WO2011004483A1 - ポリマーゲル電解質及びそれを用いたポリマー二次電池 - Google Patents

ポリマーゲル電解質及びそれを用いたポリマー二次電池 Download PDF

Info

Publication number
WO2011004483A1
WO2011004483A1 PCT/JP2009/062531 JP2009062531W WO2011004483A1 WO 2011004483 A1 WO2011004483 A1 WO 2011004483A1 JP 2009062531 W JP2009062531 W JP 2009062531W WO 2011004483 A1 WO2011004483 A1 WO 2011004483A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
secondary battery
general formula
lithium
Prior art date
Application number
PCT/JP2009/062531
Other languages
English (en)
French (fr)
Inventor
安孝 河野
宇津木 功二
広司 小林
石川 仁志
学 菊田
通之 河野
Original Assignee
Necエナジーデバイス株式会社
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社, 第一工業製薬株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2011521748A priority Critical patent/JPWO2011004483A1/ja
Priority to US13/382,851 priority patent/US20120115037A1/en
Priority to CN200980160379XA priority patent/CN102473966A/zh
Priority to PCT/JP2009/062531 priority patent/WO2011004483A1/ja
Priority to EP09847085.9A priority patent/EP2453511A4/en
Publication of WO2011004483A1 publication Critical patent/WO2011004483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a polymer gel electrolyte and a polymer secondary battery using the same.
  • Polymer secondary batteries such as lithium polymer batteries can be thinned, have a high degree of freedom in shape selection, and have high safety by not using an electrolyte. Attention has been paid. With the recent increase in functions of mobile devices, higher energy and the accompanying improvements in battery characteristics have become the goal of technological development of lithium polymer batteries.
  • Patent Document 1 describes that cycle characteristics are improved by using a gel electrolyte containing a physical crosslinkable polymer and a chemical crosslinkable polymer.
  • Patent Document 2 describes that the impregnation property of the pregel solution is improved by surface modification of the separator to be used.
  • Patent Document 3 discloses a lithium polymer that has excellent battery performance and high safety by gelling an electrolyte with a crosslinkable material and using a non-conductive porous material and electrically insulating particles as a separator. It is described that it becomes a battery.
  • Non-Patent Document 1 discusses electrode materials and cell shapes in polymer secondary batteries using gel electrolytes. For example, although it is expensive as negative electrode material, artificial graphite (bulk graphite) is used. Therefore, it is described that the expansion of the cell is suppressed and the cycle characteristics are improved.
  • artificial graphite bulk graphite
  • the polymer secondary battery using the gel electrolyte is generally inferior in cycle characteristics to the secondary battery using the electrolytic solution.
  • the polymer secondary battery has a large internal resistance during high-temperature storage and high-temperature cycles, and does not have sufficient characteristics as a battery applied to an electric vehicle, a battery for power storage, and the like.
  • the present invention has been made in view of the above problems. That is, the subject of this invention suppresses the swelling of the cell in a polymer secondary battery, and improves cycling characteristics and high temperature storage characteristics.
  • an aprotic solvent, a supporting salt, a cyclic sulfonic acid ester having at least two sulfonyl groups, and a methacrylic acid ester polymerization represented by the following general formula (1)
  • a polymer gel electrolyte comprising a crosslinked product obtained by crosslinking a product.
  • the polymer secondary battery containing a positive electrode, a negative electrode, and the said polymer gel electrolyte is provided.
  • n satisfies 1800 ⁇ n ⁇ 3000
  • m satisfies 350 ⁇ m ⁇ 600.
  • cell swelling in a polymer secondary battery can be suppressed, and cycle characteristics and high-temperature storage characteristics can be improved.
  • the polymer gel electrolyte according to the present invention is obtained by crosslinking an aprotic solvent, a supporting salt, a cyclic sulfonic acid ester having at least two sulfonyl groups, and a methacrylic acid ester polymer represented by the general formula (1). And a crosslinked product.
  • a mixture of an aprotic solvent and a supporting salt is referred to as an electrolytic solution.
  • the polymer electrolyte is used for a polymer secondary battery, and is particularly preferably used for a lithium polymer secondary battery.
  • aprotic solvent examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC) and diethyl carbonate (DEC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone; , 2-ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; fluorine derivatives thereof; dimethyl sulfoxide, 1,3-dioxolane, Formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-d
  • the supporting salt can be appropriately selected from substances that can increase the conductivity of the aprotic solvent in consideration of the type of the polymer secondary battery.
  • a supporting salt LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, LiF Etc.
  • the supporting salt may be one kind or two or more kinds.
  • the concentration of the supporting salt in the electrolytic solution is preferably 5 to 25% by mass. If the concentration of the supporting salt is 5% by mass or more, a desired ionic conductivity can be achieved. If the concentration of the supporting salt is 25% by mass or less, a decrease in ionic conductivity due to an increase in the viscosity of the electrolyte can be suppressed.
  • a cyclic sulfonic acid ester having at least two sulfonyl groups (hereinafter simply referred to as “cyclic sulfonic acid ester”) is a component that contributes to the formation of a passive film at the electrode interface of a polymer secondary battery. Decomposition of solvent molecules can be suppressed. Further, when the positive electrode active material is an oxide containing manganese, the cyclic sulfonate ester has an effect of suppressing the elution of manganese or preventing the eluted manganese from adhering to the negative electrode.
  • cyclic sulfonic acid ester examples include compounds represented by the general formula (2).
  • Q represents an oxygen atom, a methylene group or a single bond
  • A represents a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfinyl group, a substituted or unsubstituted carbon.
  • B is a substituted or unsubstituted alkylene group, a substituted or An unsubstituted fluoroalkylene group or an oxygen atom is shown.
  • Q when Q is a single bond, the carbon molecule constituting A and S form a CS single bond.
  • the carbon number of A indicates the number of carbons constituting the ring, and does not include the number of carbons contained in the side chain.
  • A is a substituted or unsubstituted fluoroalkylene group having 1 to 6 carbon atoms
  • A may have a methylene unit and a fluoromethylene unit, or may have only a fluoromethylene unit.
  • an alkylene unit or a fluoroalkylene unit is bonded via an ether bond, the alkylene units may be bonded, the fluoroalkylene units may be bonded, or the alkylene unit and the fluoroalkylene. Units may be combined.
  • the compound represented by the general formula (2) can be produced by the method described in Patent Document 4.
  • Specific examples of the compound represented by the general formula (2) include cyclic disulfonic acid esters represented by the general formulas (3) to (8).
  • x is 0 or 1
  • n is an integer of 1 to 5
  • R represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.
  • x is 0 or 1
  • n is an integer of 1 to 5
  • R represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.
  • x is 0 or 1
  • m is independently 1 or 2
  • n is an integer of 1 or more and 4 or less
