WO2011004892A1 - 熱可塑性樹脂組成物及びその成形体 - Google Patents

熱可塑性樹脂組成物及びその成形体 Download PDF

Info

Publication number
WO2011004892A1
WO2011004892A1 PCT/JP2010/061697 JP2010061697W WO2011004892A1 WO 2011004892 A1 WO2011004892 A1 WO 2011004892A1 JP 2010061697 W JP2010061697 W JP 2010061697W WO 2011004892 A1 WO2011004892 A1 WO 2011004892A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
temperature
melt viscosity
thermoplastic
Prior art date
Application number
PCT/JP2010/061697
Other languages
English (en)
French (fr)
Inventor
六田 充輝
Original Assignee
ダイセル・エボニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43429316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011004892(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ダイセル・エボニック株式会社 filed Critical ダイセル・エボニック株式会社
Priority to JP2011521977A priority Critical patent/JP5702283B2/ja
Priority to EP10797203.6A priority patent/EP2452980B1/en
Priority to KR1020127003371A priority patent/KR101735859B1/ko
Priority to US13/380,650 priority patent/US8663542B2/en
Priority to CN201080030710.9A priority patent/CN102471571B/zh
Publication of WO2011004892A1 publication Critical patent/WO2011004892A1/ja
Priority to US14/019,859 priority patent/US8765047B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a thermoplastic resin composition (for example, a polyetherketone resin composition) that can improve molding efficiency while ensuring physical properties such as desired mechanical strength in the molded body, and a molded body thereof.
  • a thermoplastic resin composition for example, a polyetherketone resin composition
  • Polyetherketone resins such as polyetheretherketone (PEEK) and polyetherketone (PEK) are typical semi-crystalline thermoplastic resins with excellent heat resistance, chemical resistance, mechanical strength, etc. Since it was developed by ICI, it has been used in many application fields that cannot be handled by conventional synthetic resins.
  • the higher order structure such as the crystal structure of the polyetherketone resin is complicated, and it is common to precisely adjust it according to the polymerization conditions because of its low solubility and high melt viscosity. More difficult than thermoplastic resins.
  • the higher order structure cannot be precisely adjusted, it is difficult to stably obtain a polyetherketone resin having a desired melt viscosity, crystallization temperature, etc., and desired mechanical properties can be obtained from such a polyetherketone resin.
  • considerable device is required in the molding process.
  • the melt viscosity and the crystallization temperature affect not only the strength of the molded body but also the working efficiency in the molding process, so how to adjust them is a major technical problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-241201
  • Patent Document 1 includes (A) one or more styrene resins and (B) a thermoplastic resin other than a styrene resin, and a continuous phase having a structural period of 0.001 to 1 ⁇ m.
  • Styrenic resin composition having a structure or a dispersion structure with a distance between particles of 0.001 to 1 ⁇ m, and a ratio of melt viscosity at 180 to 300 ° C.
  • styrene resin is not a crystalline thermoplastic resin, and the molding cycle cannot be improved by mixing two types of resins.
  • a low viscosity melt master batch is formed by mixing a melt master batch and a first polymer having a melt viscosity lower than that of the melt master batch.
  • a method of mixing a masterbatch and a second polymer to form a conductive composition is disclosed.
  • the melt masterbatch and the first polymer having different melt viscosities are mixed, and this mixture is mixed with the second polymer. And the influence on the mechanical properties of the compact is small.
  • JP-T-2007-506833 has a melt viscosity (MV) of 0.05 to 0.12 kNsm -2 , and (a) a phenyl moiety, (b) a carbonyl moiety, and (c ) A pack comprising a polymeric material having an ether moiety is disclosed.
  • MV melt viscosity
  • This document also describes a mixture of a plurality of low viscosity polyetheretherketone.
  • low-viscosity polyether ether ketones are mixed together, so that the molding cycle and the mechanical properties of the molded body cannot be improved.
  • Patent Document 4 contains (A) a polymerization component having a molecular weight of 5000 or more and less than 2 million, and (B) a polymerization component having a molecular weight of 1000 or more and less than 5000, and (A) :( Polyether ether ketones having a weight ratio of B) of 60:40 to 97: 3 are disclosed. However, since this polyether ether ketone contains the oligomer component (B) in addition to the resin component (A), the fluidity is improved, but the mechanical properties are lowered.
  • JP 2006-241201 A Japanese translation of PCT publication No. 2008-528768 (Claims) Japanese translation of PCT publication No. 2007-506833 (Claims) WO2009 / 057255 (Claims)
  • An object of the present invention is to provide a thermoplastic resin composition (for example, a polyetherketone resin composition) capable of improving molding efficiency by having high fluidity while ensuring physical properties such as strength in the molded body, and a molded body thereof. It is to provide.
  • a thermoplastic resin composition for example, a polyetherketone resin composition
  • Another object of the present invention is to provide a thermoplastic resin composition (for example, a polyether ketone resin composition) that can increase the crystallization temperature and improve the molding cycle, and a molded article thereof.
  • a thermoplastic resin composition for example, a polyether ketone resin composition
  • Still another object of the present invention is to provide a thermoplastic resin composition (for example, a polyetherketone resin composition) that can improve the dimensional stability of a molded article and a molded article thereof.
  • a thermoplastic resin composition for example, a polyetherketone resin composition
  • the present inventors have increased resin characteristics by mixing a plurality of specific thermoplastic resins having different melt viscosities without passing through special polymerization conditions and molding conditions. What can be improved, for example, (1) a second thermoplastic resin having a minimum molecular weight necessary for securing the properties of a molded article in a first thermoplastic resin that has a high melt viscosity and low fluidity and is difficult to be injection molded. Adding a small amount of thermoplastic resin can increase the crystallization temperature and improve the molding cycle. (2) Adding a small amount of the first thermoplastic resin to the second thermoplastic resin increases the physical properties such as mechanical properties. As a result, the present invention has been completed.
  • thermoplastic resin composition of the present invention includes a plurality of thermoplastic resins having different melt viscosities, and these thermoplastic resins are units composed of an arylene group, a carbonyl group and / or an ether group.
  • a thermoplastic resin composition comprising at least a first thermoplastic resin having a melt viscosity of about 150 to 1500 Pa ⁇ s at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 , and a second thermoplastic resin.
  • the thermoplastic resin may be a polyether ketone resin (for example, at least one selected from polyether ether ketone and polyether ketone).
  • the melt viscosity of the second thermoplastic resin at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 may be about 90 to 150 Pa ⁇ s.
  • the proportion of the second thermoplastic resin is small (1 to 50 parts by weight, for example, about 1 to 45 parts by weight) with respect to 100 parts by weight of the first thermoplastic resin
  • the crystallization temperature is increased. It can be improved.
  • the proportion of the first thermoplastic resin is small (1 to 50 parts by weight, for example, about 1 to 45 parts by weight) with respect to 100 parts by weight of the second thermoplastic resin
  • the mechanical properties and the like Physical properties can be greatly improved.
  • the crystallization temperature of the thermoplastic resin composition of the present invention may be higher than the weighted average of the crystallization temperatures of a plurality of thermoplastic resins, for example, may be higher than the crystallization temperature of the second thermoplastic resin. .
  • thermoplastic resin compositions may be obtained by melt-kneading the plurality of thermoplastic resins. Moreover, the thermoplastic resin composition may have a single or two or more molecular weight peaks in gel filtration chromatography molecular weight measurement.
  • the first thermoplastic resin having a melt viscosity of about 150 to 1500 Pa ⁇ s at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 is melted into the first thermoplastic resin and the second thermoplastic resin.
  • the crystallization temperature of the resin composition can be higher than the crystallization temperature of the weighted average of the first thermoplastic resin and the second thermoplastic resin.
  • the present invention also includes a molded body formed from the thermoplastic resin composition.
  • the molded body may be formed by injection molding.
  • the molded product of the present invention may be a thin molded part, for example, a molded product having a region having a thickness of 2 mm or less, and a molding having a region having a thickness of 2 mm or less and a width of 10 mm or less (for example, a band-shaped region). It may be a body.
  • thermoplastic resins having different melt viscosities without passing through special polymerization conditions and molding conditions, by mixing a plurality of specific thermoplastic resins having different melt viscosities, fluidity and crystallization are ensured while ensuring the mechanical properties of the molded body.
  • the temperature can be increased and the molding efficiency can be greatly improved.
  • the greater the difference in melt viscosity the greater the effect of improving the molding efficiency.
