>, ⁇ 5>, ⁇ 7>, ⁇ 6>, ⁇ 9>, ⁇ 10>, It is a method in the order of ⁇ 5>, ⁇ 7>, ⁇ 8>, ⁇ 9>. The characteristics of each process are as described above.
  • the SiO 2 / Al 2 O 3 ratio of the beta zeolite obtained by the present invention is preferably in the range of 8-30.
  • the crystallization of the beta zeolite can be performed without a ripening operation in the case of static synthesis in spite of its low SiO 2 / Al 2 O 3 ratio. Is possible.
  • a beta zeolite synthesized using organic SDA is used as a seed crystal, a calcined product is used.
  • the beta zeolite obtained in the present invention is used, the calcining is not necessary. It is estimated that this difference appears in the difference in effect as a seed crystal, but details are not clear.
  • aging is preferably performed.
  • the heating temperature is in the range of 100 to 200 ° C., preferably 120 to 180 ° C., and heating is performed under an autogenous pressure. If the temperature is lower than 100 ° C., the crystallization rate becomes extremely slow, so that the production efficiency of the beta zeolite is deteriorated. On the other hand, when the temperature exceeds 200 ° C., an autoclave having a high pressure resistance is required, which is not economical, and the generation rate of impurities increases.
  • the heating time is not critical in the present production method, and it may be heated until a beta zeolite with sufficiently high crystallinity is produced. In general, satisfactory crystalline beta zeolite can be obtained by heating for about 5 to 150 hours.
  • an amorphous component is accompanied when the heating time is insufficient. Further, when the heating is continued after the crystallization of the beta zeolite is completed, the growth of mordenite starts, and the proportion of the beta zeolite decreases. The time during which only the target beta-type zeolite is stably present as a single phase varies depending on the temperature, but is generally not long. In order to obtain a single-phase beta-type zeolite, the heating is terminated before the growth of mordenite starts, the sealed container is cooled, and the reaction is terminated.
  • mordenite is accompanied by a very small amount of mordenite, but it is certain that a single-phase beta can be obtained if the heating time is slightly shortened in these examples.
  • the entrainment of a very small amount of mordenite does not significantly impair the properties of the beta zeolite, and such a beta zeolite can sufficiently withstand use.
  • Crystals of beta zeolite are obtained by the heating. After completion of the heating, the produced crystal powder is separated from the mother liquor by filtration, then washed with water or warm water and dried. Since the organic substance is not contained in the dried state, there is no need for baking, and if dehydration is performed, it can be used as an adsorbent. Moreover, when using as a solid acid catalyst, it can be used as an H + type by, for example, exchanging Na + ions in the crystal with NH 4 + ions and then firing.
  • the beta zeolite obtained by this production method utilizes its large pore diameter, pore volume and solid acid characteristics, for example, a purification catalyst for exhaust gas of internal combustion engines such as gasoline engines and diesel engines, and various industrial fields. It is preferably used as an adsorbing / separating agent in and a catalyst in the petrochemical industry.
  • Powder X-ray diffractometer manufactured by Mac Science Co., Ltd., powder X-ray diffractometer MO3XHF 22 , using Cuk ⁇ ray, voltage 40 kV, current 30 mA, scan step 0.02 °, scan speed 2 ° / min
  • Composition analyzer ICP-AES LIBERTY Series II manufactured by Varian Scanning Electron Microscope: Field Emission Scanning Electron Microscope S-4800, manufactured by Hitachi High- Proceedings S Corporation BET surface area measuring device: AUTOSORB-1 manufactured by Cantachrome Instruments
  • a reaction mixture having the composition described in Table 1 was prepared. After aging before heating under the conditions described in Table 1, the product described in Table 1 was obtained as a result of heating without stirring under the conditions described in the same table.
  • a reaction mixture having the composition described in Table 1 was prepared.
  • the SEM images of the beta zeolite obtained in Examples 6 and 16 are shown in FIGS.
  • the X-ray diffraction pattern of the product of Example 18 is shown in FIG.
  • the product obtained in the same example was a beta zeolite containing no impurities.
  • a reaction mixture having the composition described in Table 1 was prepared using the same raw materials as in Example 1 except that the seed crystal addition amounts were 5%, 2.5%, and 1%, respectively. As a result of standing and heating under the conditions described in Table 1 without aging and stirring, the products described in the same table were obtained.
  • the BET specific surface area was 627 m 2 / g
  • the micropore specific surface area was 303 m 2 / g
  • the micropore volume was 0.159 m 3 / g.
  • Example 27 In the present Example, the effectiveness at the time of using the beta-type zeolite obtained in Example 6 as a purification catalyst for exhaust gas of a gasoline engine was evaluated. The evaluation was conducted on trapping performance and acidity of toluene and isooctane as model gases of exhaust gas. Toluene and isooctane are each contained in the exhaust gas by more than 10 percent, and are the main hydrocarbon components of the exhaust gas. The evaluation method is as follows. These evaluations were performed immediately after the conversion and after the hydrothermal treatment after converting the beta zeolite (sodium type) obtained in Example 6 to the H + type. Hydrothermal treatment was performed for the purpose of reproducing the condition after a cold start of the gasoline engine.
  • FIG. 14 shows X-ray diffraction patterns of the beta zeolite before sodium treatment and after hydrothermal treatment and after hydrothermal treatment.
  • Hydrothermal treatment of H + type beta zeolite was carried out at 800 ° C. for about 5 hours under an air flow containing 10% water vapor (flow rate: 25 ml / min).
  • TPD temperature programmed desorption
  • a gas chromatograph Shiadzu, GC-9A
  • TCD thermal conductivity detector
  • Helium flow rate 30 ml / min
  • a temperature desorption method of NH 3 was performed using a BEL-CAT apparatus (BEL JAPAN). He (flow rate 30 ml / min) was used as the moving bed, and H + type beta zeolite (before hydrothermal treatment and after hydrothermal treatment) was pretreated at 600 ° C. for about 1 hour. Next, NH 3 was adsorbed at 100 ° C. for 10 minutes in a He atmosphere containing 5 vol% NH 3 . The desorption behavior of NH 3 was observed with a thermal conductivity detector (TCD) while the sample was heated from room temperature to 600 ° C. at 10 ° C. per minute.
  • TCD thermal conductivity detector
  • Examples 28 and 29 The beta-type zeolite obtained in Examples 16 and 26 was evaluated in the same manner as in Example 27. The results are shown in Table 3 below. 15 (Example 28) and FIG. 16 (Example 29) show the X-ray diffraction diagrams of the beta type zeolite before and after the sodium type and hydrothermal treatment.
  • the beta zeolite of the present invention has a trapping performance for hydrocarbons. It is particularly noteworthy that the hydrocarbon trapping performance is improved by hydrothermal treatment as compared with that before hydrothermal treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

 本発明のベータ型ゼオライトは、SiO2/Al23比が10~16である アルミニウムリッチなものである。このベータ型ゼオライトは、ナトリウム型の状態で測定されたBET比表面積が500~700m2/gであり、ミクロ孔比表面積が350~500m2/gであり、かつミクロ孔容積が0.15~0.25cm3/gであることを特徴とする。

