JP2011137084A - 重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法 - Google Patents

重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法 Download PDF

Info

Publication number
JP2011137084A
JP2011137084A JP2009297800A JP2009297800A JP2011137084A JP 2011137084 A JP2011137084 A JP 2011137084A JP 2009297800 A JP2009297800 A JP 2009297800A JP 2009297800 A JP2009297800 A JP 2009297800A JP 2011137084 A JP2011137084 A JP 2011137084A
Authority
JP
Japan
Prior art keywords
polymer
monomer
polymerization initiator
dropping
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297800A
Other languages
English (en)
Other versions
JP5707699B2 (ja
Inventor
Atsushi Yasuda
敦 安田
Tomoya Oshikiri
友也 押切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009297800A priority Critical patent/JP5707699B2/ja
Publication of JP2011137084A publication Critical patent/JP2011137084A/ja
Application granted granted Critical
Publication of JP5707699B2 publication Critical patent/JP5707699B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】共重合体における分子量のばらつきを改善でき、溶媒への溶解性、およびレジスト組成物に用いたときの感度を向上できる重合体の製造方法を提供する。
【解決手段】反応器内に単量体および重合開始剤を滴下しながら、2種以上の単量体を重合して重合体を得る重合工程を有し、重合工程の初期における単量体の供給速度および重合開始剤の滴下速度を大きくし、重合開始剤の滴下開始から30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値を、いずれも反応終了時点での重合体(P)の重量平均分子量の80〜120%とする。
【選択図】なし

