WO2011004428A1 - 排気ガス循環バルブ - Google Patents

排気ガス循環バルブ Download PDF

Info

Publication number
WO2011004428A1
WO2011004428A1 PCT/JP2009/003150 JP2009003150W WO2011004428A1 WO 2011004428 A1 WO2011004428 A1 WO 2011004428A1 JP 2009003150 W JP2009003150 W JP 2009003150W WO 2011004428 A1 WO2011004428 A1 WO 2011004428A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exhaust gas
shaft
gas circulation
eccentric
Prior art date
Application number
PCT/JP2009/003150
Other languages
English (en)
French (fr)
Inventor
栗原朗優
頭井拓朗
長谷川暁
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980160300.3A priority Critical patent/CN102472204B/zh
Priority to PCT/JP2009/003150 priority patent/WO2011004428A1/ja
Priority to KR1020117028770A priority patent/KR101286384B1/ko
Priority to US13/320,658 priority patent/US8944407B2/en
Priority to JP2011521704A priority patent/JP5230811B2/ja
Priority to DE112009005051.4T priority patent/DE112009005051B4/de
Publication of WO2011004428A1 publication Critical patent/WO2011004428A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/222Shaping of the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the shape of a valve and a valve seat of an exhaust gas circulation valve (ERG-Valve).
  • the valve body that adjusts the flow rate of the circulation exhaust gas includes a valve that opens and closes the exhaust gas passage and a rotary shaft that operates the valve.
  • This rotating shaft is rotatably supported by a bearing portion provided in the housing of the valve body.
  • the valve seat is provided in a housing constituting the exhaust gas passage, and the exhaust gas passage is closed by rotating the valve integrally with the rotary shaft and bringing it into contact with the valve seat.
  • Patent Document 1 discloses a butterfly valve used as an exhaust gas circulation valve.
  • the outer peripheral surface of a circular valve is formed as an inclined surface
  • the valve seat is composed of two parts and an annular step is provided, and the valve outer peripheral surface is line-sealed in a wide range with the annular step of the valve seat Then, the exhaust gas passage is closed.
  • Patent Document 2 proposes a butterfly valve having a multiple eccentric structure in which a cross section obtained by decentering the rotating shaft of the valve in the thickness direction of the valve is a perfect circle.
  • Patent Document 2 can improve the problem of Patent Document 1 by adopting a multiple eccentric structure, but when the valve body is opened and closed, the valve outer peripheral surface partially crushes the seal surface with the valve seat. Therefore, there is a problem in that the seat surface needs to have elasticity, and another elastic seal needs to be selected, which tends to be expensive.
  • the present invention has been made to solve the above-described problems, and improves the biting resistance by line-sealing at the edge of the valve seat and simplifies the shape of the valve seat to circulate the exhaust gas.
  • the purpose is to manufacture the valve at low cost.
  • the exhaust gas circulation valve of the present invention is formed so that the right and left outer circumferential surfaces on one orthogonal line passing through the center of the valve are smoothly inclined so that the positive and negative inclination angles are switched at two positions shifted from the axial center.
  • the cross-sectional side shape along the orthogonal line is formed into a trapezoidal shape,
  • the shaft is attached at a uniaxial eccentric position in which the rotation center axis is eccentric from the center of the bulb toward the long bottom side of the trapezoidal shape.
  • the valve has a trapezoidal shape in which the cross-sectional side surface along the other orthogonal line passing through the center of the valve is formed in a trapezoidal shape. Since it is mounted at an eccentric single-shaft eccentric position, the valve can be line-sealed at the edge of the valve seat to improve the biting resistance and can be manufactured at low cost by simplifying the shape of the valve seat. .
  • FIG. 1 shows a configuration of an exhaust gas circulation valve according to Embodiment 1 of the present invention, in which FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along a line DD in FIG. .
  • FIG. 2A shows a shape of a valve according to the first embodiment
  • FIG. 2A is a plan view
  • FIGS. 2B to 2D are taken along lines A′A ′, B′B ′, and C′C ′. It is sectional drawing cut
  • FIG. 3 is a cross-sectional perspective view of the exhaust gas circulation valve according to Embodiment 1 cut along line DD in FIG. 1A
  • FIG. 3A is a valve open state
  • FIG. 4A shows a configuration of an exhaust gas circulation valve according to Embodiment 2 of the present invention
  • FIG. 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along line EE in FIG. 4 (c) is a cross-sectional view taken along the center line O1 of FIG. 4 (a).
  • It is a top view which shows the structure of the exhaust-gas circulation valve which concerns on Embodiment 3 of this invention.
  • FIG. 1A is a plan view of an exhaust gas circulation valve according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view taken along the line DD in FIG.
  • FIG. 2A is a plan view showing the shape of the valve 1.
