WO2011013189A1 - 車両用情報処理装置 - Google Patents

車両用情報処理装置 Download PDF

Info

Publication number
WO2011013189A1
WO2011013189A1 PCT/JP2009/063356 JP2009063356W WO2011013189A1 WO 2011013189 A1 WO2011013189 A1 WO 2011013189A1 JP 2009063356 W JP2009063356 W JP 2009063356W WO 2011013189 A1 WO2011013189 A1 WO 2011013189A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
position information
vehicles
distance
information
Prior art date
Application number
PCT/JP2009/063356
Other languages
English (en)
French (fr)
Inventor
美徳 門脇
洋 佐藤
和則 香川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/063356 priority Critical patent/WO2011013189A1/ja
Priority to US13/320,425 priority patent/US8676486B2/en
Priority to CN200980160517.4A priority patent/CN102473350B/zh
Priority to JP2011524551A priority patent/JP5327327B2/ja
Priority to DE200911005097 priority patent/DE112009005097B4/de
Publication of WO2011013189A1 publication Critical patent/WO2011013189A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication

Definitions

  • the present invention relates to an information processing apparatus for a vehicle that performs predetermined processing of the host vehicle based on reference position information acquired from position information of other vehicles existing in a predetermined position range.
  • the position detection device calculates a difference between the received GPS coordinates of the host vehicle and the corrected position coordinates of the host vehicle calculated by map matching as a GPS error, and acquires the GPS error from the other vehicle using the GPS error.
  • the accurate position of the other vehicle is to be calculated by correcting the GPS coordinates.
  • the calculated GPS error depends on the road shape at the time of map matching, and it is difficult to correct the error in the road traveling direction, for example. Accordingly, when a plurality of vehicles equipped with communication systems are connected in the road traveling direction, this position detection device cannot identify vehicles to be linked, and as a result, linked running control between vehicles equipped with communication systems. Cannot be performed with sufficient accuracy.
  • the present invention provides a vehicle information processing apparatus that can specify position information of other vehicles necessary for a predetermined process even when a plurality of other vehicles exist within a predetermined range. With the goal.
  • An information processing apparatus for a vehicle is an information processing apparatus for a vehicle that performs predetermined processing of the host vehicle based on reference position information acquired from position information of another vehicle existing in a predetermined position range.
  • reference position information acquired from position information of another vehicle existing in a predetermined position range.
  • representative position information that is representative is acquired based on a plurality of position information obtained from each of the plurality of other vehicles, and the acquired representative position information is A predetermined process is performed as the reference position information.
  • the representative position information acquired based on the plurality of position information is used as the reference position information.
  • the reference position information necessary for the predetermined process can be specified.
  • the representative position information may be obtained by averaging a plurality of position information obtained from each of a plurality of other vehicles.
  • an average position of a plurality of other vehicles can be used as reference position information necessary for a predetermined process.
  • the representative position information is obtained by averaging the plurality of position information obtained from each of the plurality of other vehicles.
  • position information closest to the host vehicle may be acquired as representative position information among a plurality of pieces of position information.
  • the average position of the plurality of other vehicles is used as the reference position information, and the plurality of other vehicles are closer than the predetermined. If not, the position of the other vehicle closest to the host vehicle among the plurality of other vehicles is set as the reference position information, and a predetermined process is performed.
  • the representative position information may be acquired based on the accuracy of each of a plurality of pieces of position information obtained from each of a plurality of other vehicles.
  • the reference position information necessary for the predetermined processing for example, the most accurate position information among the position information of a plurality of other vehicles can be used as the reference position information.
  • the most out of the plurality of position information based on the accuracy of each of the plurality of position information obtained from each of the plurality of other vehicles.
  • Position information that is predicted to be highly accurate is acquired as representative position information, and when the distance between a plurality of other vehicles is greater than a predetermined distance, the position information that is closest to the host vehicle among the plurality of position information May be acquired as representative position information.
  • the position information that is predicted to have the highest accuracy among the positions of the plurality of other vehicles is set as the reference position information.
  • the position of the other vehicle closest to the host vehicle among the plurality of other vehicles is set as the reference position information, and a predetermined process is performed.
  • the representative position information may be acquired based on each acquisition timing of a plurality of position information obtained from each of a plurality of other vehicles.
  • the reference position information necessary for the predetermined process for example, the position information acquired most recently among the position information of a plurality of other vehicles can be used as the reference position information.
  • the plurality of pieces of position information are obtained based on the respective acquisition timings of the plurality of position information obtained from the plurality of other vehicles. If the position information with the latest acquired time is acquired as representative position information, and the distance between a plurality of other vehicles is greater than a predetermined distance, the position closest to the host vehicle among the plurality of position information Information may be acquired as representative position information.
  • the newest reference position information among the positions of the plurality of other vehicles is set, and the plurality of other vehicles are not closer than a predetermined position.
  • the position of the other vehicle closest to the host vehicle among the plurality of other vehicles is set as the reference position information, and a predetermined process is performed.
  • the predetermined processing may be performed using the position information of the other vehicle as reference position information.
  • the other vehicle can perform inter-vehicle communication with the own vehicle, and the position information of the other vehicle may be acquired by inter-vehicle communication with the other vehicle.
  • the representative position information acquired based on the plurality of pieces of position information is used as the reference position information.
  • the reference position information necessary for the predetermined process can be specified.
  • the vehicle information processing apparatus of the present invention even when a plurality of other vehicles exist within a predetermined range, it is possible to specify the position information of the other vehicles necessary for the predetermined processing.
  • FIG. 1 is a block diagram showing a configuration of a vehicle control system according to an embodiment of a vehicle information processing apparatus of the present invention.
  • FIG. 2 is a diagram showing a traffic flow including a vehicle on which the vehicle control system of FIG. 1 is mounted.
  • FIG. 3 is a flowchart showing processing performed by the vehicle control system of FIG.
  • FIG. 4 is a graph showing the relationship between the vehicle speed and the head distance in a general traffic flow.
  • FIG. 5 is a graph showing the relationship between the traffic flow rate and the average vehicle speed in a general traffic flow.
  • FIG. 6 is a flowchart illustrating an example of a process for determining the system-equipped inter-vehicle distance L1.
  • FIG. 7 is a diagram showing the representative position W calculated in a part of the processing of FIG.
  • FIG. 8 is a flowchart illustrating another example of the process for determining the system-equipped inter-vehicle distance L1.
  • FIG. 9 is a flowchart showing yet another example of the process for determining the system-equipped inter-vehicle distance L1.
  • the vehicle control system 10 is mounted on a vehicle and performs vehicle control for improving road traffic.
  • the vehicle control system 10 of this embodiment includes an inter-vehicle communication device 12, a road-vehicle communication device 14, a navigation system 16, a wheel speed sensor 17, a camera 18, an ECU (Electronic Control Unit) 20, and an ACC. (Adaptive Cruise Control) 30 is provided.