Description

本発明は重合体の製造方法、該製造方法により得られるリソグラフィー用重合体、該リソグラフィー用重合体を用いたレジスト組成物、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。
半導体素子、液晶素子等の製造工程においては、近年、リソグラフィーによるパターン形成の微細化が急速に進んでいる。微細化の手法としては、照射光の短波長化がある。
最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術及びEUV(波長:13.5nm)リソグラフィー技術が研究されている。
また、例えば、照射光の短波長化およびパターンの微細化に好適に対応できるレジスト組成物として、酸の作用により酸脱離性基が脱離してアルカリ可溶性となる重合体と、光酸発生剤とを含有する、いわゆる化学増幅型レジスト組成物が提唱され、その開発および改良が進められている。
ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体としては、波長193nmの光に対して透明なアクリル系重合体が注目されている。
例えば下記特許文献1には、単量体として、(A)ラクトン環を有する脂環式炭化水素基がエステル結合している(メタ)アクリル酸エステル、(B)酸の作用により脱離可能な基がエステル結合している(メタ)アクリル酸エステル、および(C)極性の置換基を有する炭化水素基または酸素原子含有複素環基がエステル結合している(メタ)アクリル酸エステルを用いてなるリソグラフィー用の共重合体が記載されている。
レジストパターンの微細化に伴って、リソグラフィー用重合体の品質への要求も厳しくなっている。例えば、重合過程で生成する微量の高分子量成分(ハイポリマー)は、リソグラフィー用重合体のレジスト用溶媒への溶解性やアルカリ現像液への溶解性の低下の原因となり、その結果レジスト組成物の感度が低下する。
下記特許文献2では、かかるハイポリマーの生成を抑える方法として、重合性モノマーを含有する溶液と、重合開始剤を含有する溶液とを、各々独立した貯槽に保持し、重合開始剤を、重合性モノマーよりも先に重合系内に供給する方法が提案されている。
特開2002−145955号公報 特開2004−269855号公報
しかしながら、上記特許文献2に記載されている方法では、リソグラフィー用重合体の溶解性、またはレジスト組成物の感度が充分に改善されない場合がある。
本発明は前記事情に鑑みてなされたもので、共重合体における分子量のばらつきを改善でき、溶媒への溶解性、およびレジスト組成物に用いたときの感度を向上できる重合体の製造方法、該製造方法により得らリソグラフィー用重合体、該リソグラフィー用重合体を用いたレジスト組成物、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法を提供することを目的とする。
前記課題を解決するために、本発明の第1の態様は、反応器内に単量体および重合開始剤を滴下しながら、該反応器内で2種以上の単量体α〜α(ただし、nは2以上の整数を表す。)を重合して、構成単位α’〜α’(ただし、α’〜α’は単量体α〜αからそれぞれ導かれる構成単位を表す。)からなる重合体(P)を得る重合工程を有し、前記反応器内に、前記重合開始剤を滴下する前または該重合開始剤の滴下開始と同時に、該反応器内に、前記単量体α〜αを含有する単量体溶液を供給開始し、前記重合開始剤の滴下開始から前記単量体溶液の滴下終了までを基準時間とするとき、該基準時間が2時間以上であり、前記重合開始剤の全供給量を前記基準時間で除した値を平均供給速度Vjとするとき、前記基準時間の0%からj%(jは5〜20)までの期間を、前記平均供給速度Vjよりも高速で重合開始剤を滴下する重合開始剤の高速供給期間とし、前記単量体の全供給量を前記基準時間で除した値を平均供給速度Vkとするとき、前記基準時間の0%からk%(kは0〜20)までの期間を、前記平均供給速度Vkよりも高速で前記単量体α〜αを供給する単量体の高速供給期間とし、前記重合開始剤の滴下開始から30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値を、いずれも反応終了時点での重合体(P)の重量平均分子量の80〜120%とする重合体の製造方法である。
本発明の第2の態様は、第1の態様において、前記重合開始剤の高速供給期間に、前記重合開始剤の全供給量のうちの30〜90質量%を前記反応器内に供給し、前記単量体の高速供給期間に前記単量体の全供給量のうちの2〜50質量%を前記反応器内に供給する重合体の製造方法である。
本発明の第3の態様は、第1または第2の態様において、前記重合開始剤の高速供給期間の終了後は、重合開始剤を一定速度で滴下し、かつ前記単量体の高速供給期間の終了後は、前記単量体を一定速度で滴下する重合体の製造方法である。
本発明の第4の態様は、本発明の製造方法により得られるリソグラフィー用重合体である。
本発明の第5の態様は、本発明のリソグラフィー用重合体、および活性光線又は放射線の照射により酸を発生する化合物を含有するレジスト組成物である。
本発明の第6の態様は、本発明のレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法である。
本発明の重合体の製造方法によれば、分子量のばらつきを改善でき、溶媒への溶解性、およびレジスト組成物に用いたときの感度を向上できる、重合体が得られる。
本発明のリソグラフィー用重合体は、分子量のばらつきが改善され、溶媒への溶解性が良好であり、レジスト組成物に用いたときに高い感度が得られる。
本発明のレジスト組成物は、化学増幅型であり、レジスト溶媒への溶解性が優れ、感度に優れる。
本発明の基板の製造方法によれば、高精度の微細なレジストパターンを安定して形成できる。
参考例1の結果を示すグラフである。 参考例1の結果を示すグラフである。 実施例1の結果を示すグラフである。 実施例1の結果を示すグラフである。 実施例2の結果を示すグラフである。 実施例2の結果を示すグラフである。 参考例2の結果を示すグラフである。 参考例2の結果を示すグラフである。 実施例3の結果を示すグラフである。 実施例3の結果を示すグラフである。
本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
本発明における重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、ゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた値である。
<重合体(P)>
本発明の重合体(P)は構成単位α’〜α’(ただし、α’〜α’は単量体α〜αからそれぞれ導かれる構成単位を表す。nは2以上の整数を表す。)からなる。nの上限は、本発明による効果が得られやすい点で6以下が好ましい。特に重合体(P)がレジスト用重合体である場合には、5以下がより好ましく、4以下がさらに好ましい。
例えば、n=3である場合は、重合体(P)は構成単位α’、α’、α’からなる三元系重合体P(α’/α’/α’)であり、n=4の場合は、構成単位α’、α’、α’、α’からなる四元系重合体P(α’/α’/α’/α’)である。
重合体(P)の用途は特に限定されない。例えば、リソグラフィー工程に用いられるリソグラフィー用重合体が好ましい。リソグラフィー用重合体としては、レジスト膜の形成に用いられるレジスト用重合体、レジスト膜の上層に形成される反射防止膜(TARC)、またはレジスト膜の下層に形成される反射防止膜(BARC)の形成に用いられる反射防止膜用重合体、ギャップフィル膜の形成に用いられるギャップフィル膜用重合体、トップコート膜の形成に用いられるトップコート膜用重合体が挙げられる。
リソグラフィー用重合体の重量平均分子量(Mw)は1,000〜200,000が好ましく、2,000〜40,000がより好ましい。分子量分布(Mw/Mn)は1.0〜10.0が好ましく、1.1〜4.0がより好ましい。
重合体(P)の構成単位は、特に限定されず、用途および要求特性に応じて適宜選択される。
レジスト用重合体は、酸脱離性基を有する構成単位および極性基を有する構成単位を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
レジスト用重合体の重量平均分子量(Mw)は1,000〜100,000が好ましく、3,000〜30,000がより好ましい。分子量分布(Mw/Mn)は1.0〜3.0が好ましく、1.1〜2.5がより好ましい。
反射防止膜用重合体は、例えば、吸光性基を有する構成単位を有するとともに、レジスト膜との混合を避けるため、硬化剤などと反応して硬化可能なアミノ基、アミド基、ヒドロキシル基、エポキシ基等の反応性官能基を有する構成単位を含むことが好ましい。
吸光性基とは、レジスト組成物中の感光成分が感度を有する波長領域の光に対して、高い吸収性能を有する基であり、具体例としては、アントラセン環、ナフタレン環、ベンゼン環、キノリン環、キノキサリン環、チアゾール環等の環構造(任意の置換基を有していてもよい。)を有する基が挙げられる。特に、照射光として、KrFレーザ光が用いられる場合には、アントラセン環又は任意の置換基を有するアントラセン環が好ましく、ArFレーザ光が用いられる場合には、ベンゼン環又は任意の置換基を有するベンゼン環が好ましい。
上記任意の置換基としては、フェノール性水酸基、アルコール性水酸基、カルボキシ基、カルボニル基、エステル基、アミノ基、又はアミド基等が挙げられる。
特に、吸光性基として、保護された又は保護されていないフェノール性水酸基を有する反射防止膜用重合体が、良好な現像性・高解像性の観点から好ましい。
上記吸光性基を有する構成単位・単量体として、例えば、ベンジル(メタ)アクリレート、p−ヒドロキシフェニル(メタ)アクリレート等が挙げられる。
ギャップフィル膜用重合体は、例えば、狭いギャップに流れ込むための適度な粘度を有するとともに、レジスト膜や反射防止膜との混合を避けるため、硬化剤などと反応して硬化可能な反応性官能基を有する構成単位を含むことが好ましい。
具体的にはヒドロキシスチレンと、スチレン、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等の単量体との共重合体が挙げられる。
液浸リソグラフィーに用いられるトップコート膜用重合体の例としては、カルボキシル基を有する構成単位を含む共重合体、水酸基が置換したフッ素含有基を有する構成単位を含む共重合体等が挙げられる。
<構成単位・単量体>
重合体(P)は、その構成単位α’〜α’にそれぞれ対応する単量体α〜αを重合させて得られる。単量体はビニル基を有する化合物が好ましく、ラジカル重合しやすいものが好ましい。特に(メタ)アクリル酸エステルは波長250nm以下の露光光に対する透明性が高い。
以下、重合体(P)がレジスト用重合体である場合に、好適に用いられる構成単位およびそれに対応する単量体について説明する。
[酸脱離性基を有する構成単位・単量体]
レジスト用重合体は、酸脱離性基を有することが好ましい。「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部または全部が重合体の主鎖から脱離する基である。
レジスト用組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度および解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
酸脱離性基を有する単量体は、酸脱離性基および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
これらの中でも、1−エチルシクロヘキシルメタクリレート(実施例のm2)、2−メチル−2−アダマンチルメタクリレート(実施例のm5)、1−エチルシクロペンチルメタクリレート、イソプロピルアダマンチルメタクリレートがより好ましい。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[極性基を有する構成単位・単量体]
「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
共重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、35モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。
ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
これらの中でも、α−メタクリロイルオキシ−γ−ブチロラクトン(実施例のm1)、α−アクリロイルオキシ−γ−ブチロラクトン(実施例のm4)、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オンがより好ましい。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、親水性基としてヒドロキシ基またはシアノ基を有することが好ましい。