  • R is a hydrogen atom, a methyl group, an ethyl group or a halogen. Indicates an atom.
  • x is 0 or 1
  • m is independently 1 or 2
  • n is an integer of 1 or more and 4 or less
  • R is a hydrogen atom, a methyl group, an ethyl group or a halogen. Indicates an atom.
  • x is 0 or 1
  • m is independently 1 or 2
  • n is an integer of 1 or more and 4 or less
  • R is a hydrogen atom, a methyl group, an ethyl group or a halogen. Indicates an atom.
  • x is 0 or 1
  • m is independently 1 or 2
  • n is an integer of 1 or more and 4 or less
  • R is a hydrogen atom, a methyl group, an ethyl group or a halogen. Indicates an atom.
  • the cyclic sulfonic acid ester may be one kind or two or more kinds.
  • the mixing amount of the cyclic sulfonic acid ester is preferably 0.005 to 10% by mass and more preferably 0.01 to 5% by mass with respect to 100% by mass of the electrolytic solution.
  • the mixing amount of the cyclic sulfonic acid ester is preferably 0.005 to 10% by mass and more preferably 0.01 to 5% by mass with respect to 100% by mass of the electrolytic solution.
  • the methacrylic acid ester polymer represented by the general formula (1) is obtained by radical copolymerization of methyl methacrylate and (3-ethyl-3-oxetanyl) methyl methacrylate.
  • N representing the number of methyl methacrylate units satisfies 1800 ⁇ n ⁇ 3000
  • m representing the number of (3-ethyl-3-oxetanyl) methyl methacrylate units satisfies 350 ⁇ m ⁇ 600.
  • the methacrylic acid ester polymer represented by the general formula (1) may be a block copolymer or a random copolymer.
  • N and m represent average values and may not be integers.
  • a crosslinked product obtained by crosslinking the methacrylic acid ester polymer represented by the general formula (1) is an oxetanyl group possessed by the methacrylic acid ester polymer represented by the general formula (1).
  • the cationic polymerization initiator generally known polymerization initiators can be used.
  • the use of a small amount of an acidic substance obtained by hydrolyzing the lithium salt and the anion component of the lithium salt contained in the electrolytic solution is useful for the battery.
  • the characteristic to give is small and preferable.
  • the content of the lithium salt in the electrolytic solution is the same as the preferred concentration of the supporting salt in the electrolytic solution.
  • the mixing amount of the crosslinked body is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and more preferably 1.5 to 2.5% by mass with respect to 100% by mass of the electrolytic solution. More preferably.
  • gelation capable of favorably holding the electrolytic solution can be achieved.
  • the polymer electrolyte according to the present invention includes, for example, a step of dissolving a supporting salt in an aprotic solvent, a step of dissolving a cyclic sulfonic acid ester in an aprotic solvent, and a general formula (1) in an aprotic solvent.
  • the use of the polymer electrolyte according to the present invention for a polymer secondary battery can suppress cell swelling and improve cycle characteristics and high temperature storage characteristics.
  • the polymer secondary battery according to the present invention includes a positive electrode, a negative electrode, and the polymer gel electrolyte.
  • the positive electrode it is possible to use a positive electrode active material layer formed on a current collector made of metal such as aluminum foil.
  • the positive electrode active material layer can be formed by applying and drying a positive electrode slurry on a current collector and then compressing and molding the positive electrode slurry.
  • the positive electrode slurry is obtained by dispersing and kneading a positive electrode active material in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive auxiliary material such as carbon black and a binder such as polyvinylidene fluoride (PVDF). be able to.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • a lithium-containing composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used. Further, the transition metal portion of these lithium-containing composite oxides may be replaced with another element. Alternatively, a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used. Specific examples of such lithium-containing composite oxides include spinel-type lithium manganese composite oxides, olivine-type lithium-containing composite oxides, and reverse spinel-type lithium-containing composite oxides. Specifically, for example, the compound represented by the general formula (9) is applicable.
  • x satisfies 0 ⁇ x ⁇ 2
  • a satisfies 0 ⁇ a ⁇ 1.2
  • M is selected from the group consisting of Ni, Co, Fe, Cr, and Cu. Is at least one kind.
  • a negative electrode having a negative electrode active material layer formed on a current collector made of a metal such as copper foil can be used.
  • the negative electrode active material in addition to lithium metal or lithium alloy, one or more substances selected from materials capable of inserting and extracting lithium can be used. Specific examples of the material that can occlude and release lithium include carbon materials and oxides.
  • the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
  • a binary or ternary alloy of lithium and a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, and La Is mentioned.
  • the lithium metal or lithium alloy is preferably in an amorphous state. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
  • the negative electrode active material layer made of lithium metal or lithium alloy can be melt cooling, liquid quenching, atomizing, vacuum deposition, sputtering, plasma CVD, photo CVD, thermal CVD, sol-gel, etc. It can be formed by a method.
  • the carbon material graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite oxide thereof can be used. Of these, graphite or amorphous carbon is preferable.
  • graphite has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness. Since it is formed at a high processing temperature, it contains few impurities and improves negative electrode performance. Works in an advantageous manner.
  • the negative electrode active material layer containing a carbon material as a negative electrode active material can be formed by applying and drying a negative electrode slurry containing a carbon material on a current collector, followed by compression and molding.
  • the negative electrode slurry can be obtained by dispersing and kneading a carbon material as a negative electrode active material in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a binder such as polyvinylidene fluoride (PVDF).
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • silicon oxide silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used.
  • silicon oxide is preferable because it is stable and does not cause a reaction with other compounds.
  • the oxide is preferably in an amorphous state because deterioration due to nonuniformity such as crystal grain boundaries and defects does not occur.
  • the negative electrode active material layer made of an oxide can be formed by a method such as vapor deposition, CVD, or sputtering.
  • the polymer secondary battery can be manufactured as follows. First, a positive electrode and a negative electrode are stacked via a separator to form a laminate. Or after winding a positive electrode and a negative electrode flatly via a separator, it shape
  • separator those generally used in lithium polymer batteries such as nonwoven fabric and polyolefin microporous membrane can be used.
  • the separator is not essential, and the polymer gel electrolyte can have a separator function.