  • the second thermoplastic resin having the minimum molecular weight necessary to secure the properties of the molded article in addition to the first thermoplastic resin, which alone has a high melt viscosity and low fluidity and is difficult to injection mold. When a small amount of resin is added, the crystallization temperature can be greatly improved.
  • the crystallization temperature can be higher than the crystallization temperature (weighted average crystallization temperature) assumed from the crystallization temperature of the thermoplastic resin to be mixed, Since the mold can be released, the molding cycle can be greatly shortened. In the present invention, since the crystallization temperature is high and the crystallization speed is high, the dimensional stability of the molded body can be improved.
  • FIG. 1 is a graph showing the crystallization temperature of polyether ketone resins or compositions in Examples and Comparative Examples.
  • thermoplastic resin composition of the present invention contains a plurality (for example, about 2 to 4, preferably about 2 to 3) of thermoplastic resins (crystalline thermoplastic resins, etc.) having different melt viscosities.
  • the thermoplastic resin is a unit composed of an arylene group, an ether group and / or a carbonyl group, for example, the following formula (1)
  • ring Z represents an arene ring, and R represents an oxygen atom or a carbonyl group (—C (O) —), which are the same or different from each other in each unit]
  • the unit represented by (repeating unit) is included.
  • the types of R and ring Z may be the same or different.
  • R may form —C (O) O— (ester bond) in some units, but usually does not form a —C (O) O— bond.
  • Examples of the arene ring represented by ring Z include C 6-10 arene rings such as benzene and naphthalene, C 6-10 aryl C 6-10 arene rings such as biphenyl and binaphthyl, and the like.
  • Ring Z may have a substituent.
  • Examples of the substituent include C 1-6 alkyl groups such as methyl and ethyl groups (preferably C 1-4 alkyl groups).
  • the thermoplastic resin may be, for example, a polyphenylene ether resin (polyphenylene ether, modified polyphenylene ether, etc.), but is usually a polyether ketone resin (aromatic polyether ketone resin).
  • the polyether ketone resin is not particularly limited, but is generally appropriately configured from an arylene group such as a phenylene group, a carbonyl group, and an ether group.
  • polyether ketone, polyether ether ketone, polyether ketone ketone Examples include ether ketone, ether ketone ketone, polyether ether ketone ketone, and polyether-diphenyl-ether-phenyl-ketone-phenyl.
  • thermoplastic resins can be used alone or in combination of two or more.
  • polyetherketone resins are preferable, and polyetheretherketone and polyetherketone are particularly preferable.
  • thermoplastic resins in the thermoplastic resin composition is not particularly limited, but a combination of the same kind of polyether ketone resins such as a combination of only a plurality of polyether ether ketones or a combination of only a plurality of polyether ketones is preferable.
  • the molecular weight of the thermoplastic resin is not particularly limited as long as melt kneading and molding are possible.
  • the number average molecular weight is 5,000 or more (for example, in terms of polystyrene in gel permeation chromatography (GPC)).
  • GPC gel permeation chromatography
  • 5,000 to 1,000,000 preferably 8,000 or more (eg, 10,000 to 500,000), more preferably 15,000 or more (eg, 18,000 to 100,000), especially 20 20,000 or more (for example, 20,000 to 50,000).
  • the molecular weight distribution (Mw / Mn) may be, for example, about 1.5 to 5, preferably about 1.8 to 4, more preferably about 2 to 3.5.
  • thermoplastic resin when the molecular weight is increased, mechanical properties are improved and fluidity is lowered.
  • the polyetherketone resin exhibits a specific behavior due to its small entanglement molecular weight. That is, the fluidity changes greatly (for example, decreases) with only a slight increase in molecular weight. Further, when the molecular weight increases, the molecular entanglement increases and the crystallization speed decreases, so that the physical properties such as mechanical properties show complex changes depending on the molecular weight.
  • the melt viscosity of the thermoplastic resin is not particularly limited.
  • the melt viscosity at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 can be selected from the range of about 90 to 1500 Pa ⁇ s, and 90 to 800 Pa ⁇ s, preferably 95 It may be about 700 to 700 Pa ⁇ s, more preferably about 100 to 600 Pa ⁇ s (for example, 100 to 500 Pa ⁇ s).
  • a resin having a melt viscosity lower than 90 Pa ⁇ s has a molecular weight in the oligomer region, and even when mixed with a high-viscosity thermoplastic resin, the mechanical strength of the molded article may not be improved.
  • the crystallization temperature of the thermoplastic resin is not particularly limited as long as it can be melt kneaded or molded.
  • the crystallization temperature at a cooling rate of 5 ° C./min is 290 to 310 ° C., preferably 291 to 309 ° C. More preferably, it may be about 292 to 308 ° C.
  • thermoplastic resins may be commercially available products or may be produced by known methods.
  • an aromatic diol component and an aromatic dihalide component (however, either component includes at least a component having a carbonyl group), or an aromatic monohalide mono
  • an all component (including at least an aromatic monohalide monool component having a carbonyl group) is polycondensed in the temperature range of 150 ° C. to 400 ° C. in the presence of an alkali metal salt and a solvent.
  • aromatic diol components include hydroquinone
  • aromatic dihalide components include 4,4′-difluorobenzophenone
  • aromatic monohalide monool components include 4-fluorophenol and 4-fluoro-4 ′. -Hydroxybenzophenone and the like.
  • alkali metal salts include anhydrous potassium carbonate.
  • the solvent include diphenyl sulfone.
  • Polyetherketone resin After completion of the polycondensation reaction, it may be pulverized, washed with acetone, methanol, ethanol, water, etc. and dried.
  • Polyetherketone resin has a crystallization temperature adjusted by modifying terminal groups (usually halogen atoms) with alkaline sulfonic acid groups (sodium sulfonate group, potassium sulfonate group, lithium sulfonate group, etc.). Although it may be used by appropriately adjusting, it is preferable to use it without modifying the end group.
  • the thermoplastic resin composition contains at least a first thermoplastic resin (such as a high-viscosity thermoplastic resin) and a second thermoplastic resin (such as a low-viscosity thermoplastic resin) having different melt viscosities.
  • the first thermoplastic resin and the second thermoplastic resin may have the same or different chemical structure. Even if the chemical structure is the same, the resin properties can be greatly improved.
  • the melt viscosity of the first thermoplastic resin (for example, the thermoplastic resin having the highest melt viscosity) at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 is, for example, , 150 Pa ⁇ s or more (eg, about 150 to 1500 Pa ⁇ s), for example, 160 Pa ⁇ s or more (eg, 170 to 800 Pa ⁇ s), preferably 200 Pa ⁇ s or more (eg, 250 to 700 Pa ⁇ s).
  • the melt viscosity of the second thermoplastic resin (for example, the thermoplastic resin having the lowest melt viscosity) at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 is, for example, 170 Pa ⁇ s or less (eg, 90 to 160 Pa ⁇ s).
  • the properties of the composition can be obtained by adding a small amount of the other thermoplastic resin to one of the first thermoplastic resin and the second thermoplastic resin.
  • the first thermoplastic resin / second thermoplastic resin (weight ratio) is 50/50 to 1/99 (for example, 45/55 to 5/95), preferably 40 / It may be 60 to 10/90 (for example, 35/65 to 10/90), more preferably about 30/70 to 10/90.
  • 1 to 50 parts by weight for example, 1 to 45 parts by weight, preferably 10 to 40 parts by weight, preferably 20 to 35 parts by weight
  • the crystallization temperature can be greatly improved and the molding cycle can be greatly shortened.
  • 1 to 50 parts by weight for example, 1 to 45 parts by weight, preferably 10 to 40 parts by weight, preferably 20 to 35 parts by weight
  • the physical properties such as mechanical properties can be greatly improved.
  • the total ratio of the first thermoplastic resin and the second thermoplastic resin is, for example, 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight, with respect to the entire thermoplastic resin composition. It may be more (for example, about 90 to 100% by weight).
  • the melt viscosity of the thermoplastic resin composition at a temperature of 400 ° C. and a shear rate of 1216 s ⁇ 1 is 100 to 800 Pa ⁇ s (for example, 100 to 700 Pa ⁇ s), preferably 100 to 600 Pa ⁇ s, more preferably 110 to 500 Pa ⁇ s. It is about s (for example, 120 to 450 Pa ⁇ s, preferably 130 to 400 Pa ⁇ s).
  • the melt viscosity is lower than 100 Pa ⁇ s, there may be a problem with the strength of the resulting molded body, and when the melt viscosity is higher than 800 Pa ⁇ s, there may be a problem with moldability.
  • the thermoplastic resin composition of the present invention has a high crystallization temperature.
  • the crystallization temperature is an index that reflects the crystallization rate that affects the time cycle of the molding process. That is, the crystallization rate can be evaluated based on the crystallization temperature when cooled from a molten state at a certain temperature in, for example, differential scanning calorimetry. The higher the crystallization temperature, the higher the crystallization rate and the shorter the molding cycle.
  • the crystallization temperature of the thermoplastic resin composition may be, for example, 300 ° C. or higher, preferably 303 ° C. or higher, more preferably 306 ° C. or higher (eg, about 306 to 308 ° C.). When the crystallization temperature is lower than 300 ° C., it takes time to release the mold from the mold after the molding process, which may adversely affect the molding cycle.