  • FIGS. 2B, 2C, and 2D show the A′A ′ line, the B′B ′ line, and the C′C ′ line. Sectional drawing cut
  • 3A is a cross-sectional perspective view in a valve-open state cut along the DD line in FIG. 1A
  • FIG. 3B is a cross-sectional perspective view in a valve-closed state.
  • the exhaust gas circulation valve is interposed between the valve 1 and the shaft 3, the valve 1 having a substantially circular shape, the valve seat 2 in which a perfect circular opening is formed, the shaft 3 for rotating the valve 1, and the valve 3. Plate 4.
  • a straight line passing through the center of the perfect valve seat 2 is defined as a center line O1, and a rotation center axis when the shaft 3 rotates the valve 1 is defined as a rotation axis O2.
  • the exhaust gas circulation valve shown in the first embodiment is a biaxial eccentric valve, and the rotation axis (rotation center axis) O2 of the shaft 3 with respect to the center line O1 of the valve seat 2 is X direction (the cross-sectional side shape is trapezoidal). It is offset uniaxially by offsetting to the long bottom side of the shape, and further biaxially offset by offsetting in the Y direction (the radial direction of the valve 1). If the shaft 3 is uniaxially decentered so that the mounting surface of the shaft 3 with respect to the valve 1 is on the gas downstream side, the state in which the shaft 3 is directly exposed to the exhaust gas can be reduced in the valve closing state. As a result, the high pressure of the exhaust gas acts on the shaft 3 so that a large burden is not applied around the valve 1 and the shaft 3 mounting portion.
  • valve 1 and the shaft 3 are not directly fixed, but are fixed via the plate 4 therebetween, thereby adjusting the ground contact area between the valve 1 and the plate 4 and the plate 4 and the shaft 3. Fixing strength can be improved.
  • the uniaxial eccentricity can be adjusted by changing the thickness of the plate 4.
  • the outer peripheral surface of the valve 1 is inclined as shown in FIG.
  • the outer peripheral surface of the valve 1 is tilted by ⁇ 45 degrees in the section A that moves to the near side when the valve is opened (FIG. 2B), and is tilted by +15 degrees in the upper and lower B portions near the rotation axis O2 of the shaft 3 ( In FIG. 2 (c)), in section C which moves to the back side when the valve is opened, it is inclined +45 degrees (FIG. 2 (d)).
  • the other sections are inclined so that the inclination angles of the sections A and B and the section C are smoothly connected.
  • the position shifted from the rotation axis O2 of the shaft 3 is set as the seal portion switching point 1a, the inclination angle is set to ⁇ 0 degrees, and the sign of the inclination angle of the section adjacent to the seal portion switching point 1a is switched.
  • the valve 1 contacts the inner peripheral edge 2a (FIG. 3) on the front side of the valve seat 2 at the front side of the outer peripheral surface in the section A, and the contact position is set at the seal portion switching point 1a.
  • the inner peripheral edge 2b on the far side of the valve seat 2 is closer to the far side of the outer peripheral surface in the B part and the section C. Abut.
  • the seal portion 5 where the valve 1 and the valve seat 2 abut when the valve is closed can be a line contact line seal.
  • the seal switching point 1a is provided at a position deviated from the rotation axis O2 of the shaft 3, the valve 1 near the rotation axis O2 of the shaft 3 does not interfere with the true circular opening of the valve seat 2, and the entire circumference seal Is possible. Accordingly, confidentiality can be improved and the theoretical leakage gap is zero.
  • the tilting process shown in FIG. 2 is an example, and the tilt angle, the tilt section, the position of the seal portion switching point, and the like are appropriately set according to conditions such as the amount of eccentricity of the rotation axis O2 of the shaft 3 and the thickness of the valve 1. Just design. Further, since the inner periphery of the opening of the valve seat 2 is a perfect circle, the formation of the perfect opening of the valve seat 2 can be handled by lathe processing, so that the processing cost can be reduced.
  • the shaft 3 is further eccentric in the radial direction from the uniaxial eccentric position in which the rotation axis O2 is eccentric from the center line O1 of the valve seat 2 toward the long bottom side of the trapezoidal shape.
  • valve 1 can be line-sealed at the edge of the true circular opening of the valve seat 2 to improve the biting resistance, and the entire line can be sealed, thus improving confidentiality.
  • the theoretical leakage gap can be reduced to zero.
  • shape of the opening part of the valve seat 2 can be simplified to a perfect circle, and can be manufactured at low cost.
  • shaft 3 since the shaft 3 is configured to be attached to the valve 1 with the plate 4 interposed therebetween, the fixing strength of the valve 1 and the shaft 3 can be improved and the uniaxial eccentricity can be adjusted.
  • FIG. 4 shows a configuration of an exhaust gas circulation valve according to Embodiment 2
  • FIG. 4 (a) is a plan view
  • FIG. 4 (b) is a cross-sectional view taken along line EE in FIG. 4 (a)
  • FIG. 4C is a cross-sectional view taken along the center line O1 of FIG.