Description

ベータ型ゼオライト及びその製造方法
 本発明は、ベータ型ゼオライト及び構造規定剤としての有機化合物を用いないベータ型ゼオライトの製造方法に関する。
 合成ゼオライトは結晶性アルミノシリケートであり、その結晶構造に起因するオングストロームサイズの均一な細孔を有している。この特徴を生かして、合成ゼオライトは、特定の大きさを有する分子のみを吸着する分子ふるい吸着剤や親和力の強い分子を吸着する吸着分離剤、又は触媒基剤として工業的に利用されている。そのようなゼオライトの一つであるベータ型ゼオライトは、石油化学工業における触媒として、また自動車排気ガス処理用吸着剤として、現在世界中で多量に使用されている。ベータ型ゼオライトの特徴は、以下の非特許文献1に記載されているように、三次元方向に12員環細孔を有する点にある。また、その構造的特徴を示すX線回折図は、以下の非特許文献2に記載されている。
 ベータ型ゼオライトの合成法は種々提案されている。一般的な方法はテトラエチルアンモニウムイオンを構造規定剤(以下「SDA」と略称する。)として用いる方法である。そのような方法は例えば以下の特許文献1ないし3及び非特許文献3に記載されている。これらの方法によればSiO2/Al23比が10~400のベータ型ゼオライトが得られる。しかしながら、テトラエチルアンモニウムイオンを含む化合物は高価である上に、ベータ型ゼオライト結晶化終了後はほとんどが分解してしまうため、回収して再利用することは不可能である。そのために、この方法により製造したベータ型ゼオライトは高価である。更に、結晶中にテトラエチルアンモニウムイオンが取り込まれるため、吸着剤や触媒として使用する際には焼成除去する必要がある。その際の排ガスは環境汚染の原因となり、また、合成母液の無害化処理のためにも多くの薬剤を必要とする。このように、テトラエチルアンモニウムイオンを用いるベータ型ゼオライトの合成方法は高価であるばかりでなく、環境負荷の大きい製造方法であることから、SDAを用いない製造方法の実現が望まれていた。
 このような状況の中で、最近、有機SDAを使用しないベータ型ゼオライトの合成方法が非特許文献4において提案された。この方法では、テトラエチルアンモニウムイオンを用いて合成したベータ型ゼオライトを焼成して有機物成分を除去したものを種結晶として用い、これを、有機物を含まないナトリウムアルミノシリケート反応混合物に添加して、水熱処理を行うことにより結晶化を行っている。しかしながら、この方法においては、テトラエチルアンモニウムイオンを用いて合成したベータ型ゼオライトを焼成して種結晶として用いているので、SDAの使用量は減少するものの常にSDAとしてのテトラエチルアンモニウムイオンが必要となる。またこの方法によれば、種結晶の種類は一種のみであり、ナトリウムアルミノシリケート反応混合物の組成も数値限定された一例のみである。したがって、合成されたベータ型ゼオライトの組成は明記されていないが、決まった値のみとなると考えられる。
 一方、非特許文献4の著者による特許文献4には、種結晶のSiO2/Al23比が開示されていると共に、ナトリウムアルミノシリケート反応混合物の組成が点組成ではなく点から離れた狭い範囲として記載されている。しかしながら、特許文献4の開示内容は、基本的には非特許文献4の内容と同じ技術であり、反応混合物の組成範囲が狭いので、ベータ型ゼオライトのSiO2/Al23比は限られた範囲のみに限定される。多様な需要に対応するためには幅広いSiO2/Al23比範囲のゼオライトが望ましい。また、工業的量産化のためには、攪拌合成可能な条件の確立が望まれる。更に、環境負荷を可能な限り低減するためには、焼成の必要がない種結晶を用い、有機SDAを用いないベータ型ゼオライトの新しい製造方法の提案が望まれる。
米国特許第3,308,069号明細書 米国特許第4,923,690号明細書 米国特許第5,164,170号明細書 中国特許出願公開第101249968A号明細書
Ch. Baerlocher, L.B. McCusker,D.H. Olson, Atlas of Zeolite Framework Types, Published on behalf of theCommission of the International Zeolite Association, 2007, p.72~73 M.M.J. Treacy and J.B. Higgins,Collection of Simulated XRD Powder Patterns for Zeolites, Published on behalfof the Commission of the International Zeolite Association, 2007, p.82~83及びp.480 Microporous Materials, Vol.5,p.289-297 (1996) Chemistry of Materials, Vol.20,No.14, p.4533-4535 (2008)
 本発明の目的は、前述した従来技術が有する欠点を解消し、幅広いSiO2/Al23比のベータ型ゼオライト、特にSiO2/Al23比の低いベータ型ゼオライトを得ること、工業的量産化のため攪拌合成可能な条件を確立すること、更に環境負荷を可能な限り低減できる有機SDAを用いないベータ型ゼオライトの製造方法を提供することにある。
 本発明者らは鋭意検討した結果、特定の製造手順によってベータ型ゼオライトを製造することで、前記の目的が達成されることを知見した。
 すなわち本発明は、SiO2/Al23比が10~16であるベータ型ゼオライトであって、
 ナトリウム型の状態で測定されたBET比表面積が500~700m2/gであり、ミクロ孔比表面積が350~500m2/gであり、かつミクロ孔容積が0.15~0.25cm3/gであることを特徴とするベータ型ゼオライトを提供するものである。
 また本発明は、前記のベータ型ゼオライトの好適な製造方法として、
(1)以下に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し、
   SiO2/Al23=40~200
   Na2O/SiO2=0.22~0.4
   H2O/SiO2=10~50
(2)SiO2/Al23比が8~30であり、且つ平均粒子径が150nm以上である有機化合物を含まないベータ型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して0.1~20重量%の割合で該反応混合物に添加し、
(3)前記種結晶が添加された前記反応混合物を100~200℃で密閉加熱することを特徴とするベータ型ゼオライトの製造方法を提供するものである。
 本発明によれば、SiO2/Al23比が低いにもかかわらず、高BET比表面積、高ミクロ孔比表面積及び高ミクロ孔容積を有するベータ型ゼオライトが提供される。また、本発明の製造方法によれば、幅広いSiO2/Al23比のベータ型ゼオライトを容易に得ることができる。更に、本発明の製造方法によれば、ベータ型ゼオライトの製造において、可能な限り有機SDAを用いずに、環境負荷を可能な限り低減できる。
図1は、本発明の製造方法を実施するための工程図である。 図2は、参考例で合成した種結晶用SiO2/Al23比=24.0のベータ型ゼオライトの走査型電子顕微鏡像である。 図3は、参考例で合成した種結晶用SiO2/Al23比=18.4のベータ型ゼオライトの走査型電子顕微鏡像である。 図4は、参考例で合成した種結晶用SiO2/Al23比=14.0のベータ型ゼオライトの走査型電子顕微鏡像である。 図5は、参考例で合成した種結晶用SiO2/Al23比=24.0のベータ型ゼオライトを焼成した後のX線回折図である。 図6は、実施例1で得られたベータ型ゼオライトのX線回折図である。 図7は、実施例1で得られたベータ型ゼオライトの走査型電子顕微鏡像である。 図8は、実施例6で得られたベータ型ゼオライトの走査型電子顕微鏡像である。 図9は、実施例16で得られたベータ型ゼオライトの走査型電子顕微鏡像である。 図10は、実施例18で得られたベータ型ゼオライトのX線回折図である。 図11は、実施例19で得られたベータ型ゼオライトのX線回折図である。 図11は、実施例19で得られたベータ型ゼオライトの走査型電子顕微鏡像である。 図13は、実施例26で得られたベータ型ゼオライトの走査型電子顕微鏡像である。 図14は、実施例27で評価したベータ型ゼオライトのX線回折図である。 図15は、実施例28で評価したベータ型ゼオライトのX線回折図である。 図16は、実施例29で評価したベータ型ゼオライトのX線回折図である。
 以下、本発明をその好ましい実施形態に基づき説明する。本発明のベータ型ゼオライトは、SiO2/Al23比が低いアルミニウムリッチなものであるにもかかわらず、高BET比表面積、高ミクロ孔比表面積及び高ミクロ孔容積を有する点に特徴の一つを有する。SiO2/Al23比が低いベータ型ゼオライトはこれまでにも知られていたが、そのようなベータ型ゼオライトのBET比表面積やミクロ孔比表面積、ミクロ孔容積は高いものではなかった。従来知られているベータ型ゼオライトにおいて、BET比表面積やミクロ孔比表面積、ミクロ孔容積を高くしようとすると、SiO2/Al23比を高くせざるを得なかった。