  • the crystallization temperature of the thermoplastic resin composition is, for example, not less than the crystallization temperature of the first thermoplastic resin (for example, not less than the lowest crystallization temperature among the crystallization temperatures of the resins constituting the composition), preferably Is higher than the weighted average of the crystallization temperatures of the constituent resins, more preferably higher than the crystallization temperature of the second thermoplastic resin (for example, higher than the highest crystallization temperature among the crystallization temperatures of the constituent resins).
  • the weighted average crystallization temperature may be +1 to 10 ° C. (for example, 1 to 5 ° C.) or less.
  • thermoplastic resin composition is crystallized at a higher temperature than when any or all of the resins constituting the composition are used alone, for example, molding such as extrusion or injection from the melt-kneading step. After passing through the steps, it is possible to obtain an improvement effect of shortening the molding cycle, such as crystallization faster and release from the mold.
  • the crystallization temperature of each thermoplastic resin and resin composition was increased from ⁇ 10 ° C. to 410 ° C. at a rate of 20 ° C./min, held at 410 ° C. for 1 minute, and then cooled at a cooling rate of 5 ° C./min. Means the crystallization temperature in the cooling process, which can be measured using a differential scanning calorimeter.
  • the thermoplastic resin composition has an excellent balance between fluidity and mechanical properties.
  • the flow length (spiral flow) under the conditions of a width of 6 mm, a thickness of 2 mm, a cylinder temperature of 380 ° C., a mold temperature of 180 ° C., and a pressure of 1000 bar is 30 to 70 cm, preferably 35 to 65 cm, more preferably 40 It may be about ⁇ 60 cm (for example, 45 to 55 cm).
  • the tensile strength at break is 95 to 120 MPa, preferably about 100 to 110 MPa in accordance with ISO 527.
  • the Charpy impact strength may be about 8 to 20 KJ / m 2 , preferably 9 to 18 KJ / m 2 , more preferably about 10 to 15 KJ / m 2 in accordance with ISO 179 / 1eA.
  • the impact strength can be further improved, and for example, it can be made larger than the impact strength of the thermoplastic resin alone.
  • the thermoplastic resin composition may have a single peak in gel filtration chromatography molecular weight measurement, or may have two or more molecular weight peaks.
  • the molecular weight peak may correspond to each thermoplastic resin.
  • the strength is remarkably improved by improving the crystal structure and packing structure at the molecular level after melt-kneading.
  • a low molecular weight resin is presumed to function as a kind of crystal nucleating agent, and the physical properties (melt viscosity, crystallization temperature, crystallization speed, etc.) of a low molecular weight resin and a high molecular weight resin are particularly different. In this case, the physical properties of the resin composition obtained can be remarkably improved.
  • the composition may be obtained by mixing two or more resins having different molecular weights, or may be obtained by production process conditions such as polymerization process conditions that can obtain one or more molecular weight peaks.
  • the crystallization temperature can be greatly improved without substantially containing a crystal nucleating agent.
  • the number of molecular weight peaks generally depends on the number of resins constituting the composition, but is not limited thereto, and the resin constituting the composition itself has two or more molecular weight peaks.
  • the composition may be composed of two or more resins having a molecular weight peak at the same molecular weight value. From the viewpoint of easy adjustment of desired crystallinity, mechanical strength, and the like, The constituent molecular weights are preferably different.
  • the gel filtration chromatography molecular weight measurement method is not particularly limited, and examples thereof include a method described in JP-A-2004-45166.
  • the thermoplastic resin composition is a mixture of each thermoplastic resin constituting the resin composition [or a simple mixture (for example, dry blend, premix), for example, a mixture of pellets, a mixture of granules, or a pellet and A product obtained by mixing and kneading a granular material] or a product obtained by melting and kneading a plurality of thermoplastic resins (or the mixture) constituting the resin composition.
  • a simple mixture for example, dry blend, premix
  • a product obtained by melting and kneading a plurality of thermoplastic resins (or the mixture) constituting the resin composition By melt-kneading, it is possible to provide a resin composition having a uniform and stable quality as well as improved physical properties by improving the crystal structure and packing structure at the molecular level.
  • An additive may be added to the resin constituting the thermoplastic resin composition or the composition.
  • Additives such as reinforcing agents [mineral particles (talc, silica, kaolin, etc.), metal oxide (magnesium oxide, aluminum oxide, zinc oxide, etc.), metal sulfate (calcium sulfate, barium sulfate, etc.), etc.
  • These additives can be used alone or in combination of two or more.
  • the thermoplastic resin composition can be prepared by a conventional method, for example, by mixing each component.
  • the thermoplastic resin composition is, for example, a dry blend (usually using a mixer such as a tumbler or a V-type blender) at room temperature without simply kneading each component in the form of powder or pellets. Or by blending each component by melt kneading.
  • each component is premixed in a mixer (such as a tumbler, a V-type blender, a Henschel mixer, a Nauta mixer, a ribbon mixer, a mechanochemical apparatus, or an extrusion mixer), and then various melt kneaders ( For example, it is often melt-kneaded at a temperature of about 300 to 450 ° C. (preferably 350 to 400 ° C.) using a kneader, a single-screw or twin-screw extruder or the like.
  • This melt-kneaded product may be pelletized by conventional pelletizing means (such as a pelletizer).
  • thermoplastic resin composition of the present invention can be formed into a desired shape.
  • the molding method is not particularly limited, and the molding can be performed by a known method such as extrusion molding or injection molding. Of these molding methods, injection molding is preferred.
  • thermoplastic resin composition of the present invention can improve the crystallization speed by improving the crystallization temperature, for example, the vicinity of the outer surface and the inner part of the molded body usually generated in the cooling step after molding by extrusion molding or injection molding, etc. And the difference in crystallinity between the molded product and the dimensional accuracy of the molded product can be increased.
  • the molded body of the present invention is not particularly limited as long as it is formed of the thermoplastic resin composition, and has various shapes (for example, a two-dimensional structure such as a film shape or a sheet shape, a band shape, a rod shape, a pipe shape, etc. Or a three-dimensional structure such as a three-dimensional shape).
  • the molded article is a thin molded article or a molded article having a thin molded part, for example, a molded article having an area (thin area) having a thickness of 2 mm or less (eg, 0.01 to 2 mm, preferably about 0.1 to 1.5 mm).
  • a molded body having a region (for example, a band-shaped region or a band-shaped thin molded portion) having a thickness of 2 mm or less and a width of 10 mm or less may be used. That is, the thermoplastic resin composition of the present invention exhibits high toughness even when thin-walled. Therefore, when it is formed into a thin film or sheet, or when formed into a thin and thin band, it exhibits superior toughness than when the resin constituting the composition is formed alone.
  • the thickness is preferably 2 mm or less (eg, about 0.01 to 2 mm, preferably about 0.1 to 1.5 mm).
  • the thickness is 2 mm or less (for example, 0.01 to 2 mm, preferably about 0.1 to 1.5 mm), and the width is 10 mm or less (for example, 1 to 10 mm, preferably about 2 to 8 mm). ) Is preferred.
  • a polyether ketone resin or a resin composition is formed into a band-shaped molded body (width 5 mm ⁇ thickness 1 mm ⁇ length 500 mm), wound in a single layer to form a loop having a diameter of 20 mm or more, and then the loop portion is pulled by pulling both ends of the band. The diameter of the loop was gradually reduced, and the breaking condition of the loop portion when the diameter of the loop reached 5 mm was observed. A total of 5 samples were used, and the obtained results were evaluated as follows.
  • Examples 2 to 5 provide good fluidity and high crystallization temperature while sufficiently maintaining the toughness of the resin constituting the composition. Particularly in Examples 1 and 2, it is remarkable that the crystallization temperature is higher than both of 1000G and 4000G which are resins constituting the composition.
  • the crystallization temperature was greatly improved from a value [for example, a weighted average crystallization temperature (298 ° C.)] assumed from the mixing ratio of 1000G and 4000G. ing.
  • thermoplastic resin composition of the present invention and the molded product thereof are film-like, band-like as members of products that require heat resistance, chemical resistance, toughness, etc., such as semiconductors, electronic devices, automobiles, aircrafts, etc. It can be used in various shapes such as a rod shape, a pipe shape, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 成形体における所望の強度等の物性を確保しつつ、高い流動性及び結晶化温度を有することにより成形効率を改善できる熱可塑性樹脂組成物及びその成形体を提供することにある。 互いに溶融粘度の異なる複数の熱可塑性樹脂を含み、前記熱可塑性樹脂が、アリーレン基と、エーテル基及び/又はカルボニル基とで構成された単位を含む熱可塑性樹脂組成物において、温度400℃、剪断速度1216s-1での溶融粘度が150~1500Pa・sである第1の熱可塑性樹脂と、第2の熱可塑性樹脂とを少なくとも含み、温度400℃、剪断速度1216s-1での第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が前者/後者=1.5/1~10/1であると、流動性と機械的特性とを両立できるとともに、結晶化温度を高め、成形サイクルを短縮できる。

