WO2011013256A1 - アクチュエータ素子及びアクチュエータ素子の製造方法 - Google Patents

アクチュエータ素子及びアクチュエータ素子の製造方法 Download PDF

Info

Publication number
WO2011013256A1
WO2011013256A1 PCT/JP2009/065051 JP2009065051W WO2011013256A1 WO 2011013256 A1 WO2011013256 A1 WO 2011013256A1 JP 2009065051 W JP2009065051 W JP 2009065051W WO 2011013256 A1 WO2011013256 A1 WO 2011013256A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
methylimidazolium
ethyl
displacement
ionic liquid
Prior art date
Application number
PCT/JP2009/065051
Other languages
English (en)
French (fr)
Inventor
秀典 奥崎
虎 厳
Original Assignee
東京エレクトロン株式会社
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人山梨大学 filed Critical 東京エレクトロン株式会社
Priority to KR1020127002123A priority Critical patent/KR20120042863A/ko
Priority to US13/387,167 priority patent/US20120133243A1/en
Priority to PCT/JP2010/062458 priority patent/WO2011013593A1/ja
Priority to JP2010166335A priority patent/JP2011050233A/ja
Publication of WO2011013256A1 publication Critical patent/WO2011013256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an actuator element and a method for manufacturing the actuator element.
  • actuators are limited in flexibility and weight reduction because they are made of inorganic materials such as metals and ceramics, and they are not suitable for miniaturization because of their complicated structure. Had.
  • the present invention provides an actuator element using an organic material, which can be stably driven at a low voltage in the air, and has a large amount of displacement and a method for manufacturing the actuator element. .
  • the present invention has a displacement portion formed by a mixture of an elastomer containing silicon and an ionic liquid, and a plurality of electrodes provided to apply an electric field to a part or all of the displacement portion, The displacement portion is deformed by applying a voltage between the electrodes.
  • the present invention is characterized in that the displacement portion is formed in a flat plate shape, and the plurality of electrodes are respectively formed on both surfaces of the displacement portion.
  • the ionic liquid comprises 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate.
  • Fluoroborate 1-ethyl-3-methylimidazolium 2- (2-methoxyethoxy) -ethyl sulfate, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-butyl-1 -Methylpyrrolidinium bis (trifluoromethanesulfonyl) imide.
  • the present invention is characterized in that the composition of the ionic liquid is 40 wt% or less in the mixture.
  • the present invention is characterized in that the electrode is any one of gold, a carbon nanotube, a conductive polymer material, and silver grease.
  • the present invention also includes a mixing step of mixing an elastomer containing silicon and an ionic liquid to form a mixed solution, a pouring step of pouring the mixed solution into a mold, and vacuum degassing after the pouring step.
  • a mixing step of mixing an elastomer containing silicon and an ionic liquid to form a mixed solution a pouring step of pouring the mixed solution into a mold, and vacuum degassing after the pouring step.
  • the heat treatment step for performing heat treatment after the vacuum degassing step, and the heat treatment step
  • an electrode forming step for taking out the mixture in which the liquid mixture is solidified from the mold and forming a plurality of electrodes in the mixture It is characterized by having.
  • an actuator element using an organic material which can be stably driven at a low voltage in the air and has a large amount of displacement, and a method for manufacturing the actuator element. Can do.
  • Configuration diagram of actuator element in the present embodiment Flowchart of actuator element manufacturing method in the present embodiment Photograph (1) showing the driving state of the actuator element in the present embodiment Photograph (2) showing the driving state of the actuator element in the present embodiment Explanatory drawing (1) of the drive state of the actuator element in this Embodiment Explanatory drawing (2) of the drive state of the actuator element in this Embodiment Correlation diagram between compression pressure and displacement in a sample in which an ionic liquid is mixed into an elastomer (1) Correlation diagram between compression pressure and displacement in a sample in which an ionic liquid is mixed into an elastomer (2) Correlation diagram between compression pressure and displacement in sample mixed with elastomer with ionic liquid (3) Correlation diagram between compression pressure and displacement in a sample in which an ionic liquid is mixed into an elastomer (4) Correlation diagram between compression pressure and displacement in sample mixed with elastomer with ionic liquid (5) Correlation diagram between ionic liquid composition and compressive modulus in samples mixed with ionic liquid in
  • the actuator element in the present embodiment will be described based on FIG.
  • the actuator element in the present embodiment has a structure in which electrodes 12 and 13 are formed on both surfaces of a flat plate-like displacement portion 11 formed of a mixture of an elastomer containing silicon and an ionic liquid.
  • the electrodes 12 and 13 are connected to a power source 14 by electrical wirings 15 and 16, respectively, so that a voltage from the power source 14 can be applied.
  • DV-PDMS ⁇ , ⁇ -divinyl-polydimethylsiloxane
  • PMHS polymethyl hydrogen siloxane
  • imidazolium salts As the ionic liquid, imidazolium salts, piperidinium salts, pyridinium compounds, pyrrolidinium salts, and the like can be used.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate [EMI] [BF 4 ]: 1-Ethyl-3-methylimidazolium Tetrafluoroborate) shown in Chemical Formula 4,
  • ionic liquids that can be used other than the above include cyclohexyltrimethylammonium bis (trifluoromethanesulfonyl) imide, methyltri-n-octylammonium bis (trifluoromethanesulfonyl) imide (Methyltri-sulfonyl) imide.
  • an elastomer containing silicon and an ionic liquid are mixed to generate a mixed solution.
  • the polydimethylsiloxane represented by Chemical Formula 3 produced by cross-linking the DV-PDMS represented by Chemical Formula 1 and PMHS represented by Chemical Formula 2 is used as the elastomer containing silicon.
  • the mixed liquid is produced by mixing and stirring using [EMI] [TFSI] shown in Chemical Formula 8 To do.
  • [EMI] [TFSI] shown in Chemical Formula 8 To do.
  • about 40 wt% of [EMI] [TFSI] which is an ionic liquid is mixed.
  • step 104 the mixed liquid generated in step 102 is poured into a mold for forming the desired shape in order to obtain a desired displacement portion.
  • step 106 vacuum deaeration is performed as shown in step 106 (S106). Specifically, what has been poured into a mold is placed in a vacuum oven and evacuated by evacuation. Thereby, bubbles and the like contained in the mixed liquid poured into the mold can be removed.
  • step 108 heat treatment is performed. Specifically, heat treatment is performed at 150 ° C. for 30 minutes. Thereafter, by removing the mold, a displacement portion of the actuator element made of a mixture of an elastomer containing silicon and an ionic liquid is formed.
  • an electrode is formed.
  • the electrodes are formed by gold sputtering and are formed on both sides of the displacement portion.
  • the actuator element in the present embodiment is manufactured.
  • the actuator element can be driven by connecting the formed electrode to a power source and applying a voltage.
  • the material for forming the electrode is preferably a material that can be deformed reversibly and flexibly without disconnection or the like together with the displacement portion of the actuator element and without applying a large force. For this reason, as materials other than gold, carbon nanotubes, conductive polymers, silver grease, and the like are preferable.
