WO2011004787A1 - リソグラフィー用共重合体およびその評価方法 - Google Patents

リソグラフィー用共重合体およびその評価方法 Download PDF

Info

Publication number
WO2011004787A1
WO2011004787A1 PCT/JP2010/061382 JP2010061382W WO2011004787A1 WO 2011004787 A1 WO2011004787 A1 WO 2011004787A1 JP 2010061382 W JP2010061382 W JP 2010061382W WO 2011004787 A1 WO2011004787 A1 WO 2011004787A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
composition
lithography
composition ratio
solution
Prior art date
Application number
PCT/JP2010/061382
Other languages
English (en)
French (fr)
Inventor
圭輔 加藤
前田 晋一
大祐 松本
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to US13/381,249 priority Critical patent/US9023578B2/en
Priority to KR1020147016996A priority patent/KR101690391B1/ko
Priority to CN201080031212.6A priority patent/CN102472982B/zh
Priority to JP2010530196A priority patent/JP5845578B2/ja
Publication of WO2011004787A1 publication Critical patent/WO2011004787A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a copolymer for lithography and an evaluation method thereof.
  • a resist composition that can suitably cope with a shorter wavelength of irradiation light and a finer pattern
  • a polymer in which an acid-eliminable group is eliminated by the action of an acid and becomes alkali-soluble, and a photoacid generator A so-called chemically amplified resist composition containing the above has been proposed, and its development and improvement are underway.
  • a copolymer for resist is generally evaluated by a method of actually preparing a resist composition and measuring various development characteristics of the resist composition.
  • a resist using the resin is obtained from specific parameters obtained by dissolving a resin containing a resist copolymer in a resist solvent and measuring dynamic light scattering of the solution. A method for predicting the degree of occurrence of development defects, the degree of variation in pattern dimension (LER), or the degree of occurrence of foreign matter in the liquid is described.
  • a copolymer for lithography other than the copolymer for resist for example, a copolymer used for forming a thin film such as an antireflection film, a gap fill film, a top coat film or the like formed on an upper layer or a lower layer of a resist film in a lithography process.
  • a copolymer used for forming a thin film such as an antireflection film, a gap fill film, a top coat film or the like formed on an upper layer or a lower layer of a resist film in a lithography process.
  • the lithographic composition containing the lithographic copolymer has performance (lithographic properties) for performing high-precision fine processing.
  • the method which can evaluate the performance of the composition for lithography containing the copolymer for lithography is actually desired, without actually preparing the composition for lithography and performing a lithography process.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of evaluating the lithographic properties of a lithographic composition containing a lithographic copolymer without actually preparing the lithographic composition.
  • the first aspect of the present invention includes a step (i) of preparing a test solution by dissolving a lithography copolymer in a solvent, and a gel-like material in the test solution. And the difference obtained by subtracting the compositional ratio of the structural unit in the lithography copolymer from the compositional ratio of the structural unit in the gel-like product to the compositional ratio of the structural unit in the lithography copolymer.
  • the lithography copolymer is a resist copolymer having one or more structural units having an acid-eliminable group and one or more structural units having a polar group, and the composition ratio
  • the method for evaluating a lithographic copolymer according to (1) wherein development characteristics of the resist composition containing the resist copolymer are evaluated based on a change rate.
  • the second aspect of the present invention is a lithography copolymer having a composition ratio change rate of 8% or less measured by the following lithography copolymer processing step:
  • a lithography composition comprising the lithography copolymer according to (5).
  • the lithographic properties of a lithographic composition containing a lithographic copolymer can be evaluated without actually preparing the lithographic composition.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acryloyloxy means acryloyloxy or methacryloyloxy
  • the copolymer for lithography to be evaluated in the present invention is a copolymer used in the lithography process, which is obtained by copolymerizing two or more monomers, and a gel-like material described later is added to the solution. Anything can be applied as long as it can be generated.
  • it is used for forming a resist copolymer used for forming a resist film, an antireflection film (TARC) formed on the upper layer of the resist film, or an antireflection film (BARC) formed on the lower layer of the resist film.
  • TARC antireflection film
  • BARC antireflection film
  • Examples thereof include a copolymer for antireflection film, a copolymer for gap fill film used for forming a gap fill film, and a copolymer for top coat film used for forming a top coat film.
  • Examples of the resist copolymer include a copolymer containing at least one structural unit having an acid leaving group and at least one structural unit having a polar group.
  • the anti-reflection coating copolymer examples include an amino group, an amide group, a hydroxyl group, an epoxy that can be cured by reacting with a curing agent in order to avoid mixing a structural unit having a light-absorbing group with a resist film. And a copolymer containing a structural unit having a reactive functional group such as a group.
  • the light-absorbing group is a group having high absorption performance with respect to light in a wavelength region where the photosensitive component in the resist composition is sensitive. Specific examples include an anthracene ring, naphthalene ring, benzene ring, quinoline ring.
  • a group having a ring structure such as a quinoxaline ring and a thiazole ring.
  • a ring structure such as a quinoxaline ring and a thiazole ring.
  • an anthracene ring or an anthracene ring having an arbitrary substituent is preferable
  • ArF laser light is used, a benzene ring or a benzene having an arbitrary substituent A ring is preferred.
  • the optional substituent include a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxy group, a carbonyl group, an ester group, an amino group, and an amide group.
  • those having a protected or unprotected phenolic hydroxyl group as the light absorbing group are preferable from the viewpoint of good developability and high resolution.
  • the structural unit / monomer having a light absorbing group include benzyl (meth) acrylate and p-hydroxyphenyl (meth) acrylate.
  • a gap fill film copolymer As an example of a gap fill film copolymer, it has a suitable viscosity for flowing into a narrow gap, and reacts with a curing agent in order to avoid mixing with a resist film or an antireflection film.
  • a copolymer containing a structural unit having a functional group specifically, a copolymer of hydroxystyrene and a monomer such as styrene, alkyl (meth) acrylate, or hydroxyalkyl (meth) acrylate.
  • Examples of the copolymer for the topcoat film used for immersion lithography include a copolymer containing a structural unit having a carboxyl group, a copolymer containing a structural unit having a fluorine-containing group substituted with a hydroxyl group, and the like. .
  • ⁇ Copolymer for resist> a resist copolymer (hereinafter sometimes simply referred to as a copolymer) as a representative example of a lithography copolymer, but other lithographic copolymers are also applicable. it can.
  • the resist copolymer is a copolymer used for the formation of a resist film, and is formed by copolymerizing two or more monomers to form a gel-like material described later in a solution.
  • the present invention can be applied without particular limitation.
  • a copolymer having a structural unit having a polar group is suitable as a copolymer to be evaluated in the evaluation method of the present invention using the composition ratio change rate because the value of the composition ratio change rate described later tends to be large. It is. Moreover, it can also evaluate by the evaluation method of this invention using the below-mentioned molecular weight change rate.
  • a resist copolymer containing at least one structural unit having an acid leaving group and at least one structural unit having a polar group is preferable. The resist copolymer is obtained by polymerizing a monomer mixture composed of one or more monomers having an acid leaving group and one or more monomers having a polar group.
  • the “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the copolymer by cleavage of the bond. .
  • a copolymer containing a structural unit having an acid-eliminable group is soluble in an alkali by an acid, and has an effect of enabling the formation of a resist pattern.
  • the content of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, of all the structural units constituting the copolymer.
  • 60 mol% or less is preferable from the point of the adhesiveness to a board
  • the monomer having an acid leaving group may be a compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used.
  • the polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
  • the monomer having an acid leaving group examples include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done.
  • the alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting the ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
  • the (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester.
  • the monomer having an acid leaving group include, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( And (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate and the like.
  • the monomer having an acid leaving group one type may be used alone, or two or more types may be used in combination.
  • the “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
  • the resist copolymer applied to the pattern forming method that is exposed to light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group. It is preferable to have a structural unit having a hydrophilic group.
  • the lactone skeleton examples include a lactone skeleton having about 4 to 20 members.
  • the lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.
  • the content thereof is preferably 20 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate and the like, and 35 mol%. The above is more preferable.
  • 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.
  • a (meth) acrylic acid ester having a substituted or unsubstituted ⁇ -valerolactone ring, a substituted or unsubstituted ⁇ -butyrolactone ring is used because of its excellent adhesion to a substrate or the like.
  • At least one selected from the group consisting of monomers having an unsubstituted ⁇ -butyrolactone ring is preferred, and a monomer having an unsubstituted ⁇ -butyrolactone ring is particularly preferred.
  • the monomer having a lactone skeleton examples include ⁇ - (meth) acryloyloxy- ⁇ -methyl- ⁇ -valerolactone, 4,4-dimethyl-2-methylene- ⁇ -butyrolactone, ⁇ - (meth) acryloyl Oxy- ⁇ -butyrolactone, ⁇ - (meth) acryloyloxy- ⁇ -methyl- ⁇ -butyrolactone, ⁇ - (meth) acryloyloxy- ⁇ -butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 -One, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decan-3-one and the
  • the “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, hydroxy group, cyano group, methoxy group, carboxy group, and amino group.
  • the copolymer for resist applied to the pattern formation method exposed with the light of wavelength 250nm or less has a hydroxyl group and a cyano group as a hydrophilic group.
  • the content of the structural unit having a hydrophilic group in the copolymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. preferable.
  • the monomer having a hydrophilic group for example, a (meth) acrylic acid ester having a terminal hydroxy group, a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer, Monomers having a cyclic hydrocarbon group (cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate), tricyclodecanyl (meth) acrylate, dimethacrylate (meth) acrylate Cyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent.
  • a hydrophilic group such as a hydroxy group or a carboxy group as a substituent.
  • the monomer having a hydrophilic group examples include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned.
  • 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate and the like are preferable.
  • the monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the resist copolymer can be obtained by radical polymerization.
  • the polymerization method is not particularly limited, and a known method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method can be appropriately used.
  • the solution radical polymerization method is preferred from the viewpoint that the step of removing the monomer remaining after the completion of the polymerization reaction can be easily performed and the molecular weight of the polymer can be relatively easily lowered in order not to reduce the light transmittance.
  • the drop polymerization method is more preferable from the viewpoint that a variation in average molecular weight, molecular weight distribution, etc. due to the difference in production lot is small and a reproducible polymer can be easily obtained.
  • the inside of the polymerization vessel is heated to a predetermined polymerization temperature, and then the monomer and the polymerization initiator are dropped into the polymerization vessel independently or in any combination.
  • a monomer may be dripped only with a monomer, or may be dripped as a monomer solution in which a monomer is dissolved in a solvent.
  • the polymerization vessel may be charged with a solvent in advance or may not be charged. When the solvent is not charged in advance in the polymerization vessel, the monomer or the polymerization initiator is dropped into the polymerization vessel in the absence of the solvent.
  • the polymerization initiator may be dissolved directly in the monomer, dissolved in the monomer solution, or dissolved only in the solvent.
  • the monomer and the polymerization initiator may be dropped into the polymerization vessel after mixing in the same storage tank, or may be dropped from the independent storage tank into the polymerization container. Alternatively, they may be mixed immediately before being supplied from independent storage tanks to the polymerization vessel and dropped into the polymerization vessel.
  • One of the monomers and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
  • the dropping speed may be constant until the dropping is completed, or may be changed in multiple stages according to the consumption speed of the monomer or the polymerization initiator.
  • the dripping may be performed continuously or intermittently.
  • a method of suppressing the formation of a high molecular weight body by increasing the supply rate of the polymerization initiator and / or monomer at the initial stage of polymerization can be used.
  • the dropping polymerization method when the monomer and the polymerization initiator are dropped at the same dropping time and at a uniform rate, a high molecular weight product tends to be formed at the initial stage of polymerization. Therefore, by increasing the supply rate of the polymerization initiator at the initial stage of polymerization, the decomposition of the polymerization initiator is promoted, radical generation / deactivation is steadily generated, and the monomer is dropped into the radical.
  • the formation of a high molecular weight product in the initial stage of polymerization can be suppressed.
  • two or more kinds of dropping liquids are prepared, and a method of changing the supply rate of each dropping liquid in multiple stages, or a solvent and a polymerization initiator are partially or completely charged in advance in a polymerization vessel, Then, the method etc. of dripping the dripping liquid containing various monomers and / or the remaining polymerization initiator, etc. are mentioned.
  • the dropping polymerization method when two or more monomers having different reactivity and a polymerization initiator are dropped at the same dropping time and at a uniform rate, the polymerization of the highly reactive monomer is first performed. As a result, the copolymer having a non-uniform composition tends to be included in the high molecular weight product generated particularly at the initial stage of polymerization.
  • the variation in the composition ratio of the structural units in the copolymer tends to be small.
  • the variation in the composition ratio of the structural units is small, the solubility in a solvent is good, and high sensitivity is obtained when used in a resist composition.
  • the method for producing the polymer comprises adding two or more monomers ⁇ 1 to ⁇ n in the reactor while dropping the monomer and the polymerization initiator in the reactor. It has a polymerization step of obtaining a polymer (P) composed of structural units ⁇ ′ 1 to ⁇ ′ n by polymerization.
  • the polymerization step is performed by a radical polymerization method, and in the above production method, a dropping polymerization method is used in which polymerization is performed in the reactor while dropping a monomer and a polymerization initiator into the reactor.
