JP5158578B2 - 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用負極およびそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
JP5158578B2
JP5158578B2 JP2007167597A JP2007167597A JP5158578B2 JP 5158578 B2 JP5158578 B2 JP 5158578B2 JP 2007167597 A JP2007167597 A JP 2007167597A JP 2007167597 A JP2007167597 A JP 2007167597A JP 5158578 B2 JP5158578 B2 JP 5158578B2
Authority
JP
Japan
Prior art keywords
negative electrode
particle size
secondary battery
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007167597A
Other languages
English (en)
Other versions
JP2009009727A (ja
Inventor
竜一 笠原
達治 沼田
幸典 高橋
裕 坂内
次郎 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2007167597A priority Critical patent/JP5158578B2/ja
Publication of JP2009009727A publication Critical patent/JP2009009727A/ja
Application granted granted Critical
Publication of JP5158578B2 publication Critical patent/JP5158578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解質二次電池用負極およびそれを用いた非水電解質二次電池に関し、特に充放電サイクル寿命を改善した非水電解質二次電池用負極およびそれを用いた非水電解質二次電池に関する。
携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められることから、現在はリチウムイオン二次電池が多く適用されている。
リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素を用いている。炭素は、充放電サイクルを良好に繰り返すことができるものの、理論容量付近まで容量向上を実現していることから、今後大幅な容量増加は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強いことから、炭素よりも高容量すなわち高エネルギー密度を有する負極材料の検討が行われている。
リチウムイオン二次電池の負極には、高エネルギー密度でかつ軽量という観点から金属リチウムの検討もされているが、充放電サイクルの進行にともない、充電時に金属リチウム表面にデンドライト(樹枝状晶)が析出し、この結晶がセパレータを貫通し、内部短絡を起こし、寿命が短いという問題点があった。
エネルギー密度を高める材料として、組成式がLiXA(Aはアルミニウムなどの元素からなる)で表されるリチウムと合金を形成するLi吸蔵物質を負極活物質として用いることが検討されている。この負極は単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量である。最近では、特にケイ素を負極活物質として用いることが、非特許文献1に記載されている。このような負極材料を用いることによって、高容量の負極が得られるとされている。
この種のケイ素を用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体が膨脹収縮するために微粉化が進行し、初回充放電における不可逆容量が大きく、また充放電サイクル寿命が短いという問題点があった。
ケイ素を用いた不可逆容量の低減及び充放電サイクル寿命の改善対策として、ケイ素酸化物を活物質として用いる方法が特許文献1で提案されている。特許文献1においては、ケイ素酸化物を活物質として用いることにより活物質単位重量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、不可逆容量が大きいという問題点を有していた。また、ケイ素酸化物を活物質として用いた際の集電性を向上させるために、ケイ素酸化物に鉄やチタンを添加することが特許文献2で提案されている。しかし、これらの金属は電解液に対する耐食性や、耐酸化性が弱いために、金属を添加しただけではサイクルを繰り返すと導電性が低下してしまうという問題点を有していた。さらに容量及び充放電サイクル寿命の改善対策として、ケイ素、ケイ素酸化物に炭素材料を複合化させた粒子を活物質として用いる方法が特許文献3で提案されている。これによりサイクル特性の向上が確認されたもののまだ不十分であり、また初回充放電効率の改善も不十分であった。