  • the actuator element manufactured according to the present embodiment has a length of about 20 mm, a width of about 5 mm, and a thickness of about 50 ⁇ m.
  • FIG. 3A and 3B show a state in which a voltage is applied to the manufactured actuator element.
  • FIG. 3A shows the actuator element in a state before the voltage is applied
  • FIG. 3B shows the actuator element in a state where 100 V is applied between the electrodes.
  • FIG. 4A shows a state in which no voltage is applied between the electrodes 12 and 13.
  • the ionic liquid is uniformly dispersed in the elastomer containing silicon.
  • FIG. 4B when a voltage is applied between the electrodes 12 and 13 by the power supply 14, EMI + in the ionic liquid is attracted to the negative electrode and TFSI ⁇ is attracted to the positive electrode in the displacement portion 11.
  • EMI + in the ionic liquid is attracted to the negative electrode
  • TFSI ⁇ is attracted to the positive electrode in the displacement portion 11.
  • the shape of the displacement part 11 demonstrated the thing of a flat plate shape in this Embodiment
  • the shape of a displacement part may be rod shape, tube shape, and fiber shape. This is because even these shapes can be deformed by applying an electric field and function as an actuator.
  • the shape of the mold used in Step 104 can be set to a corresponding desired shape, and can be formed by the same process as described above.
  • the configuration in which the electrodes are provided on both surfaces of the displacement portion 11 has been described.
  • the electric field is applied to a partial region of the displacement portion.
  • An electrode may be provided so that is applied.
  • an electrode is for applying an electric field to a displacement part, it is necessary to provide two or more, ie, two or more.
  • the position where the electrode is provided in the displacement portion may be provided at an asymmetric position, and the shape and size of each electrode may be different. Thereby, an electric field can be applied non-uniformly at the displacement part, and it can be deformed into a desired shape, and can function as an actuator.
  • the prepared sample has a thickness of 1 mm, and the compression portion to which the compression pressure is applied is a circular one having a diameter of 30 mm.
  • FIG. 5A shows the case where [EMI] [TFSI] is not mixed in the elastomer containing silicon
  • FIG. 5B shows the case where about 20 wt% of [EMI] [TFSI] is mixed in the elastomer containing silicon
  • 5C is an elastomer containing silicon containing [EMI] [TFSI] of about 30 wt%
  • FIG. 5D is an elastomer containing silicon containing [EMI] [TFSI] of about 40 wt%
  • 5E is obtained by mixing about 50 wt% of [EMI] [TFSI] into an elastomer containing silicon.
  • the amount of [EMI] [TFSI] mixed is 0 to 40 wt%, the amount of deformation increases as the applied compression pressure increases. At this time, [EMI] [TFSI], which is an ionic liquid, does not ooze from the sample.
  • FIG. 5E when the applied compression pressure becomes high, a portion where the displacement becomes discontinuous occurs. At this time, an ionic liquid may ooze out from the sample. Therefore, in order to continuously and stably constitute the displacement portion, the ionic liquid mixed in the elastomer containing silicon is preferably 40 wt% or less.
  • FIG. 6 shows the relationship between the amount of [EMI] [TFSI] mixed and the compression elastic modulus in a sample in which [EMI] [TFSI] is mixed with an elastomer containing silicon.
  • the value of the compressive elastic modulus is substantially constant and is 0.8 to 1 MPa.
  • FIG. 7 shows the measurement of the capacity of a sample obtained by mixing [EMI] [TFSI] with an elastomer containing silicon. Increasing the amount of [EMI] [TFSI] increases the capacity. Further, the capacity is substantially constant at 1 to 10 6 Hz regardless of the mixing amount of [EMI] [TFSI], but increases rapidly at 1 Hz or less. This is considered to be caused by polarization accompanying the movement of the ionic liquid.
  • Example 1 As Example 1, a displacement amount when a pulse voltage is applied to the actuator element according to the present embodiment will be described.
  • the silicon-containing elastomer used was KE-106 (manufactured by Shin-Etsu Chemical Co., Ltd.), and 40 wt% of [EMI] [TFSI] as an ionic liquid was mixed with this silicon-containing elastomer, and the displacement part was the method described above.
  • the actuator element was fabricated by forming a gold film by sputtering as an electrode. The formed displacement portion has a film thickness of 100 ⁇ m.
  • FIG. 8 shows the waveform of the AC voltage applied to the actuator element in Example 1.
  • the applied AC voltage is a pulse voltage of 110V.
  • FIG. 9 shows the amount of displacement of the tip portion of the actuator element of this example when the pulse voltage shown in FIG. 8 is applied.
  • FIG. 10 shows the amount of current flowing at this time. As shown in FIG. 9, the tip portion of the actuator element of this example was displaced by about 3 mm at the maximum. Further, the maximum amount of current flowing at this time was about 2 mA.
  • Comparative Example 1 an actuator element having a displacement portion formed of an elastomer containing silicon that does not mix an ionic liquid was produced.
  • the silicon-containing elastomer used was KE-106 (manufactured by Shin-Etsu Chemical Co., Ltd.), whereby a displacement portion was formed, and an actuator element was fabricated by depositing gold as an electrode by sputtering.
  • the formed displacement portion has a film thickness of 100 ⁇ m.
  • FIG. 11 shows the waveform of the AC voltage applied to the actuator element in Comparative Example 1.
  • the applied AC voltage is a pulse voltage of 1000V.
  • FIG. 12 shows the amount of displacement of the tip of the actuator element of this example when the pulse voltage shown in FIG. 11 is applied.
  • FIG. 13 shows the amount of current flowing at this time. As shown in FIG. 12, the tip portion of the actuator element of the present embodiment was hardly displaced.
  • the actuator element according to the present embodiment in Example 1 can obtain a large displacement at a lower voltage than the actuator element shown in Comparative Example 1.
  • Example 2 As Example 2, a displacement amount when a pulse voltage having a different voltage is applied to the actuator element according to the present embodiment will be described.
  • the silicon-containing elastomer used was KE-106 (manufactured by Shin-Etsu Chemical Co., Ltd.) as in Example 1. 40 wt% of [EMI] [TFSI] was mixed as an ionic liquid with this silicon-containing elastomer.
  • the displacement part was formed by the above-described method, and gold was formed by sputtering as an electrode to produce an actuator element.
  • the formed displacement portion has a film thickness of 50 ⁇ m.
  • FIG. 14 shows the waveform of the AC voltage applied to the actuator element in Example 2.
  • FIG. 15 shows the amount of displacement of the tip portion of the actuator element of this example when the pulse voltages of the respective voltages shown in FIG. 14 are applied. As shown in the figure, the amount of displacement increases as the applied voltage increases.
  • FIG. 16 shows the relationship between the value of the applied pulse voltage and the maximum amount of displacement. As shown in the figure, the amount of displacement increases abruptly at 60 V or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 シリコンを含むエラストマーとイオン液体との混合物により形成される変位部と、前記変位部の一部または全部に電界を印加するために設けられた複数の電極と、を有し、前記電極間に電圧を印加することにより、前記変位部が変形することを特徴とするアクチュエータ素子を提供する。