共重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。
親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
これらの中でも、メタクリル酸3−ヒドロキシアダマンチル(実施例のm3)、2−シアノメチル−2−アダマンチルメタクリレート(実施例のm6)がより好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<重合開始剤>
重合開始剤は、熱により分解して効率的にラジカルを発生するものが好ましく、10時間半減期温度が重合温度条以下であるものを用いることが好ましい。例えばリソグラフィー用重合体を製造する場合の、好ましい重合温度は50〜150℃であり、重合開始剤としては10時間半減期温度が50〜70℃のものを用いることが好ましい。また重合開始剤が効率的に分解するためには、重合開始剤の10時間半減期温度と重合温度との差が10℃以上であることが好ましい。
重合開始剤の例としては、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等のアゾ化合物、2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等の有機過酸化物;が挙げられる。アゾ化合物がより好ましい。
これらは市販品から入手可能である。例えばジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名)、10時間半減期温度66℃)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製、V65(商品名)、10時間半減期温度51℃)等を好適に用いることができる。
<溶媒>
本発明の重合体の製造方法においては重合溶媒を用いてもよい。重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(例えばジエチルエーテル、プロピレングリコールモノメチルエーテル等。)、環状エーテル(例えばテトラヒドロフラン(以下、「THF」と記すこともある。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記すこともある。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン、メチルイソブチルケトン等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
重合溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
重合溶媒の使用量は特に限定されないが、例えば、重合反応終了時の反応器内の液(重合反応溶液)の固形分濃度が20〜40質量%程度となる量が好ましい。
<重合体の製造方法>
本発明の重合体の製造方法は、反応器内に単量体および重合開始剤を滴下しながら、該反応器内で2種以上の単量体α〜αを重合して、構成単位α’〜α’からなる重合体(P)を得る重合工程を有する。
該重合工程はラジカル重合法で行われ、本発明では、単量体および重合開始剤を反応器内に滴下しながら、該反応器内で重合を行う滴下重合法を用いる。
重合に使用される単量体の合計量(単量体の全供給量)は、得ようとする重合体(P)の量に応じて設定される。
重合開始剤の使用量(全供給量)は、重合開始剤の種類に応じて、また得ようとする重合体(P)の重量平均分子量の目標値に応じて設定される。
例えば、本発明における重合体(P)がリソグラフィー用重合体である場合、反応器に供給される単量体の合計(全供給量)の100モル%に対して、重合開始剤の使用量(全供給量)は1〜25モル%の範囲が好ましく、1.5〜20モル%の範囲がより好ましい。
本発明においては、後述するように、反応器内への単量体の供給速度は2段階以上変化し、重合開始剤の供給速度も2段階以上変化する。すなわち重合工程の初期に単量体の高速供給期間および重合開始剤の高速供給期間をそれぞれ設ける。
単量体の高速供給期間は、例えば単量体α〜αを含有する1種類の単量体溶液を用意し、該単量体溶液の供給速度を変化させることによって実現してもよく、単量体α〜αを含有し、互いに供給される期間が異なる2種以上の単量体溶液を用いて実現してもよい。
製造時の条件を固定し、重合反応の再現性を得やすい点で、2種以上の単量体溶液を用いる方法が好ましい。
2種以上の単量体溶液を用いる場合、各液に含まれる単量体の含有比率(組成)は同じであっても、異なっていてもよい。いずれの場合も、重合体(P)の分子量のばらつきを低減させる効果が得られる。
特に、単量体を含有する液として、単量体α〜αを後述する第1の組成で含有する第1の溶液と、単量体α〜αを後述する第2の組成で含有する第2の溶液を用いると、重合体(P)の分子量のばらつきを低減させると同時に、重合体(P)における構成単位の含有比率のばらつきを低減させることができるため、好ましい。第1の溶液および第2の溶液は溶媒を含有することが好ましい。
[第2の溶液]
第2の溶液における単量体の含有比率(第2の組成)は、得ようとする重合体(P)における構成単位α’〜α’の含有比率を表す目標組成と同じである。
例えば、重合体(P)が、単量体x、y、zを共重合させて得られる3元系の重合体であって、目標組成(モル%、以下同様)がx’:y’:z’であるとき、第2の組成(モル%、以下同様。)x:y:zはx’:y’:z’と同じにする。
第2の溶液は滴下により反応器に供給する。
[第1の溶液]
第1の溶液における単量体の含有比率(第1の組成)は、重合体(P)における目標組成と、重合に用いられる各単量体の反応性とを加味して予め求められた組成である。
具体的に第1の組成は、反応器内に存在する単量体の含有比率が第1の組成であるとき、該反応器内に上記第2の溶液が滴下されると、滴下直後に生成される重合体分子の構成単位の含有比率が目標組成と同じになるように、設計された組成である。この場合、滴下直後に生成される重合体分子の構成単位の含有比率が、滴下された第2の溶液の単量体の含有比率(目標組成)と同じであるから、滴下直後に反応器内に残存する単量体の含有比率は常に一定(第1の組成)となる。したがって、かかる反応器内に第2の溶液の滴下を継続して行うと、常に目標組成の重合体分子が生成し続けるという定常状態が得られる。
かかる定常状態が得られるような第1の組成が存在することは、本発明より前には知られておらず、本発明者等によって初めて得られた知見である。第1の組成の設計方法の具体例は後述する。
第1の溶液は、予め反応器内に仕込んでおいてもよく、滴下等により反応器に徐々に供給してもよく、これらを組み合わせてもよい。
[重合開始剤]
重合開始剤は滴下により反応器に供給する。重合開始剤は、滴下される単量体溶液に含有させてもよく、単量体溶液とは別に、重合開始剤を含有する溶液(重合開始剤溶液)を滴下してもよい。これらを組み合わせてもよい。
前記第1の溶液と第2の溶液を用いる場合は、第2の溶液に重合開始剤を含有させてもよい。第1の溶液を滴下する場合は、該第1の溶液に重合開始剤を含有させてもよい。
[重合工程]
重合工程において、反応器に重合開始剤を滴下したときに、該反応器内に単量体α〜αが存在していることが必要である。したがって、反応器内に重合開始剤を滴下する前または重合開始剤の滴下開始と同時に、該反応器内に単量体溶液を供給開始する。
重合開始剤の滴下終了と単量体溶液の供給終了は同時であることが好ましいが、本発明の効果を妨げない範囲で、若干前後してもよい。
また、重合開始剤の滴下開始から単量体溶液の滴下終了までを基準時間とするとき、単量体の全供給量を基準時間で除した値を平均供給速度Vkとするとき、基準時間の0%からk%(kは0〜20)までの期間を、平均供給速度Vkよりも高速で単量体α〜αを供給する単量体の高速供給期間とする。
本発明において基準時間は2時間以上である。基準時間の上限は特に限定されないが、生産性の点からは20時間以下が好ましく、15時間以下がより好ましい。
単量体の高速供給期間は基準時間のゼロ%であってもよい。すなわち重合開始剤の滴下開始前に、高速供給期間内に供給される単量体の全量を反応器内に供給しておいてもよい。
単量体の高速供給期間の終了時点は、基準時間のk%が経過した時点である。kは20以下であり、15以下が好ましく、10以下がより好ましい。
単量体の高速供給期間中の単量体の供給速度は、前記平均供給速度より高い状態が保たれていればよく、途中で供給速度を変更してもよい。
単量体の高速供給期間の終了後の単量体の供給速度は、前記平均供給速度よりも低速であればよく、途中で供給下速度を変更してもよいが、均一な重合体を安定して得るためには、一定速度で滴下することが好ましい。
前記第1の溶液と第2の溶液を用いる場合は、反応器に重合開始剤を滴下したときに、該反応器内に第1の溶液が存在していることが必要である。したがって、反応器内に重合開始剤を滴下する前または重合開始剤の滴下開始と同時に、該反応器内に第1の溶液を供給開始する。
また反応器に第2の溶液を滴下したときに、該反応器内に第1の溶液が存在していることが必要である。したがって、反応器内に第1の溶液を供給開始した後または第1の溶液の供給開始と同時に、該反応器内に第2の溶液を滴下開始する。
重合開始剤の滴下開始と第2の溶液の滴下開始は同時であることが好ましいが、本発明の効果を妨げない範囲で、若干前後してもよい。
第2の溶液の滴下は、連続的でもよく、断続的でもよく、滴下速度が変化してもよい。生成される重合体の組成および分子量をより安定させるためには、連続的に、一定速度で滴下することが好ましい。
第1の溶液を滴下により供給する場合、連続的でもよく、断続的でもよく、滴下速度が変化してもよい。生成される重合体の組成および分子量をより安定させるためには、連続的に、一定速度で滴下することが好ましい。
前記第1の溶液と第2の溶液を用いる場合、反応器内への第1の溶液の供給開始から供給終了までが、単量体の高速供給期間である。したがって、基準時間の20%が経過する以前に、第1の溶液の供給を終了する。例えば基準時間が4時間である場合は、重合開始剤の滴下開始から48分経過する以前に、第1の溶液の全量を反応器内に供給する。
また基準時間の0%の時点で第1の溶液の全量が供給されていてもよい。すなわち重合開始剤の滴下開始前に、反応器内に第1の溶液の全量を仕込んでおいてもよい。
重合開始剤の滴下終了と第2の溶液の滴下終了は同時であることが好ましいが、本発明の効果を妨げない範囲で、若干前後してもよい。
また、重合開始剤の全供給量を基準時間で除した値を平均供給速度Vjとするとき、基準時間の0%からj%(jは5〜20)までの期間を、平均供給速度Vjよりも高速で重合開始剤を滴下する重合開始剤の高速供給期間とする。
重合開始剤の高速供給期間の開始時点は基準時間の開始時であり、基準時間の0%である。重合開始剤の高速供給期間の終了時点は基準時間のj%が経過した時点であり、該j%は、5〜20%であり、5.5〜17.5%が好ましく、6〜15%がより好ましい。
重合開始剤の高速供給期間の終了と、単量体の高速供給期間の終了とは、どちらが先でもよく、同時でもよい。
重合開始剤の高速供給期間中の重合開始剤の滴下速度は、前記平均供給速度より高い状態が保たれていればよく、途中で滴下速度を変更してもよい。
重合開始剤の高速供給期間の終了後の重合開始剤の滴下速度は、前記平均供給速度よりも低速であればよく、途中で滴下速度を変更してもよいが、均一な重合体を安定して得るためには、一定速度で滴下することが好ましい。
重合開始剤の高速供給期間中に反応器内に供給される重合開始剤の量と、単量体の高速供給期間中に反応器内に供給される単量体の量によって、重合工程の初期において生成される重合体の重量平均分子量を制御できる。
本発明では、重合開始剤の滴下開始(基準時間の開始時)から30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値が、いずれも反応終了時点での重合体(P)の重量平均分子量の80〜120%となるように制御する。
反応終了時とは、反応器内の重合反応溶液を冷却して反応を停止させた時点である。
すなわち、重合開始剤の滴下開始から30分後、1時間後、2時間後、および反応終了時に反応器内の重合体の重量平均分子量をそれぞれ測定し、30分後、1時間後または2時間後の測定値が、反応終了時の重量平均分子量の120%より大きい場合は、該測定時までに反応器内に供給される重合開始剤の量が多くなるように条件を変更する。一方、反応終了時の重量平均分子量の80%よりも小さい場合は、該測定時までに反応器内に供給される、重合開始剤の量が少なくなるように、および/または単量体の量が多くなるように、条件を変更する。
重合開始剤の高速供給期間中における重合開始剤の最適な供給量は、単量体の種類、単量体の供給速度、重合開始剤の種類、重合条件等によっても異なるが、例えば重合開始剤の全供給量の30〜90質量%が好ましく、35〜85質量%がより好ましい。