  • the polymer secondary battery according to the present invention is suppressed in cell swelling and has excellent cycle characteristics and high-temperature storage characteristics. That is, by applying the present invention to a polymer secondary battery composed of a laminate film outer package, it is possible to suppress resistance increase and battery swelling (gas generation). The effect is remarkable in the secondary battery.
  • Example 1 First, the production of the positive electrode 1 will be described with reference to FIG. N-methyl-2 was mixed with 85% by mass of LiMn 2 O 4 as a positive electrode active material, 7% by mass of acetylene black as a conductive auxiliary material, and 8% by mass of polyvinylidene fluoride as a binder.
  • a positive electrode slurry was prepared by adding pyrrolidone and further mixing. This positive electrode slurry is applied to both surfaces of a 20 ⁇ m thick Al foil 2 as a current collector by a doctor blade method so that the thickness after the roll press treatment is 160 ⁇ m, thereby forming a positive electrode active material application portion 3. did.
  • a positive electrode active material non-applied portion 4 that is not coated with a positive electrode active material on both sides is provided at one end, and a positive electrode active material that is coated with a positive electrode active material only on one side is provided at the other end.
  • a substance single-side application unit 5 is provided.
  • the positive electrode conductive tab 6 was attached to the positive electrode active material non-application part 4, and it was set as the positive electrode 1.
  • a negative electrode slurry was prepared by adding N-methylpyrrolidone to a mixture of 90% by mass of flaky graphite as a negative electrode active material and 10% by mass of polyvinylidene fluoride as a binder and further mixing them. This negative electrode slurry was applied to both surfaces of a 10 ⁇ m-thick Cu foil 8 serving as a current collector so that the thickness after the roll press treatment was 120 ⁇ m, thereby forming a negative electrode active material application part 9.
  • one end is provided with a negative electrode active material non-applied portion 11 that is not coated with a negative electrode active material on both surfaces, and a negative electrode active material single-sided coated portion 10 that is coated with a negative electrode active material only on one side.
  • the negative electrode conductive tab 12 was attached to the negative electrode active material non-application part 11, and it was set as the negative electrode 7.
  • the production of the battery element will be described with reference to FIG.
  • Two separators 13 made of polyethylene having a film thickness of 12 ⁇ m and a porosity of 35% are welded and cut, and the cut portion is fixed to the winding core of the winding device and wound up.
  • the positive electrode 1 and the negative electrode 7 are respectively arranged such that the side where the positive electrode conductive tab 6 and the negative electrode conductive tab 8 are not attached is the tip side, the negative electrode is disposed between the two separators, and the positive electrode is disposed on the upper surface of the separator.
  • the battery element hereinafter referred to as jelly roll (J / R) was formed by rotating and winding. At this stage, the gel electrolyte 14 of FIG. 3 does not exist.
  • This J / R was accommodated in an embossed laminate outer package 15 as shown in FIG. 4, the sides of the laminate outer package 15 were folded back, and heat fusion was performed leaving a portion for injecting the pregel solution.
  • the obtained lithium polymer battery was charged to a voltage of 4.2 V (charging conditions: current 0.2 C, time 6.5 h, temperature 20 ° C.), and then discharged to a voltage 3.0 V at 0.2 C.
  • the discharge capacity at that time was defined as the initial capacity.
  • the charging conditions were an upper limit voltage of 4.2 V, a current of 1 C, and a time of 2.5 h, and the discharging conditions were a lower limit voltage of 3.0 V and a current of 1 C. All charging / discharging was implemented at 40 degreeC. And the ratio of the discharge capacity (1C) of the 500th cycle with respect to the discharge capacity (1C) of the 1st cycle was made into the capacity
  • Example 2 Compound No.
  • a lithium polymer battery was produced in the same manner as in Example 1 except that the compound represented by 1 was changed to the compound shown in Table 2.
  • Table 2 shows the characteristics of the obtained lithium polymer battery.
  • the lithium polymer batteries produced in Examples 1 to 4 are Comparative Example 1 in which no cyclic sulfonic acid ester was used, and Comparative Example 2 in which VC was used in place of the cyclic sulfonic acid ester.
  • the capacity retention rate after 500 cycles is greatly improved, and the volume change after 500 cycles is also greatly suppressed.
  • Example 5 As an electrolyte for preparing a pregel solution using amorphous carbon as the negative electrode active material, 20% by mass of propylene carbonate (PC), 21% by mass of ethylene carbonate (EC), and 47% by mass of diethyl carbonate (DEC) A lithium polymer battery was produced in the same manner as in Example 1 except that an electrolyte solution in which LiPF 6 as a supporting salt of 12% by mass was added to an aprotic solvent consisting of Table 3 shows the characteristics of the obtained lithium polymer battery.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 6 Compound No.
  • a lithium polymer battery was produced in the same manner as in Example 5 except that the compound represented by 1 was changed to the compound shown in Table 3.
  • Table 3 shows the characteristics of the obtained lithium polymer battery.
  • the lithium polymer batteries produced in Examples 5 to 8 were Comparative Example 3 in which no cyclic sulfonic acid ester was used, and Comparative Example 4 in which VC was used in place of the cyclic sulfonic acid ester.
  • the capacity retention rate after 500 cycles is greatly improved, and the volume change after 500 cycles is also greatly suppressed.
  • Example 9 A lithium polymer battery was produced in the same manner as in Example 1, and the direct current resistance value of the lithium polymer battery when stored in a fully charged state was measured.
  • the prepared lithium polymer battery was charged (upper limit voltage 4.2 V) and discharged (lower limit voltage 3.0 V) at 20 ° C. once.
  • the charging current and discharging current at this time are constant (1C), the discharging capacity at this time is defined as the initial capacity, and the resistance at that time is defined as the initial resistance.
  • the battery was charged with a constant current (1C) to a predetermined voltage (4.2 V) for 2.5 hours, and then allowed to stand at 20 ° C., 45 ° C. and 60 ° C. for 90 days.
  • Example 10 to 12 Compound No. A lithium polymer battery was produced in the same manner as in Example 9, except that the compound represented by 1 was changed to the compound shown in Table 4, and the same evaluation as in Example 9 was performed. Table 4 shows the obtained results.
  • the lithium polymer batteries produced in Examples 9 to 12 were Comparative Example 5 in which no cyclic sulfonic acid ester was used, and Comparative Example 6 in which VC was used instead of the cyclic sulfonic acid ester. It was found that the rate of increase in resistance at each temperature was greatly suppressed as compared with the prepared lithium polymer battery. In particular, the suppression of increase in resistance at 60 ° C. storage was significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、ポリマー二次電池におけるセルの膨れを抑制し、サイクル特性及び高温保存特性を改善することができるポリマーゲル電解質を提供する。本発明は、非プロトン性溶媒と、支持塩と、少なくともスルホニル基を2個有する環式スルホン酸エステルと、下記一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体とを含むポリマーゲル電解質である。 一般式(1)において、nは1800<n<3000を満たし、mは350<m<600を満たす。