Description

アクチュエータ素子及びアクチュエータ素子の製造方法
 本発明は、アクチュエータ素子及びアクチュエータ素子の製造方法に関する。
 医療分野やマイクロマシーン等の分野において、小型かつ軽量なアクチュエータの要望が高い。
 アクチュエータを小型化する場合、慣性力よりも摩擦力や粘性力が支配的となるため、モータやエンジンのような慣性力を利用してエネルギーを運動に変換する構成により、超小型化のアクチュエータとすることは困難であるとされている。現在までに提案されている超小型アクチュエータとしては、静電引力型、圧電型、超音波式、形状記憶合金等が知られている。
 しかしながら、これらのアクチュエータは金属、セラミックス等の無機物質を材料としているため柔軟性及び軽量化に限界を有しており、また、構造が複雑であるため小型化には不向きであるという問題点を有していた。
 このような問題点を解消するため有機材料を用いた各種のアクチュエータが提案されている。
特開2008-228542号公報 特開2008-252958号公報 特開2009-33944号公報
 ところで、有機材料も用いたアクチュエータであって、空気中において低電圧で安定駆動させることが可能なものは極めて少ない。
 本発明は、有機材料を用いたアクチュエータ素子であって、空気中において低電圧で安定的に駆動することが可能であり、変位量の多いアクチュエータ素子及びアクチュエータ素子の製造方法を提供するものである。
 本発明は、シリコンを含むエラストマーとイオン液体との混合物により形成される変位部と、前記変位部の一部または全部に電界を印加するために設けられた複数の電極と、を有し、前記電極間に電圧を印加することにより、前記変位部が変形することを特徴とする。
 また、本発明は、前記変位部は平板状に形成されており、前記複数の電極は前記変位部の両面に各々形成されているものであることを特徴とする。
 また、本発明は、前記イオン液体は、1-エチル-3-メチルイミダゾリウムテトラフルオロボラート、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート、1-へキシル-3-メチルイミダゾリウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウム2-(2-メトキシエトキシ)-エチルスルファート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスフォニル)イミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスフォニル)イミドのいずれかであることを特徴とする。
 また、本発明は、前記混合物において、前記イオン液体の組成は40wt%以下であることを特徴とする。
 また、本発明は、前記電極は、金、カーボンナノチューブ、導電性高分子材料、銀グリースのいずれかであることを特徴とする。
 また、本発明は、シリコンを含むエラストマーとイオン液体とを混合して混合液を生成する混合工程と、前記混合液を型に流し込む流し込み工程と、前記流し込み工程の後、真空脱気する真空脱気工程と、前記真空脱気工程の後、熱処理を行う熱処理工程と前記熱処理工程の後、前記型から前記混合液が固体化した混合物を取り出し、前記混合物に複数の電極を形成する電極形成工程と、を有することを特徴とする。
 本発明によれば、有機材料を用いたアクチュエータ素子であって、空気中において低電圧で安定的に駆動することが可能であり、変位量の多いアクチュエータ素子及びアクチュエータ素子の製造方法を提供することができる。
本実施の形態におけるアクチュエータ素子の構成図 本実施の形態におけるアクチュエータ素子の製造方法のフローチャート 本実施の形態におけるアクチュエータ素子の駆動状態を示す写真(1) 本実施の形態におけるアクチュエータ素子の駆動状態を示す写真(2) 本実施の形態におけるアクチュエータ素子の駆動状態の説明図(1) 本実施の形態におけるアクチュエータ素子の駆動状態の説明図(2) エラストマーにイオン液体を混入した試料における圧縮圧力と変位量との相関図(1) エラストマーにイオン液体を混入した試料における圧縮圧力と変位量との相関図(2) エラストマーにイオン液体を混入した試料における圧縮圧力と変位量との相関図(3) エラストマーにイオン液体を混入した試料における圧縮圧力と変位量との相関図(4) エラストマーにイオン液体を混入した試料における圧縮圧力と変位量との相関図(5) エラストマーにイオン液体を混入した試料におけるイオン液体の組成と圧縮弾性率との相関図 エラストマーにイオン液体を混入した試料において印加した交流電圧の周波数と容量の相関図 実施例1におけるアクチュエータ素子に印加する印加電圧の波形図 図8に示す電圧を印加した場合の実施例1におけるアクチュエータ素子の変位量を示す図 図8に示す電圧を印加した場合に流れる電流量を示す図 比較例1におけるアクチュエータ素子に印加する印加電圧の波形図 図11に示す電圧を印加した場合の比較例1におけるアクチュエータ素子の変位量を示す図 図11に示す電圧を印加した場合に流れる電流量を示す図 実施例2におけるアクチュエータ素子に印加する印加電圧の波形図 図14に示す電圧を印加した場合の実施例2におけるアクチュエータ素子の変位量を示す図 実施例2におけるアクチュエータ素子の印加電圧と最大変位量の相関図
 本発明を実施するための形態について、以下に説明する。
 (アクチュエータ素子)
 図1に基づき、本実施の形態におけるアクチュエータ素子について説明する。本実施の形態におけるアクチュエータ素子は、シリコンを含むエラストマーとイオン液体との混合物により形成される平板状の変位部11の両面に、電極12及び13を形成した構造のものである。電極12及び13は、各々電源14に電気配線15及び16により接続されており、電源14からの電圧を印加することが可能である。
 変位部11を形成するためのシリコンを含むエラストマーとしては、化1に示すDV-PDMS(α,ω-divinyl-polydimethylsiloxane)と化2に示すPMHS(poly methyl hydrogen siloxane)とを架橋反応させることにより生成される化3に示すポリジメチルシロキサン(polydimethylsiloxane)を用いることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003