  • the liquid containing the monomer includes the first solution containing the monomers ⁇ 1 to ⁇ n in the first composition and the monomers ⁇ 1 to ⁇ n in the second composition.
  • a second solution is used.
  • the first solution and the second solution preferably contain a solvent.
  • the monomer content ratio (second composition) in the second solution is the same as the target composition representing the content ratio of the structural units ⁇ ′ 1 to ⁇ ′ n in the polymer (P) to be obtained.
  • the polymer (P) is a ternary polymer obtained by copolymerizing monomers x, y, and z
  • the target composition (mol%, the same applies hereinafter) is x ′: y ′. : Z ′
  • x: y: z is the same as x ′: y ′: z ′.
  • the second solution is fed dropwise to the reactor.
  • the content ratio (first composition) of the monomer in the first solution was determined in advance by taking into account the target composition in the polymer (P) and the reactivity of each monomer used in the polymerization. Composition. Specifically, the first composition is formed immediately after the dropping, when the content ratio of the monomer present in the reactor is the first composition and the second solution is dropped into the reactor. The composition ratio is designed so that the content ratio of the constituent units of the polymer molecules to be obtained is the same as the target composition. In this case, since the content ratio of the constituent units of the polymer molecules produced immediately after the dropping is the same as the monomer content ratio (target composition) of the dropped second solution, the inside of the reactor immediately after the dropping. The content ratio of the remaining monomer is always constant (first composition).
  • the first solution may be charged in the reactor in advance, gradually supplied to the reactor by dropping or the like, or a combination thereof.
  • the polymerization initiator is supplied dropwise to the reactor.
  • a polymerization initiator may be contained in the second solution.
  • the first solution may contain a polymerization initiator.
  • a solution containing a polymerization initiator (polymerization initiator solution) may be added dropwise. These may be combined.
  • the amount (total supply amount) of the polymerization initiator is set according to the type of the polymerization initiator and according to the target value of the weight average molecular weight of the polymer (P) to be obtained.
  • the amount of polymerization initiator used (total supply) with respect to 100 mol% of the total amount of monomers supplied to the reactor (total supply amount).
  • the amount is preferably in the range of 1 to 25 mol%, more preferably in the range of 1.5 to 20 mol%.
  • the total amount of monomers used in the polymerization is the total amount of monomers contained in the first solution and the total amount of monomers contained in the second solution. And is set according to the amount of the polymer (P) to be obtained.
  • the proportion of the total amount of monomers contained in the first solution is too small in the total supply amount of monomers, the desired effect of using the first solution cannot be sufficiently obtained. If the amount is too large, the molecular weight of the polymer produced at the initial stage of the polymerization step becomes too high. Therefore, the total amount of monomers contained in the first solution is preferably 3 to 40% by mass, and more preferably 5 to 30% by mass with respect to the total amount of monomers supplied.
  • the start of dropping the polymerization initiator and the start of dropping the second solution are preferably simultaneous.
  • the dropping of the second solution may be continuous or intermittent, and the dropping speed may be changed.
  • When supplying a 1st solution by dripping it may be continuous and may be intermittent, and dripping speed may change.
  • the first solution is preferably supplied in its entirety in the initial stage of the polymerization step. Specifically, when the reference time is from the start of dropping of the polymerization initiator to the end of dropping of the second solution, the supply of the first solution is ended before 20% of the reference time has elapsed. For example, when the reference time is 4 hours, the entire amount of the first solution is fed into the reactor before 48 minutes have elapsed from the start of the addition of the polymerization initiator. The completion of the supply of the first solution is preferably before 15% of the reference time, and more preferably before 10%. Further, the entire amount of the first solution may be supplied at the time of 0% of the reference time. That is, the entire amount of the first solution may be charged in the reactor before the start of dropping of the polymerization initiator.
  • the polymerization initiator increases the supply amount in the initial stage of the polymerization process. Specifically, when a value obtained by dividing the total supply amount of the polymerization initiator by the reference time is defined as an average supply rate Vj, a period from 0% to j% (j is 5 to 20) of the reference time is expressed as an average supply rate. A high-speed supply period of the polymerization initiator in which the polymerization initiator is dropped at a higher speed than Vj is used. The starting point of the high-speed supply period of the polymerization initiator is the start of the reference time, which is 0% of the reference time. The end point of the high-speed supply period of the polymerization initiator is when j% of the reference time has elapsed.
  • the j% is in the range of 5 to 20%, preferably 5.5 to 17.5%, and more preferably 6 to 15%.
  • the polymerization initiator supplied into the reactor during the high-speed supply period is 30 to 90% by mass of the total supply amount of the polymerization initiator.
  • the weight average molecular weight of the polymer produced at the initial stage of the polymerization process varies. Therefore, the optimum amount of the polymerization initiator during the high-speed supply period varies depending on the type of monomer, monomer supply rate, type of polymerization initiator, polymerization conditions, etc. It is preferable to set so that the weight average molecular weight of the produced polymer is close to the target value.
  • the dropping rate of the polymerization initiator during the high-speed supply period only needs to be kept higher than the average supply rate, and the dropping rate may be changed in the middle.
  • the dropping rate of the polymerization initiator after the end of the high-speed supply period may be lower than the average supply rate, and the dropping rate may be changed midway.
  • dripping may be continuous or intermittent.
  • the end of dropping of the polymerization initiator is preferably after the end of supplying the first solution or simultaneously with the end of supplying the first solution.
  • the end of dropping of the polymerization initiator and the end of dropping of the second solution are preferably simultaneous, but may be slightly different.
  • Preferable embodiments of the polymerization step include the following (a) and (b).
  • (A) A reactor is charged with a first solution containing monomers ⁇ 1 to ⁇ n in a first composition in advance, and the reactor is heated to a predetermined polymerization temperature. Inside, a polymerization initiator solution containing a part of the polymerization initiator and the second solution containing the monomers ⁇ 1 to ⁇ n in the second composition and the remainder of the polymerization initiator are dropped. . The polymerization initiator solution and the second solution start dropping simultaneously, or the polymerization initiator solution starts dropping first. Simultaneous is preferred.
  • the time from the start of dropping of the polymerization initiator solution to the start of dropping of the second solution is preferably 0 to 10 minutes.
  • the dropping speed is preferably constant.
  • the polymerization initiator solution finishes dropping before the second solution.
  • the start of the reference time that is, the start of dropping of the polymerization initiator is at the start of dropping of the polymerization initiator solution.
  • the entire amount of the first solution is supplied into the reactor before the start of dropping of the polymerization initiator. That is, the supply end of the first solution is 0% of the reference time.
  • the high-speed supply period is a period during which the polymerization initiator solution is dripped.
  • the amount of the polymerization initiator supplied into the reactor during the high-speed supply period is the amount of the polymerization initiator contained in the polymerization initiator solution and the second amount dropped during the period when the polymerization initiator solution is being dropped. This is the total amount of the polymerization initiator contained in the solution.
  • the end of dropping of the polymerization initiator is at the end of dropping of the second solution.
  • the monomer ⁇ 1 to ⁇ n are contained in the first composition and the first initiator containing a part of the polymerization initiator
  • the solution and the monomers ⁇ 1 to ⁇ n containing the second composition and the second solution containing the remainder of the polymerization initiator are added dropwise. Both liquids start dropping simultaneously, or the first solution starts dropping first.
  • the time from the start of dropping the first solution to the start of dropping the second solution is preferably 0 to 10 minutes.
  • the dropping speed is preferably constant.
  • the dropping start of the polymerization initiator is at the start of dropping the first solution.
  • the high-speed supply period is a period during which the first solution is dripped.
  • the amount of the polymerization initiator supplied into the reactor during the high-speed supply period is the amount of the polymerization initiator contained in the first solution and the second amount dropped during the period when the first solution is dropped. This is the total amount of the polymerization initiator contained in the solution.
  • the end of dropping of the polymerization initiator is at the end of dropping of the second solution.
  • the target composition is almost equal to that immediately after the start of the polymerization reaction. Polymer molecules of the same composition are produced and the state continues. Therefore, in the polymer (P) obtained after the polymerization step, the variation in the content ratio of the constituent units is reduced, thereby improving the solubility in a solvent and improving the sensitivity when used in a resist composition.
  • the first solution containing the monomer is supplied by the beginning of the polymerization step, and the initial stage of the polymerization step is performed during the high-speed supply period of the polymerization initiator.
  • the solubility to a solvent is favorable, and when it uses for a resist composition, the polymer (P) which has a high sensitivity can be obtained with sufficient reproducibility.
  • the said polymer is applicable also to uses other than a resist use, and the improvement of various performance can be anticipated besides the improvement effect of solubility is acquired.
  • the polymer (P) is a ternary polymer obtained by copolymerizing the monomers x, y, and z
  • the target composition is x ′: y ′:
  • the first composition (mol%, the same shall apply hereinafter)
  • x 0 : y 0 : z 0 is obtained by using the factors Fx, Fy and Fz obtained by the following method, and
  • the proportion of the total mass of the monomers present in the reactor in the elapsed time t m out of 100% by mass of the monomer mixture contained in the first dropping solution (W 0 % by mass).
  • the proportion of the total amount of the monomers contained in the first solution in the total supply amount of the monomer is W 0 % by mass. It is easy to obtain an effect that polymer molecules having almost the same composition are generated.
  • a resist copolymer is dissolved in a solvent to prepare a test solution.
  • the test solution in the present invention refers to a solution subjected to a separation operation in the next step.
  • the test solution is not in a state in which the resist copolymer is completely dissolved, but in a state in which a polymer component having low solubility exists as a gel. For this reason, operation which produces
  • the resist copolymer when the resist copolymer is dissolved in a solvent, if it becomes a completely dissolved solution, a method such as that described below is used to generate a gel-like material to obtain a test solution.
  • the amount of the gel-like substance present in the test solution may be such that a gel-like substance having an amount capable of measuring the polymerization average molecular weight or the composition ratio of the constituent units is obtained after the separation operation in the next step. In order to perform the evaluation with higher accuracy, it is preferable that the gel-like substance in the test solution is less.
  • the amount of the gel-like substance present in the test solution can be adjusted by the light transmittance in the test solution using an ultraviolet-visible spectrophotometer.
  • the wavelength at which the transmittance is measured is a wavelength at which a resist film formed using the resist copolymer to be measured does not exhibit transparency.
  • the wavelength in the visible light region is preferable as the measurement wavelength, specifically, 380 to 780 nm is preferable, and 450 nm is more preferable.
  • the more gelled material present in the test solution the lower the permeability in the test solution.
  • the transmittance in the test solution is preferably 75 to 90 (%), more preferably 82 to 88 (%).
  • the transmittance variation (absolute value of the difference between the maximum value (%) and the minimum value (%)) in a plurality of test solutions to be comparatively evaluated is preferably within 6%.
  • the resist copolymer When preparing the test solution, first, the resist copolymer is completely dissolved in a good solvent, and a gel-like product is formed by adding a poor solvent while monitoring the transmittance with an ultraviolet-visible spectrophotometer. A method of stopping the addition of the poor solvent when the transmittance reaches the above preferable range is preferable. By comparing the addition amount of the poor solvent whose transmittance reaches the above preferable range, it is possible to easily evaluate the development characteristics of the resist composition containing the resist copolymer. Moreover, the precipitation point (cloud point) of a copolymer can also be used for evaluation by the same principle.
  • the good solvent in this specification refers to a solvent that can completely dissolve the resist copolymer in a solvent amount of 5 mass times or less at room temperature (25 ° C.). In particular, it is preferable to use a solvent that can completely dissolve the resist copolymer with a solvent amount of 3 mass times or less. “Completely dissolved” means that the transmittance is 100%.
  • the good solvent used for the test solution may be a single solvent or a mixture of two or more. In the case of a mixed solvent, any solvent can be used as long as it satisfies the above-mentioned good solvent conditions after mixing.
  • the poor solvent means a solvent that does not dissolve at all even when a single mass of 5 mass times of a single solvent is added to the resist copolymer and stirred at room temperature (25 ° C.).
  • a solvent that does not dissolve at all even when a 10 mass-fold amount of a single solvent is added In the case of a mixed solvent, it can be used as a poor solvent as long as it satisfies the above poor solvent conditions after mixing.
  • a good solvent it can select from the well-known resist solvent used when preparing a resist composition suitably, and can use it. You may use individually by 1 type and may be used in combination of 2 or more type.
  • preferable good solvents include tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, and ⁇ -butyrolactone. Can be mentioned.
  • pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, diethyl ether, diisopropyl ether, methanol, ethanol, isopropanol, water, and the like can be used.
  • a poor solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the resist copolymer to be evaluated is an acrylic copolymer
  • PGMEA propylene glycol monomethyl ether acetate
  • ethyl lactate is used as good solvents
  • IPE diisopropyl ether
  • hexane heptane
  • methanol it is preferable to use methanol.
  • the content of the resist copolymer in the test solution can be appropriately set within a range in which the above-mentioned preferable amount of the gel-like material is obtained.
  • the content is preferably 1% by mass or more, and more preferably 2% by mass or more.
  • 30 mass% or less is preferable, and 20 mass% or less is more preferable.
  • the method for separating the gel-like material is not particularly limited, but it is difficult to separate efficiently by filtration using a normal filter. Therefore, separation by centrifugation is preferable.
  • the centrifugal treatment is preferably performed at a relative centrifugal acceleration (centrifugal force) represented by the following formula (1) of 100,000 G or more, more preferably 300,000 G or more, and further preferably 500,000 G or more. .