その一方で、従来から、サイクル特性改善を目的として、バインダ(結着材)として熱硬化性を有する樹脂材料を用いることが報告されている。具体的には、酸化スズと酸化ケイ素と炭素をポリイミドバインダと混合して焼結させる方法が特許文献4で提案され、ケイ素及び/またはケイ素合金を含む活物質粒子と導電性金属粉末の混合物をポリイミドバインダと混合させたものを前記集電体の表面上で非酸化性雰囲気下に焼結させる方法が特許文献5で提案されている。しかしこれらは、実使用上での判断となる炭素負極並のサイクル特性を実現するには至らなかった。
特許第2997741号公報 特許第3010226号公報 特開2004‐139886号公報 特開2002‐117835号公報 特開2002‐260637号公報 リー(Li)他4名, 「ア ハイ キャパシティ ナノ−シリコン コンポジット アノード マテリアル フォー リチウム リチャージャブル バッテリーズ(A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries), エレクトロケミカル アンド ソリッドステイト レターズ(Electrochemical and Solid-State Letters), 第2巻, 第11号, p547−549 (1999)
本発明の課題は、集電性を向上させ、初回充放電での充放電効率が高く、かつ、エネルギー密度の高い良好なサイクル特性を持つ非水電解質二次電池用負極及びそれを用いた非水電解質二次電池を提供することにある。
上記課題を解決するため本発明による非水電解質二次電池用負極は、負極と正極とリチウムイオン導電性の非水電解質とからなる非水電解質二次電池に用いられる負極が、粒度分布の異なる少なくとも2種類の、単体ケイ素及びケイ素化合物を含有する複合粒子からなる負極活物質を有することを特徴とする。また、粒径の小さい第一の複合粒子の粒径D95に対し粒径の大きな第二の複合粒子の粒径D95が1.25倍以上5.0倍以下であることが好ましく、前記粒径の小さい第一の複合粒子の粒径D95が10μm以上30μm以下であることが好ましく、前記負極の電極密度が1.0g/cm3以上2.0g/cm3以下であることが好ましく、さらに、前記負極は単体ケイ素及びケイ素化合物を含有する複合粒子からなる負極活物質と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記負極活物質の粒子間、及び負極活物質の粒子と集電体とが結着されていることが好ましい。
また、本発明による非水電解質二次電池は、前記非水電解質二次電池用負極を用い、放電終止電圧値が1.5V以上2.7V以下であることを特徴とする。
本発明によれば、ケイ素系負極活物質の特徴である高容量を示しつつ、粒度分布の異なる少なくとも2種類の複合粒子を混合させることにより、電極密度を上昇させ、さらなる高容量化を図ることが出来る。また粒径の小さい、すなわち真密度の低い粒子を混合させることにより、リチウムの吸蔵・放出に伴う体積変化を緩和し、電極ひいては電池セルの体積膨張を抑制することが出来る。またリチウムの吸蔵・放出に伴う体積変化を緩和することにより、粒子破壊を抑制することが出来るため、サイクル特性改善効果も同時に得られる。なおバインダとして機能する熱硬化性樹脂も、加熱により脱水縮合反応を生じるため、活物質粒子間、及び活物質粒子−集電箔間を強固に結着させる作用を示すため、体積膨張抑制及びサイクル特性改善効果に寄与する。
本発明の実施の形態について図面を参照して説明する。図1は本発明の非水電解質二次電池用負極の負極活物質の模式断面図である。
図1に示すように、負極活物質3は、単体ケイ素1、とその周囲を被覆するケイ素化合物2の複合粒子からなる。粒度分布の異なる少なくとも2種類の複合粒子のうち粒径の小さい第一の複合粒子3aの粒径D95に対し粒径の大きな第二の複合粒子3bの粒径D95が1.25倍以上5.0倍以下であると電極密度の上昇に好適である。また粒径の小さい第一の複合粒子3aの粒径D95は10μm以上30μm以下、さらに望ましくは10μm以上20μm以下が好ましい。なおD95はある粒径以下の体積割合の合計が95%となるときの粒径を示す。ここで複合粒子の粒径D95が10μmを超えると製造工程における取り扱いに特別な配慮が必要となり、30μmより小さいと充放電の繰り返しによる放電容量の劣化の可能性がある。