 また、イオン液体としては、イミダゾリウム塩、ピペリジニウム塩、ピリジニウム化合物、ピロリジニウム塩等を用いることができる。好ましくは、化4に示す1-エチル-3-メチルイミダゾリウムテトラフルオロボラート([EMI][BF]:1-Ethyl-3-methylimidazolium Tetrafluoroborate)、
Figure JPOXMLDOC01-appb-C000004

 化5に示す1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([BMI][BF]:1-Butyl-3-methylimidazolium Tetrafluoroborate)、
Figure JPOXMLDOC01-appb-C000005

 化6に示す1-へキシル-3-メチルイミダゾリウムテトラフルオロボラート([HMI][BF]:1-Hexyl-3-methylimidazolium Tetrafluoroborate)、
Figure JPOXMLDOC01-appb-C000006

 化7に示す1-エチル-3-メチルイミダゾリウム2-(2-メトキシエトキシ)-エチルスルファート([EMI][MEES]:1-Ethyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate)、
Figure JPOXMLDOC01-appb-C000007

 化8に示す1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスフォニル)イミド([EMI][TFSI]:1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide)、
Figure JPOXMLDOC01-appb-C000008

 化9に示す1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスフォニル)イミド([BMP][TFSI]:1-Butyl-1-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide)、
Figure JPOXMLDOC01-appb-C000009