  • r represents the radius of rotation (cm)
  • N represents the number of rotations per minute (rpm).
  • the treatment temperature in the centrifugation is preferably 0 to 40 ° C., more preferably 2 to 20 ° C., and further preferably 4 to 10 ° C. If processing temperature is this range, solvent volatilization can be suppressed and the solution viscosity suitable for isolation
  • the treatment time can be appropriately set according to the centrifugal force or the like so that the gel-like material can be separated. For example, the range is preferably 0.1 to 10.0 hours, and more preferably 1 to 4 hours. If processing time is this range, the amount of gel-like substances required for evaluation can be obtained. When comparative evaluation is performed on a plurality of resist copolymers, the gel-like substances are separated under the same conditions.
  • composition ratio change rate When the resist copolymer has one or more structural units having an acid-eliminable group and one or more structural units having a polar group, in addition to the molecular weight change rate, the composition ratio Evaluation can also be suitably performed by the rate of change.
  • the gel-like product separated from the test solution is preferably vacuum-dried, and then the composition ratio of the structural units is measured to obtain the following composition ratio change rate.
  • the composition ratio of the constituent units of the resist copolymer before being dissolved in the test solution is also measured in advance.
  • composition ratio of the structural units in the resist copolymer and the composition ratio of the structural units in the gel-like product are measured by the same method.
  • the composition ratio is measured by 1 H-nuclear magnetic resonance (NMR) spectrum method.
  • the composition ratio of the structural unit is the ratio (unit: mol%) of each structural unit derived from each monomer out of all the structural units constituting the resist copolymer (or gel-like product). is there.
  • a composition ratio change rate representing a ratio of a difference obtained by subtracting the composition ratio of the constituent unit in the resist copolymer from the composition ratio of the constituent unit in the gel-like product to the composition ratio of the constituent unit in the resist copolymer is obtained.
  • a composition ratio change rate is calculated
  • the resist copolymer is a ternary copolymer comprising two types of structural units having a polar group (structural units a and b) and one type of structural unit having an acid-eliminable group (structural unit c).
  • the composition ratio change rate with respect to the structural unit a is the ratio a1 (mol%) of the structural unit a of all the structural units of the resist copolymer, and the structural unit of all the structural units of the gel. It is calculated
  • Composition ratio change rate (%) of structural unit a (a2 ⁇ a1) / a1 ⁇ 100 (2)
  • the composition ratio change rate having a positive value is used for the sensitivity evaluation. That is, the composition ratio change rate of the structural unit in which the composition ratio value in the gel-like material is larger than the composition ratio value in the resist copolymer is used for evaluation. Moreover, when performing evaluation with higher accuracy, it is preferable to use a component having a large composition ratio change rate for the evaluation among constituent units having a positive composition ratio change rate. According to the knowledge of the present inventors, the composition ratio change rate of the structural unit having the polar group is larger than the composition ratio change rate of the structural unit having the acid leaving group, and the polarity of the polar group is higher.
  • composition ratio change rate tends to increase.
  • the composition ratio change rate of the structural unit having an acid leaving group is a negative value. Therefore, in the evaluation method of the present invention, it is only necessary to determine the composition ratio change rate of at least a structural unit having a polar group. It is preferable to use for.
  • composition ratio change rate calculated by the equation (2), the higher the uniformity of the composition ratio of the structural units in the entire copolymer, and the closer characteristics to the target characteristics in the molecular design can be obtained.
  • the value of the composition ratio change rate is preferably 8% or less, more preferably 6% or less, and still more preferably 5% or less.
  • the gel-like product separated from the test solution is preferably vacuum-dried, and then the polymerization average molecular weight is measured to obtain the value of the following molecular weight change rate, and the evaluation is performed based on this.
  • the polymerization average molecular weight of the resist copolymer before being dissolved in the test solution is also measured in advance.
  • the weight average molecular weight (Mw1) of the resist copolymer and the weight average molecular weight (Mw2) of the gel are measured by the same method.
  • a method of measuring the weight average molecular weight by gel permeation chromatography using a standard polystyrene sample having a known molecular weight is preferred.
  • the weight average molecular weight is measured by the same method. From the value of Mw1 of the obtained resist copolymer and Mw2 of the gel-like material, the molecular weight change rate (unit:%) is obtained by the following formula (3).
  • the molecular weight change rate represents a ratio of a difference obtained by subtracting Mw1 of the resist copolymer from Mw2 of the gel-like material with respect to Mw1 of the resist copolymer. According to the knowledge of the present inventors, Mw2> Mw1 is always satisfied.
  • Molecular weight change rate (%) (Mw2-Mw1) / Mw1 ⁇ 100 (3)
  • the value of the molecular weight change rate may vary depending on the average molecular weight and molecular weight distribution of the copolymer to be evaluated, the amount of the gel-like substance to be separated, etc., but is preferably 120% or less, more preferably 100% or less. Preferably, 85% or less is more preferable.
  • composition ratio change rate and the molecular weight change rate in the present invention correlate with the sensitivity when a resist copolymer is used as a resist composition, as shown in Examples described later. That is, the smaller the composition ratio change rate, the better the sensitivity. In addition, the smaller the molecular weight change rate, the better the sensitivity. Therefore, the sensitivity can be evaluated using at least one of the composition ratio change rate and the molecular weight change rate.
  • the high sensitivity means that the alkali solubility after exposure of the resist composition is good. For example, it is estimated that development defects (defects) and pattern dimension variations (LER) are also good. The Therefore, the evaluation method of the present invention can be used not only for sensitivity, but also for evaluation of development characteristics such as development defects (defects) and pattern dimension variations (LER).
  • the gel-like product produced in the test solution is a component having a low solubility in the copolymer, a relatively high molecular weight component, and the composition of the structural unit. Is a component that is relatively far from the design value. From this, it is considered that the gel-like product is a component that increases the non-uniformity of the copolymer. Moreover, it is thought that the said gel-like substance originates in the high molecular weight body which is easy to produce
  • composition ratio change rate or the molecular weight change rate in the present invention the higher the homogeneity in the copolymer. It is considered that the development characteristics such as sensitivity are improved because the uniformity is high. Therefore, by using the evaluation method of the present invention, it is possible to evaluate not only the development characteristics of the resist composition but also the lithography characteristics that vary depending on the uniformity of the lithography copolymer. That is, the smaller the composition ratio change rate or the molecular weight change rate, the closer to the lithography characteristics targeted in the molecular design.
  • the lithographic copolymer having a small molecular weight change rate and the lithographic composition containing the same in the evaluation method of the present invention have high molecular weight uniformity in the entire copolymer. Therefore, the lithography properties that are improved when the uniformity of the molecular weight of the copolymer is high are good.
  • the smaller the molecular weight change rate the closer to the desired lithography characteristics targeted in the molecular design. For example, as shown in Examples described later, the resist copolymer having a molecular weight change rate of 120% or less and a resist composition containing the copolymer have good sensitivity in the development step.
  • the lithography copolymer having a small composition ratio change rate in the evaluation method of the present invention and the lithography composition containing the copolymer have high uniformity in the composition ratio of the constituent units in the entire copolymer. Therefore, the lithography characteristics that are improved when the composition ratio of the constituent units is high are good.
  • the composition ratio change rate is smaller, characteristics closer to desired lithography characteristics targeted in molecular design can be obtained. For example, as shown in Examples described later, the resist copolymer having a composition ratio change rate of 8% or less and the resist composition containing the copolymer have good sensitivity in the development process.
  • the monomers (M-1) to (M-6) used for the synthesis of the copolymer are shown below.
  • Step 2 When present, when the mixed solution described in Step 2 described later is dropped, the content ratio of the constituent units of the polymer molecules generated immediately after the dropping becomes the same as the target composition.
  • Step 3 Simultaneously with the start of dropping of the mixed solution in Step 2, the mixed solution prepared at the mixing ratio described in Step 3 of Table 1 and Table 2 is dropped into the flask from another dropping funnel over 0.1 hour. did.
  • the weight average molecular weight of the copolymer produced at the initial stage of the polymerization step varies depending on the amount of the polymerization initiator dropped in this step, but it is set to be close to the target polymerization average molecular weight of each copolymer.
  • Step 4 a mixed solvent prepared in the mixing ratio described in Step 4 of Table 1 and Table 2 is prepared about 7 times the amount of the obtained reaction solution, and the reaction solution is added dropwise with stirring, A white gel-like precipitate was obtained and filtered off.
  • Step 5 The same amount of the mixed solvent prepared in the mixing ratio described in Step 5 of Table 1 and Table 2 was prepared as in Step 4, and the precipitate separated by filtration was put into this mixed solvent. This was separated by filtration, collected, and dried under reduced pressure at 60 ° C. for about 40 hours to obtain a powder of each copolymer.
  • Step 1 A flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer was prepared in a nitrogen atmosphere at the mixing ratio described in Step 1 of Table 3. The mixed solution was added, and the temperature of the hot water bath was raised to 80 ° C. while stirring.
  • the above mixing ratio is a composition obtained in advance by taking into account the target composition in each copolymer and the reactivity of each monomer used in the polymerization, and the monomer is contained in the reactor at this mixing ratio.
  • the mixed solution described in Step 2 described later is dropped, the content ratio of the constituent units of the polymer molecules generated immediately after the dropping becomes the same as the target composition.
  • Step 2 A mixed solution prepared at the mixing ratio described in Step 2 of Table 3 was dropped into the flask at a constant rate from a dropping funnel over 6 hours, and then a temperature of 80 ° C. was maintained for 1 hour.
  • Step 3 Simultaneously with the start of dropping of the mixed solution in Step 2, the mixed solution prepared at the mixing ratio described in Step 3 of Table 3 was dropped into the flask from another dropping funnel over 0.5 hours.
  • the weight average molecular weight of the copolymer produced at the initial stage of the polymerization step varies depending on the amount of the polymerization initiator dropped in this step, but it is set to be close to the target polymerization average molecular weight of each copolymer.
  • Step 4 Next, about 7 times the amount of the obtained reaction solution of IPE (diisopropyl ether) was prepared, and the reaction solution was added dropwise with stirring to obtain a white gel-like precipitate, which was filtered off. .
  • Step 5 IPE (diisopropyl ether) was prepared in the same amount as in Step 4, and the filtered precipitate was put into this mixed solvent. This was separated by filtration, collected, and dried under reduced pressure at 60 ° C. for about 40 hours to obtain a powder of each copolymer.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the copolymers A-1 to 4, B-1 to 2, and C-1 to 2 were measured by the following methods. About 20 mg of sample is dissolved in 5 mL of THF and filtered through a 0.5 ⁇ m membrane filter to prepare a sample solution. This sample solution is prepared by Tosoh Gel Permeation Chromatography (GPC) apparatus: HCL-8220 ( Product name), the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured to obtain the molecular weight distribution (Mw / Mn).
  • GPC Tosoh Gel Permeation Chromatography
  • composition ratio of constituent units in the copolymer for lithography The composition ratio (unit: mol%) of each structural unit in the copolymer for lithography was determined by 1 H-NMR measurement. In this measurement, a JNM-GX270 type superconducting FT-NMR manufactured by JEOL Ltd. was used, and a sample solution of about 5% by mass (the solvent was deuterated dimethyl sulfoxide) was placed in a sample tube with a diameter of 5 mm ⁇ , and the observation frequency Integration was performed 64 times 1 H in 270 MHz, single pulse mode. The measurement temperature was 60 ° C. The measurement results are shown in Table 7, Table 8, and Table 9.
  • ⁇ Process (v)> (Preparation of test solution) First, the copolymers A-1 to 4, B-1 to 2, and C-1 to 2 are dissolved in PGMEA (propylene glycol monomethyl ether acetate) so that the copolymer concentration becomes 2.5% by mass. Copolymer solutions A-1 to A-4, B-1 to C2, and C-1 to C-2 were obtained. The temperature of the solution was normal temperature (25 ° C.).
  • ⁇ Process (vi)> A UV-3100PC (product name) manufactured by Shimadzu Corporation was used as an ultraviolet-visible spectrophotometer, and the measurement solution was placed in a quartz square cell having an optical path length of 10 mm, and the transmittance at a wavelength of 450 nm was measured.
  • the light transmittance was measured for the polymer solution and the solvent (PGMEA) before dissolving the copolymer.
  • the transmittance of the copolymer solutions A-1 to A4, B-1 to C2, and C-1 to C2 was 100%, and it was confirmed that the copolymer was completely dissolved in each copolymer solution. It was.
  • composition ratio change rate (Composition ratio change rate) Using the value of the composition ratio of each lithographic copolymer and each gel-like material, among the three structural units, there is a polar group, and there is a difference in composition ratio between the lithographic copolymer and the gel-like material. With respect to the structural unit derived from ⁇ -GBLMA that was relatively large, the composition ratio change rate (unit:%) was determined by the following formula (2). The results are shown in Table 7, Table 8, and Table 9.
  • Composition ratio change rate (%) of structural unit a (a2 ⁇ a1) / a1 ⁇ 100 (2) a1: Ratio (mol%) of the structural unit a among all the structural units of the resist copolymer a2: Ratio (mol%) of structural unit a among all structural units of the gel-like material
  • the values a1 and a2 were determined by 1 H-NMR measurement under the above measurement conditions.
  • the resist composition obtained above was spin-coated on a 6-inch silicon wafer and pre-baked (PB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm.
  • PB pre-baked
  • 18 shot exposures were performed with different exposure amounts.
  • One shot is the entire surface exposure for a rectangular area of 10 mm ⁇ 10 mm.
  • PEB post-baking
  • the remaining film ratio was determined.
  • Eth is a necessary exposure amount for achieving a remaining film ratio of 0% and represents sensitivity. The smaller the Eth, the higher the sensitivity. The results are shown in Tables 7 and 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を、実際にリソグラフィー用組成物を調製しなくても評価できる方法を提供する。リソグラフィー用共重合体を溶媒に溶解させて試験溶液を調製する工程と、前記試験溶液中のゲル状物を分離する工程と、前記リソグラフィー用共重合体における構成単位の組成比に対する、前記ゲル状物における構成単位の組成比から前記リソグラフィー用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率求める工程と、前記組成比変化率により、前記リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を評価する。