Description

ポリマーゲル電解質及びそれを用いたポリマー二次電池
 本発明は、ポリマーゲル電解質及びそれを用いたポリマー二次電池に関する。
 リチウムポリマー電池などのポリマー二次電池は、薄型化が可能であること、形状選択の自由度が高いこと、電解液を用いないことにより安全性が高いことなどから、モバイル機器用の電源などとして注目されている。最近におけるモバイル機器の機能の増加に伴い、高エネルギー化及びそれに伴う電池特性の改善が、リチウムポリマー電池の技術開発の目標となっている。
 特に重要な技術課題として、安全性のさらなる向上、高温保存特性の改善、及びサイクル特性の改善などが挙げられる。サイクル特性については、用いるポリマー材料を工夫することにより改善がなされてきた。特許文献1には、物理架橋型ポリマー及び化学架橋型ポリマーを含むゲル電解質を用いることにより、サイクル特性が改善されることが記載されている。一方、特許文献2には、用いるセパレーターを表面改質することにより、プレゲル溶液の含浸性が改善されることが記載されている。特許文献3には、架橋性材料で電解液をゲル化させるとともに、セパレーターとして非導電性多孔質材料と電気絶縁性の粒子を用いることにより、優れた電池性能と高い安全性を持ち合わせたリチウムポリマー電池となることが記載されている。また、非特許文献1には、ゲル電解質を用いたポリマー二次電池における電極材料やセルの形状などの検討が行われ、例えば、負極材料として高価ではあるが人造黒鉛(塊状黒鉛)を用いることで、セルの膨れ抑制やサイクル特性の改善を図ることが記載されている。
 このように、ゲル電解質を用いたポリマー二次電池においては、ゲル電解質の材質だけでなく、電極材料、セル形状、セル作製条件、電解液材料などの選択が、極めて重要である。
特開2002‐100406号公報 特開2003‐257490号公報 特開2009-70605号公報 国際公開第85/03075号パンフレット
金村聖志監修、ポリマーバッテリーの最新技術II、p.242-247、シーエムシー出版(2003)
 しかしながら、ゲル電解質は電解液に比べてイオン伝導率が劣るため、ゲル電解質を用いたポリマー二次電池は、一般に、電解液を用いた二次電池よりもサイクル特性が劣っている。また、ポリマー二次電池は、高温保管や高温下サイクルでの内部抵抗が大きく、電気自動車や蓄電用電池などへ応用する電池として十分な特性を有していなかった。
 本発明は、上記問題点に鑑みなされたものである。すなわち、本発明の課題は、ポリマー二次電池におけるセルの膨れを抑制し、サイクル特性及び高温保存特性を改善することになる。
 前記課題を解決するため、本発明によれば、非プロトン性溶媒と、支持塩と、少なくともスルホニル基を2個有する環式スルホン酸エステルと、下記一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体とを含むポリマーゲル電解質が提供される。また、本発明によれば、正極と、負極と、前記ポリマーゲル電解質とを含むポリマー二次電池が提供される。
Figure JPOXMLDOC01-appb-C000003
一般式(1)において、nは1800<n<3000を満たし、mは350<m<600を満たす。
 本発明によれば、ポリマー二次電池におけるセルの膨れを抑制し、サイクル特性及び高温保存特性を改善することができる。
本発明に係るポリマー二次電池の正極の構成を説明する図である。 本発明に係るポリマー二次電池の負極の構成を説明する図である。 本発明に係るポリマー二次電池の巻回後の電池要素の構成を説明する図である。 本発明に係るリチウムポリマー二次電池の構成を説明する図である。
 <ポリマーゲル電解質>
 本発明に係るポリマーゲル電解質は、非プロトン性溶媒と、支持塩と、少なくともスルホニル基を2個有する環式スルホン酸エステルと、一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体とを含んでいる。なお、本明細書において、非プロトン性溶媒及び支持塩の混合物を電解液と呼ぶ。このポリマー電解質は、ポリマー二次電池に用いられるが、特にリチウムポリマー二次電池に用いられることが好ましい。
 非プロトン性溶媒の具体例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類;それらのフッ素誘導体;ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステルなどが挙げられる。非プロトン性有機溶媒は、一種でもよく、二種以上でもよい。
 支持塩は、非プロトン性溶媒の導電性を高めることができる物質から、ポリマー二次電池の種類を考慮して、適宜選択することができる。例えば、リチウムポリマー二次電池用の場合、支持塩の具体例としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO、LiN(CSO、カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、LiFなどが挙げられる。なかでも、LiPF、LiBF、LiAsF及びLiSbFが好ましい。支持塩は、一種でもよく、二種以上でもよい。
 電解液における支持塩の濃度は、5~25質量%とすることが好ましい。支持塩の濃度が5質量%以上であれば、所望のイオン導電率を達成することができる。支持塩の濃度が25質量%以下であれば、電解液の粘度増加によるイオン導電率の低下を抑えることができる。
 少なくともスルホニル基を2個有する環式スルホン酸エステル(以下、単に「環式スルホン酸エステル」と称する)は、ポリマー二次電池の電極界面における不働態皮膜形成に寄与する成分であり、その結果として溶媒分子の分解を抑制することができる。また、環式スルホン酸エステルは、正極活物質がマンガンを含む酸化物の場合、マンガンの溶出を抑えたり、溶出したマンガンが負極に付着することを防いだりする効果もある。したがって、環式スルホン酸エステルを含むポリマーゲル電解質をポリマー二次電池に用いることにより、負極に皮膜を形成し、またマンガンなどの溶出に対する影響を緩和できるなどの効果より、二次電池のサイクル特性を向上することができ、ガス発生によるセルの膨れ抑制、さらには内部抵抗上昇の抑制も可能となる。
 環式スルホン酸エステルの具体例としては、一般式(2)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、Qは、酸素原子、メチレン基又は単結合を示し、Aは、置換若しくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、置換若しくは無置換の炭素数1~6のフルオロアルキレン基、又はエーテル結合を介してアルキレン単位若しくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示し、Bは、置換若しくは無置換のアルキレン基、置換若しくは無置換のフルオロアルキレン基、又は酸素原子を示す。なお、一般式(2)において、Qが単結合の場合には、Aを構成する炭素分子とSとがC-S単結合を形成する。
 また、一般式(2)において、Aの炭素数は、環を構成する炭素の数を指し、側鎖に含まれる炭素の数は含まれない。Aが置換若しくは無置換の炭素数1~6のフルオロアルキレン基である場合、Aはメチレン単位とフルオロメチレン単位を有してもよいし、フルオロメチレン単位をのみを有してもよい。また、エーテル結合を介してアルキレン単位若しくはフルオロアルキレン単位が結合している場合、アルキレン単位同士が結合していてもよいし、フルオロアルキレン単位同士が結合していてもよいし、アルキレン単位とフルオロアルキレン単位とが結合してもよい。
 なお、一般式(2)に示す化合物は、特許文献4に記載されている方法により製造することができる。
 一般式(2)で示される化合物の具体例としては、一般式(3)~(8)で示される環式ジスルホン酸エステルが挙げられる。
Figure JPOXMLDOC01-appb-C000005
一般式(3)において、xは0又は1であり、nは1以上5以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000006
一般式(4)において、xは0又は1であり、nは1以上5以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000007
一般式(5)において、xは0又は1であり、mは独立して1又は2であり、nは1以上4以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000008
一般式(6)において、xは0又は1であり、mは独立して1又は2であり、nは1以上4以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000009