  • the exhaust gas circulation valve shown in the first embodiment has a biaxial eccentric structure
  • the second embodiment it has a uniaxial eccentric structure. That is, the rotation axis O2 of the shaft 3 is uniaxially decentered from the center of the valve toward the long bottom side of the trapezoidal shape with respect to the center line O1 of the valve seat 2.
  • valve 1 Since the valve 1 is symmetrical with respect to the rotation axis O2 of the shaft 3 in the closed state, there is no pressure difference between the left and right exhaust gases applied to the valve 1 in the closed state. Therefore, the valve opening force due to the pressure difference can be canceled.
  • the valve 1 of the second embodiment is also inclined on the outer peripheral surface.
  • the valve 1 interferes with the valve seat 2 when the shaft 3 rotates in the vicinity of the rotation axis O ⁇ b> 2 of the shaft 3, it is necessary to provide minute gaps 6 in the interference portions. Since the gap 6 is provided, the valve 1 and the valve seat 2 cannot be sealed all around, and there is a possibility that a slight leak may occur from each gap 6.
  • both the poles of the valve 1 are deformed to form the gap 6, and the opening of the valve seat 2 is not deformed and remains in a perfect circle shape. Therefore, the processing of the valve seat 2 is simple.
  • the shaft 3 is configured to be attached to a uniaxial eccentric position in which the rotation axis O2 is eccentric from the center line O1 of the valve seat 2 toward the long bottom side of the trapezoidal shape. For this reason, the surface area of the valve 1 is symmetrical with respect to the rotation axis O2 of the shaft 3 when the valve is closed, and the valve opening force can be canceled even if a left-right differential pressure occurs when the valve is closed.
  • the exhaust gas circulation valve having the uniaxial eccentric structure shown in the second embodiment is also uniaxially eccentric so that the mounting surface of the shaft 3 with respect to the valve 1 is on the gas downstream side, as in the first embodiment. There is no burden due to high-pressure exhaust gas around the mounting part.
  • the valve 1 and the valve seat 2 can be brought into line contact and line-sealed, and the biting resistance can be improved.
  • the shape of the opening of the valve seat 2 can be simplified to a perfect circle and can be manufactured at low cost. Further, by using the plate 4, the fixing strength of the valve 1 and the shaft 3 can be improved, and the uniaxial eccentricity can be adjusted.
  • FIG. FIG. 5 is a plan view showing the configuration of the exhaust gas circulation valve according to the third embodiment.
  • the rotational axis O2 of the shaft 3 is offset in the Y direction with respect to the center line O1 of the valve seat 2 in order to have a biaxial eccentric structure. Therefore, the torque generated on the left and right surfaces of the valve 1 slightly differs with respect to the rotation axis O2 of the shaft 3, and if the pressure difference between the left and right exhaust gases applied to the valve 1 is large when the valve is closed, the valve opening force is reduced. May occur. Therefore, in the third embodiment, as shown in FIG. 5, in addition to the biaxial eccentric structure, a balance valve structure is used.
  • valve 1 and the valve seat 2 are respectively reduced by an area indicated by hatching, and the torque generated on the left and right surfaces of the valve 1 around the rotation axis O ⁇ b> 2 of the shaft 3 is made the same.
  • This pressure is distributed evenly on the left and right.
  • the shaft 3 is further offset in the radial direction from the uniaxial eccentric position in which the rotation axis O2 is eccentric to the long bottom side of the centerline O1 trapezoidal shape of the valve seat 2.
  • the valve 1 is attached to the shaft eccentric position, and the valve 1 is configured such that the torque generated on the left and right surfaces with respect to the rotation axis O2 of the shaft 3 is the same. For this reason, even if a left-right differential pressure occurs when the valve is closed, the valve opening force can be canceled.
  • the exhaust gas circulation valve having the biaxial eccentric structure shown in the third embodiment is also uniaxially eccentric so that the mounting surface of the shaft 3 with respect to the valve 1 is on the gas downstream side, as in the first embodiment.
  • the valve 1 can be line-sealed at the edge of the circular opening of the valve seat 2 to improve the biting resistance, and the entire circumference can be sealed, thus improving confidentiality and theoretically.
  • the leakage gap can be reduced to zero. Further, by fixing the valve 1 and the shaft 3 with the plate interposed therebetween, the fixing strength of the valve 1 and the shaft 3 can be improved and the uniaxial eccentricity can be adjusted.
  • the exhaust gas circulation valve according to the present invention is designed such that the outer peripheral surface of the eccentric structure valve is inclined so that the valve seat can be line-sealed. Suitable for use in.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lift Valve (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