また、単量体の高速供給期間中における単量体の最適な供給量は、単量体の種類、重合開始剤の種類、重合開始剤の供給速度、重合条件等によっても異なるが、例えば単量体の全供給量の2〜50質量%が好ましく、3〜40質量%がより好ましく、5〜30質量%がさらに好ましい。
前記第1の溶液と第2の溶液を用いる場合の重合工程の好ましい態様としては、以下の(a)、(b)が挙げられる。
(a)予め反応器内に、単量体α〜αを第1の組成で含有する第1の溶液を仕込んでおき、反応器内を所定の重合温度まで加熱した後、該反応器内に、重合開始剤の一部を含む重合開始剤溶液と、単量体α〜αを第2の組成で含有するとともに、重合開始剤の残部を含む第2の溶液をそれぞれ滴下する。重合開始剤溶液と第2の溶液のいずれかを先に滴下開始してもよいが、両液を同時に滴下開始することが好ましい。重合開始剤溶液の滴下開始と第2の溶液の滴下開始との間隔は0〜10分が好ましい。
滴下速度はそれぞれ一定であることが好ましい。重合開始剤溶液は第2の溶液よりも先に滴下を終了する。
本態様において、基準時間の開始、すなわち重合開始剤の滴下開始は、重合開始剤溶液および第2の溶液のうち先に滴下開始された方の滴下開始時である。基準時間の終了は第2の溶液の滴下終了時である。重合開始剤の滴下終了も、第2の溶液の滴下終了時である。
本態様では、重合開始剤の滴下開始前に第1の溶液の全量が反応器内に供給される。すなわち第1の溶液の供給終了は基準時間の0%であり、単量体の高速供給期間は0%から0%までである。重合開始剤の高速供給期間は重合開始剤溶液が滴下されている期間である。
単量体の高速供給期間に反応器内に供給される単量体の量は、第1の溶液に含まれる単量体の合計量である。
重合開始剤の高速供給期間に反応器内に供給される重合開始剤の量は、重合開始剤溶液に含まれる重合開始剤の量と、重合開始剤溶液が滴下されている期間に滴下される第2の溶液に含まれる重合開始剤の量の合計である。
(b)反応器内に溶媒のみを仕込み、所定の重合温度まで加熱した後、単量体α〜αを第1の組成で含有するとともに、重合開始剤の一部を含む第1の溶液と、単量体α〜αを第2の組成で含有するとともに、重合開始剤の残部を含む第2の溶液をそれぞれ滴下する。両液は同時に滴下開始するか、または第1の溶液を先に滴下開始する。第1の溶液の滴下開始と第2の溶液の滴下開始との間隔は0〜10分が好ましい。
滴下速度はそれぞれ一定であることが好ましい。第2の溶液よりも第1の溶液の方が先に滴下を終了する。
本態様において、基準時間の開始、すなわち重合開始剤の滴下開始は、第1の溶液の滴下開始時である。基準時間の終了は第2の溶液の滴下終了時である。重合開始剤の滴下終了も、第2の溶液の滴下終了時である。
単量体の高速供給期間および重合開始剤の高速供給期間は、いずれも第1の溶液が滴下されている期間である。
単量体の高速供給期間に反応器内に供給される単量体の量は、第1の溶液に含まれる単量体の量と、第1の溶液が滴下されている期間に滴下される第2の溶液に含まれる単量体の量の合計である。
重合開始剤の高速供給期間に反応器内に供給される重合開始剤の量は、第1の溶液に含まれる重合開始剤の量と、第1の溶液が滴下されている期間に滴下される第2の溶液に含まれる重合開始剤の量の合計である。
本発明の方法によれば、後述の実施例、比較例に示されるように、重合開始剤の滴下開始から30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値を、反応終了時点での重合体(P)の重量平均分子量に近くなるように制御することができ、これにより重合反応の開始直後から反応終了時まで、重量平均分子量のばらつきが小さい重合体を得ることができる。
具体的には、30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値を、反応終了時点での重合体(P)の重量平均分子量の80〜120%、好ましくは90〜110%に制御することができ、これにより、重合反応の開始直後から反応終了時までの重量平均分子量を、反応終了時点での重合体(P)の重量平均分子量の80〜120%、好ましくは90〜110%とすることができる。
したがって分子量のばらつきが改善され、溶媒への溶解性が向上し、レジスト組成物に用いた際の感度が向上する。
これは、重合工程の初期に単量体の高速供給期間および重合開始剤の高速供給期間を設けたことにより、重量平均分子量が高すぎる重合体分子の生成が抑えられたためと考えられる。
したがって、本発明によれば、溶媒への溶解性が良好であり、レジスト組成物に用いた際には高い感度を有する重合体(P)を再現性良く得ることができる。
また単量体溶液として、前記定常状態が得られるように単量体の含有比率が設計された第1の溶液と第2の溶液を用いることにより、重合反応の開始直後から目標組成とほぼ同じ組成の重合体分子が生成され、その状態が継続される。
したがって、重合工程後に得られる重合体(P)における構成単位の含有比率のばらつきが小さくなる。このことも、溶媒への溶解性が向上、およびレジスト組成物に用いた際の感度向上に寄与する。
なお、本発明の重合体はレジスト用途以外の用途にも適用可能であり、溶解性の向上効果が得られるほか、各種性能の向上が期待できる。
<第1の組成の設計方法>
以下、第1の組成の設計方法の具体例を説明する。
得ようとする重合体(P)における構成単位の含有比率(目標組成、単位:モル%)が、α’:α’:…:α’であるとき、第1の組成(単位:モル%)をα:α:…:αで表わし、下記(1)〜(3)の方法で求められるファクターをF、F、…Fで表わすと、α=α’/F、α=α’/F、…α=α’/Fとすることが好ましい。
(1)まず単量体組成が目標組成α’:α’:…:α’と同じである単量体混合物100質量部と重合開始剤と溶媒を含有する滴下溶液を、溶媒のみを入れた反応器内に一定の滴下速度で滴下し、滴下開始からの経過時間がt、t、t…のときに、それぞれ反応器内に残存している単量体α〜αの組成(単位:モル%)M:M:…:Mと、tからtまでの間、tからtまでの間、…にそれぞれ生成した重合体における構成単位α’〜α’の比率(単位:モル%)P:P:…:Pを求める。
(2)前記P:P:…:Pが、目標組成α’:α’:…:α’に最も近い時間帯「tからtm+1までの間(mは1以上の整数。)」を見つける。
(3)該「tからtm+1までの間」におけるP:P:…:Pの値と、経過時間tにおけるM:M:…:Mの値とから、下記式により、ファクターF、F、…Fを求める。F=P/M、F=P/M、…F=P/M
より具体的に説明すると、例えば、重合体(P)が、単量体x、y、zを共重合させて得られる3元系の重合体であって、目標組成がx’:y’:z’であるとき、第1の組成(モル%、以下同様。)x:y:zは、下記の方法で求められるファクターFx、Fy、Fzを用いて、x=x’/Fx、y=y’/Fy、z=z’/Fzにより算出される値とする。
[ファクターFx、Fy、Fzの求め方]
以下、重合体(P)が3元系の重合体である場合を例に挙げて説明するが、2元系または4元系以上でも同様にしてファクターを求めることができる。
(1)まず、単量体組成が目標組成x’:y’:z’と同じである単量体混合物と溶媒と重合開始剤を含有する滴下溶液を、反応器内に一定の滴下速度vで滴下する。反応器内には、予め溶媒のみを入れておく。
滴下開始からの経過時間がt、t、t…のときに、それぞれ反応器内に残存している単量体x、y、zの組成(モル%)Mx:My:Mzと、tからtまでの間、tからtまでの間…にそれぞれ生成した重合体における構成単位の比率(モル%)Px:Py:Pzを求める。
(2)Px:Py:Pzが、目標組成x’:y’:z’に最も近い時間帯「tからtm+1までの間(mは1以上の整数。)」を見つける。
(3)その「tからtm+1までの間」におけるPx:Py:Pzの値と、経過時間tにおけるMx:My:Mzの値とから、下記式により、ファクターFx、Fy、Fzを求める。
Fx=Px/Mx、Fy=Py/My、Fz=Pz/Mz。
ファクターFx、Fy、Fzは、各単量体の相対的な反応性を反映する値であり、重合に用いられる単量体の組み合わせまたは目標組成が変わると変化する。
(4)また、好ましくは、最初の滴下溶液に含まれていた単量体混合物100質量%のうち、上記経過時間tにおいて、反応器内に存在する単量体の合計質量が占める割合(W質量%)を求める。
単量体溶液として、前記第1の溶液と第2の溶液を用いる場合、単量体の全供給量のうち、第1の溶液に含まれる単量体の合計量が占める割合をW質量%とすると、重合反応の開始直後から目標組成とほぼ同じ組成の重合体分子が生成されやすい。
<レジスト組成物>
本発明のレジスト組成物は、本発明のリソグラフィー用重合体をレジスト溶媒に溶解して調製される。レジスト溶媒としては、重合体の製造に用いた上記重合溶媒と同様のものが挙げられる。
本発明のレジスト組成物が化学増幅型レジスト組成物である場合は、さらに活性光線又は放射線の照射により酸を発生する化合物(以下、光酸発生剤という。)を含有させる。
(光酸発生剤)
光酸発生剤は、化学増幅型レジスト組成物において公知の光酸発生剤の中から任意に選択できる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
レジスト組成物における光酸発生剤の含有量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
(含窒素化合物)
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。すなわち、レジストパターンの断面形状が矩形により近くなる。また半導体素子の量産ライン等では、レジスト膜に光を照射し、次いでベーク(PEB)した後、次の現像処理までの間に数時間放置されることがあるが、そのような放置(経時)によるレジストパターンの断面形状の劣化の発生がより抑制される。
含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
レジスト組成物における含窒素化合物の含有量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
(有機カルボン酸、リンのオキソ酸またはその誘導体)
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
レジスト組成物における酸化合物の含有量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
(添加剤)
本発明のレジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
<パターンが形成された基板の製造方法>
本発明の、パターンが形成された基板の製造方法の一例について説明する。
まず、所望の微細パターンを形成しようとするシリコンウエハー等の基板の被加工面上に、本発明のレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。
ついで、レジスト膜に対して、フォトマスクを介して露光を行い潜像を形成する。露光光としては、250nm以下の波長の光が好ましい。例えばKrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV光が好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものが挙げられる。
現像後、基板を純水等で適宜リンス処理する。このようにして基板上にレジストパターンが形成される。
レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、微細パターンが形成された基板が得られる。
本発明の製造方法により得られるリソグラフィー用重合体は、溶媒への溶解性に優れるとともに、高い感度のレジスト膜を形成できる。
したがって、レジスト組成物を調製する際のレジスト溶媒への重合体の溶解を容易にかつ良好に行うことができる。またレジスト組成物はアルカリ現像液に対する優れた溶解性が得られ、感度の向上に寄与する。またレジスト組成物中の不溶分が少ないため、パターン形成において、該不溶分に起因する欠陥が生じにくい。
したがって本発明の基板の製造方法によれば、本発明のレジスト組成物を用いることによって、基板上に欠陥の少ない、高精度の微細なレジストパターンを安定して形成できる。また、高感度および高解像度のレジスト組成物の使用が要求される、波長250nm以下の露光光を用いるフォトリソグラフィーまたは電子線リソグラフィー、例えばArFエキシマレーザー(193nm)を使用するリソグラフィーによる、パターン形成にも好適に用いることができる。
なお、波長250nm以下の露光光を用いるフォトリソグラフィーに用いられるレジスト組成物を製造する場合には、重合体が該露光光の波長において透明であるように、単量体を適宜選択して用いることが好ましい。
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法および評価方法は以下の方法を用いた。
(重量平均分子量の測定)