一般式(7)において、xは0又は1であり、mは独立して1又は2であり、nは1以上4以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000010
一般式(8)において、xは0又は1であり、mは独立して1又は2であり、nは1以上4以下の整数であり、Rは、水素原子、メチル基、エチル基又はハロゲン原子を示す。
 一般式(2)で示される化合物の具体例を表1に示すが、一般式(2)で示される化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000011
 環式スルホン酸エステルは、一種でもよく、二種以上でもよい。
 環式スルホン酸エステルの混合量は、電解液100質量%に対して、0.005~10質量%とすることが好ましく、0.01~5質量%とすることがより好ましい。環式スルホン酸エステルの混合量を0.005質量%以上とすることで、十分な皮膜効果を得ることができる。環式スルホン酸エステルの混合量を0.01質量%以上とすることで、電池特性をさらに向上させることができる。環式スルホン酸エステルの混合量を10質量%以下とすることで、リチウムイオンの移動抵抗が増えることがなく、ポリマーへの悪影響も少ない。環式スルホン酸エステルの混合量を5質量%以下とすることで、電池特性をさらに向上させることができる。
 一般式(1)で示されるメタクリル酸エステル重合物は、メチルメタクリレートと、(3-エチル-3-オキセタニル)メチルメタクリレートをラジカル共重合して得られる。メチルメタクリレート単位の数を表すnは、1800<n<3000を満たし、(3-エチル-3-オキセタニル)メチルメタクリレート単位の数を表すmは、350<m<600を満たす。なお、一般式(1)で示されるメタクリル酸エステル重合物は、ブロック共重合体でもよく、ランダム共重合体でもよい。また、n及びmは平均値を表し、整数でない場合もある。
 一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体(以下、単に「架橋体」と称する)は、一般式(1)で示されるメタクリル酸エステル重合物が有するオキセタニル基を、カチオン重合開始剤により開環重合することで得られる。カチオン重合開始剤としては、一般に公知の重合開始剤を用いることができるが、電解液中に含まれるリチウム塩及びリチウム塩のアニオン成分が加水分解した微量の酸性物質を利用することが、電池に与える特性が小さく好ましい。ここで、電解液中のリチウム塩の含有量は電解液中の好ましい支持塩の濃度と同一である。
 架橋体の混合量は、電解液100質量%に対して、0.5~10質量%とすることが好ましく、1~5質量%とすることがより好ましく、1.5~2.5質量%とすることがさらに好ましい。架橋体の混合量を0.5質量%以上とすることで、電解液を良好に保持可能なゲル化を達成することができる。架橋体の混合量を10質量%以下とすることで、ゲル化が進みすぎて脆くなることや、電池の特性が低下することを抑えることができる。
 本発明に係るポリマー電解質は、例えば、非プロトン性溶媒に支持塩を溶解させる工程と、非プロトン性溶媒に環式スルホン酸エステルを溶解させる工程と、非プロトン性溶媒に一般式(1)で示されるメタクリル酸エステル重合物を混合する工程と、一般式(1)で示されるメタクリル酸エステル重合物を架橋する工程とを有する方法により、簡便かつ安定的に製造される。
 本発明に係るポリマー電解質をポリマー二次電池に用いることで、セルの膨れを抑制し、サイクル特性及び高温保存特性を改善することができる。
 <ポリマー二次電池>
 本発明に係るポリマー二次電池は、正極と、負極と、上記のポリマーゲル電解質とを含み構成される。
 正極としては、アルミニウム箔等の金属からなる集電体上に正極活物質層が形成されたものを用いることができる。正極活物質層は、集電体に、正極スラリーを塗布・乾燥し、圧縮・成型することで形成することができる。正極スラリーは、正極活物質を、カーボンブラック等の導電補助材、及びポリフッ化ビニリデン(PVDF)等のバインダーとともに、N-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練することで得ることができる。
 正極活物質としては、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物を用いることができる。また、これらのリチウム含有複合酸化物の遷移金属部分を、他の元素で置き換えたものでもよい。また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。このようなリチウム含有複合酸化物の具体例としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物などが挙げられる。具体的には、例えば、一般式(9)で表される化合物が該当する。
  Li(MMn2-x)O        (9)
一般式(9)において、xは0<x<2を満たし、aは0<a<1.2を満たし、Mは、Ni、Co、Fe、Cr及びCuからなる群より選択された選択される少なくとも一種である。
 負極としては、銅箔等の金属からなる集電体上に負極活物質層が形成されたものを用いることができる。
 負極活物質としては、リチウム金属又はリチウム合金の他、リチウムを吸蔵・放出できる材料から選択される一又は二以上の物質を用いることができる。リチウムを吸蔵・放出できる放出する材料の具体例としては、炭素材料、酸化物などが挙げられる。
 リチウム合金は、リチウム及びリチウムと合金形成可能な金属により構成される。具体的には、リチウムと、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属との2元又は3元以上の合金が挙げられる。
 リチウム金属又はリチウム合金は、アモルファス状態であることが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。リチウム金属又はリチウム合金からなる負極活物質層は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル-ゲル方式などの方式で形成することができる。
 炭素材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブや、これらの複合酸化物を用いることができる。なかでも、黒鉛又は非晶質炭素が好ましい。特に、黒鉛は、電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため含有不純物が少なく、負極性能の向上有利に働く。負極活物質として炭素材料を含む負極活物質層は、集電体に、炭素材料を含む負極スラリーを塗布・乾燥し、圧縮・成型することで形成することができる。負極スラリーは、負極活物質としての炭素材料を、ポリフッ化ビニリデン(PVDF)等のバインダーとともに、N-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練することで得ることができる。
 また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウムや、これらの複合物を用いることができる。なかでも、安定で他の化合物との反応を引き起こさないことから、酸化シリコンが好ましい。また、酸化物は、結晶粒界や欠陥といった不均一性に起因する劣化が起きないことから、アモルファス状態であることが好ましい。酸化物からなる負極活物質層は、蒸着法、CVD法、スパッタリング法などの方式で形成することができる。
 ポリマー二次電池は、次のように製造することができる。まず、正極と負極とをセパレーターを介して積み重ねて積層体とする。或いは、正極と負極とをセパレーターを介して扁平に巻回した後、成型して巻回体とする。そして、積層体又は巻回体を、缶やラミネート材等の外装体に挿入した後、ポリマーゲル電解質(プレゲル溶液)を注入し、硬化(ゲル化)処理することにより、ポリマー二次電池が得られる。電極とプレゲル溶液を外装体に挿入した後、プレゲル溶液を硬化処理してもよい。或いは、電極やセパレーター上にゲル電解質を塗布形成した後に、電池を組み立ててもよい。
 セパレーターとしては、不織布、ポリオレフィン微多孔膜など、リチウムポリマー電池で一般的に使用されるものを用いることができる。なお、セパレーターは必須ではなく、ポリマーゲル電解質にセパレーターの機能を持たせることもできる。
 本発明に係るポリマー二次電池は、セルの膨れが抑制され、サイクル特性及び高温保存特性に優れたものとなる。すなわち、本発明をラミネートフィルム外装体からなるポリマー二次電池に適用することで、抵抗上昇の抑制や電池の膨れ(ガス発生)を抑制でき、例えば、情報携帯機器から自動車用途など大型のリチウムポリマー二次電池において効果が著しい。