 が挙げられる。
 また、上記以外に用いることが可能なイオン液体としては、シクロヘキシルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(Cyclohexyltrimethylammonium Bis(trifluoromethanesulfonyl)imide)、メチルトリ-n-オクチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(Methyltri-n-octylammonium Bis(trifluoromethanesulfonyl)imide)、テトラブチルアンモニウムブロミド(Tetrabutylammonium Bromide)、テトラブチルアンモニウムクロリド(Tetrabutylammonium Chloride)、テトラブチルホスホニウム ブロミド(Tetrabutylphosphonium Bromide)、トリブチル(2-メトキシエチル)ホスホニウムビス(トリフルオロメタンスルホニル)イミド(Tributyl(2-methoxyethyl)phosphonium Bis(trifluoromethanesulfonyl)imide)、トリエチルスルホニウムビス(トリフルオロメタンスルホニル)イミド(Triethylsulfonium Bis(trifluoromethanesulfonyl)imide)、1,3-ジメチルイミダゾリウムクロリド(1,3-Dimethylimidazolium Chloride)、1,3-ジメチルイミダゾリウムジメチルホスファート(1,3-Dimethylimidazolium Dimethyl Phosphate)、1-ブチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(1-Butyl-2,3-dimethylimidazolium Bis(trifluoromethanesulfonyl)imide)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド(1-Butyl-2,3-dimethylimidazolium Chloride)、1-ブチル-2,3-ジメチルイミダゾリウムヘキサフルオロホスファート(1-Butyl-2,3-dimethylimidazolium Hexafluorophosphate)、1-ブチル-2,3-ジメチルイミダゾリウムポリエチレングリコールヘキサデシルエーテルスルファート被覆リパーゼ(1-Butyl-2,3-dimethylimidazolium Polyethylene Glycol Hexadecyl Ether Sulfate coated Lipase)、1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロボラート(1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate)、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide)、1-ブチル-3-メチルイミダゾリウムブロミド(1-Butyl-3-methylimidazolium Bromide)、1-ブチル-3-メチルイミダゾリウムクロリド(1-Butyl-3-methylimidazolium Chloride)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート(1-Butyl-3-methylimidazolium Hexafluorophosphate)、1-ブチル-3-メチルイミダゾリウムヨージド(1-Butyl-3-methylimidazolium Iodide)、1-ブチル-3-メチルイミダゾリウムテトラクロロフェラート(1-Butyl-3-methylimidazolium Tetrachloroferrate)、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホナート(1-Butyl-3-methylimidazolium Trifluoromethanesulfonate)、1-エチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(1-Ethyl-2,3-dimethylimidazolium Bis(trifluoromethanesulfonyl)imide)、1-エチル-3-メチルイミダゾリウムブロミド(1-Ethyl-3-methylimidazolium Bromide)、1-エチル-3-メチルイミダゾリウムクロリド(1-Ethyl-3-methylimidazolium Chloride)、1-エチル-3-メチルイミダゾリウムジシアナミド(1-Ethyl-3-methylimidazolium Dicyanamide)、1-エチル-3-メチルイミダゾリウムエチルスルファート(1-Ethyl-3-methylimidazolium Ethyl Sulfate)、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスファート(1-Ethyl-3-methylimidazolium Hexafluorophosphate)、1-エチル-3-メチルイミダゾリウム硫酸水素塩(1-Ethyl-3-methylimidazolium Hydrogen Sulfate)、1-エチル-3-メチルイミダゾリウム ヨージド(1-Ethyl-3-methylimidazolium Iodide)、1-エチル-3-メチルイミダゾリウムメタンスルホン酸塩(1-Ethyl-3-methylimidazolium Methanesulfonate)、1-エチル-3-メチルイミダゾリウムテトラクロロフェラート(1-Ethyl-3-methylimidazolium Tetrachloroferrate)、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホナート(1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate)、1-ヘキシル-3-メチルイミダゾリウムブロミド(1-Hexyl-3-methylimidazolium Bromide)、1-ヘキシル-3-メチルイミダゾリウムクロリド(1-Hexyl-3-methylimidazolium Chloride)、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロホスファート(1-Hexyl-3-methylimidazolium Hexafluorophosphate)、1-メチル-3-n-オクチルイミダゾリウムブロミド(1-Methyl-3-n-octylimidazolium Bromide)、1-メチル-3-n-オクチルイミダゾリウムクロリド(1-Methyl-3-n-octylimidazolium Chloride)、1-メチル-3-n-オクチルイミダゾリウムヘキサフルオロホスファート(1-Methyl-3-n-octylimidazolium Hexafluorophosphate)、1-メチル-3-プロピルイミダゾリウムヨージド(1-Methyl-3-propylimidazolium Iodide)、1-ブチル-1-メチルピペリジニウムブロミド(1-Butyl-1-methylpiperidinium Bromide)、1-ブチル-3-メチルピリジニウムブロミド(1-Butyl-3-methylpyridinium Bromide)、1-ブチル-4-メチルピリジニウムブロミド(1-Butyl-4-methylpyridinium Bromide)、1-ブチル-4-メチルピリジニウムクロリド(1-Butyl-4-methylpyridinium Chloride)、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート(1-Butyl-4-methylpyridinium Hexafluorophosphate)、1-ブチルピリジニウムブロミド(1-Butylpyridinium Bromide)、1-ブチルピリジニウムクロリド(1-Butylpyridinium Chloride)、1-ブチルピリジニウムヘキサフルオロホスファート(1-Butylpyridinium Hexafluorophosphate)、1-エチル-3-(ヒドロキシメチル)ピリジニウムエチルスルファート(1-Ethyl-3-(hydroxymethyl)pyridinium Ethyl Sulfate)、1-エチル-3-メチルピリジニウムエチルスルファート(1-Ethyl-3-methylpyridinium Ethyl Sulfate)、1-エチルピリジニウムブロミド(1-Ethylpyridinium Bromide)、1-エチルピリジニウムクロリド(1-Ethylpyridinium Chloride)、1-ブチル-1-メチルピロリジニウムブロミド(1-Butyl-1-methylpyrrolidinium Bromide)、1-ブチル-1-メチルピロリジニウムクロリド(1-Butyl-1-methylpyrrolidinium Chloride)等が挙げられる。
 (アクチュエータ素子の製造方法)
 次に、図2に基づき本実施の形態におけるアクチュエータ素子の製造方法について説明する。
 最初に、ステップ102(S102)に示すように、シリコンを含むエラストマーとイオン液体とを混合し混合液を生成する。具体的には、シリコンを含むエラストマーは、上述したように、化1に示すDV-PDMSと化2に示すPMHSとを架橋反応させることにより生成される化3に示すポリジメチルシロキサンを用いる。また、イオン液体は、上述したものを用いることが可能であるが、本実施の形態では、化8に示す[EMI][TFSI]を用いて、混合し攪拌することにより混ぜ合わせたものを作製する。尚、イオン液体である[EMI][TFSI]は、約40wt%混合されている。