  • the inter-vehicle communication device 12 is used for transmitting / receiving information such as whether the vehicle control for preventing the position, speed, or traffic jam of the system-equipped vehicle other than the own vehicle is turned on or off by the vehicle-to-vehicle communication. is there.
  • the road-to-vehicle communication device 14 is for receiving information such as the traffic volume of the road and the vehicle speed of the vehicle traveling on the road from a roadside facility such as an optical beacon communication device.
  • a traffic monitoring system on a road measures an inter-vehicle distance, a traffic flow rate, a vehicle speed, and the like on the road with a camera or the like installed on the road.
  • the measured information is provided to the vehicle by an optical beacon communication device or the like.
  • Each vehicle traveling on the road is provided with the road-to-vehicle communication device 14 so that it can receive information such as the inter-vehicle distance, traffic flow, and vehicle speed on the road on which the vehicle is traveling.
  • the navigation system 16 receives signals from a plurality of GPS (Global Positioning System) satellites with a GPS receiver, and stores GPS that measures the position of the vehicle from the difference between the signals and map information in the vehicle. It consists of a map information DB (Data Base).
  • the navigation system 16 is for not only performing route guidance of the host vehicle but also acquiring information related to a point where a decrease in vehicle speed such as a sag in front of the host vehicle is induced. For example, the navigation system 16 detects the relative position of the host vehicle with respect to the sag and outputs it to the ECU 20.
  • the wheel speed sensor 17 measures the wheel speed of the host vehicle and outputs it to the ECU 20 as an electrical signal.
  • the ECU 20 can calculate the vehicle speed of the host vehicle based on the signal from the wheel speed sensor 17.
  • the camera 18 captures an image in front of the host vehicle.
  • the ECU 20 can recognize the lane in which the host vehicle travels by performing video processing based on the signal from the camera 18.
  • the ECU 20 is an electronic control unit that performs overall control of the vehicle control system 10, and is mainly configured by a computer including a CPU, a ROM, and a RAM, for example.
  • Information from the inter-vehicle communication device 12, the road-to-vehicle communication device 14, the navigation system 16, the wheel speed sensor 17, and the camera 18 is input to the ECU 20 as an electrical signal.
  • information on the relative position of the host vehicle relative to the sag from the navigation system 16 and information on the relative position and relative speed of other vehicles around the host vehicle from the radar 32 of the ACC 30 are input.
  • ECU20 performs various information processing based on each input information.
  • the ECU 20 outputs a travel control command value such as the target vehicle speed, acceleration / deceleration G, and target inter-vehicle distance to the ACC 30 based on information input from the navigation system 16 and the ACC 30.
  • the ACC 30 includes a radar 32 that detects the relative position and relative speed of other vehicles around the host vehicle. Further, the ACC 30 performs traveling control based on the traveling control command value from the ECU 20 so that the host vehicle has the target vehicle speed, the acceleration / deceleration G, and the target inter-vehicle distance. In addition, the radar 32 can measure the front inter-vehicle distance of the own vehicle (the inter-vehicle distance with the vehicle traveling immediately in front of the own vehicle).
  • a state is considered in which vehicles on which the vehicle control system 10 is mounted are mixed at a certain rate among vehicles traveling on the road 100 in the direction of arrow Y.
  • a vehicle equipped with the vehicle control system 10 is referred to as a “system-equipped vehicle”
  • a vehicle not equipped with the vehicle control system 10 is referred to as a “system non-equipped vehicle”.
  • the host vehicle Ma and the vehicle Mb that travels in front of the host vehicle Ma on the same lane are system-equipped vehicles, and all the vehicles 50 that travel between the host vehicle Ma and the vehicle Mb are non-system-equipped vehicles.
  • Vehicles equipped with the system (for example, the own vehicle Ma and the vehicle Mb) can perform inter-vehicle communication using the inter-vehicle communication device 12 and share various information such as the vehicle speed and the current position.
  • a sag 103 that switches from a gentle downhill to a gentle uphill.
  • a sag 103 is known to easily cause a traffic jam because it reduces the vehicle speed without the driver's knowledge. Therefore, when the navigation system 16 recognizes the presence of the forward sag 103, the vehicle control system 10 of the own vehicle Ma performs traveling control of the own vehicle Ma in front of the sag 103 in order to alleviate the traffic jam.
  • the ECU 20 of the vehicle control system 10 acquires the traffic flow on the road 100 from the road-to-vehicle communication device 14, and acquires the distance to the sag 103 from the navigation system 16 (S101). Then, when the acquired traffic flow exceeds a predetermined threshold (Yes in S103), the following process is performed. Note that if the acquired traffic flow is equal to or less than the predetermined threshold (No in S103), it is considered that there is a low possibility of occurrence of traffic congestion in the sag 103, and thus the process is terminated without performing travel control in particular.
  • the ECU 20 detects the position of the host vehicle Ma based on the information from the navigation system 16, and based on the video information from the camera 18, the host vehicle Ma. Is detected and the vehicle speed V1 of the host vehicle Ma is detected based on information from the wheel speed sensor (S105).
  • the ECU 20 acquires position information of each system-equipped vehicle that travels around the host vehicle Ma, traveled lane information, and vehicle speed information by inter-vehicle communication by the inter-vehicle communication device 12 (S107).
  • information on a plurality of system-equipped vehicles that are usually present in the vicinity of the host vehicle is acquired.
  • the ECU 20 detects a system-equipped vehicle that travels ahead in the same lane as the host vehicle Ma based on the position information, lane information, and vehicle speed information for a plurality of vehicles (S109).
  • the vehicle Mb is detected.
  • a system-equipped vehicle other than the vehicle Mb does not exist at a position in a distance range where inter-vehicle communication is possible in front of the host vehicle Ma.
  • the vehicle control system 10 of the own vehicle Ma pays attention to the vehicle Mb, and performs traveling control of the own vehicle Ma based on the positional relationship between the own vehicle Ma and the vehicle Mb.
  • the front system-equipped vehicle that is noted in the travel control of the host vehicle Ma as described above may be referred to as a “target vehicle”.
  • the distance between the host vehicle Ma and the vehicle of interest Mb is referred to as “system-equipped inter-vehicle distance”.
  • the ECU 20 calculates the distance between the host vehicle Ma and the target vehicle Mb based on the difference between the position information of the host vehicle Ma and the position information of the target vehicle Mb, and sets this distance as the system-equipped inter-vehicle distance L1 (S110). ).
  • the ECU 20 of the host vehicle Ma determines the number of vehicles x not equipped with the system x existing between the host vehicle Ma and the target vehicle Mb, and the vehicles 50 in the section between the host vehicle Ma and the target vehicle Mb.
  • the average inter-vehicle distance (hereinafter referred to as “average inter-vehicle distance”) D1 is estimated (S111).
  • the information measured by the traffic monitoring system on the road 100 may be adopted as the average inter-vehicle distance D1 as it is.
  • the average inter-vehicle distance D1 can be acquired from a roadside facility such as an optical beacon communication device by the road-to-vehicle communication device 14.
  • the average inter-vehicle distance D1 may be estimated on the assumption that the inter-vehicle distance is most congested in the section between the host vehicle Ma and the vehicle of interest Mb. That is, referring to the relationship between the vehicle speed and the vehicle head distance as shown in FIG. 4 (investigation report on improving fuel consumption efficiency, Energy Conservation Center, Japan), the average inter-vehicle distance D1 is calculated based on the vehicle speed of the host vehicle Ma. Can be estimated.
  • the ECU 20 sets a preferable vehicle speed (vehicle speed target value) V2 when the host vehicle Ma reaches the sag 103, a preferable front inter-vehicle distance (front inter-vehicle distance target value) R2, and a preferable system-equipped inter-vehicle distance (system mounted).
  • An inter-vehicle distance target value) L2 is derived (S113).
  • each of the target values V2, R2, and L2 is selected in consideration of a condition in which traffic congestion is unlikely to occur in the vehicle 50 between the host vehicle Ma and the vehicle of interest Mb.
  • the vehicle speed target value V2 refers to the relationship between the average speed and traffic flow as shown in FIG.
  • the vehicle speed target value V2 is set to 60 km / h so that the traffic flow rate becomes a peak.