重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料(重合体の場合):重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
試料(重合反応溶液の場合):サンプリングした重合反応溶液の約30mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
(単量体の定量)
重合反応溶液中に残存する単量体量は次の方法で求めた。
反応器内の重合反応溶液を0.5g採取し、これをアセトニトリルで希釈し、メスフラスコを用いて全量を50mLとした。この希釈液を0.2μmのメンブレンフィルターで濾過し、東ソー社製、高速液体クロマトグラフHPLC−8020(製品名)を用いて、該希釈液中の未反応単量体量を、単量体ごとに求めた。
この測定において、分離カラムはジーエルサイエンス社製、Inertsil ODS−2(商品名)を1本使用し、移動相は水/アセトニトリルのグラジエント系、流量0.8mL/min、検出器は東ソー社製、紫外・可視吸光光度計UV−8020(商品名)、検出波長220nm、測定温度40℃、注入量4μLで測定した。なお、分離カラムであるInertsil ODS−2(商品名)は、シリカゲル粒径5μm、カラム内径4.6mm×カラム長さ450mmのものを使用した。また、移動相のグラジエント条件は、A液を水、B液をアセトニトリルとし、下記の通りとした。また、未反応単量体量を定量するために、濃度の異なる3種類の各単量体溶液を標準液として用いた。
測定時間0〜3分:A液/B液=90体積%/10体積%。
測定時間3〜24分:A液/B液=90体積%/10体積%から、50体積%/50体積%まで。
測定時間24〜36.5分:A液/B液=50体積%/50体積%から、0体積%/100体積%まで。
測定時間36.5〜44分:A液/B液=0体積%/100体積%。
(重合体の溶解性の評価)
重合体の20部とPGMEAの80部とを混合し、25℃に保ちながら撹拌を行い、目視で完全溶解を判断し、完全溶解するまでの時間を計測した。
(レジスト組成物の感度の評価)
レジスト組成物を6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間のプリベーク(PAB)を行い、厚さ300nmのレジスト膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン社製、製品名:VUVES−4500)を用い、露光量を変えながら10mm×10mmの面積の18ショットを露光した。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン社製、製品名:RDA−806)を用い、23.5℃にて2.38%水酸化テトラメチルアンモニウム水溶液で65秒間現像した。各露光量のレジスト膜それぞれについて、現像中のレジスト膜厚の経時変化を測定した。
得られたレジスト膜厚の経時変化のデータを基に、露光量(単位:mJ/cm)の対数と、初期膜厚に対する30秒間現像した時点での残存膜厚の割合率(単位:%、以下残膜率という。)との関係をプロットして、露光量−残膜率曲線作成した。この曲線に基づいて、残膜率0%とするための必要露光量(Eth)の値を求めた。すなわち、露光量−残膜率曲線が、残膜率0%の直線と交わる点における露光量(mJ/cm)をEthとして求めた。このEthの値は感度を表し、この値が小さいほど、感度が高いことを示す。
<参考例1:第1の組成の設計>
本例は、下記式(m−1)、(m−2)、(m−3)で表される単量体m−1、m−2、m−3を重合して、目標組成がm−1:m−2:m−3=40:40:20(モル%)、重量平均分子量の目標値が10,000の重合体を製造する場合の、第1の組成を求めた例である。
本例で使用した重合開始剤はジメチル−2,2’−アゾビスイソブチレート(前記V601(商品名))である。重合温度は80℃とした。
Figure 2011137084
窒素導入口、撹拌機、コンデンサー、滴下漏斗、および温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチルを67.8部入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、下記の単量体混合物、溶媒、および重合開始剤を含む滴下溶液(全量は205.725g)を調製し、これを滴下漏斗より4時間かけて一定の滴下速度でフラスコ内に滴下し、さらに80℃の温度を3時間保持した。滴下溶液の滴下開始から7時間後に、室温まで冷却して反応を停止させた。
単量体m−1を28.56部(40モル%)、
単量体m−2を32.93部(40モル%)、
単量体m−3を19.82部(20モル%)、
乳酸エチルを122.0部、
ジメチル−2,2’−アゾビスイソブチレートを2.415部(単量体の全供給量に対して2.5モル%)。
上記滴下溶液の滴下開始から0.5,1,2,3,4,5,6,7時間後に、それぞれフラスコ内の重合反応溶液を0.5gサンプリングし、単量体m−1〜m−3の定量をそれぞれ行った。これにより各サンプリング時において反応器内に残存している各単量体の質量がわかる。その結果、例えば滴下開始から2時間後と3時間後の結果は表1の通りであった。
Figure 2011137084
次いで、各単量体の分子量を用いて、各サンプリング時において反応器内に残存している各単量体のモル分率(Mx:My:Mzに該当する。)に換算した。
その結果、例えば滴下開始から2時間後と3時間後の結果は表2の通りであった。
Figure 2011137084
一方、4時間一定速度で反応器に供給された各単量体の質量(全供給量)から、各サンプリング時までに供給された各単量体の合計質量を求め、これから各サンプリング時において反応器内に残存している各単量体の質量を引くことで、各サンプリング時において、それまでに供給された単量体のうち重合体へ転化したものの質量を、各単量体について計算した。
次いで差分データをとることによって、サンプリング時とサンプリング時の間に重合体へ転化したもの質量を、各単量体について求め、モル分率に換算した。このモル分率の値は、各サンプリング時とサンプリング時の間に生成した重合体、すなわち滴下からの経過時間(反応時間)がtからtまでの間、tからtまでの間…にそれぞれ生成した重合体における構成単位の含有比率(以下、重合体組成比ということもある。)Px:Py:Pzに該当する。
得られた結果を図1に示す。図1の横軸は、各反応時間帯(サンプリング時とサンプリング時の間)の終了側の反応時間を示している。すなわち、図1において、横軸の反応時間が3時間のときのデータは、滴下開始から2時間後〜3時間後に生成した重合体のデータに該当する(以下、同様)。
また、各反応時間にサンプリングした重合反応溶液について、GPC測定により重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。結果を表3および図2に示す。また表3には、反応終了時点(反応開始から7時間後)での重量平均分子量(Mw)のを100%としたときの、各反応時間におけるMwの測定値の割合(単位:%)を示す(以下同様。)。
表3および図2における反応時間は、各反応時間帯(サンプリング時とサンプリング時の間)の終了側の反応時間を示している。すなわち、反応時間が3時間のときのデータは、滴下開始から2時間後〜3時間後に生成した重合体のデータに該当する(以下、同様)。
Figure 2011137084
図1の結果に示されるように、重合体組成比(Px:Py:Pz)が、目標組成である40:40:20に最も近いのは、滴下開始から2時間後〜3時間後に生成した重合体であり、Px:Py:Pz=41.05:38.47:20.48であった。
この値と、滴下開始からの経過時間が2時間後におけるMx:My:Mzの値(表2)を用い、Fx=Px/Mx、Fy=Py/My、Fz=Pz/Mzより、ファクターFx、Fy、Fzを求めると、Fx=1.27、Fy=0.76、Fz=1.22となる。
該ファクターの値と、目標組成を用いて第1の組成x:y:zを求めた。
=40/Fx=40/1.27=31.3モル%。
=40/Fy=40/0.76=52.4モル%。
=20/Fz=20/1.22=16.3モル%。
[Wの算出]
最初の滴下溶液に含まれていた単量体混合物(合計81.31部)を100質量%とすると、滴下開始からの経過時間が2時間後において反応器内に存在する単量体の合計質量(表1より14.13部)が占める割合(W)は17.4質量%となる。
<実施例1>
本例では、参考例1で求めた第1の組成を用い、本発明に係る前記(a)の方法で重合体を製造した。使用する単量体の種類、重合開始剤の種類、重合温度、重合体の目標組成、および重量平均分子量の目標値は参考例1と同じである。
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、および温度計を備えたフラスコに、窒素雰囲気下で、下記の第1の溶液を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、下記の第2の溶液を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持し、第2の溶液の滴下開始から7時間後に、室温まで冷却して反応を停止させた。また、第2の溶液の滴下開始と同時に、下記の重合開始剤溶液を別の滴下漏斗より0.25時間かけてフラスコ内に滴下した。
単量体の全供給量のうち、第1の溶液に含有させる単量体の量は、参考例1のWより17.4質量%とした。
本例において、基準時間は4時間であり、重合開始剤溶液が滴下されている期間(0.25時間)が重合開始剤の高速供給期間である。すなわち、重合開始剤の高速供給期間(0〜j%)は基準時間の0〜6.25%(j=6.25%)である。重合開始剤の高速供給期間中に反応器内に供給される重合開始剤は、重合開始剤の全供給量のうちの約65質量%である。
また単量体の高速供給期間(0〜k%)は基準時間の0〜0%(k=0%)である。単量体の高速供給期間中に反応器内に供給される単量体の量は、単量体の全供給量のうちの17.4質量%(=W)である。
(第1の溶液)
単量体m−1を3.87部(31.3モル%)、
単量体m−2を7.46部(52.4モル%)、
単量体m−3を2.80部(16.3モル%)、
乳酸エチルを96.5部。
(第2の溶液)
単量体m−1を23.34部(40モル%)、
単量体m−2を26.91部(40モル%)、
単量体m−3を16.20部(20モル%)、
乳酸エチルを98.9部、
ジメチル−2,2’−アゾビスイソブチレートを0.670部(単量体の全供給量に対して0.7モル%)。
(重合開始剤溶液)
乳酸エチルを1.9部、
ジメチル−2,2’−アゾビスイソブチレートを1.243部(単量体の全供給量に対して1.3モル%)。
参考例1と同様の手順で、各反応時間に生成した重合体における構成単位の含有比率(重合体組成比)を求めた。その結果を図3に示す。
また参考例1と同様にして、各反応時間にサンプリングした重合反応溶液について、重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。結果を表4および図4に示す。
Figure 2011137084
図1と図3の結果を比べると、参考例1(図1)は滴下開始直後に生成された重合体の重合体組成比は目標組成から大きく外れており、また反応時間によって重合体組成のばらつきが大きい。
これに対して、予め、フラスコ内に第1の溶液を仕込んだ実施例1(図3)は、滴下開始直後から、重合体組成比が目標組成とほぼ同じになり、反応時間による組成比のばらつきも改善された。特に、滴下を継続した反応時間4時間までに得られる重合体の重合体組成比は、目標組成との差が小さい。
また図2と図4の結果を比べると、参考例1(図2)においては、特に滴下開始から3時間までの重量平均分子量は、その後の重量平均分子量との差が大きく、反応時間によるばらつきも大きい。
これに対して、実施例1(図4)では、滴下開始直後から反応終了時まで、反応時間による重量平均分子量および分子量分布のばらつきが小さい。
[重合体の精製]
反応時間7時間が経過した後に、室温まで冷却して反応を停止させ、フラスコ内の重合反応溶液を、約10倍量のメタノールおよび水の混合溶媒(メタノール/水=80/20容量比)に撹拌しながら滴下し、白色の析出物(重合体P1)の沈殿を得た。沈殿を濾別し、再度、前記と同じ量のメタノールおよび水の混合溶媒(メタノール/水=90/10容量比)へ投入し、撹拌しながら沈殿の洗浄を行った。そして、洗浄後の沈殿を濾別し、重合体湿粉160gを得た。この重合体湿粉のうち10gを減圧下40℃で約40時間乾燥した。得られた重合体P1について、Mw、Mw/Mnを求め、溶解性の評価を行った。結果を表10に示す。
[レジスト組成物の製造]
上記重合体湿粉の残りを、PGMEAの880gへ投入し、完全に溶解させて重合体溶液とした後、孔径0.04μmのナイロン製フィルター(日本ポール社製、P−NYLON N66FILTER0.04M(商品名))へ通液して、重合体溶液を濾過した。