Description

リソグラフィー用共重合体およびその評価方法
 本発明はリソグラフィー用共重合体およびその評価方法に関する。
 本願は、2009年7月7日に、日本に出願された特願2009-160857号に基づき優先権を主張し、その内容をここに援用する。
 半導体素子、液晶素子等の製造工程においては、近年、リソグラフィーによるパターン形成の微細化が急速に進んでいる。微細化の手法としては、照射光の短波長化がある。
 最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術及びEUVエキシマレーザー(波長:13nm)リソグラフィー技術が研究されている。
 また、例えば、照射光の短波長化およびパターンの微細化に好適に対応できるレジスト組成物として、酸の作用により酸脱離性基が脱離してアルカリ可溶性となる重合体と、光酸発生剤とを含有する、いわゆる化学増幅型レジスト組成物が提唱され、その開発および改良が進められている。
 ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体としては、波長193nmの光に対して透明なアクリル系重合体が注目されている。
 例えば下記特許文献1には、単量体として、(A)ラクトン環を有する脂環式炭化水素基がエステル結合している(メタ)アクリル酸エステル、(B)酸の作用により脱離可能な基がエステル結合している(メタ)アクリル酸エステル、および(C)極性の置換基を有する炭化水素基または酸素原子含有複素環基がエステル結合している(メタ)アクリル酸エステルを用いてなるレジスト用の共重合体が記載されている。
 ところで、レジスト用の共重合体は、これを含有するレジスト組成物を使用して良好なパターンを形成できるかどうかが重要である。かかるレジスト用共重合体の評価は、実際にレジスト組成物を調製して、前記レジスト組成物の各種現像特性等を測定する方法が一般的である。
 また下記特許文献2、3には、レジスト用共重合体を含む樹脂をレジスト溶剤に溶解させ、前記溶液についての動的光散乱を測定して得られる特定のパラメータから、前記樹脂を用いたレジスト組成物における現像欠陥の発生度合い、パターン寸法のばらつき(LER)の度合い、または液中異物発生の度合いを予測する方法が記載されている。
特開2002-145955号公報 特開2005-91407号公報 特開2009-37184号公報
 特許文献2、3のように、実際にレジスト組成物を調製して現像を行わなくても、レジスト用共重合体を含むレジスト組成物の性能を評価できる方法は、簡便であるうえ、共重合体以外の成分の影響を排除できるため、共重合体自身の性能を厳密に評価する方法として有用である。
 しかしながら、かかる評価方法に関する知見は未だ少なく、評価可能な項目の拡大または評価方法の多様化が望まれている。
 また、レジスト用共重合体以外のリソグラフィー用共重合体、例えばリソグラフィー工程において、レジスト膜の上層若しくは下層に形成される反射防止膜、ギャップフィル膜、トップコート膜等の薄膜形成に用いられる共重合体についても同様に、リソグラフィー用共重合体を含有するリソグラフィー用組成物が、高精度の微細加工を行うための性能(リソグラフィー特性)を備えているかどうかが重要である。そして、実際にリソグラフィー用組成物を調製してリソグラフィー工程を行わなくても、リソグラフィー用共重合体を含むリソグラフィー用組成物の性能を評価できる方法が望まれている。
 本発明は前記事情に鑑みてなされたもので、リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を、実際にリソグラフィー用組成物を調製しなくても評価できる方法を提供することを目的とする。
 (1)前記課題を解決するために、本発明の第1の態様は、リソグラフィー用共重合体を溶媒に溶解させて試験溶液を調製する工程(i)と、前記試験溶液中のゲル状物を分離する工程(ii)と、前記リソグラフィー用共重合体における構成単位の組成比に対する、前記ゲル状物における構成単位の組成比から前記リソグラフィー用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率を求める工程(iii)と、前記組成比変化率により、前記リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を評価する工程(iv)を有するリソグラフィー用共重合体の評価方法であることを特徴とする。
 (2)前記リソグラフィー用共重合体が、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを有するレジスト用共重合体であり、前記組成比変化率により、前記レジスト用共重合体を含むレジスト組成物の現像特性を評価する、(1)記載のリソグラフィー用共重合体の評価方法。
 (3)前記試験溶液を調製する工程において、貧溶媒を添加してゲル状物を生成させる、(1)~(2)のいずれか一項に記載のリソグラフィー用共重合体の評価方法。
 (4)前記ゲル状物の分離を遠心分離により行う、(1)~(3)のいずれか一項に記載のリソグラフィー用共重合体の評価方法。
 (5)本発明の第2の態様は、下記リソグラフィー用共重合体の処理工程により測定した組成比変化率が8%以下であるリソグラフィー用共重合体であることを特徴とする:
 リソグラフィー用共重合体濃度が2.5質量%となるように、プロピレングリコールモノメチルエーテルアセテートに溶解させて試験溶液を調製する工程(v);
 前記試験溶液中に、波長450nmにおける透過率が85±3%となるまで貧溶媒を添加する工程(vi);
 前記試験溶液中のゲル状物を、相対遠心加速度50万G、処理温度4℃、処理時間4時間の条件で遠心分離にて分離する工程(vii);
 前記リソグラフィー用共重合体における少なくとも一種の構成単位の組成比に対する、前記ゲル状物における対応する一種の構成単位の組成比から前記リソグラフィー用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率を、核磁気共鳴装置(NMR)で求める工程(viii)。
 (6)(5)に記載のリソグラフィー用共重合体を含むリソグラフィー組成物。
 本発明の方法によれば、リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を、実際にリソグラフィー用組成物を調製しなくても評価することができる。
 本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
<リソグラフィー用共重合体>
 本発明において評価の対象となるリソグラフィー用共重合体は、リソグラフィー工程に用いられる共重合体であって、2種以上の単量体を共重合させてなり、溶液中に後述のゲル状物を生成し得るものであれば、特に限定されずに適用することができる。
 例えば、レジスト膜の形成に用いられるレジスト用共重合体、レジスト膜の上層に形成される反射防止膜(TARC)、またはレジスト膜の下層に形成される反射防止膜(BARC)の形成に用いられる反射防止膜用共重合体、ギャップフィル膜の形成に用いられるギャップフィル膜用共重合体、トップコート膜の形成に用いられるトップコート膜用共重合体が挙げられる。
 レジスト用共重合体の例としては、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを含む共重合体が挙げられる。
 反射防止膜用共重合体の例としては、吸光性基を有する構成単位と、レジスト膜との混合を避けるため、硬化剤などと反応して硬化可能なアミノ基、アミド基、ヒドロキシル基、エポキシ基等の反応性官能基を有する構成単位とを含む共重合体が挙げられる。
 吸光性基とは、レジスト組成物中の感光成分が感度を有する波長領域の光に対して、高い吸収性能を有する基であり、具体例としては、アントラセン環、ナフタレン環、ベンゼン環、キノリン環、キノキサリン環、チアゾール環等の環構造(任意の置換基を有していてもよい。)を有する基が挙げられる。特に、照射光として、KrFレーザ光が用いられる場合には、アントラセン環又は任意の置換基を有するアントラセン環が好ましく、ArFレーザ光が用いられる場合には、ベンゼン環又は任意の置換基を有するベンゼン環が好ましい。
 上記任意の置換基としては、フェノール性水酸基、アルコール性水酸基、カルボキシ基、カルボニル基、エステル基、アミノ基、又はアミド基等が挙げられる。
これらのうち、吸光性基として、保護された又は保護されていないフェノール性水酸基を有するものが、良好な現像性・高解像性の観点から好ましい。
 上記吸光性基を有する構成単位・単量体として、例えば、ベンジル(メタ)アクリレート、p-ヒドロキシフェニル(メタ)アクリレート等が挙げられる。
 ギャップフィル膜用共重合体の例としては、狭いギャップに流れ込むための適度な粘度を有し、レジスト膜や反射防止膜との混合を避けるため、硬化剤などと反応して硬化可能な反応性官能基を有する構成単位を含む共重合体、具体的にはヒドロキシスチレンと、スチレン、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等の単量体との共重合体が挙げられる。
 液浸リソグラフィーに用いられるトップコート膜用共重合体の例としては、カルボキシル基を有する構成単位を含む共重合体、水酸基が置換したフッ素含有基を有する構成単位を含む共重合体等が挙げられる。
 これらのリソグラフィー用共重合体を分子設計通りに共重合反応させることは容易でなく、分子量や単量体の組成比にばらつきが生じる。また分子設計が同じでも、製造方法が違うと、分子量や単量体の組成比におけるばらつきの度合いが異なり、リソグラフィー工程にあってはかかる製造方法の違いだけでも性能に差が生じ得る。本発明の評価方法によれば、そのような製造方法の違いによる性能の差も評価できるため、リソグラフィー用共重合体は本発明における評価対象の共重合体として好ましい。
<レジスト用共重合体>
 以下、リソグラフィー用共重合体の代表例としてレジスト用共重合体(以下、単に共重合体ということもある。)を挙げて本発明を説明するが、他のリソグラフィー用共重合体も同様に適用できる。
 レジスト用共重合体は、レジスト膜の形成に用いられる共重合体であって、2種以上の単量体を共重合させてなり、溶液中に後述のゲル状物を生成し得るものであれば、特に限定されずに適用することができる。
 特に、極性基を有する構成単位を有する共重合体は、後述の組成比変化率の値が大きくなりやすいため、前記組成比変化率を用いる本発明の評価方法における評価対象の共重合体として好適である。また、後述の分子量変化率を用いた本発明の評価方法でも評価できる。
 具体的には、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを含むレジスト用共重合体が好ましい。前記レジスト用共重合体は、酸脱離性基を有する単量体の1種以上と、極性基を有する単量体の1種以上とからなる単量体混合物を重合して得られる。
[酸脱離性基を有する構成単位・単量体]
 「酸脱離性基」とは、酸により開裂する結合を有する基であり、前記結合の開裂により酸脱離性基の一部または全部が共重合体の主鎖から脱離する基である。
 酸脱離性基を有する構成単位を含む共重合体は、レジスト組成物として用いた場合、酸によってアルカリに可溶となり、レジストパターンの形成を可能とする作用を奏する。
 酸脱離性基を有する構成単位の含有量は、感度および解像度の点から、共重合体を構成する全構成単位のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
 酸脱離性基を有する単量体は、酸脱離性基、および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
 酸脱離性基を有する単量体の具体例として、炭素数6~20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。前記脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
 前記(メタ)アクリル酸エステルには、炭素数6~20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6~20の脂環式炭化水素基を有するとともに、前記脂環式炭化水素基に-COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
 特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、1-(1’-アダマンチル)-1-メチルエチル(メタ)アクリレート、1-メチルシクロヘキシル(メタ)アクリレート、1-エチルシクロヘキシル(メタ)アクリレート、1-メチルシクロペンチル(メタ)アクリレート、1-エチルシクロペンチル(メタ)アクリレート等が挙げられる。
 酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[極性基を有する構成単位・単量体]
 「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
 これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用共重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
(ラクトン骨格を有する構成単位・単量体)
 ラクトン骨格としては、例えば、4~20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
 共重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、35モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
 ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ-バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ-ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ-ブチロラクトン環を有する単量体が特に好ましい。
 ラクトン骨格を有する単量体の具体例としては、β-(メタ)アクリロイルオキシ-β-メチル-δ-バレロラクトン、4,4-ジメチル-2-メチレン-γ-ブチロラクトン、β-(メタ)アクリロイルオキシ-γ-ブチロラクトン、β-(メタ)アクリロイルオキシ-β-メチル-γ-ブチロラクトン、α-(メタ)アクリロイルオキシ-γ-ブチロラクトン、2-(1-(メタ)アクリロイルオキシ)エチル-4-ブタノリド、(メタ)アクリル酸パントイルラクトン、5-(メタ)アクリロイルオキシ-2,6-ノルボルナンカルボラクトン、8-メタクリロキシ-4-オキサトリシクロ[5.2.1.02,6 ]デカン-3-オン、9-メタクリロキシ-4-オキサトリシクロ[5.2.1.02,6 ]デカン-3-オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
 ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(親水性基を有する構成単位・単量体)