Description

熱可塑性樹脂組成物及びその成形体
 本発明は、成形体における所望の機械的強度等の物性を確保しつつ、成形効率を改善できる熱可塑性樹脂組成物(例えば、ポリエーテルケトン樹脂組成物など)及びその成形体に関する。
 ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)などのポリエーテルケトン樹脂は、耐熱性、耐薬品性、機械強度等に優れた代表的な半結晶性熱可塑性樹脂であり、1978年にICI社で開発されて以来、従来の合成樹脂では対応不可能であった数々のアプリケーション分野に使用されている。
 PEEK及びPEKが、従来の熱可塑性樹脂と異なる特徴的な点の一つにその高次構造が挙げられる。通常、一般の半結晶性の熱可塑性樹脂の場合、固化状態においては結晶相と非晶相を有するが、PEEKやPEKなどの主鎖にベンゼン環やナフタレン環などを有する高分子化合物の場合、結晶相と非晶相の他にリヂッド・アモルファスと呼ばれる運動性の低い非晶相があることが、例えば1999年の高分子学会で東京工業大学の研究チームより発表されている[非特許文献1(高分子学会予稿集、vol.48、No.14、p.3735、1999)]。このような複雑な高次構造を有するために、通常、一般の半結晶性高分子以上に、物性、特に溶融粘度や結晶化速度の分子量および分子量分布の依存性が大きく、それがひいては溶融粘度や結晶化速度に大きく影響を受ける成形加工プロセス後の製品の機械物性に大きな影響を及ぼしている。一方、PEEKやPEKなどの重合プロセスは、従来一般の合成樹脂と比べ、用いる溶剤の特殊性、合成されたポリマーの融点(Tm)やガラス転移温度(Tg)の高さに由来する高い重合温度や高粘性、さらに重合最終工程において溶剤や残留モノマーの洗浄工程が必要である点などから、非常に複雑である。そのため、例えばポリアミド樹脂やポリエステル樹脂のように重合反応のコントロールにより、分子量の異なる種々のグレードを開発するのは必ずしも容易ではない。さらに、分子量分布のコントロールはより困難であり、必ずしも用途ごとに適切な成形加工性を有するグレードが市場に提供されてきたわけではない。
 このように、ポリエーテルケトン樹脂の結晶構造等の高次構造は複雑であり、それを重合条件により精密に調整する事は、その溶解性の低さや溶融粘度の高さ等から、一般的な熱可塑性樹脂よりも困難である。また、高次構造を精密に調整できない場合、所望の溶融粘度や結晶化温度等を有するポリエーテルケトン樹脂を安定して得る事は難しく、そのようなポリエーテルケトン樹脂から所望の機械的特性を有する成形体を安定して得るには、成形工程において相当の工夫が要求される。特に溶融粘度や結晶化温度は、成形体の強度だけでなく、成形加工における作業効率にも影響を与えるため、それらを如何に調整するかは大きな技術的課題である。
 所望の物性を有する樹脂組成物を得る方法としては、例えば2以上の樹脂を適宜混合する方法がある。特開2006-241201号公報(特許文献1)には、(A)スチレン系樹脂1種以上および(B)スチレン系樹脂以外の熱可塑性樹脂を含み、構造周期0.001~1μmの両相連続構造、または粒子間距離0.001~1μmの分散構造を有するスチレン系樹脂組成物であり、かつ180~300℃、剪断速度1000s-1における溶融粘度の比[(A)成分/(B)成分]が0.1以上であるスチレン系樹脂組成物が開示されている。しかし、スチレン系樹脂は結晶性熱可塑性樹脂ではなく、2種類の樹脂を混合しても、成形サイクルを改善できない。
 特表2008-528768号公報(特許文献2)には、溶融マスターバッチとこの溶融マスターバッチよりも溶融粘度の低い第1のポリマーとを混合して低粘度溶融マスターバッチを形成し、低粘度溶融マスターバッチと第2のポリマーとを混合して導電性組成物を形成する方法が開示されている。しかし、第2のポリマーとの混和性を高めるために、溶融マスターバッチと溶融粘度の異なる第1のポリマーとを混合しており、この混合物は、第2のポリマーと混合されるため、成形サイクル及び成形体の機械的特性に与える影響は小さい。
 特表2007-506833号公報(特許文献3)には、0.05~0.12kNsm-2の溶融粘度(MV)を有し、かつ(a)フェニル部分、(b)カルボニル部分、及び(c)エーテル部分を有する高分子材料を含むパックが開示されている。この文献には、複数の低粘度ポリエーテルエーテルケトンの混合物も記載されている。しかし、高充填材料を得るため、低粘度のポリエーテルエーテルケトン同士を混合しているので、成形サイクルや成形体の機械的特性を改善できない。
 WO2009/057255号公報(特許文献4)には、(A)分子量が5000以上200万未満の重合成分、及び、(B)分子量が1000以上5000未満の重合成分を含有し、(A):(B)の重量比が60:40~97:3であるポリエーテルエーテルケトンが開示されている。しかし、このポリエーテルエーテルケトンは(A)樹脂成分に加えて、(B)オリゴマー成分を含んでいるため、流動性は向上するものの、機械的特性は低下する。
特開2006-241201号公報(特許請求の範囲) 特表2008-528768号公報(特許請求の範囲) 特表2007-506833号公報(特許請求の範囲) WO2009/057255号公報(特許請求の範囲)
高分子学会予稿集、vol.48、No.14、p.3735、1999
 本発明の目的は、成形体における強度等の物性を確保しつつ、高い流動性を有することにより成形効率を改善できる熱可塑性樹脂組成物(例えば、ポリエーテルケトン樹脂組成物)及びその成形体を提供することにある。
 本発明の他の目的は、結晶化温度を高め成形サイクルを向上できる熱可塑性樹脂組成物(例えば、ポリエーテルケトン樹脂組成物)及びその成形体を提供することにある。
 本発明のさらに他の目的は、成形体の寸法安定性を向上できる熱可塑性樹脂組成物(例えば、ポリエーテルケトン樹脂組成物)及びその成形体を提供することにある。
 本発明者は、前記課題を達成するため鋭意検討した結果、特殊な重合条件や成形条件を経ることなく、互いに溶融粘度の異なる複数の特定の熱可塑性樹脂を混合することにより、樹脂特性を大きく改善できること、例えば、(1)単独では溶融粘度が高く流動性の低い射出成形が困難な第1の熱可塑性樹脂に、成形体の特性を確保するために必要最低限の分子量を有する第2の熱可塑性樹脂を少量添加すると、結晶化温度を高め、成形サイクルを向上できること、(2)第2の熱可塑性樹脂に、第1の熱可塑性樹脂を少量添加すると、機械的特性などの物性を大きく向上できることを見出し、本発明を完成させた。
 すなわち、本発明の熱可塑性樹脂組成物は、互いに溶融粘度の異なる複数の熱可塑性樹脂を含み、これらの熱可塑性樹脂が、アリーレン基と、カルボニル基及び/又はエーテル基とで構成された単位を含む熱可塑性樹脂組成物であって、温度400℃、剪断速度1216s-1での溶融粘度が150~1500Pa・s程度である第1の熱可塑性樹脂と、第2の熱可塑性樹脂とを少なくとも含み、温度400℃、剪断速度1216s-1での第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が、前者/後者=1.5/1~10/1(例えば、3/1~5/1)程度の熱可塑性樹脂組成物である。
 前記熱可塑性樹脂は、ポリエーテルケトン樹脂(例えば、ポリエーテルエーテルケトン及びポリエーテルケトンから選択された少なくとも一種など)であってもよい。
 温度400℃、剪断速度1216s-1における第2の熱可塑性樹脂の溶融粘度は、90~150Pa・s程度であってもよい。
 第1の熱可塑性樹脂と第2の熱可塑性樹脂との割合(重量比)は、特に限定されず、前者/後者=99/1~1/99程度の範囲から選択できる。例えば、第1の熱可塑性樹脂100重量部に対して、第2の熱可塑性樹脂の割合が少量(1~50重量部、例えば、1~45重量部程度)であると、結晶化温度を大きく向上できる。一方、第2の熱可塑性樹脂100重量部に対して、第1の熱可塑性樹脂の割合が少量(1~50重量部、例えば、1~45重量部程度)であると、機械的特性などの物性を大きく向上できる。
 本発明の熱可塑性樹脂組成物の結晶化温度は、複数の熱可塑性樹脂の結晶化温度の加重平均より高くてもよく、例えば、第2の熱可塑性樹脂の結晶化温度以上であってもよい。
 これらの熱可塑性樹脂組成物は、前記複数の熱可塑性樹脂を溶融混練することにより得てもよい。また、熱可塑性樹脂組成物は、ゲルろ過クロマトグラフィー分子量測定において単一又は2以上の複数の分子量ピークを有していてもよい。
 本発明は、温度400℃、剪断速度1216s-1での溶融粘度が150~1500Pa・s程度である第1の熱可塑性樹脂に、第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が、温度400℃、剪断速度1216s-1において前者/後者=1.5/1~10/1程度である第2の熱可塑性樹脂を添加し、結晶化温度を高める方法も包含する。この方法では、樹脂組成物の結晶化温度を、第1の熱可塑性樹脂と第2の熱可塑性樹脂との加重平均の結晶化温度よりも高めることができる。
 また、本発明には、前記熱可塑性樹脂組成物により形成された成形体も含まれる。前記成形体は、射出成形により形成されていてもよい。本発明の成形体は、薄肉成形部、例えば、厚さ2mm以下の領域を有する成形体であってもよく、厚さ2mm以下、かつ幅10mm以下の領域(例えば、バンド状領域)を有する成形体であってもよい。
 本発明では、特殊な重合条件や成形条件を経ることなく、互いに溶融粘度の異なる複数の特定の熱可塑性樹脂を混合することにより、成形体の機械的特性を確保しつつ、流動性及び結晶化温度を高め、成形効率を大きく向上できる。特に、溶融粘度の差が大きいほど、成形効率の改善効果は大きい。より具体的には、単独では溶融粘度が高く流動性の低い射出成形が困難な第1の熱可塑性樹脂に、成形体の特性を確保するために必要最低限の分子量を有する第2の熱可塑性樹脂を少量添加すると、結晶化温度を大きく向上できる。一方、第2の熱可塑性樹脂に、第1の熱可塑性樹脂を少量添加すると、成形体の機械的特性を大きく向上できる。本発明の熱可塑性樹脂組成物では、結晶化温度を、混合する熱可塑性樹脂の結晶化温度から想定される結晶化温度(加重平均の結晶化温度)よりも高くでき、短時間で結晶化して金型から離型できるため、成形サイクルを大幅に短縮できる。また、本発明では、結晶化温度が高く、結晶化速度も大きいため、成形体の寸法安定性も向上できる。
図1は、実施例及び比較例でのポリエーテルケトン樹脂又は組成物の結晶化温度を示すグラフである。
 本発明の熱可塑性樹脂組成物は、互いに溶融粘度の異なる複数(例えば、2~4、好ましくは2~3程度)の熱可塑性樹脂(結晶性熱可塑性樹脂など)を含んでいる。前記熱可塑性樹脂は、アリーレン基と、エーテル基及び/又はカルボニル基とで構成された単位、例えば、下記式(1)