得られた重合体溶液を減圧下で加熱してメタノールおよび水を留去し、さらにPGMEAを留去し、重合体の濃度が25質量%の重合体P1溶液を得た。この際、最高到達真空度は0.7kPa、最高溶液温度は65℃、留去時間は8時間であった。
得られた重合体P1溶液の400部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物について上記の方法で感度を評価した。結果を表10に示す。
<実施例2>
本例では、参考例1で求めた第1の組成を用い、本発明に係る前記(b)の方法で重合体を製造した。使用する単量体の種類、重合開始剤の種類、重合温度、重合体の目標組成、および重量平均分子量の目標値は参考例1と同じである。
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、および温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル86.5部を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、下記の第2の溶液を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持し、第2の溶液の滴下開始から7時間後に、室温まで冷却して反応を停止させた。また、第2の溶液の滴下開始と同時に、下記第1の溶液を別の滴下漏斗より0.25時間かけてフラスコ内に滴下した。
単量体の全供給量のうち、第1の溶液に含有させる単量体の量は、参考例1のWより17.4質量%とした。
本例において、基準時間は4時間であり、第1の溶液が滴下されている期間(0.25時間)が単量体および重合開始剤の高速供給期間である。すなわち、重合開始剤の高速供給期間(0〜j%)は基準時間の0〜6.25%(j=6.25%)であり、単量体の高速供給期間(0〜k%)も基準時間の0〜6.25%(k=6.25%)である。重合開始剤の高速供給期間中に反応器内に供給される重合開始剤は、実施例1と同じであり、重合開始剤の全供給量のうちの約65質量%である。また単量体の高速供給期間中に反応器内に供給される単量体の量は、単量体の全供給量のうちの22.7質量%である。
(第1の溶液)
単量体m−1を3.87部(31.3モル%)、
単量体m−2を7.46部(52.4モル%)、
単量体m−3を2.80部(16.3モル%)、
乳酸エチルを11.9部、
ジメチル−2,2’−アゾビスイソブチレートを1.243部(単量体の全供給量に対して1.3モル%)。
(第2の溶液)
単量体m−1を23.34部(40モル%)、
単量体m−2を26.91部(40モル%)、
単量体m−3を16.20部(20モル%)、
乳酸エチルを98.9部、
ジメチル−2,2’−アゾビスイソブチレートを0.670部(単量体の全供給量に対して0.7モル%)。
参考例1と同様の手順で、各反応時間に生成した重合体における構成単位の組成比(重合体組成比)を求めた。その結果を図5に示す。
また参考例1と同様にして、各反応時間にサンプリングした重合反応溶液について、重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。結果を表5および図6に示す。
Figure 2011137084
図5の結果に示されるように、本例でも、実施例1と同様に、滴下開始後すぐに重合体組成比が目標組成とほぼ同じとなり、反応時間による組成比のばらつきも改善された。特に、滴下を継続した反応時間4時間までに得られる重合体の組成比は、目標組成との差が小さい。
また図6の結果に示されるように、本例でも、実施例1と同様に、滴下開始直後から反応終了時まで、反応時間による重量平均分子量および分子量分布のばらつきが小さい。
[重合体の精製]
実施例1と同様にして、反応時間7時間が経過したフラスコ内の重合反応溶液から、重合体P2を得た。重合体P2のMw、Mw/Mn、溶解性評価の結果を表10に示す。
[レジスト組成物の製造]
実施例1と同様にして、重合体P2を含有するレジスト組成物を調製し、感度を評価した。結果を表10に示す。
<参考例2:第1の組成の設計>
本例は、下記式(m−4)、(m−5)、(m−6)で表される単量体m−4、m−5、m−6を重合して、目標組成がm−4:m−5:m−6=40:40:20(モル%)、重量平均分子量の目標値が10,000の重合体を製造する場合の、第1の組成を求めた例である。
重合開始剤は参考例1と同じジメチル−2,2’−アゾビスイソブチレートを用い、重合温度は80℃とした。
Figure 2011137084
窒素導入口、撹拌機、コンデンサー、滴下漏斗、および温度計を備えたフラスコに、窒素雰囲気下で、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を70.6部入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、下記の単量体混合物、溶媒、および重合開始剤を含む滴下溶液(全量は220.612g)を調製し、これを滴下漏斗より4時間かけて一定の滴下速度でフラスコ内に滴下し、さらに80℃の温度を3時間保持した。滴下溶液の滴下開始から7時間後に、室温まで冷却して反応を停止させた。
単量体m−4を26.83部(40モル%)、
単量体m−5を40.25部(40モル%)、
単量体m−6を17.63部(20モル%)、
PGMEAを127.1部、
ジメチル−2,2’−アゾビスイソブチレートを8.802部(単量体の全供給量に対して8.9モル%)。
上記滴下溶液の滴下開始から0.5,1,2,3,4,5,6,7時間後に、それぞれフラスコ内の重合反応溶液を0.5gサンプリングし、単量体m−4〜m−6の定量をそれぞれ行った。これにより各サンプリング時において反応器内に残存している各単量体の質量がわかる。その結果、例えば滴下開始から1時間後と2時間後の結果は表6の通りであった。
Figure 2011137084
次いで、各単量体の分子量を用いて、各サンプリング時において反応器内に残存している各単量体のモル分率(Mx:My:Mzに該当する。)に換算した。
その結果、例えば滴下開始から1時間後と2時間後の結果は表7の通りであった。
Figure 2011137084
一方、参考例1と同様にして、各反応時間にそれぞれ生成した重合体における構成単位の含有比率(重合体組成比、Px:Py:Pz)を求めた。得られた結果を図7に示す。
また、各反応時間にサンプリングした重合反応溶液について、MwおよびMw/Mnを求めた。結果を表8および図8に示す。
Figure 2011137084
図7の結果に示されるように、重合体組成比(Px:Py:Pz)が、目標組成である40:40:20に最も近いのは、滴下開始から1時間後〜2時間後に生成した重合体であり、Px:Py:Pz=40.07:39.95:19.99であった。
この値と、滴下開始からの経過時間が2時間後におけるMx:My:Mzの値(表7)を用い、Fx=Px/Mx、Fy=Py/My、Fz=Pz/Mzより、ファクターFx、Fy、Fzを求めると、Fx=0.80、Fy=1.10、Fz=1.42となる。
該ファクターの値と、目標組成を用いて第1の組成x:y:zを求めた。
=40/Fx=40/0.80=49.8モル%。
=40/Fy=40/1.10=36.2モル%。
=20/Fz=20/1.42=14.0モル%。
[Wの算出]
最初の滴下溶液に含まれていた単量体混合物(合計84.71部)を100質量%とすると、滴下開始からの経過時間が1時間後において反応器内に存在する単量体の合計質量(表6より6.40部)が占める割合(W)は7.6質量%となる。
<実施例3>
本例では、参考例2で求めた第1の組成を用い、本発明に係る前記(a)の方法で重合体を製造した。使用する単量体の種類、重合開始剤の種類、重合温度、重合体の目標組成、および目標の重量平均分子量は参考例2と同じである。
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、および温度計を備えたフラスコに、窒素雰囲気下で、下記の第1の溶液を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、下記の第2の溶液を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持し、第2の溶液の滴下開始から7時間後に、室温まで冷却して反応を停止させた。また、第2の溶液の滴下開始と同時に、下記の重合開始剤溶液を別の滴下漏斗より0.25時間かけてフラスコ内に滴下した。
単量体の全供給量のうち、第1の溶液に含有させる単量体の量は、参考例2のWより7.6質量%とした。
本例において、基準時間は4時間であり、重合開始剤溶液が滴下されている期間(0.25時間)が重合開始剤の高速供給期間である。すなわち、重合開始剤の高速供給期間(0〜j%)は基準時間の0〜6.25%(j=6.25%)である。重合開始剤の高速供給期間中に反応器内に供給される重合開始剤は、重合開始剤の全供給量のうちの約55質量%である。
また単量体の高速供給期間(0〜k%)は基準時間の0〜0%(k=0%)である。単量体の高速供給期間中に反応器内に供給される単量体の量は、単量体の全供給量のうちの7.6質量%(=W)である。
(第1の溶液)
単量体m−4を2.60部(49.8モル%)、
単量体m−5を2.84部(36.2モル%)、
単量体m−6を0.96部(14.0モル%)。
PGMEAを80.2部。
(第2の溶液)
単量体m−4を24.80部(40モル%)、
単量体m−5を37.21部(40モル%)、
単量体m−6を16.30部(20モル%)、
PGMEAを110.0部、
ジメチル−2,2’−アゾビスイソブチレートを3.456部(単量体の全供給量に対して3.49モル%)。
(重合開始剤溶液)
PGMEAを7.5部、
ジメチル−2,2’−アゾビスイソブチレートを4.2224部(単量体の全供給量に対して4.26モル%)。
参考例2と同様の手順で、各反応時間に生成した重合体における構成単位の含有比率(重合体組成比)を求めた。その結果を図9に示す。
また参考例2と同様にして、各反応時間にサンプリングした重合反応溶液について、重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。結果を表9および図10に示す。
Figure 2011137084
図7と図9の結果を比べると、参考例2(図7)は滴下開始直後に生成された重合体の重合体組成比は目標組成から大きく外れており、また反応時間によって重合体組成のばらつきが大きい。
これに対して、予め、フラスコ内に第1の溶液を仕込んだ実施例3(図8)は、滴下開始直後から、重合体組成比が目標組成とほぼ同じになり、組反応時間による組成比のばらつきも改善された。特に、滴下を継続した反応時間4時間までに得られる重合体の重合体組成比は、目標組成との差が小さい。
また図8と図10の結果を比べると、参考例2(図8)においては、特に滴下開始から3時間までの重量平均分子量は、その後の重量平均分子量との差が大きく、反応時間によるばらつきも大きい。
これに対して、実施例3(図10)では、滴下開始直後から反応終了時まで、反応時間による重量平均分子量および分子量分布のばらつきが小さい。
[重合体の精製]
実施例1の重合体の精製工程において使用した、メタノールおよび水の混合溶媒(メタノール/水=80/20容量比)と(メタノール/水=90/10容量比)を、それぞれメタノールおよび水の混合溶媒(メタノール/水=90/10容量比)と(メタノール/水=95/5容量比)に変更したほかは、実施例1と同様にして、反応時間7時間が経過したフラスコ内の重合反応溶液から、重合体P3を得た。重合体P3のMw、Mw/Mn、溶解性評価の結果を表10に示す。
[レジスト組成物の製造]
実施例1と同様にして、重合体P3を含有するレジスト組成物を調製し、感度を評価した。結果を表10に示す。
<比較例1>
参考例1において、反応時間7時間が経過した後に、室温まで冷却して反応を停止させて得られるフラスコ内の重合反応溶液を用い、実施例1の重合体の精製工程と同様にして比較重合体1を得た。得られた比較重合体1について、実施例1と同様にしてMw、Mw/Mnを求め、溶解性評価を行った。
また、比較重合体1を用い、実施例1と同様にしてレジスト組成物を調製し、感度を評価した。結果を表10に示す。
<比較例2>
参考例2において、反応時間7時間が経過した後に、室温まで冷却して反応を停止させて得られるフラスコ内の重合反応溶液を用い、実施例3の重合体の精製工程と同様にして比較重合体2を得た。得られた比較重合体2について、実施例3と同様にしてMw、Mw/Mnを求め、溶解性評価を行った。
また、比較重合体2を用い、実施例3と同様にしてレジスト組成物を調製し、感度を評価した。結果を表10に示す。
Figure 2011137084
表10の結果より、実施例1、2、3で得た重合体は、比較例1、2で得た重合体とそれぞれ比べて、溶解性が顕著に向上し、レジスト組成物にしたときの感度が向上した。