 本明細書における「親水性基」とは、-C(CF-OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
 これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用共重合体は、親水性基としてヒドロキシ基、シアノ基を有することが好ましい。
 共重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5~30モル%が好ましく、10~25モル%がより好ましい。
 親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル、単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体、環式炭化水素基を有する単量体((メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1-イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2-メチル-2-アダマンチル、(メタ)アクリル酸2-エチル-2-アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有する単量体が挙げられる。
 親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシ-n-プロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシアダマンチル、2-または3-シアノ-5-ノルボルニル(メタ)アクリレート、2-シアノメチル-2-アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3-ヒドロキシアダマンチル、2-または3-シアノ-5-ノルボルニル(メタ)アクリレート、2-シアノメチル-2-アダマンチル(メタ)アクリレート等が好ましい。
 親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<リソグラフィー用共重合体の製造方法>
 以下、リソグラフィー用共重合体の製造方法の代表例としてレジスト用共重合体の製造方法を挙げて説明するが、他のリソグラフィー用共重合体も同様に適用できる。
 レジスト用共重合体は、ラジカル重合法によって得ることができる。重合方法は特に限定されず、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法を適宜用いることができる。
 特に、光線透過率を低下させないために、重合反応終了後に残存する単量体を除去する工程を容易に行える点、重合体の分子量を比較的低くしやすい点から、溶液ラジカル重合法が好ましい。そのうちで、製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性のある重合体を簡便に得やすい点から、滴下重合法が更に好ましい。
 滴下重合法においては、重合容器内を所定の重合温度まで加熱した後、単量体及び重合開始剤を、各々独立に、又は任意の組み合わせで、重合容器内に滴下する。単量体は、単量体のみで滴下してもよく、又は単量体を溶媒に溶解させた単量体溶液として滴下してもよい。重合容器に予め溶媒を仕込んでもよく、仕込まなくてもよい。重合容器に予め溶媒を仕込まない場合、単量体または重合開始剤は、溶媒がない状態で重合容器中に滴下される。
 上記重合開始剤は、単量体に直接に溶解させてもよく、単量体溶液に溶解させてもよく、又は溶媒のみに溶解させてもよい。単量体及び重合開始剤は、同じ貯槽内で混合した後、重合容器中に滴下してもよく、各々独立した貯槽から重合容器中に滴下してもよい。または、各々独立した貯槽から重合容器に供給する直前で混合して、重合容器中に滴下してもよい。上記単量体及び重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
 なお、滴下速度は、滴下終了まで一定であってもよく、又は単量体や重合開始剤の消費速度に応じて、多段階に変化させてもよい。滴下は、連続的又は間欠的に行ってもよい。
 上記溶液ラジカル重合による滴下重合法を用いる場合、重合初期に重合開始剤及び/又は単量体の供給速度を上げて高分子量体の生成を抑制する方法を用いることができる。
 一般的に、滴下重合法において、単量体と重合開始剤を同一滴下時間、かつ均一速度で滴下する場合、重合初期に高分子量体が生成する傾向がある。そこで、重合初期に重合開始剤の供給速度を上げることにより、重合開始剤の分解を促進させて、ラジカルの生成・失活を定常的に発生させ、前記ラジカル中に単量体を滴下することで、重合初期における高分子量体の生成を抑制することができる。
 具体的には、二種以上の滴下液を調製し、各々の滴下液の供給速度を多段階に変化させる方法や、重合容器内に予め溶剤と重合開始剤の一部量又は全量を仕込み、次いで、各種単量体及び/又は残りの重合開始剤等を含有する滴下液を滴下する方法等が挙げられる。
 また一般的に、滴下重合法において、反応性の異なる2種以上の単量体と重合開始剤を同一滴下時間、かつ均一速度で滴下する場合、反応性の高い単量体の重合が先に進行し、その結果、特に重合初期に生成する高分子量体の中に、組成が不均一な共重合体が多く含まれる傾向がある。
 かかる重合初期における、組成の不均一な高分子量体の生成を抑制する方法として、例えば、重合に用いられる各単量体の反応性比に応じて、反応器内にモノマーを先仕込みして、重合初期から定常状態で重合させることにより、組成の均一なポリマーを製造する方法がある。
 更に、上記重合初期における高分子量体の生成を抑制する方法と、上記重合初期における、組成の不均一な高分子量体の生成を抑制する方法とを組み合わせると、分子量及び組成が更に均一な共重合体を得ることができるため好ましい。
 上記製造方法によれば、共重合体における構成単位の組成比のばらつきが小さくなりやすい。構成単位の組成比のばらつきが小さいと、溶媒への溶解性が良好であり、かつレジスト組成物に用いたときに高い感度が得られる。
 以下に、上記製造方法の一実施態様を説明する。
 上記有利な一実施態様において、上記重合体の製造方法は、反応器内に単量体および重合開始剤を滴下しながら、前記反応器内で2種以上の単量体α~αを重合して、構成単位α’~α’からなる重合体(P)を得る重合工程を有する。
 前記重合工程はラジカル重合法で行われ、上記製法では、単量体および重合開始剤を反応器内に滴下しながら、前記反応器内で重合を行う滴下重合法を用いる。
 この場合、単量体を含有する液として、単量体α~αを第1の組成で含有する第1の溶液と、単量体α~αを第2の組成で含有する第2の溶液を用いる。第1の溶液および第2の溶液は溶媒を含有することが好ましい。
[第2の溶液]
 上記第2の溶液における単量体の含有比率(第2の組成)は、得ようとする重合体(P)における構成単位α’~α’の含有比率を表す目標組成と同じである。
 例えば、重合体(P)が、単量体x、y、zを共重合させて得られる3元系の重合体であって、目標組成(モル%、以下同様。)がx’:y’:z’であるとき、第2の組成(モル%、以下同様。)x:y:zはx’:y’:z’と同じにする。
 第2の溶液は滴下により反応器に供給する。
[第1の溶液]
 上記第1の溶液における単量体の含有比率(第1の組成)は、重合体(P)における目標組成と、重合に用いられる各単量体の反応性とを加味して予め求められた組成である。
 具体的に第1の組成は、反応器内に存在する単量体の含有比率が第1の組成であるとき、前記反応器内に上記第2の溶液が滴下されると、滴下直後に生成される重合体分子の構成単位の含有比率が目標組成と同じになるように、設計された組成である。この場合、滴下直後に生成される重合体分子の構成単位の含有比率が、滴下された第2の溶液の単量体の含有比率(目標組成)と同じであるから、滴下直後に反応器内に残存する単量体の含有比率は常に一定(第1の組成)となる。したがって、かかる反応器内に第2の溶液の滴下を継続して行うと、常に目標組成の重合体分子が生成し続けるという定常状態が得られる。第1の組成の設計方法は後述する。
 上記第1の溶液は、予め反応器内に仕込んでおいてもよく、滴下等により反応器に徐々に供給してもよく、これらを組み合わせてもよい。
[重合開始剤]
 重合開始剤は滴下により反応器に供給する。第2の溶液に重合開始剤を含有させてもよい。第1の溶液を滴下する場合は、前記第1の溶液に重合開始剤を含有させてもよい。第1の溶液、第2の溶液とは別に、重合開始剤を含有する溶液(重合開始剤溶液)を滴下してもよい。これらを組み合わせてもよい。
 重合開始剤の使用量(全供給量)は、重合開始剤の種類に応じて、また得ようとする重合体(P)の重量平均分子量の目標値に応じて設定される。
 例えば、上記重合体(P)がリソグラフィー用重合体である場合、反応器に供給される単量体の合計(全供給量)の100モル%に対して、重合開始剤の使用量(全供給量)は1~25モル%の範囲が好ましく、1.5~20モル%の範囲がより好ましい。
[単量体の含有量]
 重合に使用される単量体の合計量(単量体の全供給量)は、第1の溶液に含まれる単量体の合計量と、第2の溶液に含まれる単量体の合計量の総和であり、得ようとする重合体(P)の量に応じて設定される。
 また単量体の全供給量のうち、第1の溶液に含まれる単量体の合計量が占める割合が少なすぎると、第1の溶液を用いることによる所期の効果が充分に得られず、多すぎると重合工程の初期に生成される重合体の分子量が高くなりすぎる。したがって、単量体の全供給量に対して、第1の溶液に含まれる単量体の合計量は3~40質量%が好ましく、5~30質量%がより好ましい。
[重合工程]
 重合工程において、反応器内に重合開始剤を滴下したときに、前記反応器内に第1の溶液が存在していることが必要である。したがって、反応器内に重合開始剤を滴下する前または重合開始剤の滴下開始と同時に、前記反応器内に第1の溶液を供給開始する。
 また反応器内に第2の溶液を滴下したときに、前記反応器内に第1の溶液と重合開始剤が存在していることが必要である。したがって、反応器内に第1の溶液を供給開始した後または第1の溶液の供給開始と同時に、前記反応器内に第2の溶液を滴下開始する。前記第2の溶液の滴下開始は、前記重合開始剤の滴下開始と同時または前記重合開始剤の滴下開始より後である。重合開始剤の滴下開始と第2の溶液の滴下開始は同時であることが好ましい。
 第2の溶液の滴下は、連続的でもよく、断続的でもよく、滴下速度が変化してもよい。生成される重合体の組成および分子量をより安定させるためには、連続的に、一定速度で滴下することが好ましい。
 第1の溶液を滴下により供給する場合、連続的でもよく、断続的でもよく、滴下速度が変化してもよい。生成される重合体の組成および分子量をより安定させるためには、連続的に、一定速度で滴下することが好ましい。
 第1の溶液は、重合工程の初期に、その全量を供給することが好ましい。具体的には、重合開始剤の滴下開始から第2の溶液の滴下終了までを基準時間とするとき、前記基準時間の20%が経過する以前に、第1の溶液の供給を終了する。例えば基準時間が4時間である場合は、重合開始剤の滴下開始から48分経過する以前に、第1の溶液の全量を反応器内に供給する。
 第1の溶液の供給終了は、基準時間の15%以前が好ましく、10%以前がより好ましい。
 また基準時間の0%の時点で第1の溶液の全量が供給されていてもよい。すなわち重合開始剤の滴下開始前に、反応器内に第1の溶液の全量を仕込んでおいてもよい。
 重合開始剤は、重合工程の初期における供給量を多くする。具体的には重合開始剤の全供給量を基準時間で除した値を平均供給速度Vjとするとき、基準時間の0%からj%(jは5~20)までの期間を、平均供給速度Vjよりも高速で重合開始剤を滴下する重合開始剤の高速供給期間とする。
 重合開始剤の高速供給期間の開始時点は基準時間の開始時であり、基準時間の0%である。重合開始剤の高速供給期間の終了時点は、基準時間のj%が経過した時点である。前記j%は5~20%の範囲内であり、5.5~17.5%が好ましく、6~15%がより好ましい。
 高速供給期間中に反応器内に供給される重合開始剤は、重合開始剤の全供給量のうちの30~90質量%である。前記高速供給期間中の重合開始剤の供給量によって、重合工程の初期において生成される重合体の重量平均分子量が変化する。したがって、高速供給期間中の重合開始剤の最適な供給量は、単量体の種類、単量体の供給速度、重合開始剤の種類、重合条件等によっても異なるが、特に重合工程の初期に生成される重合体の重量平均分子量が目標値に近くなるように設定することが好ましい。例えば重合開始剤の全供給量の35~85質量%が好ましく、40~80質量%がより好ましい。
 高速供給期間中の重合開始剤の滴下速度は、前記平均供給速度より高い状態が保たれていればよく、途中で滴下速度を変更してもよい。
高速供給期間の終了後の重合開始剤の滴下速度は、前記平均供給速度よりも低速であればよく、途中で滴下速度を変更してもよい。また、滴下は連続的でもよく断続的でもよい。
 重合開始剤の滴下終了は、第1の溶液の供給終了より後、または第1の溶液の供給終了と同時であることが好ましい。
 重合開始剤の滴下終了と第2の溶液の滴下終了は同時であることが好ましいが、若干前後してもよい。
 重合工程の好ましい態様としては、以下の(a)、(b)が挙げられる。
(a)予め反応器内に、単量体α~αを第1の組成で含有する第1の溶液を仕込んでおき、反応器内を所定の重合温度まで加熱した後、前記反応器内に、重合開始剤の一部を含む重合開始剤溶液と、単量体α~αを第2の組成で含有するとともに、重合開始剤の残部を含む第2の溶液をそれぞれ滴下する。重合開始剤溶液と第2の溶液は同時に滴下開始するか、または重合開始剤溶液を先に滴下開始する。同時が好ましい。重合開始剤溶液の滴下開始から第2の溶液の滴下開始までの時間は0~10分が好ましい。
 滴下速度はそれぞれ一定であることが好ましい。重合開始剤溶液は第2の溶液よりも先に滴下を終了する。
 本態様において、基準時間の開始、すなわち重合開始剤の滴下開始は、重合開始剤溶液の滴下開始時である。本態様では、重合開始剤の滴下開始前に第1の溶液の全量が反応器内に供給される。すなわち第1の溶液の供給終了は基準時間の0%である。高速供給期間は重合開始剤溶液が滴下されている期間である。前記高速供給期間に反応器内に供給される重合開始剤の量は、重合開始剤溶液に含まれる重合開始剤の量と、重合開始剤溶液が滴下されている期間に滴下される第2の溶液に含まれる重合開始剤の量の合計である。重合開始剤の滴下終了は、第2の溶液の滴下終了時である。
 (b)反応器内に溶媒のみを仕込み、所定の重合温度まで加熱した後、単量体α~αを第1の組成で含有するとともに、重合開始剤の一部を含む第1の溶液と、単量体α~αを第2の組成で含有するとともに、重合開始剤の残部を含む第2の溶液をそれぞれ滴下する。両液は同時に滴下開始するか、または第1の溶液を先に滴下開始する。第1の溶液の滴下開始から第2の溶液の滴下開始までの時間は0~10分が好ましい。
 滴下速度はそれぞれ一定であることが好ましい。第2の溶液よりも第1の溶液の方が先に滴下を終了する。
 本態様において、重合開始剤の滴下開始は、第1の溶液の滴下開始時である。高速供給期間は第1の溶液が滴下されている期間である。前記高速供給期間に反応器内に供給される重合開始剤の量は、第1の溶液に含まれる重合開始剤の量と、第1の溶液が滴下されている期間に滴下される第2の溶液に含まれる重合開始剤の量の合計である。重合開始剤の滴下終了は、第2の溶液の滴下終了時である。