  • D2 is a preferable average inter-vehicle distance when the host vehicle Ma reaches the sag 103. Assuming that the distance between the own vehicle Ma and the vehicle of interest Mb is the most congested, the average inter-vehicle distance D2 can be obtained from FIG. That is, from FIG. 4, the preferable average inter-vehicle distance D2 is 60 m corresponding to the vehicle speed target value V2.
  • the ECU 20 acquires the deceleration profile of the vehicle of interest Mb through inter-vehicle communication with the vehicle of interest Mb.
  • This deceleration profile includes information such as the current position, current vehicle speed, target position, target vehicle speed, and deceleration G of the vehicle of interest Mb.
  • the ECU 20 sets the system-to-vehicle distance when reaching the sag 103 to the target value L2, and the vehicle speed of the host vehicle Ma when reaching the sag 103 is the target value V2.
  • the deceleration profile of the host vehicle Ma is determined so that That is, here, the deceleration start position and the deceleration G of the host vehicle Ma are determined so as to satisfy the conditions of the target values L2 and V2 (S117).
  • the ECU 20 ends the process without performing the subsequent travel control (S119). .
  • the ECU 20 monitors information from the navigation system 16, and when the host vehicle Ma reaches the deceleration start position (S121), the ECU 20 starts decelerating the host vehicle Ma (S123). Thereafter, when the vehicle speed of the host vehicle Ma reaches the vehicle speed target value V2 (S125), the deceleration of the host vehicle Ma is terminated (S127), and the process is terminated.
  • the deceleration profile of the host vehicle Ma obtained in the process S117 is transmitted from the host vehicle Ma by inter-vehicle communication, and is used by a rear vehicle that handles the host vehicle Ma as a target vehicle.
  • the inter-system distance is L2
  • the vehicle speed of the host vehicle Ma is V2. Therefore, in front of the host vehicle Ma that has reached the sag 103, the vehicle speed and the average inter-vehicle distance of the vehicle 50 are set to values at which it is difficult for traffic congestion to occur. As a result, according to the vehicle control system 10, the traffic jam can be suppressed even in the presence of the sag 103 that is likely to cause a traffic jam.
  • the predetermined distance range is a range of a distance in which the host vehicle Ma can communicate between vehicles.
  • the position of the system-equipped vehicle is the starting point (referred to as the reference position Z) of the system-equipped vehicle distance L1, and there are a plurality of When a system-equipped vehicle is detected, it is difficult to specify the reference position Z.
  • the vehicle control system 10 determines the representative position W of the plurality of system-equipped vehicles as follows.
  • the determined representative position W is applied to the reference position Z to perform the above-described travel control.
  • the processing after S501 in FIG. 6 is performed instead of the processing S110 after the processing S107 and S109.
  • the ECU 20 determines the distance S between the vehicle Mj and the vehicle Mk. Is calculated (S503).
  • the ECU 20 refers to the relationship between the vehicle speed and the head distance shown in FIG. 4, obtains the inter-vehicle distance corresponding to the vehicle speed of the vehicles Mj and Mk, and assumes that the inter-vehicle distance is the distance S.
  • the ECU 20 compares the calculated distance S with a predetermined distance threshold value S0 (S505).
  • the distance threshold value S0 is a value represented by the following expression (1).
  • Distance threshold S0 average inter-vehicle distance D1 + GPS positioning error (1)
  • GPS positioning error in the equation (1) a value of 30 to 50 m is appropriately selected as a general positioning error by GPS.
  • the average inter-vehicle distance D1 in the equation (1) information measured by the traffic monitoring system on the road 100 is received by the road-to-vehicle communication device 14 and adopted.
  • the position information Pj, Pk of the vehicles Mj, Mk that is closer to the position of the host vehicle Ma is set as the representative position W (S507).
  • the representative position W is applied to the reference position Z (S509), and the distance between the reference position Z and the position of the host vehicle Ma is applied to the above-mentioned system-equipped vehicle distance L1 (S510), and the processing of FIG. Proceed from S111. That is, in this case, of the two target vehicle candidates Mj and Mk, the one closer to the host vehicle Ma is adopted as the above-described target vehicle Mb.
  • the distance S is equal to or less than the distance threshold value S0 (No in S505), it is considered that it is impossible to determine which vehicle Mj, Mk is close to the host vehicle Ma in view of the GPS positioning error included in the position information. . Therefore, as shown in FIG. 7, the average of the position information Pj and Pk is calculated, and the average position is set as the representative position W (S517).
  • the arithmetic average of the GPS coordinate values acquired by the navigation system 16 of the vehicles Mj and Mk is calculated.
  • the representative position W is applied to the reference position Z (S509), and the distance between the reference position Z and the position of the host vehicle Ma is applied to the above-mentioned inter-system distance L1 (S510), and the process S111 of FIG. Continue on. That is, in this case, the two target vehicle candidates Mj and Mk are collectively regarded as one virtual target vehicle Mb that exists at the center position of the vehicles Mj and Mk.
  • the representative position W of the plurality of vehicles is determined, The distance between the vehicle Ma and the system-equipped vehicle distance L1. Accordingly, even when there are a plurality of system-equipped vehicles within the distance that enables vehicle-to-vehicle communication in front of the same lane of the host vehicle Ma, the reference position Z and the system-equipped vehicle distance L1 that are necessary for the subsequent processing are specified. can do. As a result, it is possible to appropriately perform the congestion mitigation process based on the system-equipped inter-vehicle distance L1.
  • step S109 when the ECU 20 obtains position information for one system-equipped vehicle ahead (No in S501), as described above, the position of the one system-equipped vehicle is determined as the reference position Z. (S529).
  • the ECU 20 sets the position information Pj, Pk acquired by the newer version of the navigation system 16 as the representative position W (S617). Then, the representative position W is applied to the reference position Z (S509), and the difference between the reference position Z and the position of the host vehicle Ma is applied to the above-mentioned inter-system distance L1 (S510), and the process S111 of FIG. Continue on. That is, in this case, of the two target vehicle candidates Mj and Mk, the one with the newer version of the navigation system 16 is adopted as the above-described target vehicle Mb. In addition, in order to enable such a determination process, the version information of the navigation system 16 is shared between vehicles equipped with each other system by inter-vehicle communication.
  • the performance of the navigation system 16 is improved, and the obtained position information is expected to be highly accurate. Therefore, when the position information is obtained for a plurality of vehicles, the position information that is expected to be more accurate is set as the representative position W, so that it can be obtained from the navigation system 16 of the plurality of vehicles that has high accuracy. It is possible to set the more accurate system-to-vehicle distance L1 by effectively using the obtained information. As a result, the occurrence of traffic jams in the sag 103 can be suppressed by optimizing the inter-vehicle distance in the sag 103 with high accuracy.
  • the ECU 20 sets the position information Pj, Pk having a later reception time (newly received) as the representative position W (S717). Then, the representative position W is applied to the reference position Z (S509), and the difference between the reference position Z and the position of the host vehicle Ma is applied to the above-mentioned inter-system distance L1 (S510), and the process S111 of FIG. Continue on. That is, in this case, the one that transmits newer information among the position information Pj and Pk of the two target vehicle candidates Mj and Mk is adopted as the above-described target vehicle Mb. In order to enable such determination processing, the ECU 20 of the host vehicle Ma stores the position information of the other vehicle received by inter-vehicle communication in association with the reception time of the position information.
  • the newer position information is set as the representative position W, thereby setting the accurate system-equipped inter-vehicle distance L1 based on the new position information. Can do. As a result, the occurrence of traffic jams in the sag 103 can be suppressed by optimizing the inter-vehicle distance in the sag 103 with high accuracy.
  • the present invention relates to a vehicle information processing apparatus that performs predetermined processing of a host vehicle based on reference position information acquired from position information of another vehicle existing in a predetermined position range. Even when it exists within the predetermined range, the position information of the other vehicle required for the predetermined process can be specified.