 次に、ステップ104(S104)に示すように、所望の変位部の形態にするためステップ102において生成された混合液を所望の形状に形成するための型に流し込む。
 次に、ステップ106(S106)に示すように、真空脱気を行う。具体的には、型に流し込んだものを真空オーブン内に設置し、排気することにより真空脱気を行う。これにより、型に流し込まれた混合液中に含まれている気泡等を取り除くことができる。
 次に、ステップ108(S108)に示すように、加熱処理を行う。具体的には、150℃で30分間加熱処理を行う。この後、型を取り除くことにより、シリコンを含むエラストマーとイオン液体との混合物からなるアクチュエータ素子の変位部が形成される。
 次に、ステップ110(S110)に示すように、電極を形成する。電極は金のスパッタリングにより形成されるものであり、変位部の両面に形成する。これにより本実施の形態におけるアクチュエータ素子が作製される。この後、形成された電極を電源に接続し、電圧を印加することによりアクチュエータ素子を駆動することができる。電極を形成するための材料としては、アクチュエータ素子の変位部とともに断線等することなく、また、大きな力を加えることなく可逆的に柔軟に変形可能な材料であることが好ましい。このため、金以外の材料としては、カーボンナノチューブ、導電性高分子、銀グリース等が好ましい。
 本実施の形態により作製されたアクチュエータ素子は、長さが約20mm、幅が約5mm、厚さが約50μmである。
 図3A及び図3Bは、作製されたアクチュエータ素子に電圧を印加した状態を示す。図3Aは、電圧を印加する前の状態のアクチュエータ素子を示し、図3Bは、電極間に100Vの印加した状態のアクチュエータ素子を示す。電極間に電圧を印加することにより、アクチュエータ素子全体が変形し先端部が変位するものであり、この変位によりアクチュエータ素子として機能するものである。尚、本実施の形態では、100Vの電圧を印加することにより、アクチュエータ素子の先端部分は約3mm変位させることが可能である。
 図4A及び図4Bに基づき、本実施の形態におけるアクチュエータ素子の動作について説明する。図4Aは、電極12及び13の間に電圧が印加されていない状態のものであり、変位部11においては、シリコンを含むエラストマーにイオン液体が均一に分散している。図4Bに示すように、電源14により電極12及び13の間に電圧を印加すると、変位部11において、イオン液体におけるEMIは負極に引き寄せられ、TFSIは正極に引き寄せられる。このようにイオン液体の分極により変位部11の形状が変形し変位するものと考えられる。
 尚、本実施の形態では、変位部11の形状が平板状の構造のものについて説明したが、変位部の形状は、棒状、チューブ状、繊維状であってもよい。これらの形状であっても、電界を印加することにより変形させることができ、アクチュエータとして機能させることができるからである。変位部の形状を棒状、チューブ状、繊維状とするためには、ステップ104において用いる型の形状を対応する所望の形状とすることにより、前述した工程と同様の工程により形成することができる。
 また、本実施の形態では変位部11の両面に電極を設けた構成について説明したが、変位部11の一部に電界を印加した場合においても変形するため、変位部の一部の領域に電界が印加されるよう電極を設けてもよい。尚、電極は変位部に電界を印加するためのものであることから、複数、即ち、2以上設けることが必要となる。また、変位部において電極が設けられる位置は、非対称な位置に設けてもよく、また、各々の電極の形状や大きさは異なるものであってもよい。これにより、変位部において電界を不均一に印加することができ、所望の形状に変形させることが可能となり、アクチュエータとして機能させることができる。
 (変位部の特性)
 次に、ポリジメチルシロキサンとイオン液体とにより形成されるアクチュエータ素子の変位部における圧縮試験について説明する。具体的には、イオン液体の組成を変えて図2に示すステップ102からステップ108までの工程により作製した変位部となる試料について、圧縮試験を行った結果について説明する。
 図5A、図5B、図5C、図5D及び図5Eに基づき、変位部となる試料に圧縮圧力を加えた場合の圧縮圧力と変位量の関係について説明する。尚、作製された試料は厚さが1mmであり、圧縮圧力が加えられる圧縮部は直径30mmの円形のものである。
 図5Aは、シリコンを含むエラストマーに[EMI][TFSI]を混入していないものであり、図5Bは、シリコンを含むエラストマーに[EMI][TFSI]を約20wt%混入したものであり、図5Cは、シリコンを含むエラストマーに[EMI][TFSI]を約30wt%混入したものであり、図5Dは、シリコンを含むエラストマーに[EMI][TFSI]を約40wt%混入したものであり、図5Eは、シリコンを含むエラストマーに[EMI][TFSI]を約50wt%混入したものである。
 図5A~図5Dに示されるように、[EMI][TFSI]の混合量が0~40wt%のものは印加される圧縮圧力が高くなると変形量が多くなる。この際、イオン液体である[EMI][TFSI]は試料よりしみ出すことはない。一方、図5Eでは、印加される圧縮圧力が高くなると変位量が不連続となる部分が生じる。この際、試料よりイオン液体がしみ出す場合等がある。よって、変位部を継続して安定的に構成するためには、シリコンを含むエラストマーに混入されるイオン液体は40wt%以下であることが好ましい。
 図6は、シリコンを含むエラストマーに[EMI][TFSI]を混合した試料において、[EMI][TFSI]の混合量と圧縮弾性率との関係を示すものである。この図に示されるように、[EMI][TFSI]の混合量を0~40wt%まで変化させても圧縮弾性率の値は略一定であり、0.8~1MPaである。
 また、図7は、シリコンを含むエラストマーに[EMI][TFSI]を混合した試料における容量を測定したものである。[EMI][TFSI]の混合量を増やすことにより容量は増加する。また、[EMI][TFSI]の混合量に関係なく容量は1~10Hzにおいては略一定であるが、1Hz以下では急激に増加する。これはイオン液体の移動に伴う分極に起因するものと考えられる。
 (実施例1)
 実施例1として、本実施の形態におけるアクチュエータ素子にパルス電圧を印加した場合の変位量について説明する。用いたシリコンを含むエラストマーは、KE-106(信越化学工業(株)製)であり、このシリコンを含むエラストマーにイオン液体として[EMI][TFSI]を40wt%混合し、変位部を上述した方法により形成し、電極としてスパッタリングにより金を成膜することによりアクチュエータ素子を作製した。尚、形成された変位部の膜厚は100μmである。
 図8に実施例1におけるアクチュエータ素子に印加される交流電圧の波形を示す。印加される交流電圧は110Vのパルス電圧である。図9には、図8に示すパルス電圧を印加した場合において、本実施例のアクチュエータ素子における先端部分の変位量を示す。また、図10には、この際流れる電流量を示す。図9に示されるように、本実施例のアクチュエータ素子の先端部分は、最大で約3mm変位した。また、この際流れる電流量は、最大で約2mAであった。
 (比較例1)
 次に、比較例1として、イオン液体を混入しないシリコンを含むエラストマーにより変位部を形成したアクチュエータ素子を作製した。用いたシリコンを含むエラストマーは、KE-106(信越化学工業(株)製)であり、これにより変位部を形成し、電極としてスパッタリングにより金を成膜することによりアクチュエータ素子を作製した。尚、形成された変位部の膜厚は100μmである。
 図11に比較例1におけるアクチュエータ素子に印加される交流電圧の波形を示す。印加される交流電圧は1000Vのパルス電圧である。図12には、図11に示すパルス電圧を印加した場合において、本実施例のアクチュエータ素子における先端部分の変位量を示す。また、図13には、この際流れる電流量を示す。図12に示されるように、本実施例のアクチュエータ素子の先端部分は、殆ど変位することはなかった。
 以上より、実施例1における本実施の形態のアクチュエータ素子は、比較例1に示すアクチュエータ素子よりも低電圧で、大きな変位を得ることができる。
 (実施例2)
 実施例2として、本実施の形態におけるアクチュエータ素子に異なる電圧のパルス電圧を印加した場合の変位量について説明する。用いたシリコンを含むエラストマーは、実施例1と同様にKE-106(信越化学工業(株)製)であり、このシリコンを含むエラストマーに、イオン液体として[EMI][TFSI]を40wt%混合し変位部を上述した方法により形成し、電極としてスパッタリングにより金を成膜することによりアクチュエータ素子を作製した。尚、形成された変位部の膜厚は50μmである。
 図14に実施例2におけるアクチュエータ素子に印加される交流電圧の波形を示す。図15には、図14に示す各々の電圧のパルス電圧を印加した場合において、本実施例のアクチュエータ素子における先端部分の変位量を示す。図に示されるように、印加電圧が高くなるに従い、変位量は増加する。図16には、印加されるパルス電圧の値と、最大の変位量との関係を示す。図に示されるように、60V以上で急激に変位量が増加する。
 以上、本発明の実施に係る形態について説明したが、上記内容は、発明の内容を限定するものではない。
 また、本国際出願は、2009年7月28日に出願した日本国特許出願第2009-175333号に基づく優先権を主張するものであり、日本国特許出願第2009-175333号の全内容を本国際出願に援用する。
11  変位部
12  電極
13  電極
14  電源
15  電気配線
16  電気配線