 上記態様の方法によれば、前記定常状態が得られるように単量体の含有比率が設計された第1の溶液と第2の溶液を用いることにより、重合反応の開始直後から目標組成とほぼ同じ組成の重合体分子が生成され、その状態が継続される。
 したがって、重合工程後に得られる重合体(P)において、構成単位の含有比率のばらつきが小さくなり、これによって溶媒への溶解性が向上し、レジスト組成物に用いた際の感度が向上する。
 またこれと同時に、単量体を含む第2の溶液とは別に、単量体を含む第1の溶液を重合工程の初期までに供給するとともに、重合工程の初期を重合開始剤の高速供給期間とすることにより、後述の実施例に示されるように、重合工程において、反応時間による重量平均分子量のばらつきが低減され、溶媒への溶解性が向上し、レジスト組成物に用いた際の感度が向上する。これは、重量平均分子量が高すぎる重合体分子の生成が抑えられたためと考えられる。
 したがって、上記態様によれば、溶媒への溶解性が良好であり、レジスト組成物に用いた際には高い感度を有する重合体(P)を再現性良く得ることができる。
 なお、上記重合体はレジスト用途以外の用途にも適用可能であり、溶解性の向上効果が得られるほか、各種性能の向上が期待できる。
<第1の組成の設計方法>
 以下、第1の組成の設計方法を説明する。
 得ようとする重合体(P)における構成単位の含有比率(目標組成、単位:モル%)が、α’:α’:…:α’であるとき、第1の組成(単位:モル%)をα:α:…:αで表わし、下記(1)~(3)の手順で求められるファクターをF、F、…Fで表わすと、α=α’/F、α=α’/F、…α=α’/Fとする。
 (1)まず単量体組成が目標組成α’:α’:…:α’と同じである単量体混合物100質量部と重合開始剤と溶媒を含有する滴下溶液を、溶媒のみを入れた反応器内に一定の滴下速度で滴下し、滴下開始からの経過時間がt、t、t…tのときに、それぞれ反応器内に残存している単量体α~αの組成(単位:モル%)M:M:…:Mと、tからtまでの間、tからtまでの間、tからtm+1までの間にそれぞれ生成した重合体における構成単位α’~α’の比率(単位:モル%)P:P:…:Pを求める。
 (2)前記P:P:…:Pが、目標組成α’:α’:…:α’に最も近い時間帯「tからtm+1までの間(mは1以上の整数。)」を見つける。
 (3)前記「tからtm+1までの間」におけるP:P:…:Pの値と、経過時間tにおけるM:M:…:Mの値とから、下記式により、ファクターF、F、…Fを求める。F=P/M、F=P/M、…F=P/M
 より具体的に説明すると、例えば、重合体(P)が、単量体x、y、zを共重合させて得られる3元系の重合体であって、目標組成がx’:y’:z’であるとき、第1の組成(モル%、以下同様。)x:y:zは、下記の方法で求められるファクターFx、Fy、Fzを用いて、x=x’/Fx、y=y’/Fy、z=z’/Fzにより算出される値とする。
[ファクターFx、Fy、Fzの求め方]
 以下、重合体(P)が3元系の重合体である場合を例に挙げて説明するが、2元系または4元系以上でも同様にしてファクターを求めることができる。
 (1)まず、単量体組成が目標組成x’:y’:z’と同じである単量体混合物と溶媒と重合開始剤を含有する滴下溶液を、反応器内に一定の滴下速度vで滴下する。反応器内には、予め溶媒のみを入れておく。
 滴下開始からの経過時間がt、t、t…tのときに、それぞれ反応器内に残存している単量体x、y、zの組成(モル%)Mx:My:Mzと、tからtまでの間、tからtまでの間、tからtm+1までの間にそれぞれ生成した重合体における構成単位の比率(モル%)Px:Py:Pzを求める。
 (2)Px:Py:Pzが、目標組成x’:y’:z’に最も近い時間帯「tからtm+1までの間(mは1以上の整数。)」を見つける。
 (3)その「tからtm+1までの間」におけるPx:Py:Pzの値と、経過時間tにおけるMx:My:Mzの値とから、下記式により、ファクターFx、Fy、Fzを求める。
Fx=Px/Mx、Fy=Py/My、Fz=Pz/Mz。
 ファクターFx、Fy、Fzは、各単量体の相対的な反応性を反映する値であり、重合に用いられる単量体の組み合わせまたは目標組成が変わると変化する。
 (4)また、好ましくは、最初の滴下溶液に含まれていた単量体混合物100質量%のうち、上記経過時間tにおいて、反応器内に存在する単量体の合計質量が占める割合(W質量%)を求める。
 上記態様の製造方法において、単量体の全供給量のうち、第1の溶液に含まれる単量体の合計量が占める割合をW質量%とすると、重合反応の開始直後から目標組成とほぼ同じ組成の重合体分子が生成される効果が得られやすい。
<評価方法>
<工程(i)>
 本発明の評価方法では、まずレジスト用共重合体を溶媒に溶解させて試験溶液を調製する。本発明における試験溶液とは、次工程の分離操作に供される溶液を指す。前記試験溶液は、レジスト用共重合体が完全に溶解された状態ではなく、溶解性の低い高分子成分がゲル状物として存在している状態であることが必要である。このため、必要に応じてゲル状物を生成させる操作を行う。すなわち、レジスト用共重合体を溶媒に溶解したときに、完全に溶解された溶液となった場合は、後述するような手法等を用い、ゲル状物を生成させる操作を行って試験溶液とする。
 試験溶液中に存在するゲル状物の量は、次工程の分離操作後に、重合平均分子量または構成単位の組成比の測定を行うことができる量のゲル状物が得られればよい。評価をより高精度に行うためには試験溶液中のゲル状物少ない方が好ましい。
 試験溶液中に存在するゲル状物の量は、紫外可視分光光度計により前記試験溶液における光の透過率によって調整することができる。前記透過率の測定波長は、測定対象であるレジスト用共重合体を用いて形成されたレジスト膜が透明性を示さない波長を用いる。例えばレジスト用共重合体がアクリル系重合体である場合には、測定波長として可視光領域の波長が好ましく、具体的には380~780nmが好適であり、450nmが更に好適である。試験溶液中に存在するゲル状物が多いほど、試験溶液における透過率は低下する。
 具体的に、試験溶液における透過率は、75~90(%)が好ましく、82~88(%)がより好ましい。
 本発明の評価方法により、複数のレジスト用共重合体について比較評価を行う場合は、それぞれの試験溶液中に存在するゲル状物の量が互いに同じになるように制御することが好ましい。比較評価する複数の試験溶液における透過率のばらつき(最大値(%)と最小値(%)との差の絶対値)は、6%以内であることが好ましい。
 試験溶液を調製する際には、まずレジスト用共重合体を良溶媒に完全に溶解させ、紫外可視分光光度計により透過率をモニターしながら、貧溶媒を添加することによりゲル状物を生成させ、透過率が上記の好ましい範囲に達した時点で貧溶媒の添加を止める方法が好ましい。
 透過率が上記の好ましい範囲に達する貧溶媒の添加量を比較することによって、前記レジスト用共重合体を含むレジスト組成物の現像特性を簡易的に評価することが可能である。
 また、同様の原理により、共重合体の析出点(曇点)を評価に用いることもできる。すなわち、レジスト用共重合体の試験溶液に貧溶媒を添加していき、共重合体の析出を目視で確認した時の貧溶媒添加量(質量%)も、共重合体の均一性と相関するので、現像特性やリソグラフィー特性を評価することが可能である。
 本明細書における良溶媒とは、常温(25℃)において、レジスト用共重合体を、5質量倍量以下の溶媒量で完全に溶解できる溶媒をいう。特に3質量倍量以下の溶媒量でレジスト用共重合体を完全に溶解できるものを用いることが好ましい。なお「完全に溶解」とは上記透過率が100%である状態をいう。試験溶液に用いる良溶媒は1種単独の溶媒でもよく2種以上の混合物でもよい。混合溶媒の場合は、混合後に上記良溶媒の条件を満たすものであれば、良溶媒として用いることができる。
 一方、貧溶媒とは、常温(25℃)において、レジスト用共重合体に対し、5質量倍量の単独溶媒を加えて撹拌しても全く溶解しない溶媒をいう。特に10質量倍量の単独溶媒を加えても全く溶解しないものを用いることが好ましい。混合溶媒の場合は、混合後に上記貧溶媒の条件を満たすものであれば、貧溶媒として用いることができる。
 良溶媒としては、レジスト組成物を調製する際に用いられる公知のレジスト溶媒から適宜選択して用いることができる。1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 好ましい良溶媒の具体例としては、テトラヒドロフラン、1,4―ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、γ-ブチロラクトンなどが挙げられる。
 貧溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、ジエチルエーテル、ジイソプロピリエーテル、メタノール、エタノール、イソプロパノール、水などを用いることができる。貧溶媒は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 特に、評価対象のレジスト用共重合体がアクリル系共重合体である場合、良溶媒としてPGMEA(プロピレングリコールモノメチルエーテルアセテート)、乳酸エチルを用い、貧溶媒としてIPE(ジイソプロピルエーテル)、ヘキサン、ヘプタン、メタノールを用いることが好ましい。
 試験溶液中におけるレジスト用共重合体の含有量は、上記の好ましい量のゲル状物が得られる範囲で適宜設定することができる。評価に必要な量のゲル状物を効率よく得るためには、1質量%以上が好ましく、2質量%以上が更に好ましい。また、分離時の操作性の点からは、30質量%以下が好ましく、20質量%以下がさらに好ましい。試験溶液中におけるレジスト用共重合体の含有量がこの範囲にあると、評価に必要な量のゲル量を効率よく得られるとともに、溶液粘度が高くならずゲル状物生成後の分離操作性に優れる。
<工程(ii)>
 次に、試験溶液中のゲル状物を分離する。前記ゲル状物の分離方法は特に限定されないが、通常のフィルタを用いたろ過では効率的に分離することが困難であるため、遠心分離によって分離することが好ましい。
 遠心分離処理は、下記式(1)式で表される相対遠心加速度(遠心力)が10万G以上で行うことが好ましく、より好ましくは30万G以上、更に好ましくは50万G以上である。
 相対遠心加速度(単位:G)=1118×r×N×10-8 ・・・(1)
(式中、rは回転半径(cm)を示し、Nは1分間あたりの回転数(rpm)を示す。)
 遠心分離における処理温度は0~40℃が好ましく、より好ましくは2~20℃であり、更に好ましくは4~10℃である。処理温度がこの範囲であれば、溶媒揮発が抑制でき、かつ、分離に適した溶液粘度が維持できる。処理時間は、ゲル状物が分離できるように遠心力等に応じて適宜設定できる。例えば0.1~10.0時間の範囲が好ましく、1~4時間が更に好ましい。処理時間がこの範囲であれば、評価するのに必要な量のゲル状物を得ることができる。
 複数のレジスト用共重合体について比較評価を行う場合、前記ゲル状物の分離は互いに同じ条件で行う。
<工程(iii)>
[組成比変化率]
 また、レジスト用共重合体が、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを有する場合は、上記分子量変化率のほかに、組成比変化率によっても好適に評価を行うことができる。
 この場合は、試験溶液から分離されたゲル状物を、好ましくは真空乾燥させた後、構成単位の組成比を測定し、下記の組成比変化率を求める。
 なお、試験溶液に溶解させる前のレジスト用共重合体についての構成単位の組成比も予め測定しておく。
 レジスト用共重合体における構成単位の組成比、およびゲル状物における構成単位の組成比は同じ方法で測定する。好ましくは、H-核磁気共鳴(NMR)スペクトル法により組成比を測定する。
 構成単位の組成比とは、レジスト用共重合体(またはゲル状物)を構成している全構成単位のうち、各単量体に由来する各構成単位が占める割合(単位:モル%)である。そして、レジスト用共重合体における構成単位の組成比に対する、ゲル状物における構成単位の組成比からレジスト用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率を求める。なお複数のレジスト用共重合体について比較評価を行う場合は、互いに同じ方法で組成比変化率を求める。
 例えばレジスト共重合体が、極性基を有する構成単位の2種(構成単位a、b)と、酸脱離性基を有する構成単位の1種(構成単位c)とからなる3元共重合体である場合、構成単位aについての組成比変化率は、レジスト用共重合体の全構成単位のうちの構成単位aの割合a1(モル%)、ゲル状物の全構成単位のうちの構成単位aの割合a2(モル%)の値から、下記式(2)により求められる。
 構成単位aの組成比変化率(%)=(a2-a1)/a1×100…(2)
 本発明の評価方法において、構成単位a~cの各組成比変化率のうち、前記組成比変化率が正の値となるものを感度の評価に用いる。すなわちゲル状物における組成比の値の方が、レジスト用共重合体における組成比の値よりも大きくなる構成単位の組成比変化率を評価に用いる。また評価をより高精度に行ううえで、組成比変化率が正の値となる構成単位のうち、組成比変化率の値が大きいものを評価に用いることが好ましい。
 本発明者等の知見によれば、酸脱離性基を有する構成単位の組成比変化率よりも、極性基を有する構成単位の組成比変化率の方が大きく、極性基の極性が高いほど組成比変化率が大きくなりやすい。酸脱離性基を有する構成単位の組成比変化率は負の値となることが多い。したがって、本発明の評価方法において、少なくとも極性基を有する構成単位の組成比変化率を求めればよく、極性基を有する構成単位を2種以上有する場合は、組成比変化率が大きい方を感度評価に用いることが好ましい。
 式(2)にて算出される組成比変化率が小さいほど、共重合体全体における構成単位の組成比の均一性が高く、分子設計において目標とした特性により近い特性が得られる。
 前記組成比変化率の値は、8%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましい。
[分子量変化率]
 試験溶液から分離されたゲル状物は、好ましくは真空乾燥させた後、重合平均分子量を測定し、下記の分子量変化率の値を求め、これに基づいて評価を行う。
 なお、試験溶液に溶解させる前のレジスト用共重合体についての、重合平均分子量も予め測定しておく。
 レジスト用共重合体の重量平均分子量(Mw1)およびゲル状物の重量平均分子量(Mw2)は同じ方法で測定する。分子量既知の標準ポリスチレン試料を用い、ゲルパーミエーションクロマトグラフィーにより重量平均分子量を測定する方法が好ましい。
 複数のレジスト用共重合体について比較評価を行う場合は、互いに同じ方法で重量平均分子量を測定する。
 得られたレジスト用共重合体のMw1とゲル状物のMw2の値から、下記式(3)により分子量変化率(単位:%)を求める。前記分子量変化率は、レジスト用共重合体のMw1に対する、ゲル状物のMw2からレジスト用共重合体のMw1を減じた差の割合を表わす。なお、本発明者等の知見によれば、常にMw2>Mw1となる。
分子量変化率(%)=(Mw2-Mw1)/Mw1×100…(3)
 式(3)にて算出される分子量変化率が小さいほど、共重合体全体における分子量の均一性が高く、分子設計において目標とした特性により近い特性が得られる。