Abstract

本発明の車両用情報処理装置は、所定の位置範囲に存在する他車両の位置情報から取得される基準位置情報に基づいて、自車両の所定の処理を行う車両用情報処理装置であって、所定の位置範囲に複数の他車両が存在する場合には、複数の他車両のそれぞれから得られた複数の位置情報に基づいて代表とする代表位置情報を取得し、取得された代表位置情報を基準位置情報として、所定の処理を行うことを特徴とする。

Description

車両用情報処理装置
 本発明は、所定の位置範囲に存在する他車両の位置情報から取得される基準位置情報に基づいて、自車両の所定の処理を行う車両用情報処理装置に関するものである。
 従来から、交通流における車両の走行を制御することにより、道路の交通量を改善し、渋滞を緩和する試みがなされている。例えば、他車との間で車車間通信が可能な通信システム搭載車が、交通流に一定の割合で含まれている場合を考える。この場合、通信システム搭載車同士が互いの車速や現在位置の情報を共有し、連携した走行制御を行うことで、互いの間に存在する車両の動きを間接的に制御することができ、効果的な渋滞緩和を図ることができると考えられる。このような他の通信システム搭載車と連携する走行制御においては、各通信システム搭載車が、連携すべき他の通信システム搭載車を特定する必要がある。
 すなわち、通信システム搭載車が、他の通信システム搭載車の位置情報を取得することが必要である。このように他車の位置情報を取得する技術としては、下記特許文献1に記載の他車両位置検出装置が知られている。この位置検出装置は、受信した自車両におけるGPS座標と、マップマッチングによって算出された自車両における補正後の位置座標との差をGPS誤差として算出し、該GPS誤差を用いて、他車両から取得したGPS座標の補正を行うことによって他車両の正確な位置を算出しようとするものである。
特開2007-085909号公報
 しかしながら、特許文献1の位置検出装置では、算出されるGPS誤差は、マップマッチングの際の道路形状に依存し、例えば、道路進行方向での誤差の修正は困難である。従って、通信システム搭載車が道路進行方向に複数台連なっている場合、この位置検出装置では、連携すべき車両を特定することができず、その結果、通信システム搭載車同士の連携された走行制御を、充分な精度で行うことが出来なくなる。
 そこで、本発明は、複数の他車両が所定の範囲内に存在している場合にも、所定の処理に必要な他車両の位置情報を特定することができる車両用情報処理装置を提供することを目的とする。
 本発明の車両用情報処理装置は、所定の位置範囲に存在する他車両の位置情報から取得される基準位置情報に基づいて、自車両の所定の処理を行う車両用情報処理装置であって、所定の位置範囲に複数の他車両が存在する場合には、複数の他車両のそれぞれから得られた複数の位置情報に基づいて代表とする代表位置情報を取得し、取得された代表位置情報を基準位置情報として、所定の処理を行うことを特徴とする。
 この車両用情報処理装置によれば、所定の位置範囲に複数の他車両が存在する場合には、その複数の位置情報に基づいて取得される代表位置情報を基準位置情報とする。このように、所定の位置範囲に複数の他車両が存在する場合にも、所定の処理に必要な基準位置情報を特定することができる。
 また、代表位置情報は、複数の他車両のそれぞれから得られた複数の位置情報を平均して取得されることとしてもよい。
 この構成によれば、所定の処理に必要な基準位置情報として、複数の他車両の平均の位置を用いることができる。
 またこの場合、複数の他車両同士の距離が所定の距離以下である場合に、代表位置情報は、複数の他車両のそれぞれから得られた複数の位置情報を平均して取得され、複数の他車両同士の距離が所定の距離よりも大である場合には、複数の位置情報のうち自車両から最も近い位置情報が代表位置情報として取得されることとしてもよい。
 この構成によれば、複数の他車両が所定よりも近接している場合には、複数の他車両の位置の平均の位置が基準位置情報とされ、複数の他車両が所定よりも近接していない場合には、複数の他車両のうち自車両から最も近い他車両の位置が基準位置情報とされて、所定の処理が行われる。
 また、代表位置情報は、複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの精度に基づいて取得されることとしてもよい。
 この構成によれば、所定の処理に必要な基準位置情報として、例えば、複数の他車両の位置情報のうち、最も高精度の位置情報を基準位置情報とすることができる。
 またこの場合、複数の他車両同士の距離が所定の距離以下である場合に、複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの精度に基づいて、複数の位置情報のうち最も精度が高いと予想される位置情報が代表位置情報として取得され、複数の他車両同士の距離が所定の距離よりも大である場合には、複数の位置情報のうち自車両から最も近い位置情報が代表位置情報として取得されることとしてもよい。
 この構成によれば、複数の他車両が所定よりも近接している場合には、複数の他車両の位置のうち最も精度が高いと予想される位置情報が基準位置情報とされ、複数の他車両が所定よりも近接していない場合には、複数の他車両のうち自車両から最も近い他車両の位置が基準位置情報とされて、所定の処理が行われる。
 また、代表位置情報は、複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの取得のタイミングに基づいて取得されることとしてもよい。
 この構成によれば、所定の処理に必要な基準位置情報として、例えば、複数の他車両の位置情報のうち、最も新しく取得された位置情報を基準位置情報とすることができる。
 またこの場合、複数の他車両同士の距離が所定の距離以下である場合に、複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの取得のタイミングに基づいて、複数の位置情報のうち取得された時刻が最も新しい位置情報が代表位置情報として取得され、複数の他車両同士の距離が所定の距離よりも大である場合には、複数の位置情報のうち自車両から最も近い位置情報が代表位置情報として取得されることとしてもよい。
 この構成によれば、複数の他車両が所定よりも近接している場合には、複数の他車両の位置のうち最も新しい基準位置情報とされ、複数の他車両が所定よりも近接していない場合には、複数の他車両のうち自車両から最も近い他車両の位置が基準位置情報とされて、所定の処理が行われる。
 また、所定の位置範囲に存在する他車両が1台の場合には、当該他車両の位置情報を基準位置情報として所定の処理を行うこととしてもよい。
 他車両は、自車両との車車間通信が可能であり、他車両の位置情報は、他車両との間の車車間通信によって取得されることとしてもよい。
 この構成によれば、車車間通信によって複数の他車両に関する複数の位置情報が得られた場合に、その複数の位置情報に基づいて取得される代表位置情報を基準位置情報とする。このように、所定の位置範囲に複数の他車両が存在する場合にも、所定の処理に必要な基準位置情報を特定することができる。
 本発明の車両用情報処理装置によれば、複数の他車両が所定の範囲内に存在している場合にも、所定の処理に必要な他車両の位置情報を特定することができる。
図1は、本発明の車両用情報処理装置の一実施形態に係る車両制御システムの構成を示すブロック図である。 図2は、図1の車両制御システムを搭載した車両を含む交通流を示す図である。 図3は、図1の車両制御システムが行う処理を示すフローチャートである。 図4は、一般的な交通流における車両の速度と車頭距離との関係を示すグラフである。 図5は、一般的な交通流における交通流量と車両の平均速度との関係を示すグラフである。 図6は、システム搭載車間距離L1を決定する処理の一例を示すフローチャートである。 図7は、図6の処理の一部において算出される代表位置Wを示す図である。 図8は、システム搭載車間距離L1を決定する処理の他の例を示すフローチャートである。 図9は、システム搭載車間距離L1を決定する処理の更に他の例を示すフローチャートである。
 以下、図面を参照しつつ本発明に係る車両用情報処理装置の好適な一実施形態である車両制御システム10について詳細に説明する。この車両制御システム10は、車両に搭載され、道路の交通量を改善するための車両制御を行なうためのものである。図1に示すように、本実施形態の車両制御システム10は、車車間通信機12、路車間通信機14、ナビゲーションシステム16、車輪速センサ17、カメラ18、ECU(Electronic Control Unit)20及びACC(Adaptive Cruise Control)30を備えている。
 車車間通信機12は、車車間通信により自車両以外のシステム搭載車両の位置、速度あるいは渋滞を防止する車両制御をONにしているかあるいはOFFにしているかといった情報を相互に送受信するためのものである。