Figure JPOXMLDOC01-appb-C000001
[式中、環Zはアレーン環を示し、Rは、各単位において、互いに同一又は異なって、酸素原子又はカルボニル基(-C(O)-)を示す]
で表される単位(繰り返し単位)を含んでいる。各単位において、R及び環Zの種類は、同一であってもよく、異なっていてもよい。なお、Rは、一部の単位において、-C(O)O-(エステル結合)を形成してもよいが、通常、-C(O)O-結合を形成しない。
 環Zで表されるアレーン環としては、ベンゼン、ナフタレンなどのC6-10アレーン環、ビフェニル、ビナフチルなどのC6-10アリールC6-10アレーン環などが挙げられる。なお、環Zは置換基を有していてもよい。置換基としては、メチル、エチル基などのC1-6アルキル基(好ましくはC1-4アルキル基)などが挙げられる。
 熱可塑性樹脂としては、例えば、ポリフェニレンエーテル系樹脂(ポリフェニレンエーテル、変性ポリフェニレンエーテルなど)であってもよいが、通常、ポリエーテルケトン樹脂(芳香族ポリエーテルケトン樹脂)である。ポリエーテルケトン樹脂は、特に制限されないが、一般的にはフェニレン基などのアリーレン基、カルボニル基、及びエーテル基から適宜構成され、例えば、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルエーテルケトンケトン、ポリエーテル-ジフェニル-エーテル-フェニル-ケトン-フェニル等が挙げられる。
 これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。これらの熱可塑性樹脂のうち、ポリエーテルケトン樹脂が好ましく、特に、ポリエーテルエーテルケトン、ポリエーテルケトンが好ましい。
 熱可塑性樹脂組成物での熱可塑性樹脂の組合せは、特に制限されないが、複数のポリエーテルエーテルケトンのみの組合せや複数のポリエーテルケトンのみの組合せ等、同種のポリエーテルケトン樹脂の組合せが好ましい。
 熱可塑性樹脂の分子量は、溶融混練や成形加工が可能である限り、特に制限されず、例えば、数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、5,000以上(例えば、5,000~1,000,000)、好ましくは8,000以上(例えば、10,000~500,000)、さらに好ましくは15,000以上(例えば、18,000~100,000)、特に20,000以上(例えば、20,000~50,000)であってもよい。また、分子量分布(Mw/Mn)は、例えば、1.5~5、好ましくは1.8~4、さらに好ましくは2~3.5程度であってもよい。なお、一般に熱可塑性樹脂では、分子量が高くなると、機械的特性が向上し、流動性が低下する。しかし、ポリエーテルケトン樹脂では、からみ合い分子量が小さいため、特異的な挙動を示す。すなわち、分子量が僅かに増加するだけで、流動性は大きく変化(例えば、低下)する。また、分子量が増加すると、分子の絡み合いが増加するとともに、結晶化速度が低下するため、分子量に応じて機械的特性などの物性は複雑な変化を示す。
 熱可塑性樹脂の溶融粘度は、特に制限されないが、例えば、温度400℃、剪断速度1216s-1における溶融粘度が、90~1500Pa・s程度の範囲から選択でき、90~800Pa・s、好ましくは95~700Pa・s、さらに好ましくは100~600Pa・s(例えば、100~500Pa・s)程度であってもよい。なお、溶融粘度が90Pa・sより低い樹脂は、分子量がオリゴマー領域にあり、高粘度の熱可塑性樹脂と混合しても、成形体の機械的強度を改善できない場合がある。
 熱可塑性樹脂の結晶化温度は、溶融混練や成形加工が可能であれば、特に制限されず、例えば、冷却速度5℃/分における結晶化温度が、290~310℃、好ましくは291~309℃、さらに好ましくは292~308℃程度であってもよい。
 これらの熱可塑性樹脂は、市販品を使用してもよく、公知の方法により製造してもよい。例えば、ポリエーテルケトン樹脂の代表的な製造方法としては、芳香族ジオール成分と芳香族ジハライド成分(但し、いずれか一方の成分は、少なくともカルボニル基を有する成分を含む)、又は芳香族モノハライドモノオール成分(但し、少なくともカルボニル基を有する芳香族モノハライドモノオール成分を含む)を、アルカリ金属塩及び溶媒の存在下、150℃~400℃の温度範囲で重縮合させる方法が挙げられる。
 芳香族ジオール成分の例としてはハイドロキノン等、芳香族ジハライド成分の例としては4,4’-ジフルオロベンゾフェノン等、芳香族モノハライドモノオール成分の例としては4-フルオロフェノール、4-フルオロ-4’-ヒドロキシベンゾフェノン等が各々挙げられる。
 アルカリ金属塩の例としては無水炭酸カリウム等が挙げられる。溶媒の例としてはジフェニルスルホン等が挙げられる。
 重縮合反応完了後は、粉砕し、アセトン、メタノール、エタノール、水等により洗浄し、乾燥してもよい。なお、ポリエーテルケトン樹脂は、末端基(通常、ハロゲン原子)をアルカリ性スルホン酸基(スルホン酸ナトリウム基、スルホン酸カリウム基、スルホン酸リチウム基など)などで修飾すること等により、結晶化温度を適宜調整して使用してもよいが、末端基を修飾しないで使用するのが好ましい。
 熱可塑性樹脂組成物は、互いに溶融粘度の異なる第1の熱可塑性樹脂(高粘度熱可塑性樹脂など)と第2の熱可塑性樹脂(低粘度熱可塑性樹脂など)とを少なくとも含んでいる。第1の熱可塑性樹脂と第2の熱可塑性樹脂とは、互いに化学構造が同一又は異なっていてもよい。化学構造が同じであっても樹脂特性を大きく改善できる。
 熱可塑性樹脂組成物を構成する複数の熱可塑性樹脂のうち、温度400℃、剪断速度1216s-1における第1の熱可塑性樹脂(例えば、最も溶融粘度の高い熱可塑性樹脂)の溶融粘度は、例えば、150Pa・s以上(例えば、150~1500Pa・s程度)の範囲から選択でき、例えば、160Pa・s以上(例えば、170~800Pa・s)、好ましくは200Pa・s以上(例えば、250~700Pa・s)、さらに好ましくは300Pa・s以上(例えば、350~600Pa・s)、特に400Pa・s以上(例えば、400~500Pa・s)であってもよい。また、温度400℃、剪断速度1216s-1における第2の熱可塑性樹脂(例えば、最も溶融粘度の低い熱可塑性樹脂)の溶融粘度は、例えば、170Pa・s 以下(例えば、90~160Pa・s)、好ましくは150Pa・s以下(例えば、95~140Pa・s)、さらに好ましくは130Pa・s以下(例えば、100~120Pa・s)、特に110Pa・s以下(例えば、100~110Pa・s)であってもよい。第2の熱可塑性樹脂の溶融粘度が170Pa・sより高いと、所望の流動性を得ることが困難となる場合がある。
 温度400℃、剪断速度1216s-1において、第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比は、樹脂特性を大きく改善できる点から、前者/後者=1.5/1~10/1、好ましくは2/1~8/1(例えば、2.5/1~6/1)、さらに好ましくは3/1~5/1程度であってもよい。第1の熱可塑性樹脂の溶融粘度が第2の熱可塑性樹脂の溶融粘度の1.5倍より低いと、当該組成物を構成する樹脂の性質が近似し過ぎる傾向があるため、所望の結晶化度や機械的強度等を得ることは困難となる場合がある。
 本発明では、第1の熱可塑性樹脂及び第2の熱可塑性樹脂のいずれか一方の熱可塑性樹脂に対して、他方の熱可塑性樹脂を少量添加するだけで、組成物の特性(結晶化温度、耐衝撃性などの機械的特性など)を大きく改善できる。そのため、第1の熱可塑性樹脂と第2の熱可塑性樹脂との重量比は、特に制限されず、前者/後者=99/1~1/99程度の範囲から適宜選択できる。例えば、得られる成形体の強度を重視する場合、第1の熱可塑性樹脂/第2の熱可塑性樹脂(重量比)=95/5~50/50、好ましくは90/10~60/40(例えば、85/15~65/35)、さらに好ましくは80/20~70/30程度であってもよい。成型加工性を重視する場合、第1の熱可塑性樹脂/第2の熱可塑性樹脂(重量比)は、50/50~1/99(例えば、45/55~5/95)、好ましくは40/60~10/90(例えば、35/65~10/90)、さらに好ましくは30/70~10/90程度であってもよい。
 特に、第1の熱可塑性樹脂100重量部に対して、第2の熱可塑性樹脂を1~50重量部(例えば、1~45重量部、好ましくは10~40重量部、好ましくは20~35重量部)程度の割合で含有すると、結晶化温度を大きく向上し、成形サイクルを大幅に短縮できる。一方、第2の熱可塑性樹脂100重量部に対して、第1の熱可塑性樹脂を1~50重量部(例えば、1~45重量部、好ましくは10~40重量部、好ましくは20~35重量部)程度の割合で含有すると、機械的特性などの物性を大きく向上できる。
 第1の熱可塑性樹脂と第2の熱可塑性樹脂との合計の割合は、熱可塑性樹脂組成物全体に対して、例えば、50重量%以上、好ましくは70重量%以上、さらに好ましくは80重量%以上(例えば、90~100重量%程度)であってもよい。
 温度400℃、剪断速度1216s-1における熱可塑性樹脂組成物の溶融粘度は、100~800Pa・s(例えば、100~700Pa・s)、好ましくは100~600Pa・s、さらに好ましくは110~500Pa・s(例えば、120~450Pa・s、好ましくは130~400Pa・s)程度である。溶融粘度が100Pa・sより低い場合、得られる成形体の強度に問題が生じる場合があり、溶融粘度が800Pa・sより高い場合、成形加工性に問題が生じる場合がある。
 本発明の熱可塑性樹脂組成物は、結晶化温度が高い。結晶化温度は、成形工程のタイムサイクルに影響を与える結晶化速度を反映する指標である。すなわち、結晶化速度は、例えば示差走査熱量測定において、溶融状態からある一定温度で冷却した際の結晶化温度により評価でき、結晶化温度が高いほど結晶化速度は大きく、成形サイクルを短縮できる。熱可塑性樹脂組成物の結晶化温度は、例えば、300℃以上、好ましくは303℃以上、さらに好ましくは306℃以上(例えば、306~308℃程度)であってもよい。結晶化温度が300℃より低いと、成形工程後の金型からの離型までに時間を要し、成形サイクルに悪影響を与える場合がある。