 (実施例1)
 まず、図1により、正極1の作製について説明する。85質量%の正極活物質としてのLiMnと、7質量%の導電補助材としてのアセチレンブラックと、8質量%のバインダーとしてのポリフッ化ビニリデンとを混合したものに、N-メチル-2-ピロリドンを加えてさらに混合することで、正極スラリーを調製した。この正極スラリーを、ドクターブレード法により、集電体となる厚さ20μmのAl箔2の両面に、ロールプレス処理後の厚さが160μmになるように塗布し、正極活物質塗布部3を形成した。ただし、一方の端部には、両面とも正極活物質が塗布されていない正極活物質非塗布部4が設けられており、他方の端部には、片面のみ正極活物質が塗布された正極活物質片面塗布部5が設けられている。そして、その正極活物質非塗布部4に正極導電タブ6を取り付けて、正極1とした。
 次に、図2により、負極7の作製について説明する。90質量%の負極活物質としての鱗片状黒鉛と、10質量%のバインダーとしてのポリフッ化ビニリデンとを混合したものに、N-メチルピロリドンを加えてさらに混合することで、負極スラリーを調製した。この負極スラリーを、集電体となる厚さ10μmのCu箔8の両面に、ロールプレス処理後の厚さが120μmになるように塗布し、負極活物質塗布部9を形成した。ただし、一方の端部には、両面とも負極活物質が塗布されていない負極活物質非塗布部11と、片面のみ負極活物質が塗布された負極活物質片面塗布部10とが設けられている。そして、その負極活物質非塗布部11に負極導電タブ12を取り付けて、負極7とした。
 図3により、電池要素の作製について説明する。膜厚12μm、気孔率35%のポリエチレン製の微多孔膜からなるセパレーター13を二枚溶着して切断した部分を巻回装置の巻き芯に固定して巻きとり、正極1及び負極7の先端を導入した。正極1及び負極7は、それぞれ正極導電タブ6及び負極導電タブ8を取り付けていない側を先端側として、負極は二枚のセパレーターの間に、正極電極はセパレーターの上面にそれぞれ配置して巻き芯を回転させ巻回し、電池要素(以下ジェリーロール(J/R)と表記)を形成した。なお、この段階では、図3のゲル電解質14は存在しない。
 このJ/Rを、図4に示すようにエンボス加工したラミネート外装体15に収容し、ラミネート外装体15の辺を折り返し、プレゲル溶液注液用の部分を残して熱融着を行った。
 ポリマーゲル電解質14となるプレゲル溶液は、30質量%のエチレンカーボネート(EC)と58質量%のジエチルカーボネート(DEC)とからなる非プロトン性溶媒に、12質量%の支持塩としてのLiPFとを添加した電解液に、2質量%の一般式(1)で示されるメタクリル酸エステル重合物(n=2620、m=420)と、1質量%の化合物No.1で示される化合物とを混合することで調製した。そして、プレゲル溶液を注液部分から注液して真空含浸を行い、60℃で20時間のゲル化処理を行うことで、リチウムポリマー電池を得た。
 得られたリチウムポリマー電池を電圧4.2Vまで充電した(充電条件:電流0.2C、時間6.5h、温度20℃)後、0.2Cで電圧3.0Vまで放電した。その時の放電容量を初期容量とした。
 次に、リチウムポリマー電池に対し500サイクルの充放電を行った。充電の条件は、上限電圧4.2V、電流1C、時間2.5hとし、放電の条件は、下限電圧3.0V、電流1Cとした。充放電は、いずれも40℃で実施した。そして、1サイクル目の放電容量(1C)に対する500サイクル目の放電容量(1C)の割合を、500サイクル後の容量維持率とした。また、1サイクル目の充電後のセル体積に対する500サイクル目の充電後のセル体積を、500サイクル後のセル体積変化率とした。結果を表2に示す。
 (実施例2~4)
 化合物No.1で示される化合物を、表2に示す化合物に変更したこと以外は、実施例1と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表2に示す。
 (比較例1)
 化合物No.1で示される化合物を用いなかったこと以外は、実施例1と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表2に示す。
 (比較例2)
 化合物No.1で示される化合物をVCに変更したこと以外は、実施例1と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表2に示す。
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、実施例1~4で作製したリチウムポリマー電池は、環式スルホン酸エステルを用いなかった比較例1、及び環式スルホン酸エステルの代わりにVCを用いた比較例2で作製したリチウムポリマー電池と比べて、500サイクル後容量維持率が大きく改善されており、500サイクル後の体積変化も大きく抑制されている。
 (実施例5)
 負極活物質として非晶質炭素を用い、プレゲル溶液を調製するための電解液として、20質量%のプロピレンカーボネート(PC)と21質量%のエチレンカーボネート(EC)と47質量%のジエチルカーボネート(DEC)とからなる非プロトン性溶媒に、12質量%の支持塩としてのLiPFとを添加した電解液を用いたこと以外は、実施例1と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表3に示す。
 (実施例6~8)
 化合物No.1で示される化合物を、表3に示す化合物に変更したこと以外は、実施例5と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表3に示す。
 (比較例3)
 化合物No.1で示される化合物を用いなかったこと以外は、実施例5と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表3に示す。
 (比較例4)
 化合物No.1で示される化合物をVCに変更したこと以外は、実施例5と同様にしてリチウムポリマー電池を作製した。得られたリチウムポリマー電池の特性を表3に示す。
Figure JPOXMLDOC01-appb-T000013
 表3に示すように、実施例5~8で作製したリチウムポリマー電池は、環式スルホン酸エステルを用いなかった比較例3、及び環式スルホン酸エステルの代わりにVCを用いた比較例4で作製したリチウムポリマー電池と比べて、500サイクル後容量維持率が大きく改善されており、500サイクル後の体積変化も大きく抑制されている。
 (実施例9)
 実施例1と同様にしてリチウムポリマー電池を作製し、満充電状態での保存放置におけるリチウムポリマー電池の直流抵抗値を測定した。
 まず、作製したリチウムポリマー電池を20℃において充電(上限電圧4.2V)及び放電(下限電圧3.0V)を1回ずつ行った。この時の充電電流及び放電電流は一定(1C)であり、この際の放電容量を初期容量とし、その際の抵抗を初期抵抗とした。その後、定電流(1C)で所定の電圧(4.2V)まで2.5時間の充電後、20℃、45℃及び60℃の条件下で、90日間放置した。放置後、室温において定電流(1C)で放電(下限電圧3.0V)し、続いて同じく定電流(1C)で充電(上限電圧4.2V)及び放電(下限電圧3.0V)をもう一度繰り返し、その充電時の抵抗を測定した。そして、初期抵抗を1としたときの、90日保存後の抵抗値を相対値で示した結果を表5に示す。
 (実施例10~12)
 化合物No.1で示される化合物を、表4に示す化合物に変更したこと以外は、実施例9と同様にしてリチウムポリマー電池を作製し、実施例9と同様の評価を行った。得られた結果を表4に示す。
 (比較例5)
 化合物No.1で示される化合物を用いなかったこと以外は、実施例9と同様にしてリチウムポリマー電池を作製し、実施例9と同様の評価を行った。得られた結果を表4に示す。
 (比較例6)
 化合物No.1で示される化合物をVCに変更したこと以外は、実施例9と同様にしてリチウムポリマー電池を作製し、実施例9と同様の評価を行った。得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 表4に示すように、実施例9~12で作製したリチウムポリマー電池は、環式スルホン酸エステルを用いなかった比較例5、及び環式スルホン酸エステルの代わりにVCを用いた比較例6で作製したリチウムポリマー電池と比べて、各温度での抵抗上昇率が大きく抑制されていることが判明した。特に、60℃保存での抵抗上昇の抑制が顕著であった。
1  正極
2  Al箔
3  正極活物質塗布部
4  正極活物質非塗布部
5  正極活物質片面塗布部
6  正極導電タブ
7  負極
8  Cu箔
9  負極活物質塗布部
10  負極活物質片面塗布部
11  負極活物質非塗布部
12  負極導電タブ
13  セパレーター
14  ポリマーゲル電解質
15  ラミネート外装体