 路車間通信機14は、光ビーコン通信機等の路側施設から道路の交通量や道路を走行する車両の車速等の情報を受信するためのものである。例えば、道路上の交通監視システムは、道路に設置されたカメラ等により、当該道路における車間距離や交通流量や車速等を計測している。そして、計測された情報が、光ビーコン通信機等によって車両に向けて提供されている。道路を走行する各車両は、路車間通信機14を備えることによって、自車両が走行中の道路における車間距離や交通流量や車速等の情報を受信することができる。
 ナビゲーションシステム16は、複数のGPS(Global Positioning System)衛星からの信号をGPS受信機で受信し、各々の信号の相違から自車両の位置を測位するGPSと、自車両内の地図情報を記憶させた地図情報DB(Data Base)とから構成されている。ナビゲーションシステム16は、自車両の経路案内を行う他、自車両前方のサグ等の車速の低下が誘発されている地点に関する情報を取得するためのものである。例えば、ナビゲーションシステム16は、自車両のサグに対する相対位置を検出して、ECU20に出力する。
 車輪速センサ17は、自車両の車輪速を計測し電気信号としてECU20に出力する。ECU20は、車輪速センサ17からの信号に基づき自車両の車速を算出することができる。カメラ18は、自車両の前方の映像を撮像する。ECU20は、カメラ18からの信号に基づく映像処理を行うことで、自車両が走行する車線を認識することができる。
 ECU20は、車両制御システム10の全体の制御を行う電子制御ユニットであり、例えばCPU、ROM、RAMを含むコンピュータを主体として構成されている。ECU20には、車車間通信機12、路車間通信機14、ナビゲーションシステム16、車輪速センサ17、カメラ18からの情報が電気信号として入力される。例えば、ナビゲーションシステム16からの自車両のサグに対する相対位置に関する情報、及びACC30のレーダ32からの自車両周辺の他車両の相対位置と相対速度とに関する情報が入力される。ECU20は、入力される各情報に基づいて種々の情報処理を行う。例えば、ECU20は、ナビゲーションシステム16及びACC30から入力された情報に基づいて、ACC30に対し、目標車速、加減速G及び目標車間距離といった走行制御指令値を出力する。
 ACC30は、自車両周辺の他車両の相対位置と相対速度とを検出するレーダ32を有する。また、ACC30は、ECU20からの走行制御指令値に基づいて、自車両が目標車速、加減速G及び目標車間距離となるように走行制御を行なう。なお、レーダ32では、自車両の前方車間距離(自車両の直ぐ前方を走行する車両との車間距離)を計測することができる。
 続いて、車両制御システム10が、渋滞緩和のために行う処理について説明する。
 ここでは、図2に示すように、道路100を矢印Y方向に走行する車両の中に、車両制御システム10を搭載した車両が一定の割合で混在している状態を考える。以下、車両制御システム10を搭載した車両を「システム搭載車」と称し、車両制御システム10を搭載していない車両を「システム未搭載車」と称する。自車両Maと、自車両Maの同車線上の前方を走行する車両Mbは、システム搭載車であり、自車両Maと車両Mbとの間を走行する車両50は、すべてシステム未搭載車である。システム搭載車同士(例えば、自車両Maと車両Mb)は、車車間通信機12を用いた車車間通信を行い、互いの車速、現在位置等の種々の情報を共有することができる。
 今、道路100の自車両Maの前方には、緩やかな下り坂から緩やかな上り坂に切り替わるサグ103が存在している。このようなサグ103は、ドライバが気付かないうちに車速を低下させるので、渋滞の原因になり易いことが知られている。そこで、自車両Maの車両制御システム10は、ナビゲーションシステム16によって前方のサグ103の存在を認識した場合には、渋滞を緩和すべく、サグ103の手前において予め自車両Maの走行制御を行う。
 以下、自車両Maの車両制御システム10が、前方のサグ103を認識した場合の走行制御について説明する。
 図3に示すように、車両制御システム10のECU20は、道路100における交通流量を路車間通信機14から取得し、サグ103までの距離をナビゲーションシステム16から取得する(S101)。そして、取得した交通流量が所定の閾値を超えている場合(S103でYes)には、次の処理を行う。なお、取得した交通流量が所定の閾値以下である場合(S103でNo)には、サグ103における渋滞発生の可能性が低いと考えられるので、特に走行制御を行わずに処理を終了する。
 交通流量が所定の閾値を超えている場合(S103でYes)、ECU20は、ナビゲーションシステム16からの情報に基づいて自車両Maの位置を検知し、カメラ18からの映像情報に基づいて自車両Maが走行する車線を検知し、車輪速センサからの情報に基づいて自車両Maの車速V1を検知する(S105)。
 次に、ECU20は、車車間通信機12による車車間通信によって、自車両Maの周囲を走行する各システム搭載車の位置情報、走行する車線情報、及び車速情報を取得する(S107)。ここでは、通常、自車両近傍に存在する複数台分のシステム搭載車の情報が取得される。そして、ECU20は、複数台分の位置情報、車線情報、車速情報に基づいて、自車両Maと同じ車線で前方を走行するシステム搭載車を検出する(S109)。図2の例の場合、車両Mbが検出される。ここでは、自車両Maの前方で車車間通信が可能な距離範囲の位置には、車両Mb以外のシステム搭載車が存在しないものとする。
 以降、自車両Maの車両制御システム10は、この車両Mbに注目し、自車両Maと車両Mbとの位置関係に基づいて自車両Maの走行制御を行う。このように自車両Maの走行制御にあたって注目される前方のシステム搭載車を、「注目車両」と称する場合がある。また、自車両Maと注目車両Mbとの距離を「システム搭載車間距離」と称する。ここで、ECU20は、自車両Maの位置情報と注目車両Mbの位置情報との差分により、自車両Maと注目車両Mbとの距離を算出し、この距離をシステム搭載車間距離L1とする(S110)。
 次に、自車両MaのECU20は、自車両Maと注目車両Mbとの間に存在するシステム未搭載車両50の車両台数xと、自車両Maと注目車両Mbとの間の区間における車両50同士の平均の車間距離(以下、「平均車間距離」という)D1を推定する(S111)。ここでは、平均車間距離D1は、道路100上の交通監視システムで計測された情報をそのまま採用してもよい。この場合、平均車間距離D1は、路車間通信機14によって光ビーコン通信機等の路側施設から取得することができる。また、他の方法としては、自車両Maと注目車両Mbとの間の区間では車間距離が最も詰まった状態であると仮定して、平均車間距離D1を推定してもよい。すなわち、図4に示すような車速と車頭距離との関係(燃料消費効率改善化の調査報告書,財団法人 省エネルギーセンター)を参照すれば、自車両Maの車速に基づいて、平均車間距離D1を推定することができる。なお、ここでは、車間距離が各車両の車長に比べて十分に大きいので、車頭距離=車間距離として取り扱っても実用上問題はない。また、車両台数xは、平均車間距離D1とシステム搭載車間距離L1とに基づき、x=L1/D1-1で推定される。
 次に、ECU20は、自車両Maがサグ103に到達した時点での好ましい車速(車速目標値)V2と、好ましい前方車間距離(前方車間距離目標値)R2と、好ましいシステム搭載車間距離(システム搭載車間距離目標値)L2と、を導出する(S113)。ここで、上記の各目標値V2,R2,L2は、自車両Maと注目車両Mbとの間の車両50において渋滞が発生し難い条件を勘案して選択される。すなわち、車速目標値V2は、図5に示すような平均速度と交通流量との関係(燃料消費効率改善化の調査報告書,財団法人 省エネルギーセンター)を参照し、最も大きい交通流量が得られる速度を採用する。すなわち、図5によれば、交通流量がピークとなるように、車速目標値V2=60km/hとされる。また、前方車間距離目標値R2は、車速目標値V2に対応して、車両の減速が後方に伝播しない距離が選択される。すなわち、車速60km/hの場合に減速の伝搬をさせないためには、一般的に60mの車間距離が必要と言われているので(図4参照)、前方車間距離目標値R2=60mとされる。
 システム搭載車間距離目標値L2は、L2=x・D2+R2で求められる。ここで、D2は、自車両Maがサグ103に到達した時点での好ましい平均車間距離である。自車両Maと注目車両Mbとの間の区間では車間距離が最も詰まった状態であると仮定すれば、平均車間距離D2は、図4から求められる。すなわち、図4より、車速目標値V2に対応して、好ましい平均車間距離D2は60mである。