 熱可塑性樹脂組成物の結晶化温度は、例えば、第1の熱可塑性樹脂の結晶化温度以上(例えば、当該組成物を構成する樹脂の結晶化温度の中で最も低い結晶化温度以上)、好ましくは構成樹脂の結晶化温度の加重平均よりも高く、さらに好ましくは第2の熱可塑性樹脂の結晶化温度以上(例えば、構成樹脂の結晶化温度の中で最も高い結晶化温度以上)であってもよく、加重平均結晶化温度+1~10℃(例えば、1~5℃)以下であってもよい。このような熱可塑性樹脂組成物は、当該組成物を構成する樹脂のいずれか又は全てを各々単独で使用する場合よりも高い温度で結晶化するため、例えば溶融混練工程から押出又は射出等の成形工程を経た後、より早く結晶化して金型から素早く離型できる等、成形サイクル短縮という改良効果を得ることができる。なお、各熱可塑性樹脂及び樹脂組成物の結晶化温度は、-10℃から410℃まで速度20℃/分で昇温し、410℃で1分間保持した後、冷却速度5℃/分で冷却する冷却過程での結晶化温度を意味し、この結晶化温度は差走査熱量計を用いて測定できる。
 熱可塑性樹脂組成物は、流動性と機械的特性とのバランスにも優れている。例えば、幅6mm、厚み2mm、シリンダー温度380℃、金型温度180℃、及び圧力1000バールの条件下での流動長(スパイラルフロー)は、30~70cm、好ましくは35~65cm、さらに好ましくは40~60cm(例えば、45~55cm)程度であってもよい。また、引張り破断強度は、ISO527に準拠して、95~120MPa、好ましくは100~110MPa程度である。また、シャルピー衝撃強度は、ISO179/1eAに準拠して、8~20KJ/m、好ましくは9~18KJ/m、さらに好ましくは10~15KJ/m程度であってもよい。なお、混合する熱可塑性樹脂の溶融粘度の差が大きいと、衝撃強度をより一層向上でき、例えば、熱可塑性樹脂単独の衝撃強度よりも大きくできる。
 熱可塑性樹脂組成物は、ゲルろ過クロマトグラフィー分子量測定において単一のピークを有していてもよく、2以上の複数の分子量ピークを有していてもよい。また、分子量ピークは各熱可塑性樹脂に対応していてもよい。異なる分子量ピークが混在することにより、溶融混練後において、分子レベルでの結晶構造や充填構造の改善により、強度が著しく改善される。具体的には、分子量の小さい樹脂は一種の結晶核剤として機能すると推定され、特に分子量の小さい樹脂と分子量の大きい樹脂との物性(溶融粘度、結晶化温度、結晶化速度等)が大きく異なる場合、得られる樹脂組成物のそれら物性を顕著に改善できる。当該組成物は、分子量の異なる2以上の複数の樹脂を混合して得てもよく、1又は2以上の分子量ピークが得られるような重合工程条件等の製造工程条件により得てもよい。このように、本発明の熱可塑性樹脂組成物では、結晶核剤を実質的に含有しなくても、結晶化温度を大きく向上できる。
 なお、分子量ピークの数は一般的に当該組成物を構成する樹脂の数に依存するが、それに限定されるものではなく、当該組成物を構成する樹脂自身が2以上の分子量ピークを有してもよく、当該組成物が同じ分子量値に分子量ピークを有する2以上の樹脂より構成されていてもよいが、所望の結晶化度や機械的強度等を調整し易いという観点から、当該組成物を構成する分子量が各々異なることが好ましい。ゲルろ過クロマトグラフィー分子量測定法は、特に制限されないが、例えば、特開2004-45166号公報に記載の方法が挙げられる。
 熱可塑性樹脂組成物は、当該樹脂組成物を構成する各々の熱可塑性樹脂の混合物[又は単純混合物(例えば、ドライブレンド物、予備混合物)、例えば、ペレットの混合物、粉粒体の混合物又はペレットと粉粒体とを混合した物]であってもよく、当該樹脂組成物を構成する複数の熱可塑性樹脂(又は前記混合物)を溶融混練して得られた物であってもよい。溶融混練されることにより、分子レベルでの結晶構造や充填構造の改善により、物性が大きく改善されるとともに、均一で安定した品質の樹脂組成物を提供することができる。
 熱可塑性樹脂組成物を構成する樹脂又は当該組成物には、添加剤を含有させてもよい。添加剤としては、補強剤[鉱物質粒子(タルク、シリカ、カオリンなど)、金属酸化物(酸化マグネシウム、酸化アルミニウム、酸化亜鉛など)、金属硫酸塩(硫酸カルシウム、硫酸バリウムなど)などの粉粒状補強剤;カーボン繊維、ガラス繊維、ステンレス繊維、アラミド繊維などの繊維状補強剤など]、熱伝導性改良材料(アルミナなど)、色材又は着色剤(カーボンブラックなど)、安定剤、可塑剤、滑剤などが挙げられる。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 熱可塑性樹脂組成物は、慣用の方法、例えば、各成分を混合することにより調製できる。熱可塑性樹脂組成物は、例えば、各成分を、溶融混練することなく、粉粒状又はペレット状の形態で単純に混合するドライブレンド(通常、タンブラー、V型ブレンダーなどの混合機を用いて、室温で混合するドライブレンド)により調製してもよく、各成分を溶融混練することにより調製してもよい。より具体的には、必要により混合機(タンブラー、V型ブレンダー、ヘンシェルミキサー、ナウタミキサー、リボンミキサー、メカノケミカル装置、押出混合機など)で各成分を予備混合した後、種々の溶融混練機(例えば、ニーダー、一軸又は二軸押出し機など)を用いて、温度300~450℃(好ましくは350~400℃)程度で溶融混練する場合が多い。この溶融混練物は、慣用のペレット化手段(ペレタイザーなど)により、ペレット化してもよい。
 本発明の熱可塑性樹脂組成物は、所望の形状に成形することができる。成形方法は特に制限されず、押出成形や射出成形等、公知の方法により成形することができる。これらの成形方法のうち、射出成形が好ましい。
 本発明の熱可塑性樹脂組成物は、結晶化温度の改善により結晶化速度を向上できるため、例えば、押出成形又は射出成形等により成形した後の冷却工程において通常発生する成形体の外面付近と内部との結晶化度の差異を抑制することができ、結果的に成形体の寸法精度を高くすることができる。
 本発明の成形体は、前記熱可塑性樹脂組成物で形成されている限り、特に限定されず、種々の形状(例えば、フィルム状又はシート状、バンド状などの二次元構造、棒状、パイプ状など、立体形状などの三次元構造など)の成形体であってもよい。成形体は、薄肉成形品又は薄肉成形部を有する形成品、例えば、厚み2mm以下(例えば、0.01~2mm、好ましくは0.1~1.5mm程度)の領域(薄肉領域)を有する成形体であってもよく、厚み2mm以下でかつ幅が10mm以下の領域(例えば、バンド状領域又はバンド状薄肉成形部)を有する成形体であってもよい。すなわち、本発明の熱可塑性樹脂組成物は薄肉成形しても高い強靱性を示す。そのため、薄いフィルム状又はシート状に成形した場合、又は薄く細いバンド状に成形した場合に、当該組成物を構成する樹脂を単独で成形した場合よりも、優れた強靭性を示す。フィルム状又はシート状成形品の場合、厚さは2mm以下(例えば、0.01~2mm、好ましくは0.1~1.5mm程度)が好ましい。バンド状成形品の場合、厚さは2mm以下(例えば、0.01~2mm、好ましくは0.1~1.5mm程度)、幅は10mm以下(例えば、1~10mm、好ましくは2~8mm程度)が好ましい。
 以下に、本発明を実施例に基づき詳細に説明するが、これらは本発明を限定するものではない。
[ポリエーテルケトン樹脂]
 以下のポリエーテルケトン樹脂を使用した。
 1000G:ポリエーテルエーテルケトン VESTAKEEP 1000G(ダイセル・エボニック社製)
 2000G:ポリエーテルエーテルケトン VESTAKEEP 2000G(ダイセル・エボニック社製)
 4000G:ポリエーテルエーテルケトン VESTAKEEP 4000G(ダイセル・エボニック社製)
[溶融粘度の測定方法]
 ポリエーテルケトン樹脂又は樹脂組成物につき、キャピラリーレオメーター(島津製作所(株)製 レオロスタACER-01、キャピラリー長さ10mm、キャピラリー径1mm、バレル径9.55mm)を使用し、400℃、剪断速度1216s-1、予備加熱時の加重0.1kNの条件にて測定を行った。
[結晶化温度の測定方法]
 ポリエーテルケトン樹脂又は樹脂組成物(4.5~10.0mg)につき、示差走査熱量測定装置(セイコー電子工業社製 SSC5200)を使用し、-10℃に冷却して1分間保持した後、昇温速度20℃/分にて昇温し、410℃にて1分間保持した後、冷却速度5℃/分にて冷却し、冷却過程で最初に得られたピーク位置を結晶化温度とした。
[流動性の評価]
 ポリエーテルケトン樹脂又は樹脂組成物につき、スパイラルフロー測定用金型(幅6mm、厚さ2mm)を使用し、金型温度180℃、シリンダー温度380℃、圧力1000バールにおける流動長を測定した。
[破断強度の評価]
 破断強度は、ISO527に準じて測定した。
[衝撃強度の評価]
 シャルピー衝撃強度は、ISO179/1eAに準じて測定した。
[強靭性の評価]
 ポリエーテルケトン樹脂又は樹脂組成物をバンド状成形体(幅5mm×厚さ1mm×長さ500mm)とし、一重に巻いて直径20mm以上のループを形成した後、バンドの両端を引っ張ることによりループ部分の直径を徐々に小さくし、ループの直径が5mmになった時点でのループ部分の破断状況を観察した。計5個の試料を使用し、得られた結果は以下の通り評価した。
 A:破断しない(全て破断せず)
 B:破断し難い(1~2個破断)
 C:破断する(3個以上破断)
[実施例及び比較例]
 上記のポリエーテルケトン樹脂単独について、又はポリエーテルケトン樹脂を、それぞれ表1に示した割合で混合し、得られたポリエーテルケトン樹脂組成物について、溶融粘度、結晶化温度、流動性、破断強度、衝撃強度、強靭性を測定又は評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例2~5はいずれも、当該組成物を構成する樹脂が有する強靭性を十分に保持しつつ、良好な流動性及び高い結晶化温度を与えていることが認められる。特に実施例1~2においては、当該組成物を構成する樹脂である1000G及び4000Gのいずれよりも高い結晶化温度を示している点が顕著である。特に、1000Gに4000Gを少量添加した実施例1~2では、強靱性や衝撃強度などの機械的特性が、1000Gと4000Gとの混合比率から想定される値よりも大きく向上している。また、4000Gに1000Gを少量添加した実施例5では、結晶化温度が、1000Gと4000Gとの混合比率から想定される値[例えば、加重平均の結晶化温度(298℃)]よりも大きく向上している。
 実施例6~9はいずれも、当該組成物を構成する樹脂が有する以上の強靭性や流動性を示しつつ、高い結晶化温度を与えていることが認められる。特に実施例8~9においては、当該組成物を構成する樹脂である1000G及び2000Gのいずれよりも高い強靭性を示している点が顕著である。
 本発明の熱可塑性樹脂組成物及びその成形体は、半導体、電子機器、自動車、航空機等の、耐熱性、耐薬品性、強靭性等を必要とされる製品の部材として、フィルム状、バンド状、棒状、パイプ状、その他種々の形状にして使用できる。