 本発明のベータ型ゼオライトは、そのSiO2/Al23比が、10~16、好ましくは10~14であり、アルミニウムリッチなものである。このようなアルミニウムリッチな本発明のベータ型ゼオライトは、ナトリウム型の状態で測定されたBET比表面積が500~700m2/g、好ましくは550~700m2/gという高い値を有する。また、ナトリウム型の状態で測定されたミクロ孔比表面積が350~500m2/g、好ましくは380~500m2/gという高い値を有する。しかも、ナトリウム型の状態で測定されたミクロ孔容積が0.15~0.25cm3/g、好ましくは0.18~0.25cm3/gという高い値を有する。
 なお、本発明のベータ型ゼオライトは、ナトリウム型のものも包含し、更にナトリウムイオンがプロトンとイオン交換されてH+型になったものも包含する。ベータ型ゼオライトがH+型のタイプである場合には、上述の比表面積等の測定は、プロトンをナトリウムイオンで置換した後に行う。ナトリウム型のベータ型ゼオライトをH+型に変換するには、例えば、ナトリウム型のベータ型ゼオライトを硝酸アンモニウム等のアンモニウム塩水溶液中に分散し、ゼオライト中のナトリウムイオンをアンモニウムイオンと置換する。このアンモニウム型のベータ型ゼオライトを焼成することで、H+型のベータ型ゼオライトが得られる。
 上述の比表面積や容積は、後述する実施例で説明されているとおり、BET表面積測定装置を用いて測定される。
 上述の物性を有する本発明のアルミニウムリッチなベータ型ゼオライトは、後述する製造方法によって好適に製造される。本発明において、上述した物性を達成できた理由は、該製造方法を用いることで、得られるベータ型ゼオライトの結晶構造中に生じることのある欠陥の発生を抑制できたからではないかと推定されるが、詳細は明らかではない。本発明のベータ型ゼオライトは、その物性を生かして、例えばガソリンエンジンやディーゼルエンジンなどの内燃機関の排気ガス用浄化触媒、種々の工業分野における吸着分離剤、石油化学工業における触媒等として特に好適に用いられる。
 特に、本発明のベータ型ゼオライトは、後述する実施例において例証されるように、内燃機関のコールドスタート時に排出される炭化水素のトラップ及びトラップした炭化水素の放出性に優れたものである。ガソリンエンジンやディーゼルエンジンのコールドスタート時には三元触媒の温度が十分に高くなっていないので、三元触媒による排気ガスの浄化を効果的に行うことが困難であるところ、この三元触媒とは別に本発明のベータ型ゼオライトを含む触媒を用いることで、コールドスタート時の排気ガスを該触媒によってトラップすることができ、排気ガスの放出を抑制することができる。コールドスタートから数分が経過して三元触媒の動作温度近傍に達すると、本発明のベータ型ゼオライトを含む触媒にトラップされていた炭化水素が放出され、放出された炭化水素は、動作温度に達した三元触媒によって浄化される。後述する実施例において例証されるように、本発明のベータ型ゼオライトは、驚くべきことに、その合成直後よりも、水熱処理を受けた後の方が炭化水素のトラップ性能に優れているので、上述のコールドスタート後に受ける熱に起因する炭化水素のトラップ性能の低下が効果的に防止される。本発明のベータ型ゼオライトを排気ガス用浄化触媒として用いる場合には、H+型の状態で用いることが好ましい。
 次に、本発明のベータ型ゼオライトの好適な製造方法について図1を参照しながら説明する。なおこの製造方法は、本発明のベータ型ゼオライトの製造に好適であるが、本発明のベータ型ゼオライト以外のベータ型構造を持つゼオライトの製造にも特に制限なく適用することができる。図1において、有機SDAを用いる従来のベータ型ゼオライトの合成法は、<1>、<2>、<3>の順で行われる。また、特許文献4及び非特許文献4に示されている方法は、<1>、<2>、<3>、<4>、<5>、<6>、<9>の順で行われる。特許文献4及び非特許文献4に記載の方法においては、種結晶の使用が必須であり、種結晶の製造のためにはテトラエチルアンモニウムイオンというSDAが必須である。また、特許文献4及び非特許文献4に記載の方法で得られたベータ型ゼオライトを種結晶として使用するためには、高温焼成によってテトラエチルアンモニウムイオンを除去する必要がある。
 この方法に対して、本発明においては6通りの製造方法が可能である。一番目の方法は、特許文献4等に記載の方法と同じ<1>、<2>、<3>、<4>、<5>、<6>、<9>の順に行われる方法である。ただし、種結晶のSiO2/Al23比と反応混合物の組成が、特許文献4及び非特許文献4に記載の方法と異なる。したがって本発明によれば、幅広い範囲のSiO2/Al23比のベータ型ゼオライトを製造することができる。二番目の方法は<1>、<2>、<3>、<4>、<5>、<7>、<6>、<9>の順に行われる方法である。この方法では、熟成を行った後に静置加熱することによって、低SiO2/Al23比の種結晶を有効に使用できる。熟成という操作は特許文献4及び非特許文献4には示されていない。
 三番目の方法は、<1>、<2>、<3>、<4>、<5>、<7>、<8>、<9>の順に行われる方法である。この方法では、種結晶のSiO2/Al23比と反応混合物組成が、特許文献4及び非特許文献4に記載の方法と異なる。また、この方法で行われる熟成及び攪拌の操作は、特許文献4及び非特許文献4には示されていない。熟成及び攪拌の操作は、ベータ型ゼオライトの量産化のために必要な新しい方法である。その理由は、量産化のためには大型の加圧容器が必要なところ、そのような加圧容器の内部温度を均一に保つためには攪拌操作が不可欠だからである。しかしながら、熟成操作なしに攪拌を行うと、不純物を同伴して純度が低下し易い。
 本発明の製造方法では、以下の三通りの順序も可能である。
・<10>、<5>、<6>、<9>
・<10>、<5>、<7>、<6>、<9>
・<10>、<5>、<7>、<8>、<9>
 これらの場合も種結晶のSiO2/Al23比や、反応混合物の組成が、特許文献4及び非特許文献4に記載の方法と異なる。そのうえ、これらの三通りの方法では、使用する種結晶として、本発明の方法によって得られたベータ型ゼオライトを用いている。すなわち、この三通りの製造方法では種結晶が繰り返し使用可能なので、本質的に有機SDAを使用しない。要するに、この三通りの製造方法は、環境負荷が究極的に小さいグリーンプロセスによるベータ型ゼオライトの製造方法ということができる。これらの製造方法によって初めて、“グリーンベータ型ゼオライト”が製造される。
 本発明の方法について更に詳細に説明する。図1における<1>、<2>、<3>の順の方法については従来の有機SDAを用いる方法と同一であり、特許文献1~3及び非特許文献3など多数の公知情報に開示されている方法及び条件のとおりである。
 図1における<4>の種結晶に関し、特許文献4においては、種結晶のSiO2/Al23比範囲は22~25の狭い範囲に限定されている。これに対して本発明の特徴の一つは、図1における<4>に示す種結晶のSiO2/Al23比にある。非特許文献3には、SDAを用いてSiO2/Al23比=10以上のベータ型ゼオライトを合成する方法が記載されている。これに対して本発明の方法では、SiO2/Al23比=8~30の範囲の種結晶を使用することが可能である。種結晶のSiO2/Al23比が8よりも小さいベータ型ゼオライトは合成することが極めて困難であるため一般に使用することはない。また種結晶のSiO2/Al23比が30を超えると、反応混合物の組成に依存せず生成物はZSM-5となり易い。また本発明における種結晶の添加量は、反応混合物中に含まれるシリカ成分に対して0.1~20重量%の範囲である。この添加量は少ない方が好ましいが、反応速度や不純物の抑制効果などを考慮して決められる。好ましい添加量は1~20重量%であり、更に好ましい添加量は1~10重量%である。
 本発明の製造方法で用いるベータ型ゼオライト種結晶の平均粒子径は、150nm以上、好ましくは150~1000nm、一層好ましくは200~600nmである。合成によって得られるゼオライトの結晶の大きさは、一般的に均一ではなく、ある程度の粒子径分布を持っている、その中で最大頻度を有する結晶粒子径を求めることは困難ではない。平均粒子径とは、走査型電子顕微鏡による観察における最大頻度の結晶の粒子直径を指す。有機SDAを用いるベータ型ゼオライトは一般的に平均粒子径が小さく、100nm~1000nmの範囲が一般的である。しかし、小さい粒子が凝集しているために粒子径が不明確であるか、又は1000nmを超えるものも存在する。また、100nm以下の結晶を合成するためには特別な工夫が必要であり、高価なものとなってしまう。したがって、本発明では平均粒子径が150nm以上のベータ型ゼオライトを種結晶として用いる。本発明の方法によって得られるベータ型ゼオライトもこの範囲の平均粒子径を有するので、種結晶として好適に使用することができる。
 種結晶を添加する反応混合物は、以下に示すモル比で表される組成となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合して得られる。反応混合物の組成がこの範囲外であると、目的とするベータ型ゼオライトを得ることができない。
・SiO2/Al23=40~200
・Na2O/SiO2=0.22~0.4
・H2O/SiO2=10~50
 更に好ましい反応混合物の組成の範囲は以下のとおりである。
・SiO2/Al23=44~200
・Na2O/SiO2=0.24~0.35
・H2O/SiO2=15~25
 特許文献4及び非特許文献4においては、生成するベータ型ゼオライトのSiO2/Al23比は記載されていないが、反応混合物のSiO2/Al23比が狭い範囲に限定されていることから、生成するベータ型ゼオライトのSiO2/Al23比も狭い範囲の値となると考えられる。それに対して、本発明の方法では、広い範囲のSiO2/Al23比を有する反応混合物を用いるので、生成するベータ型ゼオライトのSiO2/Al23比の範囲も広くなる。もちろん、低SiO2/Al23比のベータ型ゼオライトを得ることもできる。