Claims (6)

  1. 反応器内に単量体および重合開始剤を滴下しながら、該反応器内で2種以上の単量体α〜α(ただし、nは2以上の整数を表す。)を重合して、構成単位α’〜α’(ただし、α’〜α’は単量体α〜αからそれぞれ導かれる構成単位を表す。)からなる重合体(P)を得る重合工程を有し、
    前記反応器内に、前記重合開始剤を滴下する前または該重合開始剤の滴下開始と同時に、該反応器内に、前記単量体α〜αを含有する単量体溶液を供給開始し、
    前記重合開始剤の滴下開始から前記単量体溶液の滴下終了までを基準時間とするとき、該基準時間が2時間以上であり、
    前記重合開始剤の全供給量を前記基準時間で除した値を平均供給速度Vjとするとき、前記基準時間の0%からj%(jは5〜20)までの期間を、前記平均供給速度Vjよりも高速で重合開始剤を滴下する重合開始剤の高速供給期間とし、
    前記単量体の全供給量を前記基準時間で除した値を平均供給速度Vkとするとき、前記基準時間の0%からk%(kは0〜20)までの期間を、前記平均供給速度Vkよりも高速で前記単量体α〜αを供給する単量体の高速供給期間とし、
    前記重合開始剤の滴下開始から30分後、1時間後、および2時間後における、反応器内の重合体の重量平均分子量の値を、いずれも反応終了時点での重合体(P)の重量平均分子量の80〜120%とする重合体の製造方法。
  2. 前記重合開始剤の高速供給期間に、前記重合開始剤の全供給量のうちの30〜90質量%を前記反応器内に供給し、前記単量体の高速供給期間に前記単量体の全供給量のうちの2〜50質量%を前記反応器内に供給する請求項1記載の重合体の製造方法。
  3. 前記重合開始剤の高速供給期間の終了後は、重合開始剤を一定速度で滴下し、かつ前記単量体の高速供給期間の終了後は、前記単量体を一定速度で滴下する、請求項1または2に記載の重合体の製造方法。
  4. 請求項1〜3のいずれか一項に記載の製造方法により得られるリソグラフィー用重合体。
  5. 請求項4に記載のリソグラフィー用重合体、および活性光線又は放射線の照射により酸を発生する化合物を含有するレジスト組成物。
  6. 請求項5に記載のレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法。
JP2009297800A 2009-12-28 2009-12-28 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法 Active JP5707699B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297800A JP5707699B2 (ja) 2009-12-28 2009-12-28 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297800A JP5707699B2 (ja) 2009-12-28 2009-12-28 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法