 バルブシート2の中心線O1に対して、シャフト3の回転軸O2がX方向およびY方向に二軸偏心して取り付けられている。バルブ1の外周面には、バルブ1とバルブシート2とが線接触するように傾斜加工を施し、バルブの外周面は軸中心からずれた2箇所で傾斜角度の正負を切り替える。また、この2箇所をつなぐ区間には傾斜角度が一定の区間をそれぞれ設け、その他の区間は滑らかにつなぐ。

Description

排気ガス循環バルブ
 この発明は、排気ガス循環バルブ(ERG-Valve)の、バルブとバルブシートの形状に関するものである。
 排気ガス循環バルブにおいて、循環排気ガスの流量を調整する弁体は、排気ガス通路を開閉するバルブと、このバルブを動作させる回転軸とで構成される。この回転軸は、バルブ本体のハウジングに設けられた軸受け部に回転可能に支持する。一方、バルブシートは排気ガス通路を構成するハウジングに設けられ、バルブを回転軸と一体に回転させてバルブシートに当接させることによって排気ガス通路を閉塞する。
 従来の排気ガス循環バルブは、バルブとバルブシートのシール面付近に排気ガスに含まれるデポジット等の異物が堆積した場合、異物の噛み込みによってバルブとバルブシートが固着して、弁体の開閉に支障をきたすという課題があった。
 このような課題を解消するために、特許文献1には、排気ガス循環バルブとして用いるバタフライバルブが開示されている。このバタフライバルブは、円形のバルブの外周面が傾斜面に形成され、バルブシートは2部品で構成されて環状の段差が設けられており、バルブ外周面をバルブシートの環状段差で広範囲に線シールして排気ガス通路を閉塞する。
 しかし、この構成では広範囲で線シールが確保されているものの、バルブ閉弁状態において、バルブの回転軸には排気ガス通路を流れるガスの高圧が作用して、回転軸付近のシール部には大きな負担がかかり、シールがない場合にはその部分からの漏れが増加してしまう。また、バルブシートが2部品から構成されるため、構成が複雑になるという欠点があった。
 このような欠点を補うために、特許文献2には、バルブの回転軸を、バルブの厚み方向に偏心させた断面が真円で多重偏心構造のバタフライバルブが提案されている。
特開2004-263723号公報 特開2004-225783号公報
 しかし、上記特許文献2の排気ガス循環バルブは、多重偏心構造にすることによって特許文献1の問題点は改善できるが、弁体開閉時にはバルブ外周面がバルブシートとのシール面が一部摺り潰すように摺動するため、シート面には弾性を持たせる必要があり、また、弾性のある別部材のシールを選定する必要があり、高価になりやすいという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、バルブシートのエッジで線シールすることで耐噛み込み性を向上させると共に、バルブシート形状を簡素化することで排気ガス循環バルブを安価に製造することを目的とする。
 この発明の排気ガス循環バルブは、バルブの中心を通る一方の直交線上の左右外周面が軸中心からずれた2箇所で傾斜角度の正負が切り替わるように滑らかに傾斜するように形成され、他方の直交線に沿った断面側面形状が台形形状に形成され、
 前記シャフトは、その回転中心軸を前記バルブの中心から前記台形形状の長底辺側へ偏心させた1軸偏心位置に取り付けたものである。
 この発明によれば、バルブは、バルブの中心を通る他方の直交線に沿った断面側面形状が台形形状に形成され、シャフトは、その回転中心軸をバルブの中心から台形形状の長底辺側へ偏心させた1軸偏心位置に取り付けたので、バルブをバルブシートのエッジで線シールすることで耐噛み込み性を向上させると共に、バルブシートの形状を簡素化することで安価に製造することができる。
この発明の実施の形態1に係る排気ガス循環バルブの構成を示し、図1(a)は平面図、図1(b)は図1(a)のDD線に沿って切断した断面図である。 実施の形態1のバルブの形状を示し、図2(a)は平面図、図2(b)~(d)はA’A’線,B’B’線,C’C’線に沿って切断した断面図である。 実施の形態1に係る排気ガス循環バルブを図1(a)のDD線に沿って切断した断面斜視図であり、図3(a)はバルブ開弁状態、図3(b)はバルブ閉弁状態を示す。 この発明の実施の形態2に係る排気ガス循環バルブの構成を示し、図4(a)は平面図、図4(b)は図4(a)のEE線に沿って切断した断面図、図4(c)は図4(a)の中心線O1に沿って切断した断面図である。 この発明の実施の形態3に係る排気ガス循環バルブの構成を示す平面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1(a)は、この発明の実施の形態1に係る排気ガス循環バルブの平面図であり、図1(b)は図1(a)のDD線に沿って切断した断面図である。図2(a)は、バルブ1の形状を示す平面図であり、図2(b),(c),(d)にA’A’線,B’B’線,C’C’線に沿って切断した断面図を示す。図3(a)は、図1(a)のDD線に沿って切断した、開弁状態の断面斜視図であり、図3(b)は閉弁状態の断面斜視図である。