 前記のモル比を有する反応混合物を得るために用いられるシリカ源としては、シリカそのもの及び水中でケイ酸イオンの生成が可能なケイ素含有化合物が挙げられる。具体的には、湿式法シリカ、乾式法シリカ、コロイダルシリカ、ケイ酸ナトリウム、アルミノシリケートゲルなどが挙げられる。これらのシリカ源は単独で又は2種以上を組み合わせて用いることができる。これらのシリカ源のうち、シリカ(二酸化ケイ素)を用いることが、不要な副生物を伴わずにゼオライトを得ることができる点で好ましい。
 アルミナ源としては、例えば水溶性アルミニウム含有化合物を用いることができる。具体的には、アルミン酸ナトリウム、硝酸アルミニウム、硫酸アルミニウムなどが挙げられる。また、水酸化アルミニウムも好適なアルミナ源の一つである。これらのアルミナ源は単独で又は2種以上を組み合わせて用いることができる。これらのアルミナ源のうち、アルミン酸ナトリウムや水酸化アルミニウムを用いることが、不要な副生物(例えば硫酸塩や硝酸塩等)を伴わずにゼオライトを得ることができる点で好ましい。
 アルカリ源としては、例えば水酸化ナトリウムを用いることができる。なお、シリカ源としてケイ酸ナトリウムを用いた場合やアルミナ源としてアルミン酸ナトリウムを用いた場合、そこに含まれるアルカリ金属成分であるナトリウムは同時にNaOHとみなされ、アルカリ成分でもある。したがって、前記のNa2Oは反応混合物中のすべてのアルカリ成分の和として計算される。
 反応混合物を調製するときの各原料の添加順序は、均一な反応混合物が得られ易い方法を採用すればよい。例えば、室温下、水酸化ナトリウム水溶液にアルミナ源を添加して溶解させ、次いでシリカ源を添加して攪拌混合することにより、均一な反応混合物を得ることができる。種結晶は、シリカ源と混合しながら加えるか又はシリカ源を添加した後に加える。その後、種結晶が均一に分散するように攪拌混合する。反応混合物を調製するときの温度にも特に制限はなく、一般的には室温(20~25℃)で行えばよい。
 種結晶を含む反応混合物は、密閉容器中に入れて加熱して反応させ、ベータ型ゼオライトを結晶化する。この反応混合物には有機SDAは含まれていない。結晶化を行う一つの方法は、特許文献4及び非特許文献4に示されているように、熟成することなく静置法で加熱することである(<4>、<5>、<6>、<9>の手順)。
 一方、SiO2/Al23比の低い種結晶を用いた場合は、熟成をした後に、攪拌することなく加熱する方が、結晶化が進行し易い(<4>、<5>、<7>、<6>、<9>の手順)。熟成とは、反応温度よりも低い温度で一定時間その温度に保持する操作を言う。熟成においては、一般的には、攪拌することなしに静置する。熟成を行うことで、不純物の副生を防止すること、不純物の副生なしに攪拌下での加熱を可能にすること、反応速度を上げることなどの効果が奏されることが知られているが、作用機構は必ずしも明らかではない。熟成の温度と時間は、前記の効果が最大限に発揮されるように設定される。本発明では、好ましくは20~80℃、更に好ましくは20~60℃で、好ましくは2時間から1日の範囲で熟成が行われる。
 加熱中に反応混合物温度の均一化を図るため攪拌をする場合は、熟成を行った後に加熱攪拌すれば、不純物の副生を防止することができる(<4>、<5>、<7>、<8>、<9>の手順)。攪拌は反応混合物の組成と温度を均一化するために行うものであり、攪拌羽根による混合や、容器の回転による混合などがある。攪拌強度や回転数は、温度の均一性や不純物の副生具合に応じて調整すればよい。常時攪拌ではなく、間歇攪拌でもよい。このように熟成と攪拌を組み合わせることによって、工業的量産化が可能となる。
 以下に記載する三通りの方法は、本発明の特徴であるグリーンプロセスによるベータ型ゼオライトの製造法である。この三通りの方法によれば、種結晶として本発明によって得られたベータ型ゼオライトを用いた無限回の自己再生産が可能となり、有機SDAを全く使用しない製造プロセスが可能となる。すなわち、<10>、<5>、<6>、<9>の順の方法、<10>、<5>、<7>、<6>、<9>の順の方法、<10>、<5>、<7>、<8>、<9>の順の方法である。それぞれの工程の特徴は前記のとおりである。本発明によって得られるベータ型ゼオライトのSiO2/Al23比は、好ましくは8~30の範囲である。本発明によって得られたベータ型ゼオライトを種結晶とする場合は、そのSiO2/Al23比が低いにも関わらず、静置合成の場合は熟成操作なしでもベータ型ゼオライトの結晶化が可能である。有機SDAを用いて合成したベータ型ゼオライトを種結晶とする場合は、これを焼成したものを用いるが、本発明で得られたベータ型ゼオライトを用いる場合はその焼成の必要がない。この違いが、種結晶としての効果の違いに現れていると推定されるが、詳細は明らかではない。しかしながら、攪拌加熱を行う場合は、熟成を行うことが好ましい。
 静置法及び攪拌法のどちらの場合も、加熱温度は100~200℃、好ましくは120~180℃の範囲であり、自生圧力下での加熱である。100℃未満の温度では結晶化速度が極端に遅くなるのでベータ型ゼオライトの生成効率が悪くなる。一方、200℃超の温度では、高耐圧強度のオートクレーブが必要となるため経済性に欠けるばかりでなく、不純物の発生速度が速くなる。加熱時間は本製造方法において臨界的ではなく、結晶性の十分に高いベータ型ゼオライトが生成するまで加熱すればよい。一般に5~150時間程度の加熱によって、満足すべき結晶性のベータ型ゼオライトが得られる。
 本発明のベータ型ゼオライトの製造方法において、加熱時間が不十分な場合はアモルファス成分が同伴する。また、ベータ型ゼオライトの結晶化が終了した後更に加熱を継続するとモルデナイトの成長が始まり、ベータ型ゼオライトの割合が減少する。目的とするベータ型ゼオライトのみが単一相として安定に存在する時間は温度によって異なるが、一般に長くはない。単一相ベータ型ゼオライトを得るためには、モルデナイトの成長が始まる前に加熱を終了して密閉容器を冷却し、反応を終了させる。後述する実施例のうちの幾つかにおいては、モルデナイトが極微量同伴しているが、それらの実施例において加熱時間を少し短くすれば単一相のベータが得られることは確実である。また、極微量のモルデナイトの同伴はベータ型ゼオライトの特性を著しく損なうものではなく、かつそのようなベータ型ゼオライトは十分使用に耐え得る。
 前記の加熱によってベータ型ゼオライトの結晶が得られる。加熱終了後は、生成した結晶粉末をろ過によって母液と分離した後、水又は温水で洗浄して乾燥する。乾燥したままの状態で有機物を含んでいないので焼成の必要はなく、脱水を行えば吸着剤などとして使用可能である。また、固体酸触媒として使用する際は、例えば結晶内のNa+イオンをNH4 +イオンに交換した後、焼成することによってH+型として使用することができる。
 本製造方法で得られたベータ型ゼオライトは、その大きな細孔径と細孔容積や固体酸特性を利用して、例えばガソリンエンジンやディーゼルエンジンなどの内燃機関の排気ガス用浄化触媒、種々の工業分野における吸着分離剤、石油化学工業における触媒として好適に用いられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。なお、以下の実施例、比較例及び参考例で用いた分析機器は以下のとおりである。
 粉末X線回折装置:マック サイエンス社製、粉末X線回折装置 MO3XHF22、Cukα線使用、電圧40kV、電流30mA、スキャンステップ0.02°、スキャン速度2°/min
 組成分析装置:(株)バリアン製、ICP-AES LIBERTY SeriesII
 走査型電子顕微鏡:(株)日立ハイテクノロジーズ社製、電界放出型走査電子顕微鏡 S-4800
 BET表面積測定装置:(株)カンタクローム インスツルメンツ社製 AUTOSORB-1
  〔参考例〕
 テトラエチルアンモニウムヒドロキシドをSDAとして用い、アルミン酸ナトリウムをアルミナ源、微粉状シリカ(Mizukasil P707)をシリカ源とする従来公知の方法により、165℃、96時間、攪拌加熱を行って、SiO2/Al23比がそれぞれ24.0、18.4及び14.0のベータ型ゼオライトを合成した。これらを電気炉中で空気を流通しながら550℃で10時間焼成して、有機物を含まない結晶を製造した。
 これらの結晶を走査型電子顕微鏡により観察した結果、平均粒子径はそれぞれ280nm(SiO2/Al23比=24.0)、330nm(SiO2/Al23比=18.4)及び220nm(SiO2/Al23比=14.0)であった。それぞれの結晶の走査型電子顕微鏡像(SEM像)を図2、図3及び図4に示す。SiO2/Al23比=24.0のベータ型ゼオライトを焼成した後のX線回折図を図5に示す。この有機物を含まないベータ型ゼオライトの結晶を、以下に述べる実施例及び比較例において、種結晶として使用した。
  〔実施例1〕
 純水13.9gに、アルミン酸ナトリウム0.235gと、36%水酸化ナトリウム1.828gを溶解した。微粉状シリカ(Cab-O-sil、M-5)2.024gと、参考例で合成したSiO2/Al23比=24.0のベータ型ゼオライト種結晶0.202gを混合したものを、少しずつ前記の水溶液に添加して攪拌混合し、表1に記載した組成の反応混合物を得た。この反応混合物を60ccのステンレス製密閉容器に入れて、熟成及び攪拌することなしに140℃で46時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物をろ過、温水洗浄して白色粉末を得た。この生成物のX線回折図を図6に示す。同図から判るように、この生成物は不純物を含まないベータ型ゼオライトであった。組成分析の結果、そのSiO2/Al23比は11.0であった。また、そのSEM像を図7に示す。典型的な結晶粒子は正八面体型の形状を有し、平均粒子径は300nmであった。