 次に、ECU20は、注目車両Mbの減速プロファイルを、注目車両Mbとの車車間通信によって取得する。この減速プロファイルには、注目車両Mbの現在位置、現在の車速、目標位置、目標車速、減速Gといった情報が含まれる。そしてECU20は、注目車両Mbの減速プロファイルに基づいて、サグ103に到達した時点のシステム搭載車間距離が目標値L2になり、かつ、サグ103に到達した時点の自車両Maの車速が目標値V2になるように、自車両Maの減速プロファイルを決定する。すなわち、ここでは、上記の目標値L2,V2の条件を満たすように、自車両Maの減速開始位置と減速Gとが決定される(S117)。なお、自車両Maの現車速V1と車速目標値V2との関係が、V1-V2<所定の閾値 である場合には、ECU20は、以降の走行制御を行わずに処理を終了する(S119)。
 次に、ECU20は、ナビゲーションシステム16からの情報を監視し、自車両Maが減速開始位置に到達したときに(S121)、自車両Maの減速を開始する(S123)。その後、自車両Maの車速が車速目標値V2に到達したときに(S125)、自車両Maの減速を終了して(S127)、処理を終了する。なお、処理S117で得られた自車両Maの減速プロファイルは、車車間通信によって自車両Maから送信され、自車両Maを注目車両として取り扱う後方の車両によって利用される。
 以上のような自車両Maの車両制御システム10の処理によって、自車両Maがサグ103に到達した時点において、システム搭載車間距離はL2になり、自車両Maの車速はV2になる。従って、サグ103に到達した自車両Maの前方において、車両50の車速と平均車間距離とが、渋滞が発生し難い値とされる。その結果、車両制御システム10によれば、渋滞の原因となりやすいサグ103の存在下においても、渋滞を抑制することができる。
 ここで、上述の説明から理解されるように、上記自車両Maの走行制御によって渋滞を効果的に抑制するためには、システム搭載車間距離L1を正確に設定する必要がある。ところが、自車両Maと同一車線の前方の所定距離範囲内に、自車両Maと同一車線を走行するシステム搭載車が複数検出される場合があり得る。ここで、上記の所定距離範囲とは、自車両Maが車車間通信可能な距離の範囲である。前述したように、処理,S107,S109で検出されたシステム搭載車が1台であれば、当該システム搭載車の位置がシステム搭載車間距離L1の起点(基準位置Zという)となるところ、複数のシステム搭載車が検出された場合には、基準位置Zの特定が困難である。
 そこで、車両制御システム10は、車車間通信が可能な距離範囲内に複数のシステム搭載車が存在するときには、当該複数のシステム搭載車の代表位置Wを次のように決定する。そして、決定された代表位置Wを、基準位置Zに適用して、前述の走行制御を行うこととしている。具体的には、複数のシステム搭載車が存在するときには、処理S107,S109の後に、処理S110に代えて、図6のS501以降の処理を行うこととする。
 前述の処理S107,S109において、複数車両Mj,Mk(ここでは2台分として説明する)分の位置情報が得られたときには(S501でYes)、ECU20は、車両Mjと車両Mkとの距離Sを算出する(S503)。ここでは、ECU20は、図4に示す車速と車頭距離との関係を参照し、車両Mj,Mkの車速に対応する車間距離を求め、当該車間距離を距離Sであるとする。そして、ECU20は、算出された距離Sと所定の距離閾値S0との大小比較を行う(S505)。ここで、距離閾値S0とは、下式(1)で表される値である。
 距離閾値S0=平均車間距離D1+GPS測位誤差  …(1)
式(1)中のGPS測位誤差としては、GPSによる一般的な測位誤差として、30~50mの値が適宜選択される。また、式(1)中の平均車間距離D1としては、道路100上の交通監視システムで計測された情報を、路車間通信機14で受信して採用する。
 処理S505において、距離Sが距離閾値S0よりも大(S505でYes)であれば、位置情報に含まれるGPS測位誤差を鑑みても、何れの車両Mj,Mkが自車両Maに近いかを判断出来ると考えられる。そこで、車両Mj,Mkの位置情報Pj,Pkのうち、自車両Maの位置からより近い方を、代表位置Wとする(S507)。そして、この代表位置Wを基準位置Zに適用し(S509)、基準位置Zと自車両Maの位置との距離を、前述のシステム搭載車間距離L1に適用して(S510)、図3の処理S111以降を進める。すなわち、この場合、2台の注目車両候補Mj,Mkのうち、自車両Maから近い方が、前述の注目車両Mbとして採用されることになる。
 一方、距離Sが距離閾値S0以下(S505でNo)であれば、位置情報に含まれるGPS測位誤差を鑑みると、何れの車両Mj,Mkが自車両Maに近いかを判断出来ないと考えられる。そこで、図7に示すように、位置情報Pj,Pkの平均を算出し、平均の位置を代表位置Wとする(S517)。ここでは、車両Mj,Mkのナビゲーションシステム16で取得されたGPS座標値の算術平均が算出される。そして、この代表位置Wを基準位置Zに適用し(S509)、基準位置Zと自車両Maの位置との距離を前述のシステム搭載車間距離L1に適用して(S510)、図3の処理S111以降を進める。すなわち、この場合、2台の注目車両候補Mj,Mkをまとめて、当該車両Mj,Mkの中央の位置に存在する1台の仮想的な注目車両Mbと見なすことになる。
 以上のとおり、前述の処理S107,S109において、複数車両Mj,Mkの位置情報Pj,Pkが得られたときには(S501でYes)、当該複数車両の代表位置Wを定め、当該代表位置Wと自車両Maとの距離をシステム搭載車間距離L1とする。従って、自車両Maの同一車線の前方において、車車間通信が可能な距離内にシステム搭載車両が複数台存在する場合にも、以降の処理に必要な基準位置Z及びシステム搭載車間距離L1を特定することができる。その結果、システム搭載車間距離L1に基づいた渋滞緩和処理を適切に行うことができる。
 なお、処理S109において、ECU20が、前方のシステム搭載車両の1台分の位置情報を得た場合には(S501でNo)、前述した通り、当該1台のシステム搭載車両の位置を基準位置Zとすればよい(S529)。
(第2実施形態)
 図8に示すように、本実施形態の車両制御システムにおいては、図6の処理S517に代えて、以下の処理S617を行う。ここでは、ECU20は、位置情報Pj,Pkのうち、より新しいバージョンのナビゲーションシステム16で取得されている方を、代表位置Wとする(S617)。そして、この代表位置Wを基準位置Zに適用し(S509)、基準位置Zと自車両Maの位置との差分を前述のシステム搭載車間距離L1に適用して(S510)、図3の処理S111以降を進める。すなわち、この場合、2台の注目車両候補Mj,Mkのうち、バージョンがより新しいナビゲーションシステム16を備える方が、前述の注目車両Mbとして採用されることになる。なお、このような判断処理を可能とするために、車車間通信によって、互いのシステム搭載車両間で、ナビゲーションシステム16のバージョン情報が共有される。
 一般的にナビゲーションシステム16のバージョンが新しいほど、ナビゲーションシステム16の性能が向上しており、得られる位置情報が高精度であると予想される。従って、位置情報が複数台分得られた場合に、より高精度であると予想される位置情報を代表位置Wとすることで、複数台の車両のナビゲーションシステム16のうち精度が高いものから得られる情報を有効に利用し、より正確なシステム搭載車間距離L1を設定することができる。その結果、サグ103における車間距離を高精度で最適にすることで、サグ103における渋滞発生を抑制することができる。
(第3実施形態)
 図9に示すように、本実施形態の車両制御システムにおいては、図6の処理S517に代えて、以下の処理S717を行う。ここでは、ECU20は、位置情報Pj,Pkのうち、受信時刻が遅い方(新しく受信した方)を、代表位置Wとする(S717)。そして、この代表位置Wを基準位置Zに適用し(S509)、基準位置Zと自車両Maの位置との差分を前述のシステム搭載車間距離L1に適用して(S510)、図3の処理S111以降を進める。すなわち、この場合、2台の注目車両候補Mj,Mkの位置情報Pj、Pkのうち、より新しい情報を送信した方が、前述の注目車両Mbとして採用されることになる。なお、このような判断処理を可能とするため、自車両MaのECU20は、車車間通信で受信された他車両の位置情報に対して、当該位置情報の受信時刻を関連づけて記憶する。
 このような処理によれば、位置情報が複数台分得られた場合に、より新しい位置情報を代表位置Wとすることで、新しい位置情報に基づいた正確なシステム搭載車間距離L1を設定することができる。その結果、サグ103における車間距離を高精度で最適にすることで、サグ103における渋滞発生を抑制することができる。
 本発明は、所定の位置範囲に存在する他車両の位置情報から取得される基準位置情報に基づいて、自車両の所定の処理を行う車両用情報処理装置に関するものであり、複数の他車両が所定の範囲内に存在している場合にも、所定の処理に必要な他車両の位置情報を特定することができるものである。
 10…車両制御システム(車両用情報処理装置)、Ma…自車両、Mb,Mj,Mk…システム搭載車両(他車両)、W…代表位置、Z…基準位置。