Claims (8)

  1.  非プロトン性溶媒と、支持塩と、少なくともスルホニル基を2個有する環式スルホン酸エステルと、下記一般式(1)で示されるメタクリル酸エステル重合物を架橋させてなる架橋体とを含むポリマーゲル電解質。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)において、nは1800<n<3000を満たし、mは350<m<600を満たす。
  2.  前記環式スルホン酸エステルが、下記一般式(2)で示される化合物である請求項1に記載のポリマーゲル電解質。
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)において、Qは、酸素原子、メチレン基又は単結合を示し、Aは、置換若しくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、置換若しくは無置換の炭素数1~6のフルオロアルキレン基、又はエーテル結合を介してアルキレン単位若しくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示し、Bは、置換若しくは無置換のアルキレン基、置換若しくは無置換のフルオロアルキレン基、又は酸素原子を示す。
  3.  前記非プロトン性溶媒として、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類及びそれらのフッ素誘導体からなる群より選択された溶媒を含む請求項1又は2に記載のポリマーゲル電解質。
  4.  前記支持塩として、LiPF、LiBF、LiAsF及びLiSbFからなる群より選択された物質を含む請求項1~3のいずれかに記載のポリマーゲル電解質。
  5.  正極と、負極と、請求項1~4のいずれかに記載のポリマーゲル電解質とを含むポリマー二次電池。
  6.  前記正極が、正極活物質として、リチウム含有複合酸化物を含む請求項5に記載のポリマー二次電池。
  7.  前記負極が、負極活物質として、リチウムを吸蔵・放出できる材料からなる群より選択される物質を含む請求項5又は6に記載のポリマー二次電池。
  8.  前記リチウムを吸蔵・放出できる材料が、炭素材料である請求項7に記載のポリマー二次電池。
PCT/JP2009/062531 2009-07-09 2009-07-09 ポリマーゲル電解質及びそれを用いたポリマー二次電池 WO2011004483A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011521748A JPWO2011004483A1 (ja) 2009-07-09 2009-07-09 ポリマーゲル電解質及びそれを用いたポリマー二次電池
US13/382,851 US20120115037A1 (en) 2009-07-09 2009-07-09 Polymer gel electrolyte and polymer secondary battery using same
CN200980160379XA CN102473966A (zh) 2009-07-09 2009-07-09 聚合物凝胶电解质和使用它的聚合物二次电池
PCT/JP2009/062531 WO2011004483A1 (ja) 2009-07-09 2009-07-09 ポリマーゲル電解質及びそれを用いたポリマー二次電池
EP09847085.9A EP2453511A4 (en) 2009-07-09 2009-07-09 POLYMER GEL ELECTROLYTE AND POLYMER ACCUMULATOR THEREWITH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062531 WO2011004483A1 (ja) 2009-07-09 2009-07-09 ポリマーゲル電解質及びそれを用いたポリマー二次電池

Publications (1)

Publication Number Publication Date
WO2011004483A1 true WO2011004483A1 (ja) 2011-01-13

Family

ID=43428921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062531 WO2011004483A1 (ja) 2009-07-09 2009-07-09 ポリマーゲル電解質及びそれを用いたポリマー二次電池