  〔実施例2〕
 参考例で合成したSiO2/Al23比=18.4のベータ型ゼオライトを種結晶として用いた。これ以外は実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。熟成及び攪拌することなしに表1記載の条件で加熱した結果、表1に記載の生成物が得られた。
  〔実施例3〕
 参考例で合成したSiO2/Al23比=18.4のベータ型ゼオライトを種結晶として用いた。これ以外は実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。60℃で24時間熟成を行った後、表1記載の条件で攪拌することなく加熱した結果、表1に記載の生成物が得られた。
  〔実施例4及び5〕
 参考例で合成したSiO2/Al23比=14.0のベータ型ゼオライトを種結晶として用いた。これ以外は実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。表1に記載の条件で加熱前に熟成を行った後に、同表に記載の条件で攪拌することなく加熱した結果、表1に記載の生成物が得られた。
  〔実施例6ないし18〕
 参考例で合成したSiO2/Al23比=24.0のベータ型ゼオライトを種結晶として用いた。これ以外は実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。熟成及び攪拌することなしに表1に記載の条件で静置加熱した結果、同表に記載の生成物が得られた。実施例6及び16で得られたベータ型ゼオライトのSEM像を図8及び9に示す。実施例18の生成物のX線回折図を図10に示す。同図に示すように、同実施例で得られた生成物は、不純物を含まないベータ型ゼオライトであった。
  〔実施例19〕
 実施例1で合成したSiO2/Al23比=11.0のベータ型ゼオライト(平均粒子径300nm)を種結晶として用いた。また、実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。熟成及び攪拌することなしに表1に記載の条件で静置加熱した結果、同表に記載の生成物が得られた。この生成物のX線回折図を図11に示す。同図に示すように、この生成物は不純物を含まないベータ型ゼオライトであった。また、この生成物のSEM像を図12に示す。典型的な結晶粒子は正八面体型の形状を有し、平均粒子径は500nmであった。
 〔実施例20〕
 実施例1で合成したSiO2/Al23比=11.0のベータ型ゼオライト(平均粒子径300nm)を種結晶として用いた。また、実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。表1に記載の条件で加熱前の熟成を行った後、20rpmで密閉容器内を攪拌しながら同表に示す条件で加熱した結果、同表に記載の生成物が得られた。
 〔実施例21〕
 参考例で合成したSiO2/Al23比=24.0のベータ型ゼオライトを種結晶として用いた。また、実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。表1記載の条件で加熱前の熟成を行った後、同表に示す条件で加熱した結果、同表に記載の生成物が得られた。
  〔実施例22ないし24〕
 参考例で合成したSiO2/Al23比=24.0のベータ型ゼオライトを種結晶として用いた。種結晶添加量をそれぞれ5%、2.5%、1%とした以外は実施例1と同じ原料を用いて、表1に記載した組成の反応混合物を調製した。熟成及び攪拌することなしに表1に記載の条件で静置加熱した結果、同表に記載の生成物が得られた。
  〔実施例25〕
 実施例18で合成したSiO2/Al23比=13.2のベータ型ゼオライトを種結晶として用いた。実施例1と同じ原料を用いて、表1に記載した実施例18と同じ組成の反応混合物を調製した。熟成及び攪拌することなしに表1に記載の条件で静置過熱した結果、同表に記載の生成物が得られた。生成物のSEM像は図10と同等であった。
  〔実施例26〕
 実施例16で合成したSiO2/Al23比=11.8のベータ型ゼオライトを種結晶として用いた。実施例1と同じ原料を用いて、表1に記載した実施例16と同じ組成の反応混合物を調製した。熟成及び攪拌することなしに表1に記載の条件で静置過熱した結果、同表に記載の生成物が得られた。この生成物のSEM像を図13に示す。
 なお、比較のために、上述の参考例で得られたSiO2/Al23比=24.0のベータ型ゼオライトのBET比表面積、ミクロ孔比表面積及びミクロ孔容積も併せて測定した。その結果、BET比表面積は627m2/g、ミクロ孔比表面積は303m2/g、ミクロ孔容積は0.159m3/gであった。
Figure JPOXMLDOC01-appb-T000001
  〔比較例1ないし3〕
 実施例1で使用したものと同じ原料と種結晶を用いて、表2に記載した組成の反応混合物を調製した。表2に記載の条件で加熱した結果、同表に記載の生成物が得られた。
  〔比較例4〕
 実施例1で使用したものと同じ原料を用いて、表2に記載した組成の反応混合物を調製した。種結晶としては、テトラエチルアンモニウムヒドロキシドを用いて合成したSiO2/Al23比=40、平均粒子径=130nmのベータ型ゼオライトを550℃で焼成したものを用いた。表2に記載の条件で加熱した結果、同表に記載の生成物が得られた。
Figure JPOXMLDOC01-appb-T000002
  〔実施例27〕
 本実施例では、実施例6で得られたベータ型ゼオライトを、ガソリンエンジンの排気ガス用浄化触媒として用いた場合の有効性について評価した。評価は、排気ガスのモデルガスとしてのトルエン及びイソオクタンのトラップ性能並びに酸性度について行った。トルエン及びイソオクタンは、それぞれ排気ガス中に十数パーセント含まれており、排気ガスの主要炭化水素成分である。評価方法は以下のとおりである。これらの評価は実施例6で得られたベータ型ゼオライト(ナトリウム型)を、H+型に変換した後、変換直後と水熱処理後において行った。水熱処理は、ガソリンエンジンのコールドスタート後の状態を再現する目的で行った。H+型への変換方法及び水熱処理の方法は以下のとおりである。評価の結果を以下の表3に示す。また、図14に、ナトリウム型及び水熱処理前及び水熱処理後のベータ型ゼオライトのX線回折図を示す。
  〔H+型のベータ型ゼオライトの調製〕
 実施例6で得られたナトリウム型のベータ型ゼオライト(1g)をポリプロピレン容器に入れ、2mol/Lの硝酸アンモニウム水溶液(30ml)に分散させた。この分散液を80℃で24時間保持した。その後、分散液のろ過を行い、次いで十分な量の蒸留水で洗浄し、100℃で一晩乾燥させた。このようにして得られたアンモニウム型のベータ型ゼオライトを、マッフル炉で室温から500℃まで加熱し、この温度を2時間保持してH+型のベータ型ゼオライトに変換した。引き続き空気流下に500℃で3時間保持した。
〔水熱処理〕
 10%の水蒸気を含む空気流下(流量25ml/min)に800℃で約5時間にわたりH+型のベータ型ゼオライトの水熱処理を行った。
  〔トルエン及びイソオクタンのトラップ性能〕
 炭化水素のトラップ性能を評価するため、トルエン及びイソオクタンをプローブ分子として用い、熱伝導度検出器(TCD)を備えたガスクロマトグラフ(島津、GC-9A)によって、昇温脱離法(TPD)を行った。H+型のベータ型ゼオライト(水熱処理前及び水熱処理後)約20gを内径4mmの石英管に入れ、石英ウールとガラスビーズとの間に保持した。移動相としてヘリウム(流量30ml/分)を用い、試料を390℃で約1時間活性化させた。カラムを50℃に冷却した後、トルエンを飽和状態になるまで注入した(パルス法)。トルエンの脱離は、毎分10℃で50℃から390℃までカラムを昇温
させ、390℃を10分間保持することで行った。(W/F:約10-4g・min/cm3)。同様の操作をイソオクタンについても行った。
  〔酸性度〕
 酸性度の測定には、BEL-CAT装置(BEL JAPAN(株))を用い、NH3の昇温脱離法を行った。移動層としてHe(流量30ml/分)用い、H+型のベータ型ゼオライト(水熱処理前及び水熱処理後)を600℃で約1時間前処理した。次いで、5vol%のNH3を含むHe雰囲気下に、NH3の吸着を100℃で10分間行った。そしてNH3の脱離挙動を、試料を室温から600℃まで毎分10℃で昇温している間、熱伝導度検出器(TCD)によって観察した。
  〔実施例28及び29〕
 実施例16及び26で得られベータ型ゼオライトについて、実施例27と同様の評価を行った。その結果を以下の表3に示す。また、ナトリウム型及び水熱処理前及び水熱処理後のベータ型ゼオライトのX線回折図を図15(実施例28)及び図16(実施例29)に、示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなとおり、本発明のベータ型ゼオライトは、炭化水素に対するトラップ性能を有していることが判る。特に、水熱処理することで、水熱処理前に比べて炭化水素のトラップ性能が向上していることは特筆に値する。