Claims (9)

  1.  所定の位置範囲に存在する他車両の位置情報から取得される基準位置情報に基づいて、自車両の所定の処理を行う車両用情報処理装置であって、
     前記所定の位置範囲に複数の他車両が存在する場合には、
     前記複数の他車両のそれぞれから得られた複数の位置情報に基づいて代表とする代表位置情報を取得し、
     取得された前記代表位置情報を前記基準位置情報として、前記所定の処理を行うことを特徴とする車両用情報処理装置。
  2.  前記代表位置情報は、
     前記複数の他車両のそれぞれから得られた複数の位置情報を平均して取得されることを特徴とする請求項1に記載の車両用情報処理装置。
  3.  前記複数の前記他車両同士の距離が所定の距離以下である場合に、
     前記代表位置情報は、前記複数の他車両のそれぞれから得られた複数の位置情報を平均して取得され、
     前記複数の前記他車両同士の距離が所定の距離よりも大である場合には、
     前記複数の位置情報のうち前記自車両から最も近い位置情報が前記代表位置情報として取得されることを特徴とする請求項2に記載の車両用情報処理装置。
  4.  前記代表位置情報は、
     前記複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの精度に基づいて取得されることを特徴とする請求項1に記載の車両用情報処理装置。
  5.  前記複数の前記他車両同士の距離が所定の距離以下である場合に、
     前記複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの精度に基づいて、前記複数の位置情報のうち最も精度が高いと予想される位置情報が前記代表位置情報として取得され、
     前記複数の前記他車両同士の距離が所定の距離よりも大である場合には、
     前記複数の位置情報のうち前記自車両から最も近い位置情報が前記代表位置情報として取得されることを特徴とする請求項4に記載の車両用情報処理装置。
  6.  前記代表位置情報は、
     前記複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの取得のタイミングに基づいて取得されることを特徴とする請求項1に記載の車両用情報処理装置。
  7.  前記複数の前記他車両同士の距離が所定の距離以下である場合に、
     前記複数の他車両のそれぞれから得られた複数の位置情報のそれぞれの取得のタイミングに基づいて、前記複数の位置情報のうち取得された時刻が最も新しい位置情報が前記代表位置情報として取得され、
     前記複数の前記他車両同士の距離が所定の距離よりも大である場合には、
     前記複数の位置情報のうち前記自車両から最も近い位置情報が前記代表位置情報として取得されることを特徴とする請求項6に記載の車両用情報処理装置。
  8.  前記所定の位置範囲に存在する他車両が1台の場合には、
     当該他車両の位置情報を前記基準位置情報として前記所定の処理を行うことを特徴とする請求項1に記載の車両用情報処理装置。
  9.  前記他車両は、前記自車両との車車間通信が可能であり、
     前記他車両の位置情報は、
     前記他車両との間の車車間通信によって取得されることを特徴とする請求項1に記載の車両用情報処理装置。
PCT/JP2009/063356 2009-07-27 2009-07-27 車両用情報処理装置 WO2011013189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/063356 WO2011013189A1 (ja) 2009-07-27 2009-07-27 車両用情報処理装置
US13/320,425 US8676486B2 (en) 2009-07-27 2009-07-27 Vehicular information processing device
CN200980160517.4A CN102473350B (zh) 2009-07-27 2009-07-27 车辆用信息处理装置
JP2011524551A JP5327327B2 (ja) 2009-07-27 2009-07-27 車両用情報処理装置
DE200911005097 DE112009005097B4 (de) 2009-07-27 2009-07-27 Fahrzeuginformationsverarbeitungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/063356 WO2011013189A1 (ja) 2009-07-27 2009-07-27 車両用情報処理装置

Publications (1)

Publication Number Publication Date
WO2011013189A1 true WO2011013189A1 (ja) 2011-02-03

Family

ID=43528866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063356 WO2011013189A1 (ja) 2009-07-27 2009-07-27 車両用情報処理装置

Country Status (5)