Claims (16)

  1.  互いに溶融粘度の異なる複数の熱可塑性樹脂を含み、これらの熱可塑性樹脂が、アリーレン基と、エーテル基及び/又はカルボニル基とで構成された単位を含む熱可塑性樹脂組成物であって、温度400℃、剪断速度1216s-1での溶融粘度が150~1500Pa・sである第1の熱可塑性樹脂と、第2の熱可塑性樹脂とを少なくとも含み、温度400℃、剪断速度1216s-1での第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が、前者/後者=1.5/1~10/1である熱可塑性樹脂組成物。
  2.  温度400℃、剪断速度1216s-1での第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が、前者/後者=3/1~5/1である請求項1記載の熱可塑性樹脂組成物。
  3.  温度400℃、剪断速度1216s-1における第2の熱可塑性樹脂の溶融粘度が90~150Pa・sである請求項1又は2記載の熱可塑性樹脂組成物。
  4.  熱可塑性樹脂がポリエーテルケトン樹脂である請求項1~3のいずれかに記載の熱可塑性樹脂組成物。
  5.  熱可塑性樹脂がポリエーテルエーテルケトン及びポリエーテルケトンから選択された少なくとも一種で構成されている請求項1~4のいずれかに記載の熱可塑性樹脂組成物。
  6.  第1の熱可塑性樹脂100重量部に対して、第2の熱可塑性樹脂の割合が、1~50重量部である請求項1~5のいずれかに記載の熱可塑性樹脂組成物。
  7.  第2の熱可塑性樹脂100重量部に対して、第1の熱可塑性樹脂の割合が、1~50重量部である請求項1~5のいずれかに記載の熱可塑性樹脂組成物。
  8.  複数の熱可塑性樹脂の結晶化温度の加重平均を超える結晶化温度を有する請求項1~7のいずれかに記載の熱可塑性樹脂組成物。
  9.  第2の熱可塑性樹脂の結晶化温度以上の結晶化温度を有する請求項1~8のいずれかに記載の熱可塑性樹脂組成物。
  10.  複数の熱可塑性樹脂を溶融混練することにより得られる請求項1~9のいずれかに記載の熱可塑性樹脂組成物。
  11.  ゲルろ過クロマトグラフィー分子量測定において単一又は2以上の複数の分子量ピークを有する請求項1~10のいずれかに記載の熱可塑性樹脂組成物。
  12.  温度400℃、剪断速度1216s-1での溶融粘度が150~1500Pa・sである第1の熱可塑性樹脂に、第1の熱可塑性樹脂と第2の熱可塑性樹脂との溶融粘度比が、温度400℃、剪断速度1216s-1において前者/後者=1.5/1~10/1である第2の熱可塑性樹脂を添加し、結晶化温度を高める方法。
  13.  請求項1~11のいずれかに記載の熱可塑性樹脂組成物により形成された成形体。
  14.  射出成形により形成された請求項13記載の成形体。
  15.  厚さ2mm以下の領域を有する請求項13又は14記載の成形体。
  16.  厚さが2mm以下、かつ幅が10mm以下の領域を有する請求項13又は14記載の成形体。
PCT/JP2010/061697 2009-07-09 2010-07-09 熱可塑性樹脂組成物及びその成形体 WO2011004892A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011521977A JP5702283B2 (ja) 2009-07-09 2010-07-09 熱可塑性樹脂組成物及びその成形体
EP10797203.6A EP2452980B1 (en) 2009-07-09 2010-07-09 Thermoplastic resin composition and molded article of same
KR1020127003371A KR101735859B1 (ko) 2009-07-09 2010-07-09 열가소성 수지 조성물 및 그의 성형체
US13/380,650 US8663542B2 (en) 2009-07-09 2010-07-09 Thermoplastic resin composition and molded product thereof
CN201080030710.9A CN102471571B (zh) 2009-07-09 2010-07-09 热塑性树脂组合物及其成型体
US14/019,859 US8765047B2 (en) 2009-07-09 2013-09-06 Thermoplastic resin composition and molded product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-162660 2009-07-09
JP2009162660 2009-07-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/380,650 A-371-Of-International US8663542B2 (en) 2009-07-09 2010-07-09 Thermoplastic resin composition and molded product thereof
US14/019,859 Division US8765047B2 (en) 2009-07-09 2013-09-06 Thermoplastic resin composition and molded product thereof

Publications (1)

Publication Number Publication Date
WO2011004892A1 true WO2011004892A1 (ja) 2011-01-13

Family

ID=43429316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061697 WO2011004892A1 (ja) 2009-07-09 2010-07-09 熱可塑性樹脂組成物及びその成形体

Country Status (6)

Country Link
US (2) US8663542B2 (ja)
EP (1) EP2452980B1 (ja)
JP (2) JP5702283B2 (ja)
KR (1) KR101735859B1 (ja)
CN (1) CN102471571B (ja)
WO (1) WO2011004892A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642288A (zh) * 2011-02-17 2012-08-22 赢创德固赛有限公司 生产棒的方法
JP2014152150A (ja) * 2013-02-12 2014-08-25 Tokuyama Dental Corp 歯科用樹脂複合材料
US20140275398A1 (en) * 2013-03-15 2014-09-18 TP Composites, Inc. Polymer composition having glass flake reinforcement
WO2015170649A1 (ja) * 2014-05-07 2015-11-12 株式会社トクヤマデンタル 樹脂複合材料および樹脂複合材料の製造方法
JP2016132843A (ja) * 2015-01-21 2016-07-25 株式会社ダイセル Peekファイバーの製造方法、peekファイバー及び不織布
WO2021132416A1 (ja) * 2019-12-27 2021-07-01 三菱ケミカル株式会社 複合材料用部材、複合材料、移動体及び複合材料用フィルムの製造方法
JP2021134225A (ja) * 2020-02-21 2021-09-13 スターライト工業株式会社 樹脂製歯車用組成物及びその射出成形物である樹脂製歯車