Claims (7)

  1.  SiO2/Al23比が10~16であるベータ型ゼオライトであって、
     ナトリウム型の状態で測定されたBET比表面積が500~700m2/gであり、ミクロ孔比表面積が350~500m2/gであり、かつミクロ孔容積が0.15~0.25cm3/gであることを特徴とするベータ型ゼオライト。
  2. (1)以下に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し、
       SiO2/Al23=40~200
       Na2O/SiO2=0.22~0.4
       H2O/SiO2=10~50
    (2)SiO2/Al23比が8~30であり、且つ平均粒子径が150nm以上である有機化合物を含まないベータ型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して0.1~20重量%の割合で該反応混合物に添加し、
    (3)前記種結晶が添加された前記反応混合物を100~200℃で密閉加熱することを特徴とするベータ型ゼオライトの製造方法。
  3. (1)以下に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、及び水を混合し、
       SiO2/Al23=44~200
       Na2O/SiO2=0.24~0.35
       H2O/SiO2=15~25
    (2)SiO2/Al23比が8~30であり、且つ平均粒子径が150nm以上である有機化合物を含まないベータ型ゼオライトを種結晶として用い、これを、前記反応混合物中のシリカ成分に対して0.1~20重量%の割合で該反応混合物に添加し、
    (3)前記種結晶が添加された前記反応混合物を120~180℃で密閉加熱することを特徴とする請求項2記載のベータ型ゼオライトの製造方法。
  4.  種結晶として、請求項2又は3記載の製造方法で製造されたベータ型ゼオライトを用いることを特徴とする請求項2又は3記載の製造方法。
  5.  反応混合物を加熱する前に、20~80℃の温度下に熟成することを特徴とする請求項2ないし4のいずれかに記載の製造方法。
  6.  密閉加熱する工程で反応混合物を攪拌することを特徴とする請求項2ないし5のいずれかに記載の製造方法。
  7.  請求項1記載のベータ型ゼオライトを含むことを特徴とする内燃機関の排気ガス用浄化触媒。
PCT/JP2010/062270 2009-07-27 2010-07-21 ベータ型ゼオライト及びその製造方法 WO2011013560A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/387,631 US8282908B2 (en) 2009-07-27 2010-07-21 Zeolite beta and process for producing the same
KR1020127001995A KR101697804B1 (ko) 2009-07-27 2010-07-21 β형 제올라이트 및 그의 제조 방법
CN201080043059.9A CN102712489B (zh) 2009-07-27 2010-07-21 β型沸石及其制造方法
EP10804306.8A EP2457872B1 (en) 2009-07-27 2010-07-21 Zeolite beta and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-174691 2009-07-27
JP2009174691 2009-07-27
JP2009-264551 2009-11-20
JP2009264551 2009-11-20
JP2010154510A JP4904417B2 (ja) 2009-07-27 2010-07-07 ベータ型ゼオライト及びその製造方法
JP2010-154510 2010-07-07