 排気ガス循環バルブは、略円形状のバルブ1と、真円形状の開口部が形成されたバルブシート2と、バルブ1を回転させるシャフト3と、バルブ1とシャフト3との間に介在させたプレート4とを備える。真円形状のバルブシート2の中心を通る直線を中心線O1とし、シャフト3がバルブ1を回転させるときの回転中心軸を回転軸O2とする。
 本実施の形態1に示す排気ガス循環バルブは二軸偏心バルブであり、バルブシート2の中心線O1に対して、シャフト3の回転軸(回転中心軸)O2をX方向(断面側面形状が台形形状の長底辺側)にオフセットさせて一軸偏心させ、さらにY方向(バルブ1の径方向)にオフセットさせて二軸偏心させたものである。シャフト3のバルブ1に対する取り付け面がガス下流側になるように一軸偏心させれば、閉弁状態において、シャフト3が排気ガスに直接暴露される状態を減少させることができる。これにより、シャフト3に排気ガスの高圧が作用してバルブ1とシャフト3の取り付け部分周辺に大きな負担がかかることがない。
 また、バルブ1とシャフト3とを直接固着させず、間にプレート4を介して固定することで、バルブ1とプレート4、プレート4とシャフト3の接地面積を調整してバルブ1とシャフト3の固定強度を向上させることができる。また、プレート4の厚さを変更して、一軸偏心量も調整することができる。
 二軸偏心構造に対応させるように、バルブ1とバルブシート2とを線接触させることができるように、バルブ1の外周面には図2に示すような傾斜加工が施されている。バルブ1の外周面は、開弁時に手前側に移動する区間Aを-45度傾斜させ(図2(b))、シャフト3の回転軸O2付近にくる上下のB部では+15度傾斜させ(図2(c))、開弁時に奥側に移動する区間Cでは+45度傾斜させる(図2(d))。その他の区間は、区間A、B部、区間Cの傾斜角度を保持するように滑らかにつないだ傾斜加工とする。このとき、シャフト3の回転軸O2からずれた位置をシール部切替ポイント1aとし、傾斜角度を±0度にして、シール部切替ポイント1aに隣接する区間の傾斜角度の正負を切り替える。
 このように傾斜加工すると、バルブ1が、区間Aでは外周面の手前寄りでバルブシート2の手前側の内周エッジ2a(図3)に当接し、シール部切替ポイント1aで当接位置をバルブシート2の手前側の内周エッジ2aから奥側の内周エッジ2b(図3)に切り替えて、B部および区間Cでは外周面の奥側寄りでバルブシート2の奥側の内周エッジ2bに当接する。そのため、閉弁したときにバルブ1とバルブシート2とが当接するシール部5は、線接触の線シールにすることができる。線シールであればバルブ1とバルブシート2の接触面積が小さいので、排気ガス通路に設置された場合に排気ガスに含まれるデポジット等の異物を噛み込む可能性が減少して、シール部5の固着が低減され、よって、開閉動作に支障をきたすトルクも減少する。
 また、シール部切替ポイント1aをシャフト3の回転軸O2からずれた位置に設けるため、シャフト3の回転軸O2付近のバルブ1がバルブシート2の真円形開口部と干渉せず、全周線シールが可能となる。従って、機密性を向上させることができ、理論上の洩隙間は0となる。
 なお、図2に示す傾斜加工は一例であり、シャフト3の回転軸O2の偏心量、バルブ1の厚さ等の条件に応じて、傾斜角度、傾斜区間、シール部切替ポイントの位置等を適宜設計すればよい。また、バルブシート2の開口部内周は真円形状なので、バルブシート2の真円形の開口部形成は旋盤加工で対応できるため、加工コストを低減することができる。
 以上より、実施の形態1によれば、シャフト3は、その回転軸O2を、バルブシート2の中心線O1から台形形状の長底辺側へ偏心させた一軸偏心位置からさらに径方向へ偏心させた二軸偏心位置に取り付け、バルブ1の外周面は、軸中心からずれた2箇所のシール部切替ポイント1aで、傾斜角度の正負が切り替わるように滑らかに傾斜させ、シール部切替ポイント1aをつなぐ区間に、傾斜角度が一定の区間A,Cを設けるように構成した。このため、バルブ1をバルブシート2の真円形開口部のエッジで線シールすることで耐噛み込み性を向上させることができ、かつ、全周線シールが可能となるので機密性を向上させて理論上の洩隙間を0にできる。また、バルブシート2の開口部の形状を真円形に簡素化でき、安価に製造することができる。さらに、シャフト3は、プレート4を間に挟んでバルブ1に取り付けるように構成したので、バルブ1とシャフト3の固定強度を向上させると共に、一軸偏心量を調整することができる。