 前記分子量変化率の値は、評価対象とする共重合体の平均分子量や分子量分布、分離されるゲル状物の量等によって差異が生じ得るが、例えば120%以下が好ましく、100%以下がより好ましく、85%以下がさらに好ましい。
<工程(iv)>
 本発明における組成比変化率および分子量変化率はいずれも、後述の実施例に示されるように、レジスト用共重合体をレジスト組成物したときの感度と相関している。すなわち、組成比変化率が小さいほど感度が良い。また、分子量変化率が小さいほど感度が良い。したがって、前記組成比変化率および分子量変化率の少なくとも一方を用いて、感度の評価を行うことができる。
 また感度が良いということは、レジスト組成物の露光後のアルカリ溶解性が良好であることを意味しており、例えば、現像欠陥(ディフェクト)、およびパターン寸法のばらつき(LER)も良いと推測される。したがって、本発明の評価方法は感度だけでなく、現像欠陥(ディフェクト)およびパターン寸法のばらつき(LER)等の現像特性の評価にも用いることができる。
 また、後述の実施例に示されるように、試験溶液中に生じるゲル状物は、共重合体のうちでも溶解性が低い成分であり、比較的高分子量の成分であり、かつ構成単位の組成が設計値から比較的大きく外れている成分である。このことから、前記ゲル状物は共重合体の不均一性を増大させる成分であると考えられる。また前記ゲル状物は、上述した重合初期に生成しやすい高分子量体または組成の不均一な高分子量体に由来すると考えられる。
 そして本発明における組成比変化率または分子量変化率が小さいほど、共重合体における均一性が高いことを意味し、均一性が高いために感度等の現像特性が良くなっていると考えられる。
 したがって、本発明の評価方法を用いることによって、レジスト用組成物の現像特性だけでなく、リソグラフィー用共重合体の均一性によって変動するリソグラフィー特性の評価が可能である。すなわち、前記組成比変化率または分子量変化率が小さいほど、分子設計において目標としたリソグラフィー特性により近い特性が得られる。
 本発明の評価方法における分子量変化率が小さいリソグラフィー用共重合体およびこれを含有するリソグラフィー組成物は、共重合体全体における分子量の均一性が高い。したがって、共重合体の分子量の均一性が高いと向上するリソグラフィー特性が良好である。また前記分子量変化率がより小さいほど、分子設計において目標とした所望のリソグラフィー特性により近い特性が得られる。
 例えば、後述の実施例に示されるように、前記分子量変化率が120%以下であるレジスト用共重合体およびこれを含有するレジスト組成物は、現像工程における感度が良好である。
 本発明の評価方法における組成比変化率が小さいリソグラフィー用共重合体およびこれを含有するリソグラフィー組成物は、共重合体全体における構成単位の組成比の均一性が高い。したがって、構成単位の組成比の均一性が高いと向上するリソグラフィー特性が良好である。また組成比変化率がより小さいほど、分子設計において目標とした所望のリソグラフィー特性に近い特性が得られる。
 例えば、後述の実施例に示されるように、前記組成比変化率が8%以下であるレジスト用共重合体およびこれを含有するレジスト組成物は、現像工程における感度が良好である。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 表1、表2、表3に記載の配合を用い、下記合成手順にて、共重合体A-1~4、B-1~2、および、C-1~2を合成した。
 共重合体の合成に使用した溶剤、重合開始剤を以下に示す。
溶剤(S)
 S-1:乳酸エチル
 S-2:PGME(プロピレングリコールモノメチルエーテル)
 S-3:メタノール
 S-4:水
重合開始剤(R)
 R-1:ジメチル-2,2’-アゾビスイソブチレート(和光純薬工業社製、V-601(製品名))
 R-2:2,2’-アゾビスイソブチロニトリル
 共重合体の合成に使用した単量体(M-1)~(M-6)を以下に示す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
共重合体A、Bの合成
 (工程1)窒素導入口、攪拌機、コンデンサー、滴下漏斗2個及び温度計を備えたフラスコに、窒素雰囲気下で、表1、表2の工程1部分に記載の混合比で調製した混合溶液を入れ、攪拌しながら湯浴の温度を80℃に上げた。上記混合比は、各共重合体における目標組成と、重合に用いられる各単量体の反応性とを加味して予め求められた組成であり、反応器内にこの混合比で単量体が存在すると、後述の工程2に記載した混合溶液を滴下した際に、滴下直後に生成される重合体分子の構成単位の含有比率が目標組成と同じになる。
 (工程2)表1、表2の工程2部分に記載の混合比で調製した混合溶液を滴下漏斗より一定速度で4時間かけてフラスコ中に滴下し、その後、80℃の温度を3時間保持した。
 (工程3)工程2における混合溶液の滴下開始と同時に、表1、表2の工程3部分に記載の混合比で調製した混合溶液を別の滴下漏斗より0.1時間かけてフラスコ内に滴下した。本工程で滴下する重合開始剤量によって、重合工程の初期に生成する共重合体の重量平均分子量が変化するが、各共重合体の目標とする重合平均分子量に近くなるよう設定している。
 (工程4)次いで、表1、表2の工程4部分に記載の混合比で調製した混合溶媒を、得られた反応溶液の約7倍量準備し、攪拌しながら反応溶液を滴下して、白色のゲル状物の沈殿を得て、濾別した。
 (工程5)表1、表2の工程5部分に記載の混合比で調製した混合溶媒を、工程4と同量準備し、濾別した沈殿をこの混合溶媒中に投入した。これを濾別、回収し、減圧下60℃で約40時間乾燥し、各共重合体の粉末を得た。
共重合体Cの合成
 (工程1)窒素導入口、攪拌機、コンデンサー、滴下漏斗2個及び温度計を備えたフラスコに、窒素雰囲気下で、表3の工程1部分に記載の混合比で調製した混合溶液を入れ、攪拌しながら湯浴の温度を80℃に上げた。上記混合比は、各共重合体における目標組成と、重合に用いられる各単量体の反応性とを加味して予め求められた組成であり、反応器内にこの混合比で単量体が存在すると、後述の工程2に記載した混合溶液を滴下した際に、滴下直後に生成される重合体分子の構成単位の含有比率が目標組成と同じになる。
 (工程2)表3の工程2部分に記載の混合比で調製した混合溶液を滴下漏斗より一定速度で6時間かけてフラスコ中に滴下し、その後、80℃の温度を1時間保持した。
 (工程3)工程2における混合溶液の滴下開始と同時に、表3の工程3部分に記載の混合比で調製した混合溶液を別の滴下漏斗より0.5時間かけてフラスコ内に滴下した。本工程で滴下する重合開始剤量によって、重合工程の初期に生成する共重合体の重量平均分子量が変化するが、各共重合体の目標とする重合平均分子量に近くなるよう設定している。
 (工程4)次いで、IPE(ジイソプロピルエーテル)を、得られた反応溶液の約7倍量準備し、攪拌しながら反応溶液を滴下して、白色のゲル状物の沈殿を得て、濾別した。
 (工程5)IPE(ジイソプロピルエーテル)を、工程4と同量準備し、濾別した沈殿をこの混合溶媒中に投入した。これを濾別、回収し、減圧下60℃で約40時間乾燥し、各共重合体の粉末を得た。
(リソグラフィー用共重合体の重量平均分子量)
 共重合体A-1~4、B-1~2、C-1~2について重量平均分子量(Mw)および分子量分布(Mw/Mn)を以下の方法で測定した。
 約20mgのサンプルを5mLのTHFに溶解し、0.5μmのメンブランフィルターで濾過して試料溶液を調製し、この試料溶液を東ソー製ゲル・パーミエーション・クロマトグラフィー(GPC)装置:HCL-8220(製品名)を用いて、重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。この測定において、分離カラムは、昭和電工社製、Shodex GPC LF-804L(製品名)を3本直列にしたものを用い、溶剤はTHF(テトラヒドロフラン)、流量1.0mL/min、検出器は示差屈折計、測定温度40℃、注入量0.1mLで、標準ポリマーとしてポリスチレンを使用した。測定結果を表7、表8、表9に示す。
(リソグラフィー用共重合体における構成単位の組成比)
 リソグラフィー用共重合体における、各構成単位の組成比(単位:モル%)を、H-NMRの測定により求めた。
 この測定において、日本電子(株)製、JNM-GX270型 超伝導FT-NMRを用い、約5質量%のサンプル溶液(溶媒は重水素化ジメチルスルホキシド)を直径5mmφのサンプル管に入れ、観測周波数270MHz、シングルパルスモードにて、H 64回の積算を行った。測定温度は60℃で行った。測定結果を表7、表8、表9に示す。
<工程(v)>
(試験溶液の調製)
 まず、共重合体A-1~4、B-1~2、C-1~2を、共重合体濃度が2.5質量%となるようにPGMEA(プロピレングリコールモノメチルエーテルアセテート)に溶解させて共重合体溶液A-1~4、B-1~2、C-1~2を得た。溶液の温度は常温(25℃)とした。
<工程(vi)>
 紫外可視分光光度計として、島津製作所社製、UV-3100PC(製品名)を用い、光路長10mmの石英製角型セルに測定用溶液を入れ、波長450nmにおける透過率を測定する方法で、共重合体溶液、および共重合体を溶解させる前の溶媒(PGMEA)について光透過率を測定した。共重合体溶液A-1~4、B-1~2、C-1~2の透過率は100%であり、各共重合体溶液において共重合体が完全に溶解していることが確認された。
 次に、共重合体溶液A-1~4、B-1~2、C-1~2のそれぞれに対して、上記の測定方法で波長450nmにおける透過率をモニターしながら、表4~表6に記載の各貧溶媒を徐々に添加し、透過率が85±3%の範囲内になったところで貧溶媒の添加をやめ、試験溶液A-1~4、B-1~2、C-1~2を得た。共重合体溶液A-1~4、B-1~2、C-1~2の各100質量部に対する貧溶媒の添加量、および得られた試験溶液A-1~4、B-1~2、C-1~2における波長450nmにおける透過率の値を表4、表5、表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<工程(vii)>
(遠心分離)
 試験溶液A-1~4、B-1~2、C-1~2のそれぞれについて、遠心分離を行ってゲル状物A-1~4、B-1~2、C-1~2を得た。すなわち、ベックマンコールター社製、遠心分離機Optima MAX-XP(製品名)を用い、上記(1)式で表される相対遠心加速度が50万G、処理温度4℃、処理時間4時間の条件で遠心分離処理を行った。さらに遠心分離処理にて得られた固形分を回収し、60℃、8時間にて真空乾燥を行ってゲル状物A-1~4、B-1~2、C-1~2を得た。
(ゲル状物の重量平均分子量および構成単位の組成比)
 得られたゲル状物A-1~4、B-1~2、C-1~2のMwおよびMw/Mnを、上記レジスト用共重合体と同様の方法で測定した。また得られたゲル状物A-1~4、B-1~2、C-1~2における構成単位の組成比を、上記リソグラフィー用共重合体と同様の方法で測定した。測定結果を表7、表8、表9に示す。
<工程(viii)>
(組成比変化率)
 各リソグラフィー用共重合体および各ゲル状物の組成比の値を用いて、3つの構成単位のうち、極性基を有し、かつリソグラフィー用共重合体とゲル状物とで組成比の差が比較的大きかったα-GBLMAに由来する構成単位について、下記式(2)により組成比変化率(単位:%)を求めた。結果を表7、表8、表9に示す。
構成単位aの組成比変化率(%)=(a2-a1)/a1×100…(2)
 a1:レジスト用共重合体の全構成単位のうちの構成単位aの割合(モル%)
 a2:ゲル状物の全構成単位のうちの構成単位aの割合(モル%)
 なお、上記a1及びa2の値は、上記測定条件によるH-NMRの測定により求めた。
[感度評価]
 リソグラフィー用共重合体A-1~4、B-1~2をそれぞれ用いてリソグラフィー用のレジスト組成物を調製し、これを用いてドライリソグラフィーを行ったときの感度を以下の方法で測定した。
(レジスト組成物の調製)
 下記の配合成分を混合してレジスト組成物を得た。
 レジスト用共重合体:10部、
 光酸発生剤(みどり化学(株)社製、製品名:TPS-105、トリフェニルスルホニウムトリフレート):0.2部、
 レベリング剤(日本ユニカー(株)社製、製品名:L-7001):0.2部、
 溶媒(PGMEA):90部。
(ドライリソグラフィー)
 上記で得たレジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン社製、製品名:VUVES-4500)を用い、露光量を変えて18ショットの露光を行った。1ショットは10mm×10mmの矩形領域に対する全面露光である。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン社製、製品名:RDA-790)を用い、23.5℃にて2.38%水酸化テトラメチルアンモニウム水溶液で65秒間現像し、現像中のレジスト膜厚の経時変化を測定した。各露光量ごとに、初期膜厚に対する、60秒間現像した時点での残存膜厚の割合(以下、残膜率という。単位:%)を求めた。
 得られたデータを基に、露光量(mJ/cm)の対数と、残膜率(%)との関係をプロットした曲線(以下、露光量残膜率曲線という)を作成し、前記露光量残膜率曲線が残膜率=0%の直線と交わる点における露光量(mJ/cm)(以下、Ethという)の値を求めた。Ethとは、残膜率0%とするための必要露光量であり、感度を表す。Ethが小さいほど感度が高い。結果を表7、表8に示す。
[溶解性評価]
 リソグラフィー用共重合体D-1~2をそれぞれ用いて溶解性評価用の溶液を調製し、溶液の温度は常温(25℃)とした。紫外可視分光光度計として、島津製作所社製、UV-3100PC(製品名)を用い、光路長10mmの石英製角型セルに測定用溶液を入れ、波長450nmにおける透過率を測定する方法で、溶解性評価を行った。前記透過率が高いほど溶解性が良好であり、基材上に塗膜した際の面内におけるリソグラフィー性能のばらつき低減に結びつく。結果を表9に示す。
(溶解性評価用の溶液調製)
 下記の配合成分を混合して評価用溶液を得た。
 リソグラフィー用共重合体:2.5部、
 溶媒1(PGME):100部、
 溶媒2(IPE):16部。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表7、表8の結果に示されるように、リソグラフィー共重合体A-1~4、B-1~2における構成単位の組成比は、それぞれ同等であったが、組成比変化率は、共重合体A-1から4、B-1から2の順に小さくなり、α-GBLMAの組成比変化率が小さくなるにしたがって、Ethの値も小さくなっている。
 また、表9の結果に示されるように、リソグラフィー共重合体C-1~2における構成単位の組成比は、それぞれ同等であったが、組成比変化率は、共重合体C-1から2の順に小さくなり、α-GBLMAの組成比変化率が小さくなるにしたがって、溶解性を示す透過率の値も大きくなっている。
 このように、組成比変化率とEthおよび透過率との間には相関関係があり、組成比変化率に基づいて、リソグラフィー性能を評価できることが確認された。
 本発明の方法によれば、リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を、実際にリソグラフィー用組成物を調製しなくても評価することが可能である。