Claims (6)

  1.  シリコンを含むエラストマーとイオン液体との混合物により形成される変位部と、
     前記変位部の一部または全部に電界を印加するために設けられた複数の電極と、
     を有し、
     前記電極間に電圧を印加することにより、前記変位部が変形することを特徴とするアクチュエータ素子。
  2.  前記変位部は平板状に形成されており、
     前記複数の電極は前記変位部の両面に各々形成されているものであることを特徴とする請求項1に記載のアクチュエータ素子。
  3.  前記イオン液体は、1-エチル-3-メチルイミダゾリウムテトラフルオロボラート、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート、1-へキシル-3-メチルイミダゾリウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウム2-(2-メトキシエトキシ)-エチルスルファート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスフォニル)イミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスフォニル)イミドのいずれかであることを特徴とする請求項1に記載のアクチュエータ素子。
  4.  前記混合物において、前記イオン液体の組成は40wt%以下であることを特徴とする請求項1に記載のアクチュエータ素子。
  5.  前記電極は、金、カーボンナノチューブ、導電性高分子材料、銀グリースのいずれかであることを特徴とする請求項1に記載のアクチュエータ素子。
  6.  シリコンを含むエラストマーとイオン液体とを混合して混合液を生成する混合工程と、
     前記混合液を型に流し込む流し込み工程と、
     前記流し込み工程の後、真空脱気する真空脱気工程と、
     前記真空脱気工程の後、熱処理を行う熱処理工程と
     前記熱処理工程の後、前記型から前記混合液が固体化した混合物を取り出し、前記混合物に複数の電極を形成する電極形成工程と、
     を有することを特徴とするアクチュエータ素子の製造方法。
PCT/JP2009/065051 2009-07-28 2009-08-28 アクチュエータ素子及びアクチュエータ素子の製造方法 WO2011013256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127002123A KR20120042863A (ko) 2009-07-28 2010-07-23 액추에이터 소자 및 액추에이터 소자의 제조 방법
US13/387,167 US20120133243A1 (en) 2009-07-28 2010-07-23 Actuator and actuator manufacturing method
PCT/JP2010/062458 WO2011013593A1 (ja) 2009-07-28 2010-07-23 アクチュエータ素子及びアクチュエータ素子の製造方法
JP2010166335A JP2011050233A (ja) 2009-07-28 2010-07-23 アクチュエータ素子及びアクチュエータ素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-175333 2009-07-28
JP2009175333 2009-07-28

Publications (1)

Publication Number Publication Date
WO2011013256A1 true WO2011013256A1 (ja) 2011-02-03

Family

ID=43528931

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/065051 WO2011013256A1 (ja) 2009-07-28 2009-08-28 アクチュエータ素子及びアクチュエータ素子の製造方法
PCT/JP2010/062458 WO2011013593A1 (ja) 2009-07-28 2010-07-23 アクチュエータ素子及びアクチュエータ素子の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062458 WO2011013593A1 (ja) 2009-07-28 2010-07-23 アクチュエータ素子及びアクチュエータ素子の製造方法

Country Status (4)