実施の形態2.
 図4は、実施の形態2に係る排気ガス循環バルブの構成を示し、図4(a)は平面図、図4(b)は図4(a)のEE線に沿って切断した断面図、図4(c)は図4(a)の中心線O1に沿って切断した断面図である。上記実施の形態1に示す排気ガス循環バルブは二軸偏心構造としたが、本実施の形態2では一軸偏心構造にする。即ち、バルブシート2の中心線O1に対して、シャフト3の回転軸O2をバルブの中心から台形形状の長底辺側へ一軸偏心させる。このバルブ1はシャフト3の回転軸O2に対して、閉弁状態において左右対称であるため、閉弁状態のときにバルブ1にかかる排気ガスの左右の圧力差がない。従って圧力差による開弁力をキャンセルすることができる。
 本実施の形態2のバルブ1も、上記実施の形態1の図2に示すように、その外周面に傾斜加工が施されている。ただし、シャフト3の回転軸O2の近傍において、シャフト3が回転する際にバルブ1がバルブシート2に干渉するため、干渉する部分に微小な隙間6をそれぞれ設ける必要がある。隙間6を設けるため、バルブ1とバルブシート2とは全周線シールは不可能となり、各隙間6からごくわずかに洩れが発生する可能性がある。なお、図4では、バルブ1の両極を変形して隙間6を形成することとし、バルブシート2の開口部は変形せずに真円形状のままにする。そのため、バルブシート2の加工は簡単である。
 以上により、実施の形態2によれば、シャフト3は、その回転軸O2を、バルブシート2の中心線O1から台形形状の長底辺側へ偏心させた一軸偏心位置に取り付けるように構成した。このため、バルブ1の表面積がシャフト3の回転軸O2に対して、閉弁時において左右対称となり、閉弁時に左右差圧が生じてもその開弁力をキャンセルすることができる。
 なお、本実施の形態2に示す一軸偏心構造の排気ガス循環バルブも、上記実施の形態1と同様に、シャフト3のバルブ1に対する取り付け面がガス下流側になるように一軸偏心させれば、取り付け部分周辺に高圧な排気ガスによる負担がかかることがない。また、バルブ1の外周面を傾斜加工したので、バルブ1とバルブシート2を線接触させて線シールすることができ、耐噛み込み性を向上できる。さらに、バルブシート2の開口部の形状を真円形に簡素化でき、安価に製造することができる。また、プレート4を用いることにより、バルブ1とシャフト3の固定強度を向上させると共に、一軸偏心量を調整することができる。
実施の形態3.
 図5は、実施の形態3に係る排気ガス循環バルブの構成を示す平面図である。
 上記実施の形態1に示す排気ガス循環バルブは、二軸偏心構造にするためにバルブシート2の中心線O1に対してシャフト3の回転軸O2をY方向にオフセットさせていた。そのため、バルブ1はシャフト3の回転軸O2に対してわずかに左右表面に発生するトルクが異なり、閉弁状態のときにバルブ1にかかる排気ガスの左右の圧力差が大きいと、開弁力が発生する場合がある。そこで、本実施の形態3では図5に示すように、二軸偏心構造に加えて、バランスバルブ構造に構成する。
 図5において、斜線で示す面積だけバルブ1とバルブシート2とをそれぞれ縮小させ、シャフト3の回転軸O2を中心とするバルブ1の左右表面に発生するトルクを同一にすることにより、バルブ1にかかる圧力が左右均等に分散する構造となっている。この構造により、一軸偏心構造の場合と同様に、バルブ1の左右で生じる圧力差による開弁力をキャンセルすることができる。
 以上より、実施の形態3によれば、シャフト3は、その回転軸O2を、バルブシート2の中心線O1台形形状の長底辺側へ偏心させた一軸偏心位置からさらに径方向へ偏心させた二軸偏心位置に取り付け、さらに、バルブ1は、シャフト3の回転軸O2に対して左右表面に発生するトルクが同じとなるように構成した。このため、閉弁時に左右差圧が生じてもその開弁力をキャンセルすることができる。
 なお、本実施の形態3に示す二軸偏心構造の排気ガス循環バルブも、上記実施の形態1と同様に、シャフト3のバルブ1に対する取り付け面がガス下流側になるように一軸偏心させれば、閉弁時において取り付け部分周辺に高圧な排気ガスによる負担がかかることがない。また、バルブ1をバルブシート2の円形開口部のエッジで線シールすることで耐噛み込み性を向上させることができ、かつ、全周線シールが可能となるので機密性を向上させて理論上の洩隙間を0にできる。また、プレートを間に挟んでバルブ1とシャフト3を固定することにより、バルブ1とシャフト3の固定強度を向上させると共に、一軸偏心量を調整することができる。
 以上のように、この発明に係る排気ガス循環バルブは、偏心構造のバルブの外周面に傾斜加工を施してバルブシートに対し線シールできるようにしたので、デポジットの堆積が起こる排気ガス循環バルブなどに用いるのに適している。