単体ケイ素1は、充放電の際Liを吸蔵あるいは放出する。ケイ素化合物2は活物質自体の繰り返し充放電に対する膨脹収縮を緩和、及び活物質である単体ケイ素間の導通を確保する役目がある。ケイ素化合物2の例としては酸化ケイ素、及びニッケルシリサイドやコバルトシリサイドなどの遷移金属−ケイ素化合物、及び遷移金属酸化物−ケイ素化合物等が主として挙げられる。上記負極活物質中の単体ケイ素の重量比は多い程電池としての容量は大きくなるが、単体ケイ素の重量比が多くなるにつれ繰り返し充放電に対する体積変化による劣化、ひいては容量減少が大きくなるので、負極活物質中のケイ素化合物の重量比は5%以上50%未満が好ましい。
負極活物質の複合粒子の作製方法例を以下に述べる。ケイ素化合物に酸化ケイ素を用いる場合は、単体ケイ素とケイ素酸化物を混合し、高温減圧下にて焼結させる方法を主に取る。ケイ素化合物が遷移金属−ケイ素化合物の場合は、単体ケイ素と遷移金属を混合、溶融させる方法と、ケイ素表面に遷移金属を蒸着などにより被覆する方法がある。
なお、上記で述べた作製法に加えて、これまで一般的になされている活物質表面への炭素複合を組み合わせることも出来る。例としては、高温非酸素雰囲気下で有機化合物の気体雰囲気中に単体ケイ素とケイ素化合物の混合焼結物を導入する、もしくは高温非酸素雰囲気下でケイ素とケイ素酸化物の混合焼結物と炭素の前駆体樹脂を混合させることで、ケイ素とケイ素酸化物の核の周囲に炭素の被覆層が形成される。これにより充放電に対する体積膨張の抑制、及びサイクル特性のさらなる改善効果が得られるものの、炭素被覆により電極密度が低下するので、ケイ素活物質の特長である電池容量向上のメリットが小さくなる点は留意する必要がある。
図2は本発明の非水電解質二次電池の断面図である。図2に示すように本発明の非水電解質二次電池は銅箔などの負極集電体5上に形成した活物質層4からなる負極6とアルミニウム箔などの正極集電体8に形成した活物質層7からなる正極9がセパレータ10を介して対向配置されている構造となっている。セパレータ10としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。負極6と正極9から、それぞれ電極端子取り出しのための負極リードタブ12、正極リードタブ13が引き出され、それぞれの先端を除いて、ラミネートフィルムなどの外装フィルム11を用いて外装する。
負極の活物質層4は上記の方法で生成した負極の複合粒子と、バインダとしてポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤とをN−メチル−2−ピロリドン(NMP)等の溶剤に分散させ混練して、負極集電体5の上に塗布し、高温雰囲気で乾燥することにより形成される。負極の活物質層4中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。生成した負極6の電極密度は1.0g/cm3以上2.0g/cm3以下であるとよい。電極密度が低い場合は放電容量の絶対値が小さく、従来の炭素材料に対するメリットが小さい。逆に高い場合、電極に電解液を含浸させることが難しく、やはり放電容量が低下する。負極集電体5の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。
正極の活物質層7は活物質として、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、及びこれらの混合物、並びにマンガン、コバルト、ニッケル部分をアルミニウム、マグネシウム、チタン、亜鉛等で置換したもの、さらにはリン酸鉄リチウムなどを用いることができる。
また、電池に用いる電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エーテル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解液に代えてポリマー電解質を用いてもよい。
上記のようにして製造される非水電解質二次電池の、放電終止電圧値は1.5V以上2.7V以下であることが望ましい。放電終止電圧値が低くなる程充放電の繰り返しによる放電容量の劣化が大きくなる問題がある。1.5V未満とするのは回路設計上の難易度も高い。又2.7V超の場合、放電容量の絶対値が小さく従来の炭素材料に対するメリットが得られない。
本発明の実施例について以下に説明する。
(実施例1)
単体ケイ素と単体ニッケルを重量比1:5にて混合し、1500℃、13.3Paにて溶融、急冷させてケイ素−ニッケル複合粒子を形成した。粉砕処理により粒径の大きいものと小さいものを作製し、粒径の小さい第一の複合粒子の粒径D95が20μm、粒径の大きい第二の複合粒子の粒径D95が30μmとなるよう調製した。このようにして生成した複合粒子を用いて、以下のようにして負極を作製した。