Country Link
US (1) US8676486B2 (ja)
JP (1) JP5327327B2 (ja)
CN (1) CN102473350B (ja)
DE (1) DE112009005097B4 (ja)
WO (1) WO2011013189A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900082A (zh) * 2015-05-15 2015-09-09 四川大学 一种交通态势感知中数据传输的方法和装置
JP2016200931A (ja) * 2015-04-09 2016-12-01 三菱電機株式会社 運転支援装置および運転支援方法
JP2018106701A (ja) * 2016-12-27 2018-07-05 クラリオン株式会社 車載通信装置、及び、通信方法
WO2018123864A1 (ja) * 2016-12-27 2018-07-05 クラリオン株式会社 車載通信装置、及び、通信方法
JP2020177316A (ja) * 2019-04-16 2020-10-29 三菱電機株式会社 運転支援システムおよび車載情報処理装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130197800A1 (en) * 2012-01-31 2013-08-01 Autotalks Ltd. Method and system for gps augmentation using cooperative altitude learning
US8930124B1 (en) * 2013-08-30 2015-01-06 International Business Machines Corporation Dynamic speed limit generation
US9164507B2 (en) * 2013-12-06 2015-10-20 Elwha Llc Systems and methods for modeling driving behavior of vehicles
US9707942B2 (en) 2013-12-06 2017-07-18 Elwha Llc Systems and methods for determining a robotic status of a driving vehicle
US11458970B2 (en) * 2015-06-29 2022-10-04 Hyundai Motor Company Cooperative adaptive cruise control system based on driving pattern of target vehicle
KR102107774B1 (ko) * 2016-12-30 2020-05-07 현대자동차주식회사 목표차량의 운전패턴에 따른 협조 적응 순항 제어 시스템
DE102016011325A1 (de) * 2016-09-21 2018-03-22 Wabco Gmbh Verfahren zum Ermitteln eines dynamischen Fahrzeug-Abstandes zwischen einem Folgefahrzeug und einem Vorderfahrzeug eines Platoons
JP6508167B2 (ja) * 2016-11-11 2019-05-08 トヨタ自動車株式会社 歩行訓練システム
US10473793B2 (en) * 2017-01-19 2019-11-12 Ford Global Technologies, Llc V2V collaborative relative positioning system
US11079497B2 (en) * 2017-09-25 2021-08-03 Continental Automotive Systems, Inc. Vehicle localization based on neural network
US10814811B2 (en) * 2017-09-30 2020-10-27 Physician Electronic Networks, L.L.C. Collision detection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199389A (ja) * 2002-12-18 2004-07-15 Toyota Motor Corp 運転補助システム及び装置
JP2009031926A (ja) * 2007-07-25 2009-02-12 Japan Radio Co Ltd 車両搭載用交差点判定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983161A (en) 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
US7426437B2 (en) * 1997-10-22 2008-09-16 Intelligent Technologies International, Inc. Accident avoidance systems and methods
JP3681241B2 (ja) * 1996-11-19 2005-08-10 松下電器産業株式会社 相対位置算出装置
JP3932975B2 (ja) 2002-05-17 2007-06-20 アイシン・エィ・ダブリュ株式会社 位置検出装置
JP3689076B2 (ja) * 2002-09-05 2005-08-31 株式会社東芝 車載用電子機器
US6813561B2 (en) * 2003-03-25 2004-11-02 Ford Global Technologies, Llc Relative positioning for vehicles using GPS enhanced with bluetooth range finding
JP4742775B2 (ja) 2005-09-22 2011-08-10 日産自動車株式会社 他車両情報提供装置
EP1895485A1 (en) * 2006-08-31 2008-03-05 Hitachi, Ltd. Road congestion detection by distributed vehicle-to-vehicle communication systems
US8532862B2 (en) * 2006-11-29 2013-09-10 Ryan A. Neff Driverless vehicle
JP4366419B2 (ja) * 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
JP4905341B2 (ja) * 2007-12-13 2012-03-28 株式会社豊田中央研究所 位置推定装置及び位置推定システム
US20090228172A1 (en) * 2008-03-05 2009-09-10 Gm Global Technology Operations, Inc. Vehicle-to-vehicle position awareness system and related operating method
US7898472B2 (en) * 2009-03-27 2011-03-01 GM Global Technology Operations LLC Method and apparatus for precise relative positioning in multiple vehicles
JP5353486B2 (ja) 2009-06-30 2013-11-27 セイコーエプソン株式会社 振動片および振動子
JP5273250B2 (ja) 2009-07-28 2013-08-28 トヨタ自動車株式会社 車両制御装置、車両制御方法及び車両制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199389A (ja) * 2002-12-18 2004-07-15 Toyota Motor Corp 運転補助システム及び装置
JP2009031926A (ja) * 2007-07-25 2009-02-12 Japan Radio Co Ltd 車両搭載用交差点判定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200931A (ja) * 2015-04-09 2016-12-01 三菱電機株式会社 運転支援装置および運転支援方法
CN104900082A (zh) * 2015-05-15 2015-09-09 四川大学 一种交通态势感知中数据传输的方法和装置
JP2018106701A (ja) * 2016-12-27 2018-07-05 クラリオン株式会社 車載通信装置、及び、通信方法
WO2018123864A1 (ja) * 2016-12-27 2018-07-05 クラリオン株式会社 車載通信装置、及び、通信方法
US10638445B2 (en) 2016-12-27 2020-04-28 Clarion Co., Ltd. Vehicle-mounted communication device and communication method
JP2020177316A (ja) * 2019-04-16 2020-10-29 三菱電機株式会社 運転支援システムおよび車載情報処理装置

Also Published As

Publication number Publication date
JPWO2011013189A1 (ja) 2013-01-07
DE112009005097T8 (de) 2012-10-18
CN102473350A (zh) 2012-05-23
CN102473350B (zh) 2014-04-16
JP5327327B2 (ja) 2013-10-30
DE112009005097T5 (de) 2012-07-26
DE112009005097B4 (de) 2013-01-03
US8676486B2 (en) 2014-03-18
US20120065876A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5327327B2 (ja) 車両用情報処理装置
KR102141445B1 (ko) 차량의 차선 변경을 위해 2개의 차량 사이의 트래픽 갭을 결정하기 위한 방법 및 제어 시스템
US9076341B2 (en) Vehicle to vehicle communication device and convoy travel control device
JP5760835B2 (ja) 走行支援装置及び走行支援システム
US9207091B2 (en) Drive assistance device
EP2019287B1 (en) Vehicle positioning information update device
US9150221B2 (en) Vehicle controller, control method for vehicle and control system for vehicle
WO2016063383A1 (ja) 運転支援装置
JP5273213B2 (ja) 走行支援システム及び車両用無線通信装置
KR20180042344A (ko) 예상 주행 의도에 관한 정보를 제공하기 위한 장치, 방법 및 컴퓨터 프로그램
CN108153854B (zh) 弯道分类方法、路侧单元、车载终端及电子设备
EP3330669A1 (en) Control method for travel control device, and travel control device
JP2019096177A (ja) 車群制御装置
EP3657461A1 (en) Information processing system and server
KR20150066863A (ko) 주행차로 인식을 이용한 경로안내장치 및 방법
JP2017030435A (ja) 車間距離制御装置
JP2008302849A (ja) 車両運転支援システム、運転支援装置、車両及び車両運転支援方法
JP4609467B2 (ja) 周辺車両情報生成装置、周辺車両情報生成システム、コンピュータプログラム及び周辺車両情報生成方法
US11780448B2 (en) Vehicle behavior estimation method, vehicle control method, and vehicle behavior estimation device
JP2013254385A (ja) 運転者支援装置
JP2012153296A (ja) 走行制御装置
US11662745B2 (en) Time determination of an inertial navigation system in autonomous driving systems
JP5887915B2 (ja) 車両用運転支援装置及び車両用運転支援方法
JP2011028639A (ja) 車両制御システム
JP2020027447A (ja) プローブ情報処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160517.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524551

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320425

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009005097

Country of ref document: DE

Ref document number: 1120090050972

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847781

Country of ref document: EP

Kind code of ref document: A1