Country Link
US (1) US20120133243A1 (ja)
JP (1) JP2011050233A (ja)
KR (1) KR20120042863A (ja)
WO (2) WO2011013256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081355A (ja) * 2012-09-28 2014-05-08 Bando Chem Ind Ltd 静電容量型センサシート及び静電容量型センサシートの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013256A1 (ja) * 2009-07-28 2011-02-03 東京エレクトロン株式会社 アクチュエータ素子及びアクチュエータ素子の製造方法
JP5622168B2 (ja) * 2010-04-14 2014-11-12 セイコーエプソン株式会社 アクチュエーター
JP2012005340A (ja) * 2010-05-18 2012-01-05 Canon Inc イオン移動型アクチュエータ
JP2012095520A (ja) * 2010-10-01 2012-05-17 Canon Inc アクチュエータ
JP5942338B2 (ja) * 2011-04-28 2016-06-29 デクセリアルズ株式会社 駆動装置、レンズモジュールおよび撮像装置
WO2013146357A1 (ja) 2012-03-30 2013-10-03 東海ゴム工業株式会社 反応性イオン液体およびこれを用いたイオン固定化金属酸化物粒子、イオン固定化エラストマーならびにトランスデューサ
US20140348719A1 (en) * 2013-03-14 2014-11-27 Bureau Veritas Pharmaceutical compound stabilizing filter compositions and methods of making and using same
JP6481356B2 (ja) * 2014-12-22 2019-03-13 日清紡ホールディングス株式会社 アクチュエータ素子用電解質及びアクチュエータ素子
EP3274041A4 (en) * 2016-02-05 2019-04-03 Board of Regents of the University of Texas System ORIENTABLE INTRALUMINAL MEDICAL DEVICE
EP3510606B1 (en) * 2016-09-07 2024-05-15 Commscope Technologies LLC Anisotropic cable sealing gels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223967A (ja) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd 柔軟アクチュエータ
WO2009025187A1 (ja) * 2007-08-17 2009-02-26 Kuraray Co., Ltd. 高分子アクチュエータ用誘電体及びそれを用いた高分子アクチュエータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565982A (en) * 1968-05-17 1971-02-23 Usm Corp Process of making microporous sheets
US5783126A (en) * 1992-08-11 1998-07-21 E. Khashoggi Industries Method for manufacturing articles having inorganically filled, starch-bound cellular matrix
JP5310972B2 (ja) * 2006-08-25 2013-10-09 イーメックス株式会社 高分子アクチュエータ素子およびその駆動方法
JP5252616B2 (ja) * 2007-06-19 2013-07-31 国立大学法人福井大学 アクチュエータ駆動システムおよびアクチュエータの制御方法
JP5428269B2 (ja) * 2008-09-29 2014-02-26 ソニー株式会社 高分子アクチュエータ制御装置その方法、および電子機器
JP5350925B2 (ja) * 2009-07-16 2013-11-27 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 非帯電性熱硬化性シリコーンゴム組成物
WO2011013256A1 (ja) * 2009-07-28 2011-02-03 東京エレクトロン株式会社 アクチュエータ素子及びアクチュエータ素子の製造方法
JP5473483B2 (ja) * 2009-08-27 2014-04-16 キヤノン株式会社 アクチュエータ
US8378551B2 (en) * 2009-09-25 2013-02-19 Canon Kabushiki Kaisha Actuator and method of manufacturing the same
JP2011099847A (ja) * 2009-10-09 2011-05-19 Tokyo Electron Ltd 圧力センサ素子およびシート状圧力センサ
KR20120042864A (ko) * 2009-10-09 2012-05-03 고쿠리츠다이가쿠호징 야마나시다이가쿠 액추에이터 소자 및 시트 형상 액추에이터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223967A (ja) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd 柔軟アクチュエータ
WO2009025187A1 (ja) * 2007-08-17 2009-02-26 Kuraray Co., Ltd. 高分子アクチュエータ用誘電体及びそれを用いた高分子アクチュエータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081355A (ja) * 2012-09-28 2014-05-08 Bando Chem Ind Ltd 静電容量型センサシート及び静電容量型センサシートの製造方法

Also Published As

Publication number Publication date
WO2011013593A1 (ja) 2011-02-03
KR20120042863A (ko) 2012-05-03
US20120133243A1 (en) 2012-05-31
JP2011050233A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2011013256A1 (ja) アクチュエータ素子及びアクチュエータ素子の製造方法
Wu et al. High‐performance hierarchical black‐phosphorous‐based soft electrochemical actuators in bioinspired applications
Acerce et al. Metallic molybdenum disulfide nanosheet-based electrochemical actuators
JP4873453B2 (ja) 導電性薄膜、アクチュエータ素子及びその製造方法
Vudayagiri et al. High breakdown-strength composites from liquid silicone rubbers
JP4568885B2 (ja) 高強度、高導電性薄膜によるアクチュエータ素子及びその製造方法
JP6128508B2 (ja) カーボンナノファイバーアクチュエータ
Zhu et al. Electrowetting of aligned carbon nanotube films
Maziz et al. Top-down approach for the direct synthesis, patterning, and operation of artificial micromuscles on flexible substrates
Vargantwar et al. Enhanced biomimetic performance of ionic polymer–metal composite actuators prepared with nanostructured block ionomers
Zadan et al. Liquid metal architectures for soft and wearable energy harvesting devices
JP5083911B2 (ja) カーボンナノチューブと重合性イオン液体およびイオン液体から構成されるアクチュエータ素子
JP5829329B2 (ja) 反応性イオン液体およびこれを用いたイオン固定化金属酸化物粒子、イオン固定化エラストマーならびにトランスデューサ
JP5046127B2 (ja) 高アスペクト比のカーボンナノチューブとイオン液体から構成される導電性薄膜、アクチュエータ素子
JP2009278787A (ja) アクチュエータ素子
Armstrong et al. Designing dielectric elastomers over multiple length scales for 21st century soft materials technologies
CN110415978A (zh) 电解电容器以及制造电解电容器的方法
JP2010158103A (ja) アクチュエータ
Kiyohara et al. Expansion and contraction of polymer electrodes under applied voltage
JP2010158104A (ja) アクチュエータ
JP5757521B2 (ja) 油脂或いは撥水剤を含むアクチュエータ素子
JP6562319B2 (ja) ナノカーボン高分子アクチュエータ
US20190048168A1 (en) Multilayer structure, polymer actuator element, sensor element, and device
WO2023047660A1 (ja) 誘電膜の製造方法及びそれを用いたアクチュエータの製造方法
JP2012135074A (ja) カーボンナノチューブとポリフッ化ビニリデンポリマーおよびイオン液体から構成される導電性薄膜、アクチュエータ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847847

Country of ref document: EP

Kind code of ref document: A1