負極の活物質層は上記複合粒子、ポリイミド、カーボン及びNMPを混合した電極材を10μmの銅箔の上に塗布し、125℃、5分間乾燥した後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて300℃、10分間乾燥処理を行い作製した。この銅箔上に形成された活物質層を30×28mmに打ち抜き負極とし、電荷取り出しのためのニッケルからなる負極リードタブを超音波により融着した。正極の活物質層については、コバルト酸リチウムからなる活物質粒子、バインダとしてポリフッ化ビニリデン、溶剤としてNMPを混合した電極材を20μmのアルミ箔の上に塗布し、125℃、5分間乾燥処理を行い作製した。アルミ箔上に形成された活物質層を30×28mmに打ち抜き正極とし、電荷取り出しのためのアルミからなる正極リードタブを超音波により融着した。負極、セパレータ、正極の順に、活物質層がセパレータと対面するように積層した後、ラミネートフィルムではさみ、電解液を注液し、真空下にて封止することによりラミネート型電池を作製した。なお電解液には、EC:DEC:EMCの3:5:2の混合溶媒に1mol/lのLiPF6を溶解したものを用いた。
(実施例2)
粒径の大きな第二の複合粒子のD95が50μm、粒径の小さな第一の複合粒子のD95が20μmとなる他は実施例1と同様にして複合粒子を作製し、電池を作製した。
(実施例3)
粒径の大きな第二の複合粒子のD95が80μm、粒径の小さな第一の複合粒子のD95が20μmとなる他は実施例1と同様にして複合粒子を作製し、電池を作製した。
(実施例4)
粒径の大きな第二の複合粒子のD95が100μm、粒径の小さな第一の複合粒子のD95が20μmとなる他は実施例1と同様にして複合粒子を作製し、電池を作製した。
(実施例5)
粒径の大きな第二の複合粒子のD95が50μm、粒径の小さな第一の複合粒子のD95が30μmとなる他は実施例1と同様にして複合粒子を作製し、電池を作製した。
(比較例5)
粒径の大きな第二の複合粒子のD95が50μm、粒径の小さな第一の複合粒子のD95が40μmとなる他は実施例1と同様にして複合粒子を作製し、電池を作製した。
(比較例1)
負極活物質として人造黒鉛を用い、ポリフッ化ビニリデン樹脂を負極の活物質層作製時のバインダとして用いた。その他は実施例1と同様にして電池を作製した。
(比較例2)
ポリフッ化ビニリデン樹脂を負極の活物質層作製時のバインダとして用いた。その他は実施例1と同様にして電池を作製した。
(比較例3)
実施例1において、負極の複合粒子の粒径D95を30μmとしたもの1種類のみを作製した。その他は実施例1と同様にして電池を作製した。
(比較例4)
実施例1において、負極の複合粒子の粒径D95を50μmとしたもの1種類のみを作製した。その他は実施例1と同様にして電池を作製した。
上記の方法にて作製したそれぞれの電池について、負極の電極密度を測定した。次に、作製した電池を充放電電流20mAとして、電圧4.2Vから3.0、 2.7、 2.5、 2.2Vの範囲における放電容量特性を測定した。また電圧4.2Vから2.5Vの範囲における充放電サイクル試験を実施した。
表1に実施例1〜および比較例1〜の粒径の大きな第二の複合粒子の粒径D95(μm)、粒径の小さな第一の複合粒子の粒径D95(μm)、電極密度、初回充放電効率、比較例1の初回電極放電容量(活物質層の単位体積当たり)を1としたときの相対的な初回電極放電容量を示す。
Figure 0005158578
さらに、実施例1〜および比較例1〜における、放電終止電圧値を3.0, 2.7, 2.5, 2.2Vに変化させたときの、比較例1(下限電圧2.7V)に対する相対的な電極放電容量(活物質層の単位体積当たり)、および100サイクル後の容量維持率((100サイクルにおける放電容量)/(1サイクル目における放電容量))を表2に示す。
Figure 0005158578
実施例1〜4では、複合粒子中の粒径の大きい第二の複合粒子の粒径D95を変化させている。その結果、いずれも比較例1より大きい電極放電容量を示した。また、粒径の大きな第二の複合粒子の粒径を大きくする程容量は上昇し、かつ初回充放電効率及びサイクル特性は若干悪くなるものの、大幅な劣化ではないことがわかる。実施例4では、比較例3、4より大きい粒径の粒子を用いているにもかかわらずいずれの特性も同等以上である。このことから、複合粒子における小粒径品を混合させることにより、電極放電容量、初回充放電効率、及び100サイクル後の容量維持率の改善のいずれにも効果があることが分かる。
実施例2、5では、複合粒子中の粒径の小さい第一の複合粒子の粒径D95を変化させている。その結果、いずれも比較例1より大きい電極放電容量を示した。ただし比較例5のように、粒径の小さい第一の複合粒子の粒径が40μmではいずれの特性でも低下が見られる。このことから、複合粒子の粒径の小さい第一の複合粒子の粒径D95を、少なくとも30μm以下とするとよい。
実施例1、比較例2では、負極活物質に用いているバインダの種類を変えている。いずれの水準共電極放電容量に差は見られない。実施例1では熱硬化性バインダを用いておりサイクル後の容量維持率が良好であるが、比較例1では熱膨潤性バインダを用いておりサイクル後の容量維持率が低下する傾向にある。このことから、負極活物質に熱硬化性バインダを用いるとよいことがわかる。