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702283B2 (ja) * 2009-07-09 2015-04-15 ダイセル・エボニック株式会社 熱可塑性樹脂組成物及びその成形体
GB201413489D0 (en) * 2014-07-30 2014-09-10 Victrex Mfg Ltd Polymeric materials
US9908978B2 (en) 2015-04-08 2018-03-06 Arevo Inc. Method to manufacture polymer composite materials with nano-fillers for use in additive manufacturing to improve material properties
US11117311B2 (en) 2015-10-05 2021-09-14 Arevo, Inc. Amorphous polyaryletherketone and blends thereof for use in additive manufacturing
KR102117742B1 (ko) * 2017-12-31 2020-06-01 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품
CN107938007A (zh) * 2018-01-03 2018-04-20 江苏金由新材料有限公司 采用不同分子量材料制备ptfe短纤维的系统及方法
CN114846060A (zh) * 2019-12-27 2022-08-02 三菱化学株式会社 复合材料用构件、复合材料、移动体和复合材料用薄膜的制造方法
JP7142075B2 (ja) * 2020-11-13 2022-09-26 株式会社リケン Peek成形体、及びその製造方法
CN113773606A (zh) * 2021-10-19 2021-12-10 吉林省中研高分子材料股份有限公司 一种复合材料、制备方法及应用
WO2024117245A1 (ja) * 2022-12-01 2024-06-06 本州化学工業株式会社 ポリアリールエーテルケトン樹脂組成物及びその成形物品、ポリアリールエーテルケトン樹脂組成物の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500021A (ja) * 1983-09-29 1986-01-09 アモコ、コ−ポレ−ション ポリ(アリ−ルケトン)から成るブレンド
JPH0441557A (ja) * 1990-06-07 1992-02-12 Idemitsu Kosan Co Ltd 良流動性ポリエーテル系共重合体組成物
JPH05140442A (ja) * 1991-05-14 1993-06-08 Hoechst Ag ポリアリールエーテル・ケトンをベースとするアロイ
JPH06503104A (ja) * 1990-12-14 1994-04-07 ヘキスト・アクチェンゲゼルシャフト 部分結晶質および非晶質ポリ(アリールエーテルケトン)の配合物からなるアロイ
JPH07331055A (ja) * 1994-06-02 1995-12-19 Mitsubishi Rayon Co Ltd ポリエーテルエーテルケトン樹脂組成物
JP2004045166A (ja) 2002-07-11 2004-02-12 Mitsui Chemicals Inc 芳香族ポリエーテルケトン類の分子量測定方法
JP2006241201A (ja) 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
JP2007506833A (ja) 2003-09-26 2007-03-22 ビクトレックス マニュファクチャリング リミテッド 高分子量ケトン
WO2007101857A2 (en) * 2006-03-07 2007-09-13 Solvay Advanced Polymers, L.L.C. New polyarylene composition
JP2008528768A (ja) 2005-02-15 2008-07-31 ゼネラル・エレクトリック・カンパニイ 導電性組成物及びその製造方法
WO2009057255A1 (ja) 2007-10-31 2009-05-07 Kaneka Corporation ポリエーテルエーテルケトン、及び、ポリマー材料の精製方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166606A (en) 1960-12-28 1965-01-19 Union Carbide Corp Polycarbonate resins having improved flow properties
DE2729763A1 (de) 1977-07-01 1979-01-18 Bayer Ag Thermoplastisch verarbeitbare polycarbonatmischungen
EP0001879B2 (en) 1977-09-07 1989-11-23 Imperial Chemical Industries Plc Thermoplastic aromatic polyetherketones, a method for their preparation and their application as electrical insulants
US4609714A (en) * 1983-09-29 1986-09-02 Union Carbide Corporation Blends of poly(aryl ketones)
GB8401411D0 (en) 1984-01-19 1984-02-22 Ici Plc Aromatic polyetherketone
JPS61275348A (ja) 1985-05-29 1986-12-05 Sumitomo Chem Co Ltd ポリエ−テルケトン樹脂組成物
JPS62129347A (ja) * 1985-11-29 1987-06-11 Sumitomo Chem Co Ltd 耐薬品性の改良された熱可塑性樹脂組成物
EP0360430B1 (en) 1988-09-20 1995-06-14 MITSUI TOATSU CHEMICALS, Inc. Molding material
GB0625484D0 (en) 2006-12-21 2007-01-31 Victrex Mfg Ltd Composite material
ATE506413T1 (de) 2007-03-01 2011-05-15 Prs Mediterranean Ltd Verfahren zur herstellung kompatibilisierter polymermischungen und artikeln
CN101357985B (zh) 2008-09-23 2010-12-08 吉林大学 超支化聚芳醚酮、其制备方法及在粘度调节剂方面的应用
JP2010095615A (ja) 2008-10-16 2010-04-30 Kaneka Corp ポリエーテルエーテルケトン、それを含有する樹脂組成物、およびその成形体
JP5702283B2 (ja) * 2009-07-09 2015-04-15 ダイセル・エボニック株式会社 熱可塑性樹脂組成物及びその成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500021A (ja) * 1983-09-29 1986-01-09 アモコ、コ−ポレ−ション ポリ(アリ−ルケトン)から成るブレンド
JPH0441557A (ja) * 1990-06-07 1992-02-12 Idemitsu Kosan Co Ltd 良流動性ポリエーテル系共重合体組成物
JPH06503104A (ja) * 1990-12-14 1994-04-07 ヘキスト・アクチェンゲゼルシャフト 部分結晶質および非晶質ポリ(アリールエーテルケトン)の配合物からなるアロイ
JPH05140442A (ja) * 1991-05-14 1993-06-08 Hoechst Ag ポリアリールエーテル・ケトンをベースとするアロイ
JPH07331055A (ja) * 1994-06-02 1995-12-19 Mitsubishi Rayon Co Ltd ポリエーテルエーテルケトン樹脂組成物
JP2004045166A (ja) 2002-07-11 2004-02-12 Mitsui Chemicals Inc 芳香族ポリエーテルケトン類の分子量測定方法
JP2007506833A (ja) 2003-09-26 2007-03-22 ビクトレックス マニュファクチャリング リミテッド 高分子量ケトン
JP2008528768A (ja) 2005-02-15 2008-07-31 ゼネラル・エレクトリック・カンパニイ 導電性組成物及びその製造方法
JP2006241201A (ja) 2005-02-28 2006-09-14 Toray Ind Inc スチレン系樹脂組成物およびその製造方法
WO2007101857A2 (en) * 2006-03-07 2007-09-13 Solvay Advanced Polymers, L.L.C. New polyarylene composition
WO2009057255A1 (ja) 2007-10-31 2009-05-07 Kaneka Corporation ポリエーテルエーテルケトン、及び、ポリマー材料の精製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POLYMER PREPRINTS, JAPAN, vol. 48, no. 14, 1999, pages 3735
POLYMER PREPRINTS, vol. 48, no. 14, 1999, pages 3735
See also references of EP2452980A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642288A (zh) * 2011-02-17 2012-08-22 赢创德固赛有限公司 生产棒的方法
US20120232531A1 (en) * 2011-02-17 2012-09-13 Evonik Degussa Gmbh Process for producing plastic rods
JP2014152150A (ja) * 2013-02-12 2014-08-25 Tokuyama Dental Corp 歯科用樹脂複合材料
US20140275398A1 (en) * 2013-03-15 2014-09-18 TP Composites, Inc. Polymer composition having glass flake reinforcement
WO2015170649A1 (ja) * 2014-05-07 2015-11-12 株式会社トクヤマデンタル 樹脂複合材料および樹脂複合材料の製造方法
JPWO2015170649A1 (ja) * 2014-05-07 2017-04-20 株式会社トクヤマデンタル 樹脂複合材料および樹脂複合材料の製造方法
JP2016132843A (ja) * 2015-01-21 2016-07-25 株式会社ダイセル Peekファイバーの製造方法、peekファイバー及び不織布
WO2021132416A1 (ja) * 2019-12-27 2021-07-01 三菱ケミカル株式会社 複合材料用部材、複合材料、移動体及び複合材料用フィルムの製造方法
CN114901731A (zh) * 2019-12-27 2022-08-12 三菱化学株式会社 复合材料用构件、复合材料、移动体和复合材料用薄膜的制造方法
JP2021134225A (ja) * 2020-02-21 2021-09-13 スターライト工業株式会社 樹脂製歯車用組成物及びその射出成形物である樹脂製歯車
JP7415163B2 (ja) 2020-02-21 2024-01-17 スターライト工業株式会社 樹脂製歯車用組成物及びその射出成形物である樹脂製歯車

Also Published As

Publication number Publication date
JP2014210940A (ja) 2014-11-13
US20140008843A1 (en) 2014-01-09
US20120100365A1 (en) 2012-04-26
EP2452980A1 (en) 2012-05-16
EP2452980A4 (en) 2015-01-14
US8663542B2 (en) 2014-03-04
EP2452980B1 (en) 2019-01-16
JPWO2011004892A1 (ja) 2012-12-20
JP5702283B2 (ja) 2015-04-15
KR101735859B1 (ko) 2017-05-15
KR20120037978A (ko) 2012-04-20
CN102471571B (zh) 2014-05-07
JP5795413B2 (ja) 2015-10-14
CN102471571A (zh) 2012-05-23
US8765047B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5795413B2 (ja) 熱可塑性樹脂組成物及びその成形体
US10829638B2 (en) Compatibilized polymer compositions
CN111479850B (zh) 包含与金属基底接触的PEEK-PEmEK共聚物组合物的聚合物-金属接合件
WO2017186926A1 (en) Compatibilized polymer compositions
US20230212395A1 (en) Compatibilized polymer compositions
JP2020506088A (ja) Paek及びpaesを使用して3次元物体を製造する方法
KR101685761B1 (ko) 백색도 및 기계적 물성이 향상된 생분해성 수지 조성물을 이용한 3차원 프린터용 필라멘트
JP2020517490A (ja) ポリ(エーテルエーテルケトン)ポリマー成分を用いた3次元物体の製造方法
EP3521335B1 (en) Method for manufacturing a three-dimensional object using paek and paes
EP3448914B1 (en) Compatibilized polymer compositions
KR101908612B1 (ko) 엔지니어링 플라스틱용 기능성 마스터베치 조성물, 이로부터 제조된 마스터베치 및 이의 제조 방법
CN109071937B (zh) 增容的聚合物组合物
WO2021014800A1 (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
KR101102596B1 (ko) 이형성이 향상된 전방향족 액정 폴리에스테르 수지 컴파운드 및 그 제조방법
CN109071799B (zh) 增容的聚合物组合物
JP2009007476A (ja) 熱可塑性樹脂組成物および成形品
JP2021020972A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
JP2009007477A (ja) 熱可塑性樹脂組成物および成形品
JP2011132287A (ja) ポリアリーレンスルフィド樹脂のガラス転移温度低下方法、及びポリアリーレンスルフィド樹脂成形体の製造方法
JP2005272661A (ja) ガラス繊維強化熱可塑性樹脂組成物
JP2008156404A (ja) 樹脂組成物及びこれを用いる成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030710.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521977

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13380650

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010797203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127003371

Country of ref document: KR

Kind code of ref document: A