Claims (6)

  1.  円形状のバルブと、前記バルブの外周面に当接する円形開口部が形成されたバルブシートと、前記バルブと一体に回転して前記円形開口部を開閉するシャフトとを備える排気ガス循環バルブにおいて、
     前記バルブは、中心を通る一方の直交線上の左右外周面が軸中心からずれた2箇所で傾斜角度の正負が切り替わるように滑らかに傾斜するように形成され、他方の直交線に沿った断面側面形状が台形形状に形成され、
     前記シャフトは、その回転中心軸を前記バルブの中心から前記台形形状の長底辺側へ偏心させた1軸偏心位置に取り付けたことを特徴とする排気ガス循環バルブ。
  2.  シャフトは、その回転中心軸を、一軸偏心位置からさらに前記バルブの径方向へ偏心させた二軸偏心位置に取り付けることを特徴とする請求項1記載の排気ガス循環バルブ。
  3.  バルブシートの円形開口部は、真円形状であることを特徴とする請求項1記載の排気ガス循環バルブ。
  4.  バルブは、シャフトの回転中心軸に対して左右表面に発生するトルクが同じであることを特徴とする請求項2記載の排気ガス循環バルブ。
  5.  バルブの外周面は、傾斜角度の正負が切り替わる2箇所をつなぐ区間に、傾斜角度が一定の区間を設けたことを特徴とする請求項1記載の排気ガス循環バルブ。
  6.  シャフトは、プレートを間に挟んでバルブに取り付けることを特徴とする請求項1記載の排気ガス循環バルブ。
PCT/JP2009/003150 2009-07-07 2009-07-07 排気ガス循環バルブ WO2011004428A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980160300.3A CN102472204B (zh) 2009-07-07 2009-07-07 废气循环阀
PCT/JP2009/003150 WO2011004428A1 (ja) 2009-07-07 2009-07-07 排気ガス循環バルブ
KR1020117028770A KR101286384B1 (ko) 2009-07-07 2009-07-07 배기 가스 순환 밸브
US13/320,658 US8944407B2 (en) 2009-07-07 2009-07-07 Exhaust gas recirculation valve
JP2011521704A JP5230811B2 (ja) 2009-07-07 2009-07-07 排気ガス循環バルブ
DE112009005051.4T DE112009005051B4 (de) 2009-07-07 2009-07-07 Abgasrückführventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003150 WO2011004428A1 (ja) 2009-07-07 2009-07-07 排気ガス循環バルブ

Publications (1)

Publication Number Publication Date
WO2011004428A1 true WO2011004428A1 (ja) 2011-01-13

Family

ID=43428870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003150 WO2011004428A1 (ja) 2009-07-07 2009-07-07 排気ガス循環バルブ

Country Status (6)