なお表1より、電極密度はいずれも1.0g/cm3以上2.0g/cm3以下であり、比較例3の黒鉛負極と比較しても同等の電極密度を得ることがわかる。さらに表2より、負極活物質粒子に黒鉛粉末を用いた比較例4を除いて、放電終止電圧値が3.0Vでは2.7Vと比較して容量が低下する。放電終止電圧値を少なくとも2.7V以下にすれば負極活物質の持つ容量を引き出すことが出来る。
このように、負極複合粒子の構造、組成、及び電池設計の最適化により、初回充放電効率が高く、電極のエネルギー密度が高くかつサイクル特性の良い電池を提供出来ることを確認した。
本発明の非水電解質二次電池用負極の負極活物質の模式断面図。 本発明の非水電解質二次電池の断面図。
符号の説明
1 単体ケイ素
2 ケイ素化合物
3 負極活物質
3a 第一の複合粒子
3b 第二の複合粒子
4 (負極の)活物質層
5 負極集電体
6 負極
7 (正極の)活物質層
8 正極集電体
9 正極
10 セパレータ
11 外装フィルム
12 負極リードタブ
13 正極リードタブ

Claims (3)

  1. 負極と正極とリチウムイオン導電性の非水電解質とからなる非水電解質二次電池に用いられる負極が、粒度分布の異なる少なくとも2種類の、単体ケイ素及びケイ素化合物を含有する複合粒子からなる負極活物質と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記負極活物質の粒子間、及び負極活物質の粒子と集電体とが結着されており、粒径の小さい第一の複合粒子の粒径D 95 に対し粒径の大きな第二の複合粒子の粒径D 95 が1.25倍以上5.0倍以下であり、前記粒径の小さい第一の複合粒子の粒径D 95 が10μm以上30μm以下であることを特徴とする非水電解質二次電池用負極。
  2. 前記負極の電極密度が1.0g/cm3以上2.0g/cm3以下であることを特徴とする請求項1に記載の非水電解質二次電池用負極。
  3. 請求項1又は2に記載の非水電解質二次電池用負極を用いた非水電解質二次電池であって、放電終止電圧値が1.5V以上2.7V以下であることを特徴とする非水電解質二次電池。
JP2007167597A 2007-06-26 2007-06-26 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池 Active JP5158578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167597A JP5158578B2 (ja) 2007-06-26 2007-06-26 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167597A JP5158578B2 (ja) 2007-06-26 2007-06-26 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2009009727A JP2009009727A (ja) 2009-01-15
JP5158578B2 true JP5158578B2 (ja) 2013-03-06

Family

ID=40324626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167597A Active JP5158578B2 (ja) 2007-06-26 2007-06-26 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP5158578B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883760A (zh) * 2020-07-29 2020-11-03 黄杰 一种复合纳米硅负极及其制备与应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267976B2 (ja) * 2008-05-27 2013-08-21 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池
US20130045419A1 (en) * 2011-08-15 2013-02-21 Hee-Joon Chun Negative active material for rechargeable lithium battery, negative electrode including the same and method of preparing the same, and rechargeable lithium battery including the same
JP5586550B2 (ja) * 2011-09-16 2014-09-10 株式会社東芝 電池用電極、非水電解質電池、及び電池パック