Country Status (5)

Country Link
US (1) US20120115037A1 (ja)
EP (1) EP2453511A4 (ja)
JP (1) JPWO2011004483A1 (ja)
CN (1) CN102473966A (ja)
WO (1) WO2011004483A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802283B2 (en) * 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery
WO2016125726A1 (ja) * 2015-02-05 2016-08-11 日立マクセル株式会社 リチウム二次電池
US9899703B2 (en) 2013-03-01 2018-02-20 Nec Corporation Gel electrolyte and polymer secondary battery using same
WO2018150567A1 (ja) * 2017-02-20 2018-08-23 日本電気株式会社 リチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池
JP7047181B1 (ja) 2021-12-15 2022-04-04 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211707B1 (en) * 2014-10-21 2019-12-04 Nec Corporation Secondary battery and production method therefor
CN107579280B (zh) * 2016-12-14 2019-09-06 广州天赐高新材料股份有限公司 含环状二磺酸硅基酯的锂二次电池电解液和锂二次电池
US20200028212A1 (en) * 2017-03-15 2020-01-23 Envision Aesc Energy Devices Ltd. Lithium ion secondary battery
CN114221036B (zh) * 2021-12-14 2023-11-28 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电化学装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003075A1 (en) 1984-01-16 1985-07-18 Cronyn Marshall W Cancer chemotherapeutic cyclic and acyclic disulfonic ester compounds, method of use therefor, and intermediates
JP2002100406A (ja) 2000-09-25 2002-04-05 Toshiba Battery Co Ltd ポリマーリチウム二次電池及びその製造方法
JP2002110245A (ja) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk ポリマー固体電解質リチウムイオン2次電池
JP2003257490A (ja) 2002-02-28 2003-09-12 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2005310445A (ja) * 2004-04-19 2005-11-04 Hitachi Maxell Ltd ゲル状電解質およびそれを用いた電気化学素子
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
JP2009070605A (ja) 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd リチウムポリマー電池
JP2009140641A (ja) * 2007-12-04 2009-06-25 Nec Tokin Corp 非水電解液、ゲル電解質及びそれらを用いた二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449907B2 (ja) * 2003-12-15 2010-04-14 日本電気株式会社 二次電池用電解液およびそれを用いた二次電池
CN101033323A (zh) * 2006-03-09 2007-09-12 Nec东金株式会社 聚合物凝胶电解质和使用该电解质的聚合物二次电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003075A1 (en) 1984-01-16 1985-07-18 Cronyn Marshall W Cancer chemotherapeutic cyclic and acyclic disulfonic ester compounds, method of use therefor, and intermediates
JP2002100406A (ja) 2000-09-25 2002-04-05 Toshiba Battery Co Ltd ポリマーリチウム二次電池及びその製造方法
JP2002110245A (ja) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk ポリマー固体電解質リチウムイオン2次電池
JP2003257490A (ja) 2002-02-28 2003-09-12 Mitsubishi Materials Corp ゲル状ポリマー電解質及びそれを用いたリチウムポリマー電池
JP2005310445A (ja) * 2004-04-19 2005-11-04 Hitachi Maxell Ltd ゲル状電解質およびそれを用いた電気化学素子
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
JP2009070605A (ja) 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd リチウムポリマー電池
JP2009140641A (ja) * 2007-12-04 2009-06-25 Nec Tokin Corp 非水電解液、ゲル電解質及びそれらを用いた二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANEMURA KIYOSHI: "Latest Technology of Polymer Battery II", 2003, CMC PUBLISHING CO., LTD., pages: 242 - 247
See also references of EP2453511A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802283B2 (en) * 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery
US9899703B2 (en) 2013-03-01 2018-02-20 Nec Corporation Gel electrolyte and polymer secondary battery using same
WO2016125726A1 (ja) * 2015-02-05 2016-08-11 日立マクセル株式会社 リチウム二次電池
JPWO2016125726A1 (ja) * 2015-02-05 2017-11-16 マクセルホールディングス株式会社 リチウム二次電池
WO2018150567A1 (ja) * 2017-02-20 2018-08-23 日本電気株式会社 リチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池
JPWO2018150567A1 (ja) * 2017-02-20 2019-11-14 日本電気株式会社 リチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池
JP7047181B1 (ja) 2021-12-15 2022-04-04 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池
WO2023112787A1 (ja) 2021-12-15 2023-06-22 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池
JP2023088767A (ja) * 2021-12-15 2023-06-27 第一工業製薬株式会社 非水電解液およびリチウムイオン二次電池

Also Published As

Publication number Publication date
CN102473966A (zh) 2012-05-23
EP2453511A4 (en) 2013-11-27
EP2453511A1 (en) 2012-05-16
US20120115037A1 (en) 2012-05-10
JPWO2011004483A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP3982230B2 (ja) 二次電池用負極およびそれを用いた二次電池
JP5468723B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP5279018B2 (ja) リチウムイオン二次電池およびその製造方法
WO2011004483A1 (ja) ポリマーゲル電解質及びそれを用いたポリマー二次電池
JP6123682B2 (ja) リチウム二次電池
EP1892790A1 (en) Lithium secondary battery
CN111108633B (zh) 固体电解质电池用正极和包含该正极的固体电解质电池
JP5278994B2 (ja) リチウム二次電池
JP2007273445A (ja) ポリマーゲル電解質およびそれを用いたポリマー二次電池
WO2012015033A1 (ja) リチウムイオン二次電池及びその製造方法
WO2011102453A1 (ja) ポリマー二次電池およびその製造方法
WO2013042610A1 (ja) リチウムイオン二次電池
JP5158578B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP6116029B2 (ja) ゲル電解質およびそれを用いたポリマー二次電池
JP6414058B2 (ja) 電極用バインダー組成物および電極
KR101110074B1 (ko) 잉크젯 인쇄용 음극 조성물, 이를 사용하여 제조한 전극 및 리튬 전지
WO2014133169A1 (ja) 二次電池用電解液およびそれを用いた二次電池
WO2020049843A1 (ja) 被覆正極活物質、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
JP2010033830A (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
WO2018150567A1 (ja) リチウムイオン二次電池用電解液およびこれを用いたリチウムイオン二次電池
JP2007250499A (ja) リチウムイオン二次電池
JP6319092B2 (ja) 二次電池
JP2008243718A (ja) 非水電解液二次電池の製造方法
WO2023112787A1 (ja) 非水電解液およびリチウムイオン二次電池
WO2014038535A1 (ja) ポリマーゲル電解質、リチウムイオン電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160379.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521748

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13382851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009847085

Country of ref document: EP