Claims (6)

  1.  リソグラフィー用共重合体を溶媒に溶解させて試験溶液を調製する工程(i)と、前記試験溶液中のゲル状物を分離する工程(ii)と、リソグラフィー用共重合体における構成単位の組成比に対する、前記ゲル状物における構成単位の組成比から前記リソグラフィー用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率求める工程(iii)と、前記組成比変化率により、前記リソグラフィー用共重合体を含むリソグラフィー用組成物のリソグラフィー特性を評価する工程(iv)を有するリソグラフィー用共重合体の評価方法。
  2.  前記リソグラフィー用共重合体が、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを有するレジスト用共重合体であり、
     前記組成比変化率により、前記レジスト用共重合体を含むレジスト組成物の現像特性を評価する、請求項1記載のリソグラフィー用共重合体の評価方法。
  3.  前記試験溶液を調製する工程において、貧溶媒を添加してゲル状物を生成させる、請求項1~2のいずれか一項に記載のリソグラフィー用共重合体の評価方法。
  4.  前記ゲル状物の分離を遠心分離により行う、請求項1~3のいずれか一項に記載のリソグラフィー用共重合体の評価方法。
  5.  下記リソグラフィー用共重合体の処理工程により測定した組成比変化率が8%以下であるリソグラフィー用共重合体:
     リソグラフィー用共重合体濃度が2.5質量%となるように、プロピレングリコールモノメチルエーテルアセテートに溶解させて試験溶液を調製する工程(v);
     前記試験溶液中に、波長450nmにおける透過率が85±3%となるまで貧溶媒を添加する工程(vi);
     前記試験溶液中のゲル状物を、相対遠心加速度50万G、処理温度4℃、処理時間4時間の条件で遠心分離にて分離する工程(vii);
     前記リソグラフィー用共重合体における少なくとも一種の構成単位の組成比に対する、前記ゲル状物における対応する一種の構成単位の組成比から前記リソグラフィー用共重合体における構成単位の組成比を減じた差の割合を表わす組成比変化率を、核磁気共鳴装置(NMR)で求める工程(viii)。
  6.  請求項5に記載のリソグラフィー用共重合体を含むリソグラフィー組成物。
     
PCT/JP2010/061382 2009-07-07 2010-07-05 リソグラフィー用共重合体およびその評価方法 WO2011004787A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/381,249 US9023578B2 (en) 2009-07-07 2010-07-05 Copolymer for lithography and method for evaluating the same
KR1020147016996A KR101690391B1 (ko) 2009-07-07 2010-07-05 리소그라피용 공중합체 및 그의 평가 방법
CN201080031212.6A CN102472982B (zh) 2009-07-07 2010-07-05 光刻用共聚物及其评价方法
JP2010530196A JP5845578B2 (ja) 2009-07-07 2010-07-05 リソグラフィー用共重合体の評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-160857 2009-07-07
JP2009160857 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004787A1 true WO2011004787A1 (ja) 2011-01-13

Family

ID=43429211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061382 WO2011004787A1 (ja) 2009-07-07 2010-07-05 リソグラフィー用共重合体およびその評価方法

Country Status (6)

Country Link
US (1) US9023578B2 (ja)
JP (2) JP5845578B2 (ja)
KR (2) KR20120031053A (ja)
CN (1) CN102472982B (ja)
TW (1) TWI431438B (ja)
WO (1) WO2011004787A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115086A1 (en) * 2009-07-07 2012-05-10 Mitsubishi Rayon Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
US20130224654A1 (en) * 2010-10-18 2013-08-29 Mitsubishi Rayon Co., Ltd. Copolymers for lithography and method for producing same, resist composition, method for producing substrate with pattern formed thereupon, method for evaluating copolymers, and method for analyzing copolymer compositions
JP2013214032A (ja) * 2012-03-07 2013-10-17 Mitsubishi Rayon Co Ltd 半導体リソグラフィー用重合体の評価方法、および、該評価方法を含む半導体リソグラフィー用重合体製造方法
JP2019059957A (ja) * 2013-09-03 2019-04-18 三菱ケミカル株式会社 リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369156B2 (ja) * 2013-08-09 2018-08-08 三菱ケミカル株式会社 リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
CN110658036B (zh) * 2019-09-05 2022-05-06 上海化工研究院有限公司 一种uhmwpe稀溶液的制备及其溶解程度检测的方法
KR102711197B1 (ko) * 2020-03-31 2024-09-27 후지필름 가부시키가이샤 레지스트 조성물의 제조 방법, 패턴 형성 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091407A (ja) * 2003-09-12 2005-04-07 Jsr Corp 感放射線性樹脂の評価方法および感放射線性樹脂組成物
JP2005217254A (ja) * 2004-01-30 2005-08-11 Renesas Technology Corp レジスト現像速度ばらつき評価方法及びレジスト現像速度ばらつき評価装置。
JP2009139909A (ja) * 2007-08-03 2009-06-25 Tokyo Ohka Kogyo Co Ltd 含フッ素化合物、液浸露光用レジスト組成物およびレジストパターン形成方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317069A (en) 1993-06-07 1994-05-31 National Science Council Maleimide-alt-silylstyrene copolymer
JPH1053620A (ja) 1996-06-03 1998-02-24 Nippon Shokubai Co Ltd 熱可塑性共重合体およびその製造方法
JP3546679B2 (ja) 1997-01-29 2004-07-28 住友化学工業株式会社 化学増幅型ポジ型レジスト組成物
JP3819531B2 (ja) 1997-05-20 2006-09-13 富士通株式会社 レジスト組成物及びレジストパターン形成方法
TWI225865B (en) 1998-03-27 2005-01-01 Mitsubishi Rayon Co Copolymer, preparation thereof and resist composition
JP2001201856A (ja) 2000-01-21 2001-07-27 Daicel Chem Ind Ltd フォトレジスト用樹脂とその製造方法、及びフォトレジスト組成物
JP4768152B2 (ja) 2000-09-01 2011-09-07 ダイセル化学工業株式会社 フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物
JP4000295B2 (ja) 2001-12-21 2007-10-31 三菱レイヨン株式会社 レジスト用共重合体およびその製造方法、ならびにレジスト組成物
JP3720827B2 (ja) 2003-02-20 2005-11-30 丸善石油化学株式会社 レジストポリマーの製造方法
JP3694692B2 (ja) * 2003-12-11 2005-09-14 丸善石油化学株式会社 レジスト用ポリマー溶液およびその製造方法
KR101191687B1 (ko) 2004-04-30 2012-10-16 마루젠 세끼유가가꾸 가부시키가이샤 반도체 리소그래피용 공중합체와 그 제조 방법, 및 조성물
JP2006036914A (ja) 2004-07-27 2006-02-09 Tosoh Corp マレイミド・オレフィン共重合体の製造方法
JP4777011B2 (ja) 2005-08-09 2011-09-21 ダイセル化学工業株式会社 フォトレジスト用高分子化合物の製造方法及びフォトレジスト組成物
JP2008115148A (ja) 2006-01-06 2008-05-22 Mitsubishi Rayon Co Ltd 重合性モノマー及びその製造方法
JP4945160B2 (ja) 2006-03-30 2012-06-06 三菱レイヨン株式会社 重合体の製造方法、レジスト組成物、およびパターンが形成された基板の製造方法
JP2008045042A (ja) 2006-08-17 2008-02-28 Mitsubishi Rayon Co Ltd 重合体粉末の製造方法、重合体粉末およびレジスト組成物
JP2008056810A (ja) 2006-08-31 2008-03-13 Fujifilm Corp 重合体の製造方法、その製造方法によって製造された重合体を含有するポジ型レジスト組成物及びそれを用いたパターン形成方法
WO2008082503A2 (en) 2006-12-19 2008-07-10 E. I. Du Pont De Nemours And Company Semibatch copolymerization process for compositionally uniform copolymers
JP2008248245A (ja) * 2007-03-08 2008-10-16 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2008248244A (ja) * 2007-03-08 2008-10-16 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2008239889A (ja) 2007-03-28 2008-10-09 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP5311089B2 (ja) 2007-07-09 2013-10-09 Jsr株式会社 レジスト溶剤溶液の評価方法及び感放射線性樹脂組成物
KR20100044164A (ko) 2007-07-12 2010-04-29 에보니크 로막스 아디티페스 게엠베하 연속적으로 변동가능한 조성의 공중합체를 제조하는 개선된 방법
US7914967B2 (en) * 2007-08-03 2011-03-29 Tokyo Ohka Kogyo Co., Ltd. Fluorine-containing compound, resist composition for immersion exposure, and method of forming resist pattern
US20090076230A1 (en) 2007-09-18 2009-03-19 Michael Thomas Sheehan Process for preparing compositionally uniform copolymers
JP5631550B2 (ja) 2009-02-27 2014-11-26 丸善石油化学株式会社 フォトレジスト用共重合体の製造方法
JP5624753B2 (ja) 2009-03-31 2014-11-12 東京応化工業株式会社 リソグラフィー用洗浄液及びこれを用いたレジストパターンの形成方法
JP5394119B2 (ja) 2009-04-24 2014-01-22 三菱レイヨン株式会社 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091407A (ja) * 2003-09-12 2005-04-07 Jsr Corp 感放射線性樹脂の評価方法および感放射線性樹脂組成物
JP2005217254A (ja) * 2004-01-30 2005-08-11 Renesas Technology Corp レジスト現像速度ばらつき評価方法及びレジスト現像速度ばらつき評価装置。
JP2009139909A (ja) * 2007-08-03 2009-06-25 Tokyo Ohka Kogyo Co Ltd 含フッ素化合物、液浸露光用レジスト組成物およびレジストパターン形成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115086A1 (en) * 2009-07-07 2012-05-10 Mitsubishi Rayon Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
US9109060B2 (en) * 2009-07-07 2015-08-18 Mitsubishi Rayon, Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
US9296842B2 (en) 2009-07-07 2016-03-29 Mitsubishi Rayon Co., Ltd. Polymer for lithography
US20130224654A1 (en) * 2010-10-18 2013-08-29 Mitsubishi Rayon Co., Ltd. Copolymers for lithography and method for producing same, resist composition, method for producing substrate with pattern formed thereupon, method for evaluating copolymers, and method for analyzing copolymer compositions
US9733564B2 (en) * 2010-10-18 2017-08-15 Mitsubishi Chemical Corporation Copolymers for lithography and method for producing same, resist composition, method for producing substrate with pattern formed thereupon, method for evaluating copolymers, and method for analyzing copolymer compositions
JP2013214032A (ja) * 2012-03-07 2013-10-17 Mitsubishi Rayon Co Ltd 半導体リソグラフィー用重合体の評価方法、および、該評価方法を含む半導体リソグラフィー用重合体製造方法
JP2019059957A (ja) * 2013-09-03 2019-04-18 三菱ケミカル株式会社 リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法

Also Published As

Publication number Publication date
US20120111099A1 (en) 2012-05-10
CN102472982A (zh) 2012-05-23
CN102472982B (zh) 2014-07-02
JPWO2011004787A1 (ja) 2012-12-20
TWI431438B (zh) 2014-03-21
KR20140099504A (ko) 2014-08-12
KR20120031053A (ko) 2012-03-29
KR101690391B1 (ko) 2016-12-27
JP6086135B2 (ja) 2017-03-01
TW201109865A (en) 2011-03-16
JP2015227468A (ja) 2015-12-17
US9023578B2 (en) 2015-05-05
JP5845578B2 (ja) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6086135B2 (ja) リソグラフィー用共重合体の製造方法
JP5793867B2 (ja) 重合体の製造方法
TWI584063B (zh) 微影用共聚合物的製造方法
JP5557022B2 (ja) リソグラフィー用共重合体の評価方法
JP5761550B2 (ja) リソグラフィー用共重合体の評価方法
JP2012189982A (ja) リソグラフィー用共重合体の評価方法および製造方法
JP5771942B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、ならびに基板の製造方法
JP6338316B2 (ja) 半導体リソグラフィー用重合体の評価方法、および、該評価方法を含む半導体リソグラフィー用重合体製造方法
JP6244756B2 (ja) リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP5821317B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP5869754B2 (ja) リソグラフィー用共重合体およびその精製方法
JP6455148B2 (ja) 半導体リソグラフィー用共重合体、レジスト組成物、及び、基板の製造方法
JP5939009B2 (ja) (メタ)アクリル酸エステルの評価方法及びリソグラフィー用共重合体の製造方法
JP6369156B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP5793825B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP2011137084A (ja) 重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法
JP6086222B2 (ja) 半導体リソグラフィー用ポリマーの評価方法及び該評価方法を含む製造方法
JP6268803B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6268804B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP2015052647A (ja) 半導体リソグラフィー用重合体の評価方法、及び、該評価方法を含む半導体リソグラフィー用重合体製造方法
JP2017119881A (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP2014074830A (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031212.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010530196

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13381249

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127000236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797098

Country of ref document: EP

Kind code of ref document: A1