Publications (1)

Publication Number Publication Date
WO2011013560A1 true WO2011013560A1 (ja) 2011-02-03

Family

ID=43529219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062270 WO2011013560A1 (ja) 2009-07-27 2010-07-21 ベータ型ゼオライト及びその製造方法

Country Status (6)

Country Link
US (1) US8282908B2 (ja)
EP (1) EP2457872B1 (ja)
JP (1) JP4904417B2 (ja)
KR (1) KR101697804B1 (ja)
CN (1) CN102712489B (ja)
WO (1) WO2011013560A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099090A1 (ja) * 2011-01-18 2012-07-26 日本化学工業株式会社 Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
WO2013077404A1 (ja) 2011-11-25 2013-05-30 日本化学工業株式会社 ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP2013129590A (ja) * 2011-11-25 2013-07-04 Nippon Chem Ind Co Ltd ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
JP2014511819A (ja) * 2011-04-08 2014-05-19 ビーエーエスエフ ソシエタス・ヨーロピア アシル化触媒の製造方法
WO2014200101A1 (ja) * 2013-06-14 2014-12-18 日本化学工業株式会社 Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法
CN104321280A (zh) * 2012-04-10 2015-01-28 UniZeo株式会社 β型沸石及其制造方法
JP2016145138A (ja) * 2015-02-09 2016-08-12 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
US9656238B2 (en) 2012-07-18 2017-05-23 Unizeo Co., Ltd. Fe(II)-substituted beta-type zeolite, production method therefor and gas adsorbent including same, and nitric oxide and hydrocarbon removal method
US9844771B2 (en) 2013-03-12 2017-12-19 Unizeo Co., Ltd. Hydrocarbon reforming/trapping material and method for removing hydrocarbon
WO2017217424A1 (ja) * 2016-06-17 2017-12-21 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
WO2019082995A1 (ja) 2017-10-25 2019-05-02 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒
WO2019082990A1 (ja) 2017-10-25 2019-05-02 三井金属鉱業株式会社 金属置換ベータ型ゼオライト及びその製造方法
US10479692B2 (en) 2010-07-01 2019-11-19 Mitsui Mining & Smelting Co., Ltd. Zeolite production method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028795B2 (en) * 2011-09-09 2015-05-12 Basf Se Process for the organotemplate-free synthetic production of a zeolitic material using recycled mother liquor
JP5917247B2 (ja) * 2012-04-10 2016-05-11 ユニゼオ株式会社 Pau型ゼオライトの製造方法
TWI505989B (zh) * 2013-06-03 2015-11-01 Univ Nat Cheng Kung 一種製備沸石的方法
JP6509877B2 (ja) * 2014-01-03 2019-05-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機テンプレートを使用しない合成による二金属交換ゼオライトベータ、およびNOxの選択触媒還元においてそれを使用する方法
CN103787355B (zh) * 2014-01-21 2015-07-22 上海卓悦化工科技有限公司 一种合成Beta分子筛的方法
CN105540605B (zh) * 2014-10-30 2017-08-22 中国石油化工股份有限公司 一种合成富铝Beta沸石的方法
KR102516323B1 (ko) * 2014-10-31 2023-03-30 도아고세이가부시키가이샤 소취제 및 이것을 사용한 소취성 가공품, 그리고 소취제 및 소취성 가공품의 제조 방법
BR102014030478B1 (pt) * 2014-12-05 2022-04-05 Petróleo Brasileiro S.A. – Petrobras Método de síntese de zeólitas beta
JP7192463B2 (ja) * 2017-12-14 2022-12-20 東ソー株式会社 β型ゼオライト及びその製造方法
EP3995450A4 (en) 2019-07-03 2022-08-17 Mitsui Mining & Smelting Co., Ltd. ZEOLITE PRODUCTION PROCESS
EP3995451A4 (en) 2019-07-03 2022-11-23 Mitsui Mining & Smelting Co., Ltd. BETA-TYPE ZEOLITE AND CATALYST WITH IT
WO2022158588A1 (ja) 2021-01-25 2022-07-28 国立大学法人東京大学 ベータ型ゼオライト及びその製造方法
WO2024042830A1 (ja) * 2022-08-25 2024-02-29 株式会社キャタラー 排ガス浄化触媒
JP7437572B1 (ja) 2022-08-25 2024-02-22 株式会社キャタラー 排ガス浄化触媒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308069A (en) 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
JPS6110022A (ja) * 1984-06-11 1986-01-17 モービル オイル コーポレーシヨン ゼオライト・ベータの製造法
US4923690A (en) 1984-06-11 1990-05-08 Mobil Oil Corporation Method for producing highly siliceous zeolites
US5164170A (en) 1991-06-14 1992-11-17 Mobil Oil Corporation Synthesis of zeolite Beta
JP2008081348A (ja) * 2006-09-27 2008-04-10 Tosoh Corp SCR触媒用β型ゼオライト及びそれを用いた窒素酸化物の浄化方法
JP2008519748A (ja) * 2004-11-12 2008-06-12 ジュート−ヒェミー アクチェンゲゼルシャフト ジエチレントリアミンを使用したベータゼオライトの合成方法
CN101249968A (zh) 2008-03-10 2008-08-27 吉林大学 无有机模板剂合成Beta分子筛的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124A (en) 1853-10-18 Propeller
US6656671B1 (en) * 1998-11-20 2003-12-02 Eastman Kodak Company Photographic element with voided cushioning layer
CN101096274B (zh) * 2006-06-29 2010-08-25 中国石油化工股份有限公司 一种富铝beta沸石的制备方法
US8865121B2 (en) * 2009-06-18 2014-10-21 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308069A (en) 1964-05-01 1967-03-07 Mobil Oil Corp Catalytic composition of a crystalline zeolite
JPS6110022A (ja) * 1984-06-11 1986-01-17 モービル オイル コーポレーシヨン ゼオライト・ベータの製造法
US4923690A (en) 1984-06-11 1990-05-08 Mobil Oil Corporation Method for producing highly siliceous zeolites
US5164170A (en) 1991-06-14 1992-11-17 Mobil Oil Corporation Synthesis of zeolite Beta
JP2008519748A (ja) * 2004-11-12 2008-06-12 ジュート−ヒェミー アクチェンゲゼルシャフト ジエチレントリアミンを使用したベータゼオライトの合成方法
JP2008081348A (ja) * 2006-09-27 2008-04-10 Tosoh Corp SCR触媒用β型ゼオライト及びそれを用いた窒素酸化物の浄化方法
CN101249968A (zh) 2008-03-10 2008-08-27 吉林大学 无有机模板剂合成Beta分子筛的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHER; L.B. MCCUSKER; D.H. OLSON: "Atlas of Zeolite Framework Types", 2007, COMMISSION OF THE INTERNATIONAL ZEOLITE ASSOCIATION, pages: 72 - 73
CHEMISTRY OF MATERIALS, vol. 20, no. 14, 2008, pages 4533 - 4535
M.M.J. TREACY; J.B. HIGGINS: "Collection of Simulated XRD Powder Patterns for Zeolites", 2007, COMMISSION OF THE INTERNATIONAL ZEOLITE ASSOCIATION, pages: 82 - 83,480
MICROPOROUS MATERIALS, vol. 5, 1996, pages 289 - 297
See also references of EP2457872A4 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669157B2 (en) 2010-07-01 2020-06-02 Mitsui Mining & Smelting Co., Ltd. Zeolite production method
US10479692B2 (en) 2010-07-01 2019-11-19 Mitsui Mining & Smelting Co., Ltd. Zeolite production method
WO2012099090A1 (ja) * 2011-01-18 2012-07-26 日本化学工業株式会社 Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
JP2012162446A (ja) * 2011-01-18 2012-08-30 Nippon Chem Ind Co Ltd Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
US9108187B2 (en) 2011-01-18 2015-08-18 Unizeo Co., Ltd. Fe(II)-substituted beta type zeolite, gas adsorbent containing same and method for producing same, and method for removing nitrogen monoxide and hydrocarbon
JP2014511819A (ja) * 2011-04-08 2014-05-19 ビーエーエスエフ ソシエタス・ヨーロピア アシル化触媒の製造方法
JP2013129590A (ja) * 2011-11-25 2013-07-04 Nippon Chem Ind Co Ltd ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
KR20140094024A (ko) 2011-11-25 2014-07-29 유니제오 가부시키가이샤 제올라이트 및 그의 제조 방법, 및 파라핀의 접촉 분해 촉매
WO2013077404A1 (ja) 2011-11-25 2013-05-30 日本化学工業株式会社 ゼオライト及びその製造方法並びにパラフィンの接触分解触媒
KR20190032623A (ko) 2011-11-25 2019-03-27 미쓰이금속광업주식회사 제올라이트 및 그의 제조 방법, 및 파라핀의 접촉 분해 촉매
CN106694031A (zh) * 2011-11-25 2017-05-24 UniZeo株式会社 沸石及所述沸石的制造方法以及石蜡的接触分解催化剂
US9238219B2 (en) 2011-11-25 2016-01-19 Unizeo Co., Ltd. Zeolite, manufacturing method of the same, and catalytic cracking batalyst of paraffin
US9895683B2 (en) 2011-11-25 2018-02-20 Unizeo Co., Ltd. Zeolite, manufacturing method of the same, and catalytic cracking catalyst of paraffin
EP2837596A4 (en) * 2012-04-10 2015-05-06 Unizeo Co Ltd BETA ZEOLITE AND METHOD FOR THE PRODUCTION THEREOF
US9688541B2 (en) 2012-04-10 2017-06-27 Unizeo Co., Ltd. Beta zeolite and method for producing same
CN104321280A (zh) * 2012-04-10 2015-01-28 UniZeo株式会社 β型沸石及其制造方法
US9656238B2 (en) 2012-07-18 2017-05-23 Unizeo Co., Ltd. Fe(II)-substituted beta-type zeolite, production method therefor and gas adsorbent including same, and nitric oxide and hydrocarbon removal method
US9844771B2 (en) 2013-03-12 2017-12-19 Unizeo Co., Ltd. Hydrocarbon reforming/trapping material and method for removing hydrocarbon
JP2015000828A (ja) * 2013-06-14 2015-01-05 ユニゼオ株式会社 Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法
KR102220690B1 (ko) 2013-06-14 2021-02-26 미쓰이금속광업주식회사 Mn+ 치환 베타형 제올라이트, 그를 포함하는 가스 흡착제 및 그의 제조 방법, 및 일산화질소의 제거 방법
KR20160033688A (ko) * 2013-06-14 2016-03-28 유니제오 가부시키가이샤 Mn+ 치환 베타형 제올라이트, 그를 포함하는 가스 흡착제 및 그의 제조 방법, 및 일산화질소의 제거 방법
US9968909B2 (en) 2013-06-14 2018-05-15 Mitsui Mining & Smelting Co., Ltd. Mn+-exchanged beta zeolite, gas adsorbent comprising same, method for producing same, and method for removing nitrogen monoxide
WO2014200101A1 (ja) * 2013-06-14 2014-12-18 日本化学工業株式会社 Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法
WO2016129555A1 (ja) * 2015-02-09 2016-08-18 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
KR20170115088A (ko) 2015-02-09 2017-10-16 유니제오 가부시키가이샤 베타형 제올라이트의 제조 방법
JP2016145138A (ja) * 2015-02-09 2016-08-12 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
US10501328B2 (en) 2015-02-09 2019-12-10 Mistui Mining & Smelting Co., Ltd. Method for producing beta zeolite
US10870582B2 (en) 2016-06-17 2020-12-22 Mitsui Mining & Smelting Co., Ltd. Method of producing beta zeolite
JP2017222558A (ja) * 2016-06-17 2017-12-21 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
WO2017217424A1 (ja) * 2016-06-17 2017-12-21 ユニゼオ株式会社 ベータ型ゼオライトの製造方法
WO2019082990A1 (ja) 2017-10-25 2019-05-02 三井金属鉱業株式会社 金属置換ベータ型ゼオライト及びその製造方法
WO2019082995A1 (ja) 2017-10-25 2019-05-02 三井金属鉱業株式会社 ベータ型ゼオライト及びその製造方法並びに触媒
JPWO2019082990A1 (ja) * 2017-10-25 2021-01-21 三井金属鉱業株式会社 金属置換ベータ型ゼオライト及びその製造方法
US11065606B2 (en) 2017-10-25 2021-07-20 Mitsui Mining & Smelting Co., Ltd. Metal-substituted beta zeolite and method for producing same
US11142464B2 (en) 2017-10-25 2021-10-12 Mitsui Mining & Smelting Co., Ltd. Beta zeolite, method for producing same, and catalyst
JP7297257B2 (ja) 2017-10-25 2023-06-26 三井金属鉱業株式会社 金属置換ベータ型ゼオライト及びその製造方法