Publications (2)

Publication Number Publication Date
JP2011137084A true JP2011137084A (ja) 2011-07-14
JP5707699B2 JP5707699B2 (ja) 2015-04-30

Family

ID=44348817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297800A Active JP5707699B2 (ja) 2009-12-28 2009-12-28 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法

Country Status (1)

Country Link
JP (1) JP5707699B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115086A1 (en) * 2009-07-07 2012-05-10 Mitsubishi Rayon Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
JP2015071748A (ja) * 2013-09-03 2015-04-16 三菱レイヨン株式会社 リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246825A (ja) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd レジスト用共重合体およびその製造方法、ならびにレジスト組成物
JP2007269907A (ja) * 2006-03-30 2007-10-18 Mitsubishi Rayon Co Ltd 重合体、重合体の製造方法、レジスト組成物、およびパターンが形成された基板の製造方法
JP2008045042A (ja) * 2006-08-17 2008-02-28 Mitsubishi Rayon Co Ltd 重合体粉末の製造方法、重合体粉末およびレジスト組成物
JP2008056810A (ja) * 2006-08-31 2008-03-13 Fujifilm Corp 重合体の製造方法、その製造方法によって製造された重合体を含有するポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2008239889A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2010254810A (ja) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd 重合体の製造方法、レジスト用重合体、レジスト組成物、および基板の製造方法
WO2011004840A1 (ja) * 2009-07-07 2011-01-13 三菱レイヨン株式会社 重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246825A (ja) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd レジスト用共重合体およびその製造方法、ならびにレジスト組成物
JP2007269907A (ja) * 2006-03-30 2007-10-18 Mitsubishi Rayon Co Ltd 重合体、重合体の製造方法、レジスト組成物、およびパターンが形成された基板の製造方法
JP2008045042A (ja) * 2006-08-17 2008-02-28 Mitsubishi Rayon Co Ltd 重合体粉末の製造方法、重合体粉末およびレジスト組成物
JP2008056810A (ja) * 2006-08-31 2008-03-13 Fujifilm Corp 重合体の製造方法、その製造方法によって製造された重合体を含有するポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2008239889A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2010254810A (ja) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd 重合体の製造方法、レジスト用重合体、レジスト組成物、および基板の製造方法
WO2011004840A1 (ja) * 2009-07-07 2011-01-13 三菱レイヨン株式会社 重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115086A1 (en) * 2009-07-07 2012-05-10 Mitsubishi Rayon Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
US9109060B2 (en) * 2009-07-07 2015-08-18 Mitsubishi Rayon, Co., Ltd. Method for producing polymer, polymer for lithography, resist composition, and method for producing substrate
JP2015071748A (ja) * 2013-09-03 2015-04-16 三菱レイヨン株式会社 リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法
JP2019059957A (ja) * 2013-09-03 2019-04-18 三菱ケミカル株式会社 リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法

Also Published As

Publication number Publication date
JP5707699B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5793867B2 (ja) 重合体の製造方法
JP5394119B2 (ja) 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP5771942B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、ならびに基板の製造方法
WO2013133250A1 (ja) リソグラフィー用共重合体およびその製造方法、レジスト組成物、ならびに基板の製造方法
JP2013032508A (ja) リソグラフィー用重合体溶液の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP2019059957A (ja) リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法及びパターンが形成された基板の製造方法
JP5707699B2 (ja) 重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP6244756B2 (ja) リソグラフィー用共重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP5942562B2 (ja) 重合体の製造方法、レジスト組成物の製造方法、及びパターンが形成された基板の製造方法
JP5821317B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP5793825B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、および基板の製造方法
JP6299076B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP2013127023A (ja) リソグラフィー用重合体の製造方法、リソグラフィー用重合体、レジスト組成物、および基板の製造方法
JP6439278B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6369156B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6369103B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP2010159393A (ja) 重合体、レジスト組成物、及びパターンが形成された基板の製造方法
JP5659570B2 (ja) 重合体の製造方法、半導体リソグラフィー用重合体、レジスト組成物、およびパターンが形成された基板の製造方法
JP6439270B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6314786B2 (ja) 重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6268803B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP5942564B2 (ja) 重合体の製造方法、レジスト組成物の製造方法、及びパターンが形成された基板の製造方法
JP6268804B2 (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法
JP6074834B2 (ja) レジスト材料の評価方法
JP2017119881A (ja) リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5707699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250