Country Link
US (1) US8944407B2 (ja)
JP (1) JP5230811B2 (ja)
KR (1) KR101286384B1 (ja)
CN (1) CN102472204B (ja)
DE (1) DE112009005051B4 (ja)
WO (1) WO2011004428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190589A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 排気ガス循環バルブおよび製造方法
JP2015148309A (ja) * 2014-02-07 2015-08-20 株式会社オーケーエム 三重偏心型バタフライバルブ
JP2017506317A (ja) * 2014-02-21 2017-03-02 ビーエスアンドビー イノベーション リミテッド 回転可能な圧力逃し弁組立体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108302206B (zh) * 2013-12-25 2021-07-09 爱三工业株式会社 双偏心阀
JP5759646B1 (ja) 2013-12-25 2015-08-05 愛三工業株式会社 二重偏心弁、二重偏心弁製造方法
IN2015DE00283A (ja) * 2014-02-28 2015-09-04 Borgwarner Inc
TWI555934B (zh) * 2014-12-16 2016-11-01 進典工業股份有限公司 偏心閥及其製作方法
DE102015104287B4 (de) * 2015-03-23 2018-02-01 BorgWarner Esslingen GmbH Ventil für einen Abgasstrang einer Brennkraftmaschine
JP6768427B2 (ja) * 2016-06-01 2020-10-14 愛三工業株式会社 二重偏心弁
KR102092773B1 (ko) * 2018-09-06 2020-03-24 캄텍주식회사 차량용 밸브
KR102268251B1 (ko) * 2020-12-10 2021-06-23 한국유니콤밸브주식회사 오중 오프셋 구조의 버터플라이 밸브
CN113202933B (zh) * 2021-06-04 2022-10-14 重庆川仪调节阀有限公司 多偏心全金属密封蝶阀密封副及其加工方法、装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209273A (ja) * 1986-03-10 1987-09-14 Nec Corp 流量制御装置
JPH0660740U (ja) * 1993-01-27 1994-08-23 自動車機器株式会社 バタフライバルブ
JPH07301344A (ja) * 1994-04-28 1995-11-14 Fuji Oozx Inc バタフライバルブ
JP2001173465A (ja) * 1999-12-15 2001-06-26 Denso Corp スロットル装置
JP2002250467A (ja) * 2000-12-18 2002-09-06 Kitz Corp バタフライバルブ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037819A (en) * 1976-03-03 1977-07-26 Kamyr Valves Inc. Butterfly valve having metal-to-metal sealing with conical angle-transported vane
JPS53131529A (en) * 1977-04-20 1978-11-16 Kamyr Valves Butterfly valve providing sealing means between metals by way of oblique conical form valve member
US6079695A (en) * 1995-10-12 2000-06-27 Orbit Valve Company Butterfly valve construction
JP3415771B2 (ja) * 1998-06-09 2003-06-09 株式会社巴技術研究所 三重偏心型バタフライ弁
FR2805878B1 (fr) * 2000-03-01 2002-11-29 Mark Iv Systemes Moteurs Sa Dispositif de vanne a clapet et ensemble de regulation comportant de tels dispositifs
JP2004225783A (ja) * 2003-01-22 2004-08-12 Nbs:Kk バタフライバルブ
JP3726815B2 (ja) * 2003-02-13 2005-12-14 大豊工業株式会社 流量制御バルブ
JP2005299457A (ja) * 2004-04-09 2005-10-27 Isuzu Motors Ltd エンジンの排気ガス絞り弁
JP2007032618A (ja) * 2005-07-22 2007-02-08 Taiho Kogyo Co Ltd バルブアセンブリおよびバルブ位置学習方法およびバルブ位置学習プログラム
JP4987087B2 (ja) * 2007-11-28 2012-07-25 三菱電機株式会社 排気ガス循環バルブ弁体機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209273A (ja) * 1986-03-10 1987-09-14 Nec Corp 流量制御装置
JPH0660740U (ja) * 1993-01-27 1994-08-23 自動車機器株式会社 バタフライバルブ
JPH07301344A (ja) * 1994-04-28 1995-11-14 Fuji Oozx Inc バタフライバルブ
JP2001173465A (ja) * 1999-12-15 2001-06-26 Denso Corp スロットル装置
JP2002250467A (ja) * 2000-12-18 2002-09-06 Kitz Corp バタフライバルブ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190589A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 排気ガス循環バルブおよび製造方法
JPWO2013190589A1 (ja) * 2012-06-18 2016-02-08 三菱電機株式会社 排気ガス循環バルブおよび製造方法
JP2015148309A (ja) * 2014-02-07 2015-08-20 株式会社オーケーエム 三重偏心型バタフライバルブ
JP2017506317A (ja) * 2014-02-21 2017-03-02 ビーエスアンドビー イノベーション リミテッド 回転可能な圧力逃し弁組立体

Also Published As

Publication number Publication date
US20120061603A1 (en) 2012-03-15
KR101286384B1 (ko) 2013-07-15
DE112009005051T5 (de) 2012-06-06
CN102472204A (zh) 2012-05-23
DE112009005051B4 (de) 2015-01-08
KR20120024695A (ko) 2012-03-14
JP5230811B2 (ja) 2013-07-10
US8944407B2 (en) 2015-02-03
CN102472204B (zh) 2014-03-05
JPWO2011004428A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2011004428A1 (ja) 排気ガス循環バルブ
JP5759646B1 (ja) 二重偏心弁、二重偏心弁製造方法
US20060038151A1 (en) Flow rate control valve
JP5586023B2 (ja) バタフライ弁およびシートリング
JP2008106823A (ja) シール構造
US11085543B2 (en) Butterfly valve including a valve body, shaft, groove portion and seal ring
US10816100B2 (en) Sealing member for a multi-direction changeover valve and a multi-direction changeover valve including the sealing member
JP5925309B2 (ja) 排気ガス循環バルブおよび製造方法
US8434736B2 (en) Fluid passage valve
JP6523734B2 (ja) バタフライ弁
JP2010261564A (ja) ロータリー弁及びその生産方法
JP6701436B2 (ja) バタフライバルブ及び排気ガス再循環バルブ
JPS6327597B2 (ja)
JP5751057B2 (ja) 弁装置
JP6673747B2 (ja) 二重偏心弁及びその製造方法
JP6692167B2 (ja) バルブ
JPH11270703A (ja) 偏心形バタフライ弁
JP5747704B2 (ja) 弁装置
WO2022269785A1 (ja) バタフライバルブ
JP4121792B2 (ja) メタルシートバタフライ弁のシート構造
WO2020158406A1 (ja) 可変ノズルユニット
JP2020003023A (ja) 弁装置
JP3895653B2 (ja) トラニオン型ボール弁のハードカーボンシート構造
JP2020122521A (ja) バタフライバルブ
JPH07190210A (ja) ボールバルブ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160300.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011521704

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320658

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117028770

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120090050514

Country of ref document: DE

Ref document number: 112009005051

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847033

Country of ref document: EP

Kind code of ref document: A1