Also Published As

Publication number Publication date
KR20120039663A (ko) 2012-04-25
CN102712489A (zh) 2012-10-03
US8282908B2 (en) 2012-10-09
JP2011126768A (ja) 2011-06-30
US20120190534A1 (en) 2012-07-26
CN102712489B (zh) 2015-11-25
EP2457872B1 (en) 2016-06-08
EP2457872A1 (en) 2012-05-30
JP4904417B2 (ja) 2012-03-28
EP2457872A4 (en) 2014-06-04
KR101697804B1 (ko) 2017-01-18

Similar Documents

Publication Publication Date Title
JP4904417B2 (ja) ベータ型ゼオライト及びその製造方法
EP2837596B1 (en) Beta zeolite and method for producing same
US10029247B2 (en) Chabazite-type zeolite and process for producing the same
JP5116880B2 (ja) Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
JP5988743B2 (ja) Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法
JP6343684B2 (ja) モレキュラーシーブssz−99
WO2014200101A1 (ja) Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法
US9844771B2 (en) Hydrocarbon reforming/trapping material and method for removing hydrocarbon
JP6108411B2 (ja) Maz型ゼオライトの製造方法
JP6303842B2 (ja) Lev型ゼオライト及びこれを含む窒素酸化物還元触媒、並びに窒素酸化物還元方法
JP7417716B2 (ja) 小型結晶ssz-27、その合成及び使用
EP2837597B1 (en) Method for producing pau zeolite
WO2020063784A1 (en) Gallium containing zeolitic material and use thereof in scr

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043059.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010804306

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001995

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13387631

Country of ref document: US