JP2015510249A (ja) * 2012-04-18 2015-04-02 エルジー・ケム・リミテッド 多層構造の電極及びその製造方法
CN105103346B (zh) 2013-12-03 2018-11-06 株式会社Lg 化学 多孔性硅类负极活性物质及其制备方法、以及包含它的锂二次电池
KR101840398B1 (ko) * 2017-01-23 2018-05-04 주식회사 쎄텍 디지털 레그 프레스
CN110380029B (zh) * 2019-07-10 2022-03-25 长园泽晖新能源材料研究院(珠海)有限公司 锂电池用硅基负极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282546B2 (ja) * 1997-07-09 2002-05-13 住友金属工業株式会社 リチウムイオン2次電池用負極材料とその電極
JP3908892B2 (ja) * 2000-05-10 2007-04-25 日立粉末冶金株式会社 非水系二次電池の負極用黒鉛材料
JP3952180B2 (ja) * 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2004335195A (ja) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd 非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2006278123A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 非水電解質二次電池
KR100911799B1 (ko) * 2005-06-03 2009-08-12 파나소닉 주식회사 비수전해질 이차전지 및 그 음극의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883760A (zh) * 2020-07-29 2020-11-03 黄杰 一种复合纳米硅负极及其制备与应用

Also Published As

Publication number Publication date
JP2009009727A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5468723B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP5192703B2 (ja) 非水電解質二次電池
JP5288448B2 (ja) 非水電解質二次電池
JP6288186B2 (ja) リチウムイオン二次電池
JP5279018B2 (ja) リチウムイオン二次電池およびその製造方法
JP5360871B2 (ja) 非水系電解質リチウムイオン二次電池
US8956762B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP5210503B2 (ja) 非水電解質二次電池
JP5278994B2 (ja) リチウム二次電池
JP5158578B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2008293875A (ja) 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
JP6052179B2 (ja) リチウムイオン二次電池
JP5561803B2 (ja) 非水電解質二次電池
JP2011086448A (ja) リチウムイオン二次電池
JP5213011B2 (ja) リチウム二次電池用負極、およびそれを用いたリチウム二次電池
JP2010033830A (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP5267976B2 (ja) リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池
JP5502977B2 (ja) 非水電解質二次電池
JP5625848B2 (ja) リチウムイオン二次電池及びその製造方法
WO2014007183A1 (ja) リチウムイオン二次電池
JP5424322B2 (ja) 非水系電解質二次電池
KR101701415B1 (ko) 음극활물질, 그 제조방법 및 이를 채용한 음극과 리튬전지
WO2013129032A1 (ja) 非水電解質二次電池用正極、その製造方法、及